3,119 research outputs found

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Energy-Efficient System Architectures for Intermittently-Powered IoT Devices

    Get PDF
    Various industry forecasts project that, by 2020, there will be around 50 billion devices connected to the Internet of Things (IoT), helping to engineer new solutions to societal-scale problems such as healthcare, energy conservation, transportation, etc. Most of these devices will be wireless due to the expense, inconvenience, or in some cases, the sheer infeasibility of wiring them. With no cord for power and limited space for a battery, powering these devices for operating in a set-and-forget mode (i.e., achieve several months to possibly years of unattended operation) becomes a daunting challenge. Environmental energy harvesting (where the system powers itself using energy that it scavenges from its operating environment) has been shown to be a promising and viable option for powering these IoT devices. However, ambient energy sources (such as vibration, wind, RF signals) are often minuscule, unreliable, and intermittent in nature, which can lead to frequent intervals of power loss. Performing computations reliably in the face of such power supply interruptions is challenging

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application

    A Low Cost Platform for Sensor Network Applications and Educational Purposes

    Get PDF
    In this paper we describe the design, key features and results obtained from the development of a generic platform usable for sensor network applications operational in the ISM band. The goal was to create an open source low cost platform suitable for use in educational environment. The platform should allow students to easily grasp the fundamentals of wireless sensor networks so special attention was paid to basic concepts related to their functioning. Two versions of this platform were designed, the first one being a proof of concept and the second one more adequate to field test and measurements. Practical aspects of implementation such as network protocol, power consumption, processing speed, media access are discussed

    Power management techniques in an FPGA-Based WSN node for high performance application

    Get PDF
    In this work, the power management techniques implemented in a high-performance node for Wireless Sensor Networks (WSN) based on a RAM-based FPGA are presented. This new node custom architecture is intended for high-end WSN applications that include complex sensor management like video cameras, high compute demanding tasks such as image encoding or robust encryption, and/or higher data bandwidth needs. In the case of these complex processing tasks, yet maintaining low power design requirements, it can be shown that the combination of different techniques such as extensive HW algorithm mapping, smart management of power islands to selectively switch on and off components, smart and low-energy partial reconfiguration, an adequate set of save energy modes and wake up options, all combined, may yield energy results that may compete and improve energy usage of typical low power microcontrollers used in many WSN node architectures. Actually, results show that higher complexity tasks are in favor of HW based platforms, while the flexibility achieved by dynamic and partial reconfiguration techniques could be comparable to SW based solutions

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Bidirectional 868/915 MHz wireless module powered with energy harverster

    Get PDF
    In this paper, we present a work that allows bidirectional communications in the 868/915 MHz ISM bands, using the power generated by energy harvesters. Our investigations show that a clear channel assessment, receive of acknowledge and resend of the message are possible within a limited, but reasonable time. The design relies on the use of low power microcontrollers and transceivers, and low energy management techniques

    Low-cost autonomous 3-D monitoring systems for hydraulic engineering environments and applications with limited accuracy requirements

    Get PDF
    The details of developing autonomous 3-D motion monitoring systems based on commercial off-the-shelf (COTS) motion sensors for hydraulic environments are discussed. Possible areas of application, are river bed sediment transport monitoring and monitoring the agitation and other physical parameters inside milk vats with a mechanized agitator. Simplified calculations of inertial navigation systems (INSs) such as Euler angle method, MATLAB programs for further processing, power management systems for autonomous operation including the possibility of inductive power transfer (IPT) and use of microelectromechanical systems (MEMS) technology are discussed. Experimental results for proof of concept systems are highlighted

    Design of Non Invasive Wireless Eeg Recording System

    Get PDF
    Bio medical signal monitoring systems have drawn great attention now a day by the results yielded from weighty advances in electronics and communications and field of information technologies. As an example EEG (electroencephalogram) is the most popular interface for measuring bio-potential in brain computer interface (BCI) systems which is a prominent topic organizing a direct communication link between human brain and a computer. We know that most BCI (brain computer interface) systems are bulky and hard wired EEG experiments which are inconvenient and troublesome for patients to follow their regular routine tasks. So, to overcome this problem we are going to develop a single channel wireless EEG (electroencephalogram) acquisition and recording system which will be more comfortable and convenient to the patients. The system consists of an EEG signal acquisition and processing units along with the wireless transmission and reception units. The former (analogue processing unit) includes electrodes, pre-amplifiers, filters and gain amplifiers while the later (digital processing unit) includes ADC (analogue to digital converter) and micro-controller which are used to convert the analogue EEG signals into digital signals and fulfill the digital filtering. The transmission and reception units include a Bluetooth communication module which sends the digital signals to the PC (personal computer) to be displayed over the GUI (graphical user interface). Thus the patient's EEG signal could be observed and stored without any bulky wired environment due to which the distortion caused by the long distance transmission could be reduced significantly. The key performances are: a) Long range communications (50 meters) b) ADC sampling rate is high (400 samples/sec) c) Low power consumption. d) Portable and e) Battery operated. Medical research applications based on wireless EEG acquisition system can be explored such as brain controlled games and diagnosis of diseases
    • 

    corecore