
Power Management Techniques in an FPGA-Based

WSN Node for High Performance Applications

M. Lombardo, J. Camarero, J. Valverde, J. Portilla, E. de la Torre, T. Riesgo

Centre of Industrial Electronics, Technical University of Madrid

José Gutiérrez Abascal, 2; 28006 Madrid, Spain

eduardo.delatorre@upm.es

Abstract—In this work, the power management techniques

implemented in a high-performance node for Wireless Sensor

Networks (WSN) based on a RAM-based FPGA are presented.

This new node custom architecture is intended for high-end WSN

applications that include complex sensor management like video

cameras, high compute demanding tasks such as image encoding

or robust encryption, and/or higher data bandwidth needs. In the

case of these complex processing tasks, yet maintaining low

power design requirements, it can be shown that the combination

of different techniques such as extensive HW algorithm mapping,

smart management of power islands to selectively switch on and

off components, smart and low-energy partial reconfiguration, an

adequate set of save energy modes and wake up options, all

combined, may yield energy results that may compete and

improve energy usage of typical low power microcontrollers used

in many WSN node architectures. Actually, results show that

higher complexity tasks are in favor of HW based platforms,

while the flexibility achieved by dynamic and partial

reconfiguration techniques could be comparable to SW based

solutions.

Keywords: FPGA based WSN node; low power design; partial

reconfiguration; power islands, energy management.

I. INTRODUCTION

WSN applications are evolving towards more demanding
scenarios and requirements. This fact implies the use of much
more powerful processing units to be able to deal with new
algorithms and higher amounts of data.

 In classic WSN applications, simple tasks have been
always performed by ultra-low power microcontrollers with
very limited computing capabilities. However, a growing
tendency to higher compute demanding applications has
appeared. Some factors that characterize these new applications
are: a) the use of more complex sensors such as cameras, radars
or ultrasound positioning equipment, among others; b)
intensive processing tasks running either autonomously in
every node or as part of the network management, c) the
increase of raw data to be processed due to the use of these
more complex algorithms or to the increase in the number of
nodes, etc..

Even though the use of FPGAs in WSN applications has
been avoided by many designers mostly because of their high
power consumption, results show that by taking advantage of
HW acceleration together with some power management

techniques, it is possible to obtain energy efficient solutions
that are suitable for these high performance WSN applications.

As it will be explained within the next sections, the typical
application profile of a WSN has, in general, a very low duty
cycle, see Figure 1.

Figure 1: Typical WSN application profile

Therefore, it is crucial for these nodes to have extremely

low power consumption during sleep time, since the node will
be most of the time in this mode. This may be achieved by
either selecting devices with very low static power
consumption or, if not possible, to implement the required
power on/off control for some components.

Although SRAM-based FPGAs cannot compete in terms of
static power consumption with other FPGA technologies, like
the non-volatile ones, the increased flexibility provided by the
possibility of dynamically and partially reconfigure them, as
well as the higher resource availability, may make these RAM
based FPGAs good candidate solutions for high performance
applications. In this way, the purpose of this work is to show
the power management techniques that are applied to a custom
designed node architecture with an SRAM FPGA, so that the
main drawback of excessive energy consumption is minimized.

One problem of RAM-based FPGAs is their relatively high
static power consumption even when activating their power
save modes. Another drawback is that they are not alive at
power up, so every time the FPGA is powered off, its
configuration is lost. Due to these reasons, in order to minimize
power consumption during sleep time, the FPGA must be
switched off so that it has to be configured again after every off
cycle.

In Figure 2, a typical power consumption profile of the
RAM-based FPGA node is shown. Three regions are
differentiated: sleep period, reconfiguration period and
computing period. These plots, since voltage is kept constant,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148665799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

may be obtained by measuring current consumption, as it will
be done in the experiments shown at the end of the paper.

Figure 2: Energy profile of the High Performance Node

The power management techniques described in this paper

focus on the reduction of the current consumption during these
three periods. The current consumed during sleep periods is
reduced by switching on only those components that are
required to determine the wake-up conditions. The
configuration time, as it will be shown will be reduced by
diminishing the reconfiguration time, since as we have
observed within the experiments current consumption is
roughly independent on the type of bitstream. Finally,
consumption reduction during the computing period is
exercised by moving most tasks from SW into HW, with some
energy saving improvements which are the main results
published by the authors in [1].

II. RELATED WORK

High performance applications are often related to the use
of complex algorithms such as video compression, data
encryption, tracking, etc. Many of them are multimedia
applications that include low-power video cameras or
microphones, and they are known as Wireless Multimedia
Sensor Networks (WMSN). In [2] and [3], surveys about these
applications are detailed. According to [3], these applications
are classified in: surveillance, traffic monitoring and
enforcement, personal and health care, gaming and
environmental and industrial. Surveillance is probably the best
example of the increase of complexity in traditional WSN
applications. Traditionally, surveillance based on WSNs was
limited to intruder detection or movement in target areas.
Features like cameras or node synchronization permit location
tracking or people identification, as seen in [4], [5], [6] and [7].

The use of these capabilities can also make a breakthrough
in terms of human health-monitoring applications, mostly
related to telemedicine and complete patient monitoring. Also,
non-intrusive study of people behavior, mainly elder people
suffering dementia, has been reported in [8] and [9].

 Applications related to environmental care and industrial
monitoring can be also faced and improved by means of using
these high performance networks. For instance, full
manufacturing processes including quality control can be
monitored relying on artificial vision techniques.

Not only the inclusion of new sensors but also the
toughening of traditional constraints such as maximum latency,
bandwidth, the increase in the number of nodes or security
requirements, causes architectural changes in WSN platforms.
In [10] and [11], a survey about this kind of applications is

studied including encryption algorithms ([12] [13]) which at
the beginning where considered unfeasible to be carried out by
WSNs. As an example of complex data calculations, in [14],
the authors face data-mining for WSNs while in [15]
distributed multimedia source coding is addressed.

Using FPGAs in wireless sensor nodes for high demanding
scenarios is not a novel approach. In [16], for instance, the
authors introduce a Spartan 3E prototype board as a
coprocessor attached to an external ZigBee transceiver for the
implementation of a hyper-chaos encryption engine. Similar
applications using off-the-shelf FPGA boards are shown in [17]
[18] [19] and [20]. These approaches prove that including
hardware-based devices in WSNs offer benefits in terms of
flexibility and performance. However, in spite of being valid
for proof of concept, existing solutions are far from showing
real new WSN architectures, leaving behind important aspects
such as power consumption, power management, sensor
integration. On the contrary, the development of a complete
FPGA based node is provided in [21], including a low-
performance Spartan 2E. The complete node including
communications is integrated in a 25 mm × 25 mm board.

Hardware reconfigurability is addressed for WSN nodes. In
[22], Philipp and Glesner propose a virtual reconfiguration
layer on top of a flash-based low power FPGA, which is the
main computing device, with no microcontroller aside. This
approach enhances notably the flexibility by allowing HW
changes, but limits some other issues like the possibility of
using self-repair strategies, self-reconfiguration for increased
fault-tolerance or system adaptation, inclusion of intrinsic
evolvable systems, etc., which could be interesting features for
WSN technology.

Among SRAM based dynamically and partially
reconfigurable FPGAs, the Spartan 6 family offers the lowest,
yet not small at all, technology commercially available today,
with sufficient number of resources for the targeted application
fields. Spartan-6 partial reconfiguration was originally
addressed by [23] and [24], so they match with the imposed
requirements.

Partial reconfiguration for enhanced boot-up sequences in
Spartan-3 devices was addressed by Hubner and Becker in
[25], where they proposed a multi-phase technique for fast
boot-up. In our approach we also address this issue, but in
order to diminish energy consumption in the reconfiguration
phase.

III. PROPOSED NODE ARCHITECTURE

For the correct understanding of the power management
techniques used in our proposed HiReCookie platform (High-
Performance Reconfigurable Cookie), is necessary to know
some information about the node architecture and features.

WSN nodes include at least four functional blocks:
processing, communication, sensing and/or acting, and power
supply. In order to have a flexible and modular design, the
Cookie platform is divided into four different PCBs, each of
them covering one of these previous roles. Every layer is
connected to their neighbors through vertical connectors. See
Figure 3. It is possible to exchange every layer separately if

different sensors, communication modules, power supply
sources, etc. are needed. This modularity is very useful when
adapting the node to different requirements and scenarios. The
four layers mentioned are listed below.

Figure 3: Cookie Layer architecture.

- Sensor layer: it includes conditioning circuits for both digital
and analog sensors and/or actuators.

- Power supply layer: The node can be powered from a
USB cable, lithium or AA batteries or directly from the mains
(using the USB connection). It includes a DC to DC converter
(TPS650243) to provide the needed current (up to 1,6A) and
voltage level. This power management IC provides three
highly efficient step-down converters (up to 97% efficiency)
that enter in low power mode at light load for maximum
efficiency across the widest possible range of load currents,
and two LDOs for lower currents. It can also recharge a
500mAh battery in only one hour from the USB connection.

- Communication layer: it includes a radio module to
communicate data between nodes. There are both ZigBee and
Bluetooth versions. In the case of the ZigBee module, different
frequencies are available (2.4 GHZ and 868 MHz). The module
used along this work is the Telegesis ETRX2 ZigBee module.

- Processing layer (HiReCookie): it is the brain of the
platform. It is the layer in charge of processing all the
information given by the sensors and the radio module. It
includes a Spartan 6 Xilinx FPGA (XC6SLX150-2) and a tiny
microcontroller (ATtiny 2313V) in charge of the execution of
the power management tasks together with the necessary tools
to implement the proposed power management strategies.

Even though there is a microprocessor in the board, this
architecture is not considered as a mixed uP+FPGA system,
since the controller is just for power management, and it does
not handle nor manipulates any other data. Moreover, the SoPC
approach is followed in order to allocate both SW and HW
resources inside the FPGA.

The block diagram of the HiReCookie architecture is
shown in Figure 4 is divided into two different areas separated
by the vertical bus. The components included on the right side
belong to the processing layer while the blocks placed on the
left side correspond to other layers. The architecture of the
processing layer is divided into seven different power islands
that can be powered on and off separately. Every one of these
islands, together with the power management policies will be
explained in the next section. In Figure 4, power islands are
represented by colors.

The FPGA is the brain of the platform. It will be in charge
of all the processing tasks and management decisions.

However, the external microcontroller remains always
powered. It works as a sentry to wake up the rest of the system
according to the commands given by the FPGA.. In order to
achieve autonomous boot-up, an initial bitstream is stored in
the Flash memory so that it is automatically loaded into the
FPGA once both devices are powered. The Flash memory also
works as a storage device for programs, other bitstreams or
application data.

Figure 4: Processing Layer Architecture

The RAM memory is mainly used as an extension program

memory to provide fast access to the program data. Since
configuration energy is related to reconfiguration speed, this
memory may be very convenient when dynamic and partial
reconfiguration (DPR) is used.

An ADC converter is also used for the system to be able to
process data from analog sensors as well as for measuring the
instant current consumption in every island. In this way, the
node is power-aware and can take dynamic power management
decisions.

IV. LOW POWER ORIENTED ARCHITECTURE

The inclusion of high performance components in the
platform leads to high energy consumption. Even though some
of the components have their own power save modes, the static
consumption is still too high according to the WSN standard
levels (in the case of the FPGA is around 60-80 mA). In order
to solve this problem, the architecture of the platform has been
divided into seven different power islands that can be switched
on and off independently in case they are not required. All the
different power islands and the reasons why they were selected
are detailed below:

- Island 1: FPGA core@1.2 V, and auxiliary logic of the
FPGA@ 2.5 V

- Island 2: Sensor board @ 3.3 V
- Island 3: ADC, power consumption circuitry @ 3.3 V
- Island 4: RAM memory and FPGA bank 3 @ 1.8 V
- Island 5: FPGA banks 1 and 2 @ 1.8 V
- Island 6: External clock and FPGA bank 0 @ 3.3 V
- Island 7: Flash memory @ 1.8 V

As it can be seen, four different power supply voltages are
required: 1.2 V, 1.8 V, 2.5 V and 3.3 V. The FPGA core is the
only one powered at 1.2 V and, since it needs to be powered

together with the auxiliary logic, both rails are considered as
the same island but not at the same voltage. The auxiliary logic
must be powered at 2.5 V. The 1.8 V supply rail is used to
power banks 1, 2 and 3, the external memories and the external
microcontroller. The external microcontroller is not included in
any island since it needs to be powered at all times. The pins
used for the communication between the ATtiny and the FPGA
are located in bank 2. Apart from that, all the dedicated pins for
configuration are shared between banks 1 and 2, so these two
input output banks belong to the same island. The RAM
memory and bank 3 are placed together in a different island,
because the RAM memory controller, which is a hard IP of the
FPGA, is placed on the left side where this bank is located.
Regarding the 3.3 V rail, independent islands have been
included to allow managing sensors separately from the power
measurement circuitry. The management of these power
islands defines different power down modes that will be
discussed in the next section.

In order for the system to be able to wake up from these
sleep modes, there must be a component acting as a sentry to
manage the wake up signals. This component must be smart
enough to be able to handle the power management execution
but yet simple enough to have very low power consumption
since it is powered at all times. As it was mentioned before, the
component selected to carry out this duty is the ATtiny 2313V
AVR microcontroller. This controller includes three different
power modes: Idle, Power Down and Standby. The Standby
mode will not be used since it requires an external oscillator
that is not included in this platform. The microcontroller can
wake the system up using different sources of interruption. The
selection of these sources depends on the power mode that is
being used within the ATtiny so that it defines how deeply the
system is sleeping.

The microcontroller can work in any of the following low
power modes:

- Idle mode (10 µA at 0.1 MHz): In this mode, an interrupt
coming from its UART, which is connected to the radio
device,, any internal timer, a threshold value in an analog
sensor or an interruption caused by the FPGA (if it is awake),
can wake the microcontroller up.

- Power down mode (< 0.1 µA at 32 kHz): In this mode,
only an interruption caused by the FPGA and the watchdog
timer can wake up the microcontroller. When the node is
working inside the Sleep region, the FPGA is not powered so
the only way to wake up the microcontroller is the watchdog
timer periodically.

Therefore the sources of interruption to wake the system up
are: the radio module, analog sensors or internal timers. The
power supply layer includes a DC to DC converter that could
be enabled or disabled by external signals, but this feature is
not being used in this design, since the support provided by the
decisions taken by the FPGA and the control on the power
islands is more efficient. The IC converter also includes a
power save mode that can be either selected externally or
automatically, depending on the load. In this way, if most of
the islands are switched off, the load is reduced and then the
converter enters into power down mode. Apart from the ATtiny
and the power supply module, the radio module should be also

powered at all times. The radio module includes four different
power modes as shown in Table 1. Every one of these modes
has different power consumption that depends on whether the
node is working either as a router or as a coordinator, or if the
node is working as an end-device.

Power Mode Router or Coordinator End Device

Awake 36 mA 9 mA
Idle 32 mA 4.5 mA

Asleep 1 0.7 mA 0.7 mA
Asleep 2 0.7 µA 0.7 µA

Table 1: Power modes in the ETRX2 module

Depending on which power down mode is being used in the

radio device, there are different ways to wake the module up.
When the module is in Asleep 1, it can be woken up through
AT commands sent by the ATtiny. However, the power
consumption during this mode is not affordable in all cases.
When the module is working in Asleep 2, which is the deepest
power mode, it can be only woken up using an external
interrupt which is also given by the ATtiny controller.

It is important to highlight that even though the ATtiny is
the element in charge of executing the power management
tasks, the decision of which technique should be used is a
competency of the FPGA. In this way, every time the FPGA
enters into a sleep mode, it sends a command via SPI to the
ATtiny microcontroller with the information of which
methodology is going to be applied. Therefore, since the FPGA
may be aware of the power consumption of the platform, the
way these methodologies are handled can be determined by the
application and improved.

V. POWER MANAGEMENT TECHNIQUES

Three different phases can be identified in the lifecycle on
an SRAM FPGA based node, as shown in Figure 5. The
methodologies to be implemented in every one of these periods
are different, addressing different aspects in each phase.

Figure 5: Power consumption profile of a typical application

During sleep period (1), current consumption must be

reduced as much as possible and, in this case, the management
of power islands and wake up possibilities is crucial. During
the FPGA configuration period (2), current consumption is
approximately constant, with small changes depending on the
frequency of the configuration clock. Therefore, the main goal
within this period will be reducing time which, as it will be
shown, is directly related to the reduction in size of the
bitstream file. Finally, the main constraint during the execution
period (3) is the high current consumption during execution.

The main idea in this stage is to compensate the high current
with very fast calculations, so that the energy is finally
reduced. It is in this period where taking advantage of HW
acceleration and parallel HW can make a huge difference
compared to SW based solutions.

A. Sleep Period.

During this period, some sleep modes and wake up policies
have been implemented to reduce power consumption during
inactive periods of time. Even though there are a many
different combinations, those ones listed here are the most
representative. A summary is provided in Table 2: HiReCookie
Sleep Mode.

Sleep Mode 1: This is the deepest sleep mode. The ATtiny
can be woken up using only its watchdog timer. Then, for
example, it could power the communication module and the
sensor layer together in case a message from the radio or any
sensor threshold is reached. In case none of these events occur,
the ATtiny can go back to power down mode.

Sleep Mode 2: In this mode, the ATtiny is in power down
mode, so only the watchdog timer can wake it up.
Nevertheless, it is possible to be working in a very deep sleep
mode while the sensor layer is not powered. Once the ATtiny is
woken up by its timer, it can send an interruption to the
communication module to wake it up or it can power the
sensors island to check if a threshold value has been crossed. In
this case, the communication module can be set also to be
always powered.

Sleep Mode 3: In this mode, the ATtiny is also working in
power down mode. When the timer wakes it up, it can change
to idle mode in order to check if any sensor has crossed the
threshold value. This mode only makes sense if the sensor
response is critical due to a dangerous parameter where it is not
possible to wake the sensor island up and wait until the sensor
measurement is stable. A variation of this method is the same
configuration but the ATtiny working in idle state in order to
have instant response in case a measurement problem occurs.

Sleep Mode 4: This case is a combination of the previous
two modes. So, it is possible to wake the system up using the
sensors response or a possible message coming from the radio.

Sleep Mode 5: This sleep mode can be useful if a faster
response is required since it is not necessary to wake up the
microcontroller.

Once the system leaves the sleep mode there are many
possibilities that depend on the application. At some point
during the execution phase, the FPGA may send new sleep and
wake up policies to the AtTiny. As it may be seen in the results
table, a careful design and component selection, together with
this variety of sleep modes may yield results regarding current
consumption during sleep mode below 2 µA in most cases. For
a 500 mAh thin flat battery, it would allow over 25 years
operation in this sleep mode (with an ideal battery).

B. Configuration time

As it was mentioned before, there are two different
methodologies to decrease power consumption during this
period: increasing the configuration clock frequency and
reducing the size of the bitstream file. It is crucial for the
system to include a fast configuration method to automatically
load the bitstream into the FPGA every time the system is
powered. The configuration method selected is the Master BPI
configuration mode. It consists on a parallel connection
between the FPGA and a Nor-Flash memory, which may be
driven by the FPGA natively at boot-up or by a device installed
later, for DPR.. In this way, every time the system is powered,
the FPGA starts to generate addresses to read the bitstream file
from the external memory. At the beginning the configuration
frequency is set to 1 MHz by default. Then, when the FPGA
starts to read the bitstream file, this frequency can be changed
by editing the header of the configuration file. This frequency
can be selected among different values. Even though, the
maximum frequency provided by the Xilinx tools is 26 MHz,
the maximum frequency achieved for the moment by the
HiReCookie platform for configuration is 6 MHz.

The second challenge consists of reducing the size of the
configuration file. In order to optimize this reduction, the next
three steps were followed: a) relocation of HW modules using
the PlanAhead Tool in order to maximize the empty areas, b)
compress the bitstream file using the commands given by
Xilinx, C) reduce the bitstream file by erasing the empty areas,
this is, extracting a partial-initial bitstream rather than using a
complete one. Next paragraphs show these steps in more detail.

Islands

ATtiny ZigBee Power Supply Layer Average Current Consumption Wake up Possibilities
1 2 3 4 5 6 7

Mode 1 - - - - - - -

Power down

OFF Power down
0.1 µA ATtiny

+ 1 µA Power

Watchdog

Mode 2 - - - - - - -

Power down

Asleep 2 Power down
0.7 µA Radio

+ 0.1 µA ATtiny
+ 1 µA Power

Watchdog

Radio

Mode 3 - ● - - - - -
Power down/

Idle
OFF Power down

Sensor layer consumption
+ 0.1/10 µA (ATtiny)

+1 µA Power

Watchdog
Analog comparator

Mode 4 - ● - - - - - Power down Asleep 2 Power down

Sensor layer consumption
+ 0.7 µA Radio
+ 0.1 µA ATtiny
+ 1 µA Power

Watchdog
Analog comparator

Radio

Mode 5 - - - - - - - Idle Asleep 2 Power down
0.7 µA Radio

+ 10 µA ATtiny
+ 1 µA Power

Watchdog

Analog comparator

Table 2: HiReCookie Sleep Mode

a) The more compact the desing is, the bigger the empty
areas of the FPGA internal architecture. The default
configuration of the FPGA is composed by zeros. Thus, since
the extraction of the partial-initial bitstream consists of erasing
those areas filled with zeros, the bigger these areas, the bigger
the information to erase.

b) Xilinx gives the possibility of reducing the bitstream size
through the use of the –g compress command. This method
consists of using the Multiframe Write register (MFW) to
indicate that the same frame must be written along subsequent
positions of the bitstream.

c) In order to achieve an optimal reduction of the bitstream
file, it is crucial to have a deep knowledge about its format and
the internal architecture of the FPGA. The internal architecture
of the Spartan 6 LX150 is divided in 12 clock regions, 64 CLB
columns, 6 BRAM columns, several I/O blocks in each bank, 4
DSP columns, 1 DCM column, the Bus SCAN module, the
ICAP module, MDM module, 2 MCBs, etc. In order to edit the
bitstream file to erase the empty areas, a SW tool has been
developed. The interface is shown in Figure 6.

Figure 6: SW Tool to extract the Partial-Initial Bitstream

The structure of the bitstream is shown in Figure 7.

Regarding the header section, the only edited fields are the
configuration frequency and CRC errors. The configuration
frequency will be set to 2 MHz or 6 MHz within the different
tests, while the CRC errors are disabled in all of them.
Regarding the CLBs and BRAM sections, this is where the
maximum reduction is achieved. As it can be seen in Figure 7,
the idea is erasing the empty frames keeping the correct
address values for the rest of non-empty parts.

Figure 7: Extraction methodology

C. Computing time

In [1], the authors studied the improvement of HW
acceleration compared to SW based solutions in the
HiReCookie platform, where it was shown that, for high
performance applications, HW acceleration may compensate
the energy required for configuration or reconfiguration.
Results were shown for the case of encryption algorithms, and
it was also shown that the tendency to more complex

applications and higher performance are in favor of FPGA
based architectures much better than more complex processors.
So, for this paper, the contributions are then focused in the
reduction of configuration time since it was demonstrated in
the previous work that it is critical effect to the total power
consumption, as it is shown in Figure 8, taken from [1]. Figure
8 shows the working profile of the FPGA core. While the only
way to reduce consumption for the rest of the elements is
power turn off, in the case of the FPGA the way to reduce
consumption is reducing configuration time since it is the
bigger variable contribution.

Figure 8: Typical application energy profile

VI. TESTS AND RESULTS

Intensive tests have been carried out in order to evaluate the
effect of the reduction of the bitstream files and the frequency
of configuration. In this work, the result of four of these tests
are shown and compared to see the reduction in terms of time,
which is translated in a reduction in the charge consumed by
the FPGA core at the beginning of every cycle. In this case, the
HW block contained in the bitstream is a Microblaze controller
executing a simple task, since it is not the aim of this test to
show the advantages of using HW calculations. The charge
consumed by the node is also shown in each test. In order to
obtain measurements of a real application during operation, the
node is working with a ZigBee module in active mode. To
obtain the charge consumption for the worst case, all the power
islands are switched on. Therefore, all the components are
powered including the ZigBee layer and the power supply
layer.

A. Case 1: Total bitstream with no optimization in area and

no compression. Configuration clock running at 2 MHz.

As it can be seen in Figure 9, if no changes are done to
reduce the size of the bitstream file, configuration time, 1.04 s,
is much bigger than the average computing time of a normal
application that can be approximately running for 50 ms. In
this way, taking into account that the normal current
consumption of the FPGA core during configuration is around
53 mA, this time is the biggest contribution to the total
consumption. Due to this reason, reducing this time is a must to
achieve an efficient solution. The total node consumption is
shown in Figure 10.

B. Case 2: Partial-Initial bitstream included the optimization

in area. Configuration clock running at 2 MHz.

In this second case, even though the configuration
frequency is still 2 MHz by creating the partial- initial

bitstream which is 8.2 times smaller than the total one, a
reduction of 7.9 times of charge consumption is achieved.

Figure 9: FPGA Core consumption in case 1

Figure 10: Total node consumption in case 1

Figure 11: FPGA Core consumption in case 2

Figure 12: Total node consumption in case 2

C. Case 3: Compressed bitstream but not partial, including

optimization in area. Configuration clock running at 6

MHz.

This case analysis is the best that could be achieved using
the tools provided by Xilinx. The result is shown in Figure 13.
In this case the bitstream is compressed using the -g compress
command and configuration is done at 6 MHz.

Figure 13: FPGA Core consumption in case 3

Figure 14: Total node consumption in case 3

D. Case 4: Partial-Initial bitstream with the optimization in

area. Configuration clock running at 6 MHz.

The last result shown in Figure 15 represents the best case
combining both the increment of configuration frequency and
the creation of the Partial-Initial bitstream. In this case, keeping
the same frequency value as in case 3, a reduction of 2.4 times
of charge consumption is achieved. So, it can be summarized
that a 20.22 times reduction can be achieved compared to a
non-carefully analyzed reconfiguration. However, for the sake
of correctness, it is fair to say that the contribution of the tool
presented in this paper reduces 2.4 times compared with what
just can be achieved using only the Xilinx Tools.

Figure 15: Core consumption in case 4

Figure 16: Total node consumption in case 4

Table 3 shows the results of the previous tests, and a

calculation of the charge required for every case. It is important
to notice that with a flat 500 mAh battery, there would be
sufficient energy for almost 279,000 reconfiguration cycles in
the best case (not accounting FPGA degradation).

Tests
Bitstream
size (kB)

Freq.
(MHz)

Time
(ms)

Config.
Current

(mA)

Computing
Current

(mA)

Config.
Charge
(µAh)

1 4122 2 1044 53 103 15.37
2 469 2 127 55 104 1.94
3 1352 6 122 54 102 1.83
4 469 6 48 57 103 0.76

Table 3: Final Results

VII. CONCLUSIONS AND FUTURE WORK

We have presented an architecture and a set of power
management policies that let a wireless sensor node overcome

the consumption problems posed by the use of an SRAM based
FPGA as the main processing element of the node. This is
achieved by a carefully designed set of sleep modes which let
the node to consume negligible energy during sleep modes, and
by minimizing reconfiguration energy, mostly by making it as
fast as possible, and reducing bitstream size. DPR has been
used to minimize the bitstream size using a custom tool that
produces smaller partial bitstreams. Also, it opens the
possibility of achieving small energy full boot-up sequences by
using multi-stage boot sequences. DPR is also an opportunity
to improve HW execution of modules, with the same flexibility
of SW applications, but with better energy utilization, as it has
been shown in previous works. It also opens the gate for further
research like the incorporation of self-repairing capabilities,
self-adaptation, evolvable HW, as well as a very high
flexibility for deployment and commissioning of WSN systems
with nodes that may change both their HW and SW. We claim
this architecture to be considered as a single-device FPGA-
based board because, even though there is an external ultra-low
energy microcontroller, the ATtiny, it does not participate in
any processing. Actually, we consider that the System on
Programmable Chip approach (SoPC), combined with an
internal architecture that lets DPR be used to exchange HW
blocks at run-time is a promising technology for High
Performance Applications.

ACKNOWLEDGMENTS

This work has been partially funded by the ARTEMIS JTI
Project SMART (100032) and the EuroStars Project RUNNER
(e!5527)

REFERENCES

[1] Valverde, J.; Otero, A.; Lopez, M.; Portilla, J.; de la Torre, E.; Riesgo,
T. Using SRAM Based FPGAs for Power-Aware High Performance
Wireless Sensor Networks. Sensors 2012, vol 12(3), pp. 2667-2692

[2] B. Harjito, S. Han, “Wireless Multimedia Sensor Networks Applications
and Security Challenges”, in International Conference on Broadband,
Wireless Computing, Communication and Applications, pp. 842-846,
Fukuoka, Japan, November. 2010

[3] I.F. Akyildiz, T. Melodia, K.R. Chowdhury, “Wireless Multimedia
Sensor Networks: Applications and Testbeds”, in Proceedings of the
IEEE 2008, vol. 96, nº10, pp. 1588-1605

[4] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q.
Cao, A. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, B. Krogh,
“VigilNet: An Integrated Sensor Network System for Energy-Efficient
Surveillance”, in ACM Transactions on Sensor Networks, vol. 2, Nº 1,
pp. 1-38, 2006

[5] Y. Tseng, Y. Wang, K. Cheng, Y. Hsieh, “iMouse: An Integrated
Mobile Surveillance and Wireless Sensor System”, in Computer, vol. 40,
Nº 6, pp. 60-66, 2007

[6] D. Wu, S. Ci, H. Luo, Y. Ye, H. Wang, “Video Surveillance Over
Wireless Sensor and Actuator Networks Using Active Cameras”, in
IEEE Transactions on Automatic Control, vol. 56, Nº 10, pp. 2467-2472,
2011

[7] P. Kulkarni, D. Ganesan, P. Shenoy, Q. Lu, “SensEye: a Multi-tier
Camera Sensor Network”, in Proceedings of the 13th annual ACM
International Conference on Multimedia, pp. 229-238, New York, USA,
November 2006

[8] M. Avvenuti, C. Baker, J. Light, D. Tulpan, A. Vecchio, ”Non-intrusive
Patient Monitoring of Alzheimer's Disease Subjects Using Wireless
Sensor Networks”, in Proceedings of the World Congress on Privacy,
Security, Trust and the Management of e-Business, pp. 161-165,
Washington DC, USA, 2009

[9] M. Marzencki, P. Lin, T. Cho, J. Guo, B. Ngai, B. Kaminska, “Remote
Health, Activity, and Asset Monitoring with Wireless Sensor Networks”,
in IEEE International Conference on e-Health Networking Applications
and Services, pp. 98-101, Columbia, MU, USA, June 2011

[10] L.A. Grieco, G. Boggia, S. Sicari, P. Colombo, “Secure Wireless
Multimedia Sensor Networks: A Survey”, in International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies,
pp. 194-201, Sliema, Malta, 2009

[11] W. Yong, G. Attebury, B. A Ramamurthy, “Survey of Security Issues in
Wireless Sensor Networks”, in IEEE Communications Surveys &
Tutorials, vol. 8, pp. 2-23, 2006

[12] B. Stelte, “Toward development of high secure Sensor Network Nodes
using an FPGA-based Architecture”, in International Wire & Cable
Symposium, pp. 539-543, Istanbul, Turkey, 2010

[13] J. Portilla, A. Otero, E. de la Torre, O. Stecklina, S. Peter, P.
Langendorfer, “Adaptable Security in Wireless Sensor Networks by
Using Reconfigurable ECC Hardware Coprocessors”, International
Journal of Distributed Sensor Networks (IJDSN), 2010

[14] V. Cantoni, L. Lombardi, P. Lombardi, “Challenges for Data Mining in
Distributed Sensor Networks”, in International Conference on Pattern
Recognition, vol. 1, pp. 1000-1007, 2006

[15] S. Rup, R. Dash, N.K. Ray, B. Majhi, “Recent advances in distributed
video coding”, in IEEE International Conference on Computer Science
and Information Technology, pp. 130-135, Beijing, China, 2009

[16] T. Ji-gang, Z. Zhen-xin, S. Qing-lin, C. Zeng-qiang, “Design of Wireless
Sensor Network Node with Hyperchaos Encryption Based on FPGA”, in
International Workshop on Chaos-Fractals Theories and Applications,
pp. 190-194, China, 2009

[17] G. Chalivendra, R. Srinivasan, “Murthy, N.S. FPGA based re-
configurable wireless sensor network protocol”, in International
Conference on Electronic Design, pp. 1-4, Penang, Malaysia, 2008

[18] P. Muralidhar, P. Rao, “Reconfigurable wireless sensor network node
based on Nios core”, Fourth International Conference on Wireless
Communication and Sensor Networks, pp. 67-72, Allahabad, India,
2008

[19] S. Yan, L. Le, L. Hong, “Design of FPGA-Based Multimedia Node for
WSN”, 7th International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 1-5, Wuhan, China, 2011

[20] Z. Chao Hu, P. Liu Yingzi, Z. Zhenxing, M.Q.H. Meng, “A novel
FPGA-based wireless vision sensor node”, IEEE International
Conference on Automation and Logistics, pp. 841-846, Shenyang,
China, 2009

[21] S. J. Bellis, K. Delaney, B. O'Flynn, J. Barton, K. M. Razeeb, C.
O'Mathuna, “Development of field programmable modular wireless
sensor network nodes for ambient systems”, in Computer
Communication, vol. 28, pp. 1531-1544, 2005

[22] F. Philipp, M. Glesner, “Mechanisms and Architecture for the Dynamic
Reconfiguration of an Advanced Wireless Sensor Node”, in
International Conference on Field Programmable Logic and
Applications, pp. 396-398, Chania, Crete, Greece, 2011

[23] Dirk Koch, Christian Beckhoff and Jim Torresen, Demo Paper:
Advanced Partial Run-time Reconfiguration on Spartan-6 FPGAs,
Proceedings of the IEEE International Conference on Field-
Programmable Technology (ICFPT'10), IEEE, Beijing, China, 2010

[24] Otero, A.; LLinás, M.; Lombardo, M. L.; Portilla, J.; de la Torre, E.;
Riesgo, T.; “Cost and energy efficient reconfigurable embedded
platform using Spartan-6” Proceedings of the SPIE 2011, vol. 8067,
April 2011

[25] M. Hübner, J. Meyer, O. Sander, “Fast Sequential FPGA Startup based
on Partial and Dynamic Reconfiguration”, in IEEE Computer Society
Annual Symposium on VLSI, Lixouri, Kefalonia, Greece, pp. 190-194,
July 2010

