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ABSTRACT

Jayakumar, Hrishikesh PhD, Purdue University, August 2016. Energy-Efficient Sys-
tem Architectures for Intermittently-Powered IoT Devices. Major Professor: Vijay
Raghunathan.

Various industry forecasts project that, by 2020, there will be around 50 billion

devices connected to the Internet of Things (IoT), helping to engineer new solutions to

societal-scale problems such as healthcare, energy conservation, transportation, etc.

Most of these devices will be wireless due to the expense, inconvenience, or in some

cases, the sheer infeasibility of wiring them. With no cord for power and limited

space for a battery, powering these devices for operating in a set-and-forget mode

(i.e., achieve several months to possibly years of unattended operation) becomes a

daunting challenge. Environmental energy harvesting (where the system powers itself

using energy that it scavenges from its operating environment) has been shown to be a

promising and viable option for powering these IoT devices. However, ambient energy

sources (such as vibration, wind, RF signals) are often minuscule, unreliable, and

intermittent in nature, which can lead to frequent intervals of power loss. Performing

computations reliably in the face of such power supply interruptions is challenging.

Intermittently-powered IoT devices are an emerging class of embedded devices

that operate on energy harvested from intermittent sources. These devices execute

long running programs incrementally (in small steps each power-ON period) and across

multiple power-ON periods. A prerequisite for operating in this manner is the need

for some form of checkpointing of system state from SRAM to non-volatile memory

when power loss is imminent. Traditionally, microcontrollers have employed Flash

memory as the primary non-volatile storage technology. However, the energy (and

latency) intensive operations of Flash make it inefficient for frequent checkpointing,
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and consume a significant amount of energy that could otherwise be used for executing

meaningful application-related computations and tasks.

This dissertation proposes system architectures to improve the energy-efficiency of

intermittently-powered IoT devices while ensuring the reliability and forward progress

of applications executing on them. First, to reduce the checkpoint overhead, we ex-

plore a unified memory architecture using an emerging non-volatile memory. Recent

advances in memory technology has resulted in the emergence of non-volatile mem-

ory that combine the benefits of SRAM with the non-volatility of Flash. Memories

such as Ferroelectric RAM (FeRAM), Magnetoresistive RAM (MRAM), etc., have

superior power-performance characteristics, as compared to Flash. In this disserta-

tion, we propose an in-situ checkpointing scheme using a unified-FeRAM architecture

to reduce the checkpointing overhead and demonstrate that it enables the efficient

usage of gathered energy. Second, we present an energy-aware dynamic memory

mapping scheme for hybrid FeRAM-SRAM MCUs in intermittently-powered IoT de-

vices to exploit both the reliability benefits of FeRAM and the performance benefits

of SRAM. Even though FeRAM is non-volatile, it is slower than SRAM and have

a higher power consumption. However, SRAM is volatile making it unreliable for

intermittently-powered IoT devices. Hence, in this dissertation, we propose an inter-

mediate approach in hybrid FeRAM-SRAM MCUs to benefit from the non-volatility

of FeRAM and the speed of SRAM. Last, we architect a new low power mode for

deeply embedded MCUs by performing sleep mode voltage scaling to enable SRAM

data retention at ultra-low power consumption. Most IoT devices operate in an inter-

mittent manner wherein they become active for a short duration of time to perform

the intended task and then enter a sleep mode. However, present day sleep modes

of MCUs are energy-inefficient due to the requirement of retaining state. Hence, we

propose a new low power sleep mode that retains the SRAM data at ultra-low power

consumption and demonstrate the powering of the proposed mode via harvesting

minuscule amounts of ambient energy.
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We believe that the contributions made in this dissertation take a significant step

in realizing set-and-forget IoT devices and in furthering the field of intermittently-

powered computing.
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1. INTRODUCTION

The Internet of Things (IoT) is expected to pervade all aspects of human life and

fundamentally alter the way we interact with our physical environment, helping to

envision and engineer new solutions to a variety of societal-scale problems such as

healthcare, home automation, energy conservation, asset tracking, maintenance of

public infrastructure, etc. (as shown in Fig. 1.1). The IoT machinery to realize this

vision is anticipated to be composed of electronic devices performing the distinct yet

complementary functionalities of sensing physical phenomena, processing the gath-

ered data, and relaying data in-between the processing and sensing frameworks. Var-

ious industry forecasts predict an exponential increase in the number of devices that

will be deployed for the IoT, with some forecasts projecting a total of about 50 bil-

lion [1] devices by the year 2020 (see inset in Fig. 1.1). Fig. 1.2 illustrates the three

distinct types of devices that compose the IoT, represented as a hierarchy of three
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Cloud: Process and perform 

analytics on gathered data

Gateways: Serve as 

intermediate data relays

Edge devices: Monitor and 

gather data pertaining to 

physical phenomena

Focus of the dissertation

Fig. 1.2. The hierarchy of devices that make up the Internet of Things.
At the center is the cloud that performs data analytics. The middle
layer consists of devices that ferry the data to and from the cloud. The
outermost layer consists of sensors that monitor physical phenomena.
The focus of this dissertation is on the devices lying at the outermost
edge of the IoT hierarchy.

layers. At the center is the computing infrastructure (cloud) that constitutes the

brain of the IoT, which processes the gathered data to make inferences, learn, and

take intelligent decisions. The next layer of devices includes routers, gateways, etc.,

that form the networking infrastructure to relay the information to and from the

cloud. The last layer of the IoT hierarchy consists of the devices that act as the “eyes

and ears” of the IoT, sensing physical phenomenon and transmitting the gathered

data to the cloud for further processing, thus bridging the physical world with the

world of computing. Among the three types of devices, the last category accounts

for the majority in the billions of devices that are predicted to be deployed. This

dissertation focuses on these devices that constitute the outermost layer (edge) of the

IoT hierarchy1.

1Henceforth in this dissertation, we refer to this category of devices as IoT devices.
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A major challenge in realizing the IoT vision is the problem of powering billions

of devices. Most IoT devices will be wireless in the sense that they will not be

powered using a cord due to the expense, inconvenience, or the sheer infeasibility of

wiring them up [2, 3]. Additionally, a majority of IoT devices will be of small form-

factor for a variety of reasons such as for usability, for being inconspicuous, or for

adhering to space-constraints at the deployment location; limiting the space available

for energy storage on these devices. Despite these constraints, many IoT devices

are expected to have long operational lifetimes (from a few days to possibly several

years) and work in a set-and-forget mode. Supplying power with batteries (as is done

conventionally) is not desirable for IoT devices due to the extremely large numbers

that are predicted to be in use. Each battery-powered device is associated with a

maintenance cost and maintenance effort, which accounts for the labor required for

replacing the battery. As the number of devices scale, the maintenance cost and effort

scales in equal magnitude making frequent battery replacement not only expensive,

but often infeasible. Additionally, the rapid proliferation of IoT devices will result

in a surge in the number of batteries that end up in landfills, making the need to

address the issue of powering IoT devices an urgent priority.

Environmental energy harvesting (where the system powers itself using energy that

it harvests/scavenges from its operating environment) has long been thought of as a

promising and viable option for powering these IoT devices. Energy harvesting has

the advantage of eliminating maintenance overheads that accompany battery-powered

systems in addition to curbing the amount of electronic waste that is generated. How-

ever, powering IoT devices with energy harvested from ambient sources (such as vi-

bration, wind, RF signals) is challenging due to the dual constraints of deployment

location and device form-factor. Deployment locations of IoT devices are always dic-

tated by the end application, and certain deployment locations lack the availability

of a copious ambient energy source that can power the device continuously. Further,

any harvestable ambient source at the deployed location may be unreliable, mean-

ing that the energy output from the source will vary with time in an unpredictable
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manner. Additionally, as mentioned earlier, many of these devices are expected to

be inconspicuous and compact in size, which restricts the amount of space available

for having on-board energy storage that could store energy and power the device for

a long time. Therefore, although powering IoT devices using energy harvested from

ambient sources is a promising solution to address the power challenge, the technique

suffers from drawbacks related to the often unreliable and intermittent nature of the

ambient source. Combined with the inherent constraints of the IoT device, energy

harvesting results in periods of power supply that are both short and intermittent

and hence, pose an operational challenge for conventional IoT devices.

Intermittently-powered IoT devices are an emerging class of embedded devices

that seek to utilize the energy harvested from unreliable and scanty ambient sources

for their operation. Intermittently-powered systems forgo the traditional notion of

stability and reliability in power supply, and operate with the knowledge that the

system may lose power abruptly according to the fluctuations in ambient energy.

Perceivably, performing tasks of any nature in a reliable manner under such power

supply conditions is a daunting challenge. A fundamental requirement to make

intermittently-powered systems reliable (and useful) is that any progress made during

one power-on period needs to be carried forward to the subsequent periods so that

the application can complete successfully (as opposed to getting stuck in a fruitless

and repetitive loop of restarts and incomplete executions). Therefore, a prerequisite

for making intermittently-powered systems reliable is to store (memorize) the amount

of progress made during a power-on period and then later, retrieve the stored (mem-

orized) information in the subsequent period before resuming execution. However,

as we show, preexisting solutions performing the store and restore operations are

energy-inefficient for intermittently-powered IoT devices as they adopt techniques

similar to those proposed for systems of a much larger scale, and because they use

Flash memory for non-volatile (persistent) storage.

The kind of non-volatile memory used in intermittently-powered systems has a

significant bearing on its energy-consumption. Whenever a power loss is about to



5

happen, the device stores the data pertaining to the progress made by writing into

the non-volatile storage. Similarly, when power is restored, the data is read back from

the non-volatile storage before resuming execution. In present day IoT devices, Flash

memory is used as the non-volatile memory. However, Flash memory operations are

cumbersome due to the large energy and performance overhead they present. Recent

advances in memory technology has seen the emergence of non-volatile memories such

as Ferroelectric RAM (FeRAM), Magnetoresistive RAM (MRAM), Resistive RAM

(ReRAM), etc., that combine the speed, flexibility, and endurance of SRAM with the

non-volatility of Flash. These emerging non-volatile memories (eNVM) are superior

to Flash, both in terms of power consumption and performance, making them highly

desirable choices for intermittently-powered IoT devices. This dissertation proposes

system architectures that utilize the advantages of eNVM as well as SRAM to improve

the energy-efficiency of intermittently-powered IoT devices.

1.1 Dissertation overview and contributions

This dissertation presents system architectures that improve the energy-efficiency

of intermittently-powered systems while ensuring the reliability and forward progress

of applications executing on them. We make three main contributions, namely, (a) the

exploration of a unified eNVM memory architecture and in-situ retention scheme for

intermittently-powered systems to reduce the energy overhead of storing and restoring

processes; (b) the design of an energy-aware dynamic memory mapping scheme for

hybrid eNVM-SRAM MCUs in intermittently-powered IoT devices to exploit both

the reliability benefits of eNVM and the performance benefits of SRAM; and (c)

the design of a new low power mode for deeply embedded MCUs by performing sleep

mode voltage scaling to enable SRAM data retention at ultra-low power consumption.

Fig. 1.3 illustrates the contributions made in this dissertation. Each contribution is

summarized in some detail below.
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Fig. 1.3. Dissertation overview (a) Operation of typical
intermittently-powered systems, wherein application executions are
sandwiched between restore and checkpoint operations; (b) QuickRe-
call (introduced in Chapter 3) reduces checkpointing overhead; (c)
Techniques presented in Chapter 4 improve overall performance by i)
reducing the charging time and ii) speeding up application execution;
(d) Architecture proposed in Chapter 5 introduces a new sleep mode
with low overhead and low power consumption while retaining SRAM
data
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1.1.1 Exploration of a unified eNVM memory architecture for intermittently-

powered systems

As mentioned before, intermittently-powered systems are prone to sudden and

abrupt power loss due to the fluctuating nature of the ambient energy source. There-

fore, it is imperative to save a snapshot of the system’s state to non-volatile memory

before power is lost to facilitate continuity in program execution. Conventional MCUs

employ Flash as the non-volatile memory. When power loss is imminent, a snapshot

(henceforth called a checkpointing operation) of system state (e.g., processor regis-

ters, contents of SRAM) is stored to Flash memory, which is non-volatile. During the

next burst of power, the system reboots, restores state from the stored checkpoint,

and resumes program execution. Thus, long-running programs execute gradually, in

small increments, as and when power becomes available. However, checkpointing to

Flash involves a significant energy and time overhead due to the high erase/write

power and time of Flash memory. As a result, a big portion of the time and energy

when the system is ON is spent performing checkpointing, which limits the amount of

time and energy available for program execution. Further, if the energy available in

a power cycle is less than the energy required to perform a checkpoint to Flash, the

IoT device can never successfully complete program execution.

Recent advances in semiconductor technology have resulted in new forms of mem-

ory technologies such as FeRAM, MRAM, ReRAM, etc., that combine the speed,

flexibility, and endurance of SRAM with the non-volatility of Flash, all at a very

low power consumption. This has led to the possibility of unified memory where the

same type of memory technology is used as RAM and as the non-volatile program

and data storage. Low power MCUs that integrate FeRAM [4–10], MRAM [11],

and ReRAM [12, 13] have already been demonstrated. This dissertation proposes

QuickRecall, a hardware-software architecture that employs an emerging non-volatile

memory as unified memory to enable in-situ checkpointing, thus alleviating the data

transfer overhead for checkpoint and restore operations. QuickRecall successfully
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diverts the energy that is otherwise spent on erasing and writing to Flash to per-

form meaningful computations, thereby improving the performance of applications

in energy-harvesting IoT devices. A gist of the benefits that QuickRecall provides is

illustrated in Fig. 1.3(b).

1.1.2 An energy-aware dynamic memory mapping scheme for hybrid eNVM-

SRAM MCUs in intermittently-powered systems

For intermittently-powered IoT devices, a unified eNVM memory architecture en-

ables in-situ checkpointing, thereby reducing the energy overheads required to seam-

lessly perform long-running computations. However, in hybrid eNVM-SRAM MCUs,

a difference exists in the access latency and power consumption between the eNVM

and SRAM. For example, FeRAM has a higher access latency and power consumption

than SRAM. Hence, for intermittently-powered IoT devices using hybrid FeRAM-

SRAM MCUs, even though a unified-FeRAM solution enables seamless computation

across power cycles, it is inefficient in terms of energy consumption as compared to an

entirely SRAM-based solution. On the other hand, an SRAM-based solution is highly

energy efficient but unreliable as SRAM is volatile. This dissertation investigates an

intermediate approach in hybrid FeRAM-SRAM MCUs that involves judicious mem-

ory mapping of program sections (text, stack, data, etc.) to retain the reliability

benefits provided by FeRAM while performing almost as efficiently as an SRAM-based

system, thus obtaining the best of both. Arriving at an energy-optimal memory map

(where some, all, or no sections are mapped to SRAM and/or FeRAM) is challenging

due to the data transfer overheads involved. Mapping sections to SRAM needs to be

preceded by migration of the respective sections from FeRAM to SRAM. Similarly,

on an imminent power loss, a checkpoint operation from SRAM to FeRAM needs to

be performed. Therefore, the energy-optimal memory map varies from application to

application depending on the memory access characteristics.
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Further, ensuring reliability in intermittently-powered systems is of vital impor-

tance. This means that a successful checkpoint has to be guaranteed. However, when

sections (and in particular, the stack section) are mapped to the SRAM, the check-

point size becomes unpredictable. This is because the stack size grows and shrinks

during the course of program execution making prediction of the exact checkpoint

size impossible. Therefore, we propose to perform the hybrid memory mapping at

the granularity of functions. Functions can be perceived to be independent entities

that have their own text, stack, and data sections. Additionally, a function’s mem-

ory footprint on the stack disappears after completing execution, thereby making the

checkpoint size predictable and deterministic at its boundary. Hence, this disserta-

tion performs memory-mapping to SRAM and FeRAM at the granularity of functions

and arrives at the energy-optimal memory map. Last, we also propose a technique

to proactively shut the system down in the event the remaining power in the system

is insufficient to complete the execution of a function. By performing a proactive

system shutdown, we reduce the charging times in addition to averting inconsistency

issues that may occur due to greedy execution. Fig. 1.3(c) illustrates how mapping

certain sections to SRAM might lead to faster execution of the program resulting in

energy benefits.

1.1.3 Enabling SRAM data retention at ultra-low power in embedded

MCUs

IoT devices that are battery-powered often work in an intermittent manner,

wherein they enter the active mode for a very short duration, perform the intended

task, and then enter into a low power sleep mode to reduce power consumption. Most

MCUs provide two types of sleep modes. The first is a shallow sleep mode, in which

the MCU core is halted, peripherals are disabled, and clock sources are turned off.

However, the MCU stays powered on, which means that state information (consist-

ing of the MCU registers and the contents of on-chip SRAM) is preserved during



10

sleep. Although waking up from shallow sleep is very fast, it is not the lowest power

sleep mode possible. The second type of sleep mode is deep sleep, in which the entire

MCU, including the on-chip SRAM, is powered down. While this results in the lowest

power consumption possible during sleep, it does not preserve SRAM state. Hence,

an energy-expensive checkpointing operation is necessary to save the state.

The reduction in power consumption of the IoT device in shallow sleep materi-

alizes from power-gating different peripheral modules and switching off sub-systems.

However, the energy consumed in the sleep mode is still significant due to the large

amount of time spent in the idle state. To reduce the energy consumption further,

this dissertation presents Hypnos, an architecture that exploits the low retention

voltage of SRAM cells to perform extreme supply voltage scaling at a system-level2.

Hypnos implements a new ultra-low power sleep mode for MCUs that is as good as

deep sleep in terms of power consumption, but still preserves the contents of SRAM,

thus avoiding any data transfer overhead. The key insight behind the proposed sleep

mode is the observation that the minimum voltage required for SRAM data retention

is often much lower (by as much as 10x) than the minimum operating voltage of

the MCU. By lowering the supply voltage when the MCU is in sleep mode to just

above the SRAM data retention voltage, Hypnos reduces the sleep mode power con-

sumption, as shown in Fig. 1.3(d), resulting in significant energy benefits while still

retaining state.

1.2 Dissertation organization

The remainder of the dissertation is organized as follows. Chapter 2 provides the

necessary background for the dissertation. In particular, it lays out the background

and challenges associated with intermittently-powered systems. Chapter 3 deals with

the exploration of unified eNVM architecture for intermittently-powered systems and

2Conventionally, voltage scaling is done when the MCU is in active mode and is accompanied by
a scaling of the MCU clock frequency. In contrast, here we are talking about scaling the MCU’s
supply voltage when it is in sleep mode.
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compares the benefits of in-situ retention with preexisting approaches. Additionally,

it provides details regarding the general hardware architecture of an intermittently-

powered system and the basic modifications required to the software flow to ensure

reliable forward progress of computations. Chapter 4 presents an energy-aware dy-

namic memory mapping scheme for hybrid eNVM-SRAM memories. It provides a

comprehensive discussion on handling interrupts in intermittently-powered systems

and also gives an overview on non-volatile processors. Chapter 5 presents our ar-

chitecture for enabling ultra-low power SRAM retention and proposes a sleep mode,

one which is as good as deep sleep while still being able to retain state. Chapter 6

concludes the dissertation and outlines possible future directions.
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2. BACKGROUND

This chapter serves as the background for the rest of the chapters in this dissertation.

The chapter is split into three parts and arranged as follows:

• Section 2.2 provides a brief overview on Ferroelectric RAM, the eNVM that

is considered in this dissertation in some detail, which serves as the necessary

background for Chapters 3 and 4.

• Section 2.3 provides a detailed background on the emerging class of IoT sys-

tems called intermittently-powered systems. In addition to providing the back-

ground, the section also provides examples of intermittently-powered systems

and enlists the challenges presented by these devices with respect to energy-

efficiency, reliability, and correctness. This section serves as a background for

Chapters 3 and 4.

• Section 2.4 provides the background related to Chapter 5. In particular, it de-

tails the importance of addressing idle mode power consumption of microcon-

trollers, describes the different low power modes in present-day microcontrollers,

and concludes by discussing the trade-offs associated with these different low

power modes.

2.1 Introduction

Recent advances in memory technology has seen the emergence of non-volatile

memories such as Ferroelectric RAM (FeRAM), Magnetoresistive RAM (MRAM),

Resistive RAM (ReRAM), etc. These memories are random-access (like SRAM) and

non-volatile like Flash. Additionally, these emerging non-volatile memories (eNVM)
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Fig. 2.1. Qualitative comparison of memory technologies

are not as energy-intensive as Flash. Inherent device limitations of Flash places

constraints on how it is used. Flash memory can be written only in one-direction, i.e.,

from 1 to 0. Additionally, data cannot be over-written to a memory location in Flash.

A write operation to revert the cell from 0 to 1 requires an explicit erase operation.

Further, Flash memory can be erased only at the granularity of sections (or segments),

whose size depends on the Flash-memory architecture. For an MSP430 MCU that

we benchmarked (in Chapter 3), the segment size was found to be 512 B. An erase

operation resets all the bit-cells in the section and any data present will be lost and

has to re-written again. Both the erase and write operations of Flash are energy-

intensive. Comparatively, eNVM do not require an erase operation and allow data

to be overwritten. This along with the random access, non-volatility, and low power

characteristics make eNVM highly desirable to be used as the non-volatile memory

in embedded IoT systems. Fig. 2.1 illustrates a qualitative comparison between the

characteristics of various memories considered in this dissertation. In addition, the

desired characteristics of a hypothetical ideal memory is also shown for comparison.

FeRAM is less energy intensive as compared to Flash as it does not require an erase

operation, and has lower energy consumption for writes. However, FeRAM is inferior

to SRAM due to its higher access latency and power consumption. Comparatively,
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SRAM is volatile, which as we will see in Chapters 4 and 5, is a cause for higher energy

consumption. Since Flash and SRAM are well-known memory technologies, we divert

the reader’s attention instead to the characteristics of FeRAM memory technology in

the following section.

2.2 Ferroelectric RAM

An FeRAM memory cell is DRAM-like in structure and uses two stable polariza-

tion states on a ferroelectric capacitor to distinguish between the dual logic levels of

0 and 1 [14–17]. The successful integration of ferroelectric memory cells with CMOS

have been demonstrated from the late 1980s [18, 19] and FeRAM-integrated MCUs

have since been fabricated [4–6, 8] with some of them even available commercially

off the shelf [7, 9]. An FeRAM write is performed by the application of an electric

field across the plates of the ferroelectric capacitor. Depending upon the direction in

which the electric field is applied, the ferroelectric capacitor assumes one of the two

stable polarizations corresponding to 0 and 1. An FeRAM read is accomplished by

writing a particular logic value (0 or 1) to the FeRAM cell. A bit-flip or a transition

to the written value requires energy, and the current pulse enabling the bit-flip is

sensed to deduce the polarization of the FeRAM cell. For example, if read is done by

writing a 0, and the FeRAM cell holds a logical 0, then there will be no surge in the

current draw. Whereas, an FeRAM cell storing a logical 1 will flip to 0 when read,

thus inducing a surge in current consumption, which is sensed. However, note that

performing a read operation in this manner is destructive and requires a write-back

of the read data. In present day FeRAM memories, this write-back is automatic and

instantaneous, thereby presenting almost no latency overhead to the system. For the

TI MSP430FR5739 MCU, which is embedded with FeRAM memory, this write-back

is further protected and guaranteed against sudden power failures by using a small

internal capacitor [9]. Last, the endurance of an FeRAM cell is 1015 cycles (which is

over 1010 times as compared to Flash) and it retains data for over 10 years [20, 21].
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Moreover, FeRAM is random access for both reads and writes and requires no erase

operation. Consequently, while Flash memory presents asymmetric read-write laten-

cies, FeRAM access latencies are symmetric. While FeRAM as a non-volatile storage

is a straightforward choice, its random access and write-in-place properties allow it to

be utilized as a RAM as well, thus enabling it to serve as a unified memory technology

in IoT devices.

2.3 Intermittently-powered systems: Background and challenges

Intermittently-powered systems is an emerging class of IoT systems that are pow-

ered using the energy harvested from unreliable, unstable, and intermittent ambient

sources such as that from indoor light in office corridors, RF-waves from TV and

mobile-phone towers, the flow of water in a pipe, an RFID reader, etc. In such sys-

tems, the traditional notion of stability and reliability has to be foregone as power

loss may happen in an abrupt and unpredictable manner. Therefore, executing long-

running applications in a reliable manner in these systems that are subjected to

frequent and sudden power loss is a daunting challenge that requires design modifica-

tions of both the embedded hardware and software architectures. In this section, we

describe the scenarios in which systems may be subjected to intermittent operation

and then outline the challenges in executing applications in intermittently-powered

systems.

2.3.1 Intermittent operation in batteryless IoT devices

Intermittently-powered systems can be broadly classified into two categories based

upon the characteristics of the ambient source from which it gathers energy and

the device form-factor. The first category of systems are those that are powered

by ambient sources that are both minuscule and intermittent in nature. Therefore,

powering them continuously or gathering enough energy over a long period of time is

challenging. Examples of such intermittently-powered systems are RFID tags (such as
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the Moo CRFID [22], tags used as tollway passes, etc.) and contactless smart cards

that are powered by RFID readers [23], WiFi-powered cameras and sensors [24],

and the like. Fig. 2.2(a) illustrates the intermittent nature of operation in such

devices. Whenever sufficient power is available, the system turns ON immediately

and otherwise, remains in the OFF state. The duration of time that the system

spends in the ON state depends on the availability of the ambient source at the time.

Similarly, the duration of time that the system spends in the power-off state is equally

unpredictable.

On the other hand, the second category consists of devices that have an ambient

source available continuously. These devices operate intermittently as the form-factor

restrictions and/or the strength of the ambient source limits the amount and rate at
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which energy may be gathered. Hence, these devices are unable to operate continu-

ously and instead utilize the energy gathered completely before losing power. Then,

it spends the rest of the time in the power-off state replenishing energy. Fig. 2.2(b)

illustrates the intermittent operation in these category of devices. As an example,

consider a form-factor constrained device that is deployed outdoors and harvesting

energy from the sunlight (similar to Senergy [25]). Due to the fact that the intensity

of sunlight remains constant in shorter intervals (say over 15 minutes), the device

operates in repetitive cycles. However, since the intensity of incident sunlight varies

with the time of day, the duration in between successive power-on periods decrease

from morning to noon and increase for the rest of the day. This fact is illustrated in

Fig. 2.2(b) as the time required to replenish the system’s energy (T1 and T2) depends

on the time of day, weather, etc. As can be seen, T1 < T2 as the amount of sun-

light received at noon is significantly larger as compared to (say) evening. Therefore,

the fluctuations in the ambient energy source, which is influenced by uncontrollable

factors, combined with the constraints of the device result in an intermittent power

supply for these IoT systems.

Last, the system parameters such as the size of the buffer capacitor and the

characteristics of the energy harvester (e.g., size of the photovoltaic cell) is determined

by a multitude of factors such as the device form-factor, application requirement (e.g.,

which requires minimum n samples per hour to be collected), etc. This further sets

limits on the minimum amount of energy that needs to be buffered per power cycle

before the system turns ON. In this dissertation, the systems considered operate with

power cycle input energies as low as 10 µJ to as much as 10 mJ1.

1In most devices, the minimum energy required per power cycle is set by the communication inter-
face. Other researches have shown the use of ambient backscattering as a low-power technique for
enabling communication in these intermittently-powered systems [26, 27]. While these communica-
tion techniques work for one end of the energy spectrum, the other end that uses more conventional
communication interfaces (such as Bluetooth Low Energy) sets a higher value for the minimum
amount of energy per power cycle.
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2.3.2 Challenges in intermittently-powered systems

The fundamental challenge in an intermittently-powered system is to ensure reli-

able and correct forward progress of the application executing on it even in the face of

recurrent power failures. Meeting this challenge is of utmost importance as without

ensuring forward progress, the application may get stuck in a never-ending loop of

restarts, resets, and re-executions. Parallels may be drawn between this problem of

forward progress and that of fault-tolerance in large-scale systems. In essence, to

ensure forward progress, the current state of the system needs to be retained and car-

ried forward from one powered-on cycle to the next. This method of retaining state

is the adhered procedure in large-scale systems to tolerate faults and failures, such

that they can resume execution from an intermediate point as opposed to restarting

it from the beginning. A brief overview of the state retention techniques in large-scale

systems follows.

State retention in fault-tolerant systems

Fault-tolerance or rollback recovery is a basic feature that is built into the design

of large-scale systems to recover it from faults and failures occurring due to trans-

action aborts, hardware errors (such as memory corruption, processor failure, power

outages), etc. Checkpointing is the technique used for tolerating premature program

failures and is formally defined by the authors in Ref. [28] as “an activity that writes

information to stable storage during normal operation in order to reduce the amount

of work Restart has to do after a failure”. Checkpointing stores a snapshot of the

system state into non-volatile memory (stable storage), and when a fault occurs, the

system rolls back to the most recently saved checkpoint, restores it, and resumes exe-

cution [29]. Checkpointing could be done either in a transparent manner (no changes

need to be made to the application program) or in a non-transparent user-directed

manner [30,31]. Transparent checkpointing entails the use of a periodic timer, whose

periodic interrupts trigger the checkpoint operation. In non-transparent checkpoint-
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ing, the user is handed a certain degree of control on the checkpointing overheads by

being able to specify the data to be excluded (or included) in the checkpoint, and also

the frequency of checkpointing by specifying locations in the code (by annotating or

otherwise) for initiating the store operation. Both transparent and non-transparent

checkpointing in uniprocessor systems, like the systems considered in this dissertation,

cause the program to stall while the data is being written into non-volatile memory.

Hence, further optimizations such as incremental checkpointing wherein only the data

that has changed need to be written has also been explored [32].

Ensuring forward progress of applications in intermittently-powered sys-

tems

Checkpointing as a technique to ensure forward progress in intermittently-powered

systems is not a novel concept, see Mementos [23, 33, 34]. Checkpointing, when ap-

plied in the context of an intermittently-powered system, enables the application to

make progress and complete its execution across multiple power-on cycles (henceforth

referred to as power cycles). Such a system would execute a part of the application in

each power cycle and checkpoint the system state before an imminent power loss (at

intervals). When a power loss occurs and the system wakes-up again, its state is rolled

back to the last saved checkpoint and executions are resumed from that location in

the program, thus making the application oblivious to the endured power loss. Giv-

ing applications this illusion of continuity is essential, without which programs could

be stuck performing the same computations repeatedly in each power cycle without

making any forward progress. However, a trade-off exists between ensuring forward

progress of an application by checkpointing and the degradation in the application’s

performance due to checkpointing. To perform checkpointing, the system needs to

expend precious compute cycles and energy in saving the state instead of performing

relevant application-related tasks and computations. Therefore, ensuring a system’s

reliability (by performing checkpointing) requires a certain amount of sacrifice in its
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performance. This trade-off depends on two things, namely, the checkpointing policy

and rate, and the power-performance characteristics of the non-volatile memory that

is employed in the system. Chapters 3 and 4 addresses this trade-off and discusses the

techniques proposed in this dissertation to improve the energy-efficiency of these sys-

tems over the state-of-the-art, while executing applications in a seamless and reliable

manner.

Ensuring application correctness in the face of recurrent power failures

An operational reality of intermittently-powered systems is their inability to pre-

dict the duration of time that will be spent in the involuntary powered-off state.

The duration depends on the strength and availability of the ambient source and

hence, is unpredictable. The time elapsed (whose length maybe unpredictable) by

the system without power has implications on the validity and correctness of the

checkpoint (stored state), i.e., even though a checkpointing operation may be com-

pleted successfully in the previous power cycle, restoring it to resume execution in

the subsequent one may not be always correct due to the time elapsed in between

them. The underlying reason for this correctness issue is that some types of applica-

tion state (such as previously sampled sensor data, communication parameters, etc.)

will become stale as time advances and hence, invalid and unusable in the subsequent

power cycle. Additionally, certain tasks in an application such as IO operations, non-

volatile memory writes, etc., cannot be split across power cycles, i.e., the application

cannot be resumed as is if a power loss happens while performing these tasks. In ei-

ther case, if the application resumes execution, the application will either proceed in

the wrong manner (as in making the wrong inferences) or get into an undefined state.

Therefore, ensuring semantic correctness of the application execution is key to the

proper functioning of intermittently-powered systems. Techniques that take a step in

ensuring application correctness are discussed in Chapter 4 of this dissertation.
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Last, Fig. 2.3 shows the classification of prior work in the field of intermittently-

powered systems based on the two main challenges. Related work for ensuring for-

ward progress is discussed in Section 3.8, semantic correctness for applications in

Section 4.8.2, and non-volatile processors in Section 4.8.3.

2.4 Low power modes in MCUs

Microcontrollers (MCUs) are at the heart of every embedded system that inter-

faces to (and interacts with) the real world. Many of the embedded systems that

MCUs power, such as implantable medical devices, networked sensors, and smart

meters, need to operate unattended for several years without the need for battery

replacement [35, 36]. Achieving such long operational lifetime is a daunting chal-

lenge that requires extreme levels of energy efficiency. Moreover, with an estimated

(>)50 billion devices predicted to be deployed in the near future [2, 3], issues such

as large-scale maintenance and the resulting ecological impact compound the prob-

lem further. Fortunately, many sensing applications operate in a heavily duty-cycled

mode, wherein the system is active only for very short bursts of time (often, only

milliseconds) separated by long idle intervals (often, many tens of seconds) during

which the system can be placed in a low-power, sleep mode [37, 38]. Since the sys-
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tem spends greater than 99% of its time in the sleep mode, the cumulative energy

spent in this mode is often the bottleneck for battery lifetime. The following quote

from an Atmel whitepaper on optimizing power consumption in MCUs sums it up

well [39]: “Although a great deal of attention is paid to active power consumption, the

most important mode to consider really depends on the duty cycle between the various

sleep and active modes. In applications such as thermostats, keyless entry, security

systems, etc., the processor spends most of its time idle. For these applications, sleep

mode may represent the lion’s share of overall energy consumption and will be the

most important parameter to consider.”

In order to reduce power consumption when the system is idle, a multitude of low

power techniques have been proposed and implemented. A commonly-used technique

is to put the microcontroller into a sleep mode that consumes lower power, and often

referred to as LPM. Most MCUs provide two types of sleep modes. The first is a

shallow sleep mode, in which the MCU core is halted, peripherals are disabled, and

clock sources are turned off. However, the MCU stays powered on, which means

that state information (consisting of the MCU registers and the contents of on-chip

SRAM) is preserved during sleep. Although waking up from shallow sleep is very

fast, it is (as expected) not the lowest power sleep mode possible. The second type

of sleep mode is deep sleep, in which the entire MCU, including the on-chip SRAM,

is powered down. While this results in the lowest power consumption possible during

sleep, it does not preserve SRAM state.

Most modern microcontrollers provide multiple sleep modes, which trade-off sleep-

mode power consumption with wakeup latency and data retention. Table 2.1 com-

pares these parameters for different low power modes in a TI MSP430 microcon-

troller and ST-micro ARM Cortex-M0+ microcontroller. As can be seen, the MCUs

provide multiple shallow LPMs that retain data. However, the disparity in power-

consumption and wake-up latency between the least power-consuming shallow sleep

mode and the deep sleep mode is often large. Additionally, entering and exiting a

sleep mode also consumes energy and adds to the latency overhead. Therefore, this
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Table 2.1.
Comparison of low power modes in present day microcontrollers

MCU TI MSP430a

Power Mode Sleep Standby Off Shutdown

Current Consumption (µA) 18 2.4 1.35 0.13

Wake-up Latency (µs) 4.5 150 2000

Data retention Yes Yes Yes No

MCU ST ARM M0+b

Power Mode Sleep LP Sleep Stop Standby

Current Consumption (µA) 1500 13 0.4 0.2

Wake-up Latency (µs) 0.25 30 51 2200

Data retention Yes Yes Yes No

a
Values sourced from Texas Instruments MSP430F5438A MCU datasheet

b
Values sourced from ST Micro STM32L011x4 MCU datasheet

cost needs to be also taken into account while choosing the LPM. In case of deep

sleep, entering the mode without retaining data is not useful in most cases. Since

all the volatile elements are powered off in deep sleep, additional energy needs to be

expended to save data onto the non-volatile memory before entering deep sleep. This

further adds to the energy and latency cost of entering and exiting deep sleep, which

renders its use energy-inefficient for idle durations less than 40 minutes2. In Chap-

ter 5, we propose a new low power mode that retains data at power consumptions

lesser than that of deep sleep.

2Calculations for the same are shown in Chapter 5.
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3. QUICKRECALL: EXPLORATION OF A UNIFIED

MEMORY ARCHITECTURE FOR

INTERMITTENTLY-POWERED SYSTEMS

As mentioned in Section 2, intermittently-powered systems are an emerging class

of IoT devices that are powered using unreliable and often weak ambient energy

sources. The unreliability in the energy source results in the power supply for the

IoT device being discontinuous, which makes performing long running computations

a challenging task. Examples of such systems and their operational characteristics

were discussed in detail in Section 2.3.1. Fundamentally, there are two ways to ad-

dress the problem of long running computations in these systems. The first one is

to allocate enough energy storage (larger capacitance) such that the computation

can be completed without a power interruption. While this seems a highly enticing

solution to the problem, it is energy-inefficient, and not a general and scalable one.

Energy-inefficiency arises due to the longer charging duration required for a larger ca-

pacitance and the fact that the energy source itself is unreliable. The leakage current

of a capacitor increases with the voltage across it and therefore, spending more time to

acquire the desired voltage will lead to a larger amount of useful energy being wasted.

Additionally, the process of charging the capacitor may itself get interrupted causing

that amount of energy to be wasted and lost as leakage. Adopting such a solution

would also mean that, for the same application, each different platform would require

a different value of capacitance (for collecting just enough energy). Even for the same

platform, different applications or an updated version of the same application might

require a different value of the capacitance. For the billion devices that are to be de-

ployed for the IoT, such a solution is simply impractical. The second solution follows

the principle of collecting energy (in small quantities) whenever it is available and

then utilizing it immediately for performing computations. In conditions of extreme
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unreliability in the strength and availability of the energy harvesting source, such a

solution is a more viable option as it is independent of the nature of computations to

be performed, platform parameters, nature of the energy harvesting source, etc., and

therefore, is scalable.

However, performing computations using the latter scheme requires transferring

information about the progress made from one powered-on cycle to the next. Existing

techniques to address this challenge are based on the idea of frequent checkpointing1

of system state [34]. When power loss is imminent, a snapshot (checkpoint) of system

state (e.g., processor registers, contents of SRAM) is stored to Flash memory, which

is non-volatile. During the next burst of power, the system reboots, restores state

from the stored checkpoint, and resumes program execution. Thus, long-running pro-

grams execute gradually, in small increments, as and when power becomes available.

However, checkpointing to Flash involves a significant energy and time overhead due

to the high erase/write power and time of Flash memory. As a result, a big portion of

the time and energy when the system is powered-on is spent performing checkpoint-

ing, which limits the amount of time and energy available for program execution.

Further, if the energy available in a power cycle is less than the energy required

to perform a checkpoint to Flash, the IoT device can never successfully complete

program execution.

Recent advances in semiconductor technology have resulted in new forms of mem-

ory technologies such as Ferroelectric RAM (FeRAM), Magnetoresistive RAM (MRAM),

etc., that combine the speed, flexibility, and endurance of SRAM with the non-

volatility of Flash, all at a very low power consumption2. This has led to the possibility

of unified memory where the same type of memory technology is used as RAM and for

non-volatile program and data storage. Low power microcontrollers with integrated

FeRAM are already commercially available. For example, the TI MSP430FR5739 has

16 kB of FeRAM that can be used as unified memory [10]. This chapter makes a case

1Background on checkpointing is provided in Section 2.3.2.
2Background on emerging non-volatile memories is provided in Section 2.2.



26

for (and demonstrates the benefits of) using such emerging non-volatile memories in

intermittently-powered systems.

3.1 Chapter contributions

In this chapter, we investigate the use of emerging non-volatile memory technolo-

gies (specifically FeRAM) in intermittently-powered systems to seamlessly enable

long-running computations in the presence of frequent power interruptions. We pro-

pose a lightweight, in-situ checkpointing technique, called QuickRecall, for systems

that use an emerging NVM. In particular, we explore a unified memory architecture

wherein the same memory technology acts as both the RAM and ROM, and evaluate

its impact on the energy consumption and performance of intermittently-powered sys-

tems. We show that QuickRecall can save and restore a checkpoint in just 21.06 µs,

which is over two orders of magnitude lower than the corresponding overhead using

Flash memory. Similarly, the energy required to save and restore a checkpoint using

QuickRecall is only 30 nJ, which is over 1000x better than a Flash-based check-

pointing scheme. We have also implemented and demonstrated QuickRecall using

an embedded platform called Qube (Appendix A). Experimental evaluations using

three typical embedded application programs show that the highly efficient check-

pointing in QuickRecall results in a significant reduction in application-level energy

consumption (as much as 3x) and execution time (as much as 8.4x), compared to a

state-of-the-art Flash-based checkpointing technique.

3.2 Motivation for utilizing eNVM in intermittently-powered systems

As mentioned in Section 3, an intermittently-powered system turns on and per-

forms computations whenever it receives just enough energy. The challenge posed

by such systems is to perform these computations seamlessly across the powered-on

cycles (henceforth referred to as power cycles) in an energy efficient manner. To suc-

cessfully perform computations across power cycles, such systems require to store the
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volatile system state into the non-volatile memory. By and large, microcontrollers

and embedded systems of today use Flash memory as the main non-volatile stor-

age, and SRAM as the RAM. Typically, during the process of linking a program,

the linker allocates the uninitialized program sections onto the RAM for run-time

initialization, whereas the global/static variables that are initialized and the program

code reside on the ROM [40]. For example, in the MSP430 microcontroller, the bss,

data, heap, and stack sections reside in the volatile RAM while all the other sections

are allocated to the non-volatile ROM (Flash). Flash presents a significant overhead

in both performance and energy due to its inherent device limitations. Flash can

write (program) only from 1 to 0. A write operation to revert the cell from 0 to 1

requires it to be preceded by an erase operation. Depending on the Flash memory

size and architecture, the smallest memory unit for erasure can vary. As an example,

for the MSP430F5438A microcontroller, the smallest erasable unit is a segment of

size 512 bytes and the erase operation takes 29 ms while consuming 320 µJ [41]. The

high latency and power consumption of erase and write operations result in Flash

memory having a significant energy consumption, which is a primary motivator for

employing eNVM in IoT devices. In addition to being non-volatile, memories such as

FeRAM and MRAM have distinct advantages over Flash in terms of power consump-

tion, performance, endurance, etc. [42,43], making it a much more suitable NVM for

intermittently-powered systems than Flash memory.

3.3 Design of QuickRecall

Next, we present our proposed technique, QuickRecall, for enabling computa-

tions across power cycles in intermittently-powered systems and discuss the associated

trade-offs.
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3.3.1 Unified memory architecture for checkpointing

To enable computations across power cycles, the target application needs to store

data pertaining to the program and processor states in a non-volatile memory before

power is lost. In conventional checkpointing schemes, such checkpoint triggers are

either periodic in nature or inserted at vantage locations in the program by the

application designer. Checkpointing an application in this manner impedes normal

program execution and introduces additional overhead.

The first element of design that QuickRecall proposes is that, for intermittently-

powered systems, only a drop in the value of the supply voltage should trigger a

checkpoint of the current system state. Such a checkpointing scheme does not im-

pede normal program execution and only triggers the checkpointing if a power loss

is imminent. However, one should note that in such a scheme, it is imperative that

checkpointing be successfully completed before power is lost. QuickRecall ensures

this by choosing an appropriate trigger voltage to interrupt the program and initiate

the checkpointing operation.

The second design feature that QuickRecall introduces is to utilize a unified mem-

ory architecture for reducing the overhead to retain the state of an intermittently-

powered system. Conventionally, the linker maps the code section to a non-volatile

storage like Flash, and parts of the data segment such as the bss, heap, and stack

sections to the volatile SRAM. On the contrary, QuickRecall’s unified memory archi-

tecture would enable all the program sections to be mapped onto the same memory.

Fig. 3.1 shows this proposed unified memory architecture along with the traditional

way of mapping program sections. A unified memory architecture reduces the over-

heads in performing computations across power cycles. The overhead introduced

comprises of checkpointing overhead and wake-up overhead. Checkpointing overhead

is defined as the time required to store the system state before power is lost. Wake-

up overhead is defined as the time spent in restoring the system state on power-up.

The system state is made up of the states of the application program, the processor,
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Fig. 3.1. QuickRecall’s proposed unified memory architecture as com-
pared to a conventional linking of program sections

and the state of configuration registers of various peripheral subsystems. Each of

the above-mentioned state information has to be retained for a successful recall and

resumption of computation across power cycles. A detailed discussion on the impact

of a unified memory architecture on saving each of the system state follows.

Retaining program state

The program state consists of the values of the global variables, stack, heap, bss,

etc., in use by the program at checkpoint time. In the unified memory architecture,

the eNVM acts as the conventional RAM as well as the ROM. Hence, in QuickRecall,

these sections reside in the eNVM. As a result, when the MCU powers off, the RAM

data is saved in-situ. Similarly while waking up, the program can pick up the data

from exactly the same memory locations, thus avoiding the need for the checkpoint

data to be rewritten to the appropriate memory locations (as is done traditionally).

By using an eNVM as the RAM, QuickRecall is superior to previous checkpointing

schemes as there is no time or energy overhead incurred to retain RAM data.
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Retaining processor state

Processor state is defined as state of the processor at checkpoint time. To avoid re-

computations after a power cycle, the processor should continue executing instructions

oblivious to the incident power interruptions. Hence, capturing the processor state

involves retaining the state of the microcontroller register file which includes the

program counter (PC), stack pointer (SP), status register (SR), and General Purpose

Registers (GPRs). The number of GPRs in use (alive) depends on the current state of

the program. For the same program at different execution stages, variable number of

GPRs might be in use. A software approach to track the number of active GPRs would

hamper the normal program execution. Hence, QuickRecall saves the values of all

the processor registers onto the eNVM during checkpointing. This step involves data

transfer and introduces some checkpointing overhead.

Retaining microcontroller and peripheral settings

Common microcontroller applications use multiple peripherals to gather data from

sensors and to communicate with the external world. The microcontroller and pe-

ripheral settings that have to be configured before execution include GPIO directions,

GPIO functions, clock properties, etc. For intermittently-powered systems, it is per-

tinent to restore the MCU and peripheral states when waking up to resume correct

program execution. QuickRecall addresses this problem by carefully structuring pro-

grams used for intermittently-powered systems. Depending on the application, the

software boot sequence (discussed in the following section) re-initializes the config-

uration registers to their last known state. Note that only the registers in use by

the application need to be retained. The application designer is tasked with care-

fully structuring the boot sequence so that the program does not enter false states.

This step contributes to the wake-up overhead and the duration of the overhead is

application and program dependent.
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3.3.2 QuickRecall’s software architecture

The QuickRecall software architecture is designed to facilitate applications to

execute seamlessly across power cycles. To this end, QuickRecall’s software flow in-

troduces additional variables to the program that are hidden from the application.

These extra variables are required for data retention and are allocated in the bss as

uninitialized global variables. They include a variable to be used as the checkpoint

flag, in addition to variables required for storing the GPRs, SR, SP, and PC. Addi-

tionally, QuickRecall’s software architecture requires a dedicated GPIO to be utilized

as the power-collapse warning trigger to initiate the checkpointing operation. Only

QuickRecall’s initialization routines are allowed to control and configure this partic-

ular GPIO, and the application is prohibited from using this GPIO. QuickRecall’s

software flow requires that the programmer specify the application initialization rou-

tine in a predefined function that QuickRecall’s software flow uses. This restriction is

placed to facilitate a successful recall of the system’s peripherals upon wake-up. Last,

QuickRecall modifies the boot sequence for intermittently-powered systems to ensure

that the program resumes execution from the point it was paused (interrupted) before

power was lost.

Fig. 3.2 shows QuickRecall’s software architecture. As can be seen, the software

flow has two boot sequences upon powering up. Upon boot, QuickRecall verifies the

value of the checkpoint flag variable. An unset flag indicates a normal boot se-

quence, which subsequently initiates a call to the main() function. The main() func-

tion begins by initializing the MCU and peripherals, and then executes the program.

While executing the application program, the MCU is interrupted on a (preselected)

GPIO if the supply voltage drops below a preset trigger voltage (VTRIG). Section 3.4

discusses the details and trade-offs of choosing a VTRIG. Upon entering the interrupt

service routine (ISR), the program context gets pushed onto the stack. QuickRecall

proceeds with storing the current SR, SP, and GPRs in the predefined variables. Note

that these registers now point to the ISR state. QuickRecall then proceeds to set the
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Fig. 3.2. QuickRecall’s software architecture

checkpoint flag and saves the PC. Thus, the system is ready for a loss in power

supply and could recall this saved state on the following boot-up event. The ISR

spends any remaining time in comparing the supply voltage to the trigger voltage.

If the supply voltage rises above the trigger voltage, a reverse context-switch takes

place and the program continues until the supply voltage drops again. Alternatively,

the microcontroller can lose power and shut off with the entire system state saved for

a future recall.
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On the following power up event, a set checkpoint flag launches the QuickRecall

boot sequence that recalls the system state. It begins by restoring the stack pointer

following which the MCU and peripheral subsystems are re-initialized. The stack

pointer is restored initially so that the re-initialization routine may use the remainder

of the stack without corrupting the portion of the stack corresponding to the check-

point. QuickRecall’s boot sequence then stalls execution until the supply voltage

surpasses the trigger voltage. Note that, even though the peripherals have been ini-

tialized, if the MCU powers off before achieving the trigger voltage, the previous state

remains intact as the ISR is not triggered. Otherwise, all the registers are reinstated

and the checkpoint flag is cleared. QuickRecall then restores the PC and resumes

by re-entering the ISR (see Fig. 3.2). The ISR returns immediately by popping the

program context from the stack and the program continues execution oblivious to the

power interruption.

Any application can make use of QuickRecall as long as the initialization rou-

tines are known to QuickRecall’s boot sequence. QuickRecall supports all normal

programming paradigms including dynamic memory allocation and nested interrupts.

Dynamic memory allocation requires no additional performance overhead as the heap

is also retained in-situ in the non-volatile memory. The data in the heap is stored as

a linked-list structure in the eNVM. The memory allocation engine stores the control

variables used to keep track of free and allocated heap segments in the bss. Since

QuickRecall retains the state of bss across power cycles, the heap and the memory

allocation engine work seamlessly across power cycles without presenting any over-

head. Enabling nested interrupts facilitates the QuickRecall ISR to be triggered.

Note that interrupt nesting is not enabled for the QuickRecall interrupt vector to

perform checkpointing.



34

3.4 Hardware architecture of intermittently-powered systems

In this section, we present the details of the hardware architecture of intermittently-

powered systems that are considered in this dissertation, and discuss the impact of

QuickRecall on the checkpointing energy in these systems.

3.4.1 Challenges

QuickRecall’s software flow is designed for a voltage-trigger based checkpointing

that is more energy-efficient than the periodic monitoring of supply voltage used in

other checkpointing schemes. For this purpose, an external power management unit

has to be designed such that it controls the power supply to the system in addition

to interrupting the system on reaching a predefined VTRIG. The value of VTRIG

and other voltages (switch on and switch off) have to be selected in such a way as

to guarantee a checkpoint. The voltages have to be carefully calibrated such that

even if a system receives energy to just switch on and switch off immediately, the

checkpointing operation has to be guaranteed.

3.4.2 Design

Fig. 3.3 shows the conceptual system architecture for intermittently-powered sys-

tems. The fundamental principle is to monitor the supply voltage to toggle the system

between on and off states, and to trigger the checkpoint operation. The implemen-

tation of each component can vary from one system to another as long as the basic

principles are adhered to.

The operation of an intermittently-powered system is governed by voltages that

influences its power states. Fig. 3.4 shows the three different voltages VON, VTRIG,

and VOFF that needs to be taken into consideration while designing an intermittently-

powered system. VOFF corresponds to the minimum voltage below which the MCU

does not function reliably. This voltage is chosen according to the data provided by
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Fig. 3.3. Hardware architecture of intermittently-powered systems

the chip manufacturer. The voltage VTRIG is chosen such that there is just sufficient

energy to complete a successful checkpoint. The choice of VTRIG depends on the VOFF

of the MCU and on the checkpoint energy. A conservative approach in choosing VTRIG

will ensure reliability but reduce energy-efficiency. This is because of the inability

to predict the exact amount of energy required to complete successful checkpoint

operations. As the location of the program at the time of power loss varies across

power cycles, the amount of energy to checkpoint also varies from one power cycle to

another. Hence, to guarantee reliability, VTRIG has to be designed with the worst-case

checkpoint energy. However, in the average case the energy required to complete a

successful checkpoint will be much lesser than the conservative amount, which will

lead to wastage and under-utilization of valuable energy. On the other hand, if the

VTRIG is set to a low value, it can lead to incomplete and corrupt checkpoints and

affect system reliability, causing executions to be repeated and restarted from scratch.

Hence, the choice of VTRIG is a crucial parameter that determines the energy-efficiency

of intermittently-powered systems.

The voltage VON is the voltage at which the system is designed to turn on. It has

to be higher than VTRIG and its minimum value depends on the checkpoint energy as

well since, a larger checkpoint energy would mean a larger amount of restore energy

and hence, a higher minimum VON. A hysteresis exists between VON and VTRIG as the

system should wake-up only if it has enough energy to perform the necessary steps
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after wake-up, i.e., restore the system state, perform one instruction (at the very

least), and successfully checkpoint the system state. Otherwise, a wake-up would

lead to no meaningful usage of the gathered energy. Fig. 3.4 illustrates the system

status as a function of the energy harvester output voltage (VEH) and system voltage

(VSYS). Initially the switch (shown in Fig. 3.3) is kept open. Once VEH charges to

VON, the switch is closed as is depicted by the arrow. Once the system is on, the

supply voltage drops until VTRIG upon which the checkpoint operation is triggered.

When the voltage reaches VOFF, the switch is opened turning the system off and

allowing the energy harvester to replenish charge. During this time, VSYS may drop

to a voltage ≥ 0 V and depends on the ambient energy source characteristics. In

some cases, the switch is opened as early as VTRIG and the checkpoint operation is

performed using the energy buffered in the capacitors present in the system.
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Last, the energy for checkpointing is derived from CSYS as shown in Eqn. (3.1)

and the energy that is input to the system at the beginning of every power cycle is

given by Eqn. (3.2).

Eckpt =
1

2
CSY S(V 2

TRIG − V 2
OFF ) (3.1)

Ein =
1

2
CIN(V ON

2 − V TRIG
2) (3.2)

Note that Ein represents the minimum energy that is input every power cycle agnostic

to the modality of (and variations in) energy harvesting.

3.4.3 Impact of QuickRecall on checkpointing energy

The voltage, VTRIG is determined by the total amount of energy that is required

to complete a successful checkpoint (Eckpt), which is given by the equation below,

Eckpt = Ebyte ×Nbytes (3.3)

where Ebyte indicates the energy required for checkpointing a byte of data into NVM

and Nbytes refers to the total number of bytes to be copied into the NVM. The value of

Ebyte depends on the kind of NVM technology in use (e.g., Flash, FeRAM, MRAM,

etc.). On the other hand, Nbytes depends on the program location at which the

checkpoint operation is triggered, and hence varies from one checkpoint to another

due to the dynamic nature of stack and heap depths, which grow and shrink during

the course of program execution.

QuickRecall employs a unified memory architecture and thus, enables in-situ

checkpointing thereby alleviating the need for copying data from the SRAM to NVM.

Therefore, the amount of data that needs to be saved on the non-volatile memory

is reduced to just that of the processor registers, thus reducing Nbytes. By adopt-

ing FeRAM as the NVM, QuickRecall reduces Ebyte as well, thus reducing Eckpt and

therefore, is able to have a very low trigger voltage. Thus, QuickRecall minimizes the

energy spent for checkpointing, and maximizes the energy available to be utilized for

performing meaningful application tasks.
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Fig. 3.5. Block diagram of QuickRecall’s hardware implementation

3.5 Implementation

Fig. 3.5 shows the block diagram of our hardware implementation. In our im-

plementation, we use FeRAM as the eNVM technology to evaluate QuickRecall. We

fabricated a custom experimenter platform called Qube3 (Fig. 3.6) with the Texas

Instruments MSP430FR5739 as the microcontroller, a temperature sensor, and a

power monitoring unit (PMU). As shown in Fig. 3.5, the target system consists of

the microcontroller (MCU) and the temperature sensor. The MSP430FR5739 [10]

microcontroller has 1 kB of SRAM and 16 kB of FeRAM. The PMU consists of an

external supply voltage supervisor (SVS) and an active-high power switch, which

gates power to the target system. The SVS is interfaced with a GPIO pin of the

MCU to provide a digital signal input that acts as the interrupt source for Quick-

Recall’s software flow. Additionally, the MSP430FR5739 has a non-programmable

internal SVS that monitors the microcontroller VDD and regulates the voltage to the

microcontroller core at a constant 1.5 V. To instrument an intermittent power supply,

we use a Tektronix Keithley meter [44] as a current source along with a capacitor

3More details on the Qube platform can be found in Appendix A.
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(a) MCU Module (b) Sensor Module

Fig. 3.6. The Qube platform used for evaluating QuickRecall

(CIN). In all our experiments, IEH << ISYS such that the supply capacitor (CIN) takes

a perceptible amount of time to charge to VON.

The choice of a suitable VTRIG is crucial for QuickRecall to avoid unwanted wait

periods and incomplete checkpoints. As mentioned before, the MSP430FR5739 MCU

has a non-programmable internal SVS. The chosen system VTRIG has to be greater

than the microcontroller’s internal SVSoff and SVSon since they dictate the micro-

controller on-off states. For the MSP430FR5739 MCU, the typical SVSoff and SVSon

voltages are 1.88 V and 1.93 V, respectively. The minimum voltage required for a safe

FeRAM operation is 2.0 V [10]. The chosen VTRIG has to guarantee correct FeRAM

operation for the duration of checkpointing. The overhead of storing a checkpoint at

a CPU frequency of 8 MHz, measured using an oscilloscope, is 9 µs. Therefore, we

set the external SVS to a VTRIG of 2.03 V with a 100 mV hysteresis using resistors.

This VTRIG enables QuickRecall to successfully complete checkpointing with negligi-

ble wait periods 4. Finally, for all the experiments described in the following sections,

a constant IEH of 100 µA was used. The size of CIN is varied to control the power

cycle duration.

4Due to noise, the VTRIG is not a strict value. A conservative VTRIG which works for all power
cycles was thus chosen by adjusting the decoupling capacitor size.
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On the software front, we modified the linker to allocate the data, bss, stack, and

sysmem (heap) sections to the on-chip FeRAM. Note that while the system reboots

across power cycles, the global variables should not be initialized again. Hence they

are defined in the bss section of the code. The initialization routine that configures

the MCU and peripherals, like setting GPIO directions, clock frequency, etc., are

defined in a function (say foo()). foo() is invoked in both the main() function

and in QuickRecall’s boot sequence. Lastly, we modified the boot sequence and the

initialization routines as shown in Fig. 3.2 to implement QuickRecall.

3.6 Case study: QuickRecall implementation for CRC program

In this section, we describe how QuickRecall works for a cyclic redundancy check-

sum (CRC) program, when it is being executed in the face of frequent power inter-

ruptions.

Fig. 3.7(a) is a conceptual graph that shows the state of the target system (in

particular the MCU) with change in VEH. The (external) SVS, shown in Fig. 3.5,

proctors VEH and its output controls VSYS. In Fig. 3.7(a), shaded region ‘A’ denotes

the region where VEH is less than the SVSon voltage. The SVS keeps the power switch

open, and the target system does not receive power. Once VEH becomes larger than

SVSon, the switch is closed and VSYS tracks VEH. Region ‘C’ denotes this window

when the target system receives power. As soon as VEH drops below VTRIG, the

SVSOutput toggles its value, thus cutting off the power switch as well as triggering the

QuickRecall interrupt. The microcontroller operation moves from region ‘C’ to ‘D’,

and in ‘D’, the program executes the ISR to save the system state and any remaining

time in this region is spent on monitoring the SVSOutput. The same is repeated for all

subsequent power cycles. The VDDmin shown in Fig. 3.7(a) is the minimum voltage

of operation for FeRAM in the MSP430FR5739 MCU.

Figs. 3.7(b), 3.7(c), and 3.7(d) show real measurements of QuickRecall working

across multiple power cycles for a program whose software flow is described as follows.
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Fig. 3.7. Detailed walk-through of MCU state transitions when em-
ploying QuickRecall in an intermittently-powered system

The program computes the cyclic redundancy checksum (CRC) of a small message.

After computing the CRC, a done signal is raised on a GPIO of the MCU. This done

signal is set inside a while(1) loop and the program persistently keeps setting it and

never terminates as a result. Fig. 3.7(b) shows the SVS output, the target system

voltage, and the done signal from the instant power is supplied. Fig. 3.7(c) is the

magnified view of the fourth power cycle from Fig. 3.7(b), and Fig. 3.7(d) shows the

system wake-up latency. A detailed description follows.
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In the presence of an energy source, IEH begins to charge CIN. Once the SVS

detects that VEH is greater than the SVSon voltage, it closes the power switch. As

soon as the switch is closed, CIN and CSYS are connected in parallel leading to sharing

of charge between the capacitors. Due to the charge sharing, VEH drops below the

SVSoff voltage (VTRIG), upon which the SVSOutput voltage goes low, disconnecting

the system from CSYS. This cycle is repeated until CSYS is sufficiently charged such

that VEH and VSYS are equal to each other and more than VTRIG. A magnified view

of the oscillating SVSOutput can be seen in Fig. 3.7(d). As shown in Fig. 3.7(b),

VSYS shows characteristics of a typical capacitor in its charging phase. This region is

marked as ‘A’. During region ‘A’, the microcontroller’s internal SVS keeps it powered

off. Gradually, as CSYS gets charged, the power switch remains closed for a relatively

larger window and the system enters region ‘B’, shown in Fig. 3.7(c). In region ‘B’,

VSYS is sufficient enough to turn the MCU on, which initiates the QuickRecall boot

sequence. Fig. 3.7(d) shows the transition from region ‘B’ to region ‘C’, when the

MCU’s previous state has been completely recalled and it commences the program

execution. The MCU continues computations until it receives an interrupt from the

SVS. Fig. 3.7(c) shows the transition from region ‘C’ to ‘D’. As VEH drops below

VTRIG, SVSOutput goes low, which triggers a checkpoint operation in the MCU. In

region ‘D’, the MCU performs the said checkpoint and then waits any remaining time

for the SVS output to go to logical high. In the event power fails, the microcontroller

switches off with its state retained.

Fig. 3.7(b) shows that during the third such cycle, the CRC computation is com-

plete and the done signal is raised. This shows that CRC computations progressed

across three power cycles. In the fourth power cycle, the MCU wakes up to execute

just the while(1) loop that constantly sets the done signal. This can be inferred

by observing and comparing the width of the done signal at the third power cycle

to all the ensuing ones. The first done signal is relatively thinner than the following

ones that get set at the beginning of region ‘C’. This confirms that QuickRecall works

across power cycles without re-executions.
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3.7 Experimental results

In this section, we first define the various terminologies used and the evaluation

benchmarks, and then describe the baseline with which we present a quantitative

comparison of QuickRecall.

3.7.1 Definitions

The following definitions correspond to the various parameters and metrics that

we use in our experimental evaluation of QuickRecall.

Computation Window (CW)

For our experimental setup, Computation Window is defined as the time for which

the MCU is in the ON state. This corresponds to the regions ‘B’,‘C’, and ‘D’ as shown

in Fig. 3.7(c).

Slowdown

Slowdown is defined as the ratio of time taken by the program to complete an

execution across multiple power cycles to the time taken by the same code to complete

executing in a single run, without any loss of power. Mathematically, if the application

takes n power cycles to complete its execution, and the duration of the ith power cycle

is given by CWi,

Slowdown =

n∑
i=1

CWi

TotalRuntime
(3.4)

Slowdown happens due to the overhead presented by checkpointing schemes to store

and restore the system snapshot. Note that in the above definition, the amount of

time the MCU is in the OFF state does not contribute to the calculation of slowdown.
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Table 3.1.
Benchmark program execution time and overhead (CPU Freq = 8 MHz)

Program QuickRecall Overhead a Total Execution Time

CRC 12.06µs + 580µs + 9µs 547ms

RSA 12.06µs + 580µs + 9µs 11.12s

SENSE 12.06µs + 17.6ms + 9µs 73ms

a
Store Overhead + Initialization Overhead + Restore Overhead

Single Life Cycle

We define the execution of a program in a single continuous run in the absence of

power loss as a single life cycle execution of the program.

3.7.2 Evaluation benchmarks

To evaluate QuickRecall, three test programs were used; namely CRC, RSA and

SENSE. The CRC program calculates a 16-bit CRC and a 32-bit CRC of a message

using polynomials. The RSA program does a 64-bit encryption on 128 characters. The

program then decrypts the encrypted value and verifies correctness. SENSE collects

temperature data from an analog sensor, processes it using a low pass filter, and then

performs statistical computations such as finding the minimum, maximum, mean,

and standard deviation of the collected data. SENSE implements nested interrupts

as well as dynamic memory allocation on the heap 5. The overhead introduced by

QuickRecall per power cycle and the single life cycle execution runtime for each test

program is given in Table 3.1

5Mementos, a checkpointing scheme for intermittently-powered systems, does not support dynamic
memory allocation.
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3.7.3 Baseline: Flash Checkpoint

Earlier checkpointing schemes for intermittently-powered systems are periodic in

nature and make use of Flash memory as the non-volatile storage for state and data

retention. For example, Mementos [34] actively polls the supply voltage at prede-

termined trigger points. Trigger points could be at the end of each iteration of the

loop or at the end of a function call. There are some disadvantages for such a quasi-

periodic checkpointing approach. Prominently, the checkpointing scheme intervenes

in the normal program execution flow. This means that energy that could other-

wise be utilized for performing meaningful computations is now being used to know

whether the supply voltage has dropped below VTRIG. Secondly, the depth of the

stack size will vary depending on the program state and trigger point. This aggra-

vates the problem of selecting a suitable VTRIG since, for the checkpointing to be

guaranteed in such a scheme, the chosen VTRIG should satisfy a successful checkpoint

of the worst case stack depth in addition to satisfying the worst case time-delay for

the program to reach a trigger point. Reducing the latter implies inserting more

trigger points, which in turn impedes program execution. Choosing a conservative

VTRIG (i.e. a higher value) reduces the time for meaningful computations and wastes

useful energy. Hence, we reason that any checkpointing scheme that polls the supply

voltage presents unwanted trade-offs as compared to an interrupt based approach.

On the other hand, QuickRecall is an interrupt based solution with no program

re-executions and therefore, an unbiased baseline would employ an interrupt-based

approach. When an interrupt is triggered, our baseline (henceforth referred to as

Flash Checkpoint) initiates a data transfer of all the registers, stack, heap, etc.,

to the Flash memory. On receiving sufficient power again, the contents from the

Flash are written back to the SRAM, registers, etc. We define checkpoint size as the

amount of data that is required to be stored in non-volatile memory at checkpoint

time. Checkpoint size for Flash Checkpoint depends on the stack size, which grows

and shrinks dynamically during the course of program execution. Since the length
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Table 3.2.
Flash micro-benchmarking

Operation Latency Avg. Power (mW)

Read 3.5∗w + 1.9 µs 4.55

Write 74.8∗w + 1.8 µs 5.98

Erase 29 ms 11.05

w = no. of words

of the computation window is unknown a priori, no assumption can be made on the

stack depth of the program at checkpoint time. Therefore, to guarantee a successful

checkpointing, VTRIG has to be set considering the worst case stack size of the program

(i.e., the worst case stack depth of CRC, RSA, and SENSE).

To measure the energy and latency overheads of Flash-based checkpointing, we

use a custom MSP430F5438A board. Table 3.2 shows the characteristics of the

MSP430F5438A Flash measured experimentally by performing atomic operations of

read, write, and erase. The MSP430F5438A microcontroller is architecturally similar

to the MSP430FR5739 MCU that is used for QuickRecall and, hence, we make use of

it to make energy comparisons. Flash power measurements are done at a supply volt-

age of 2.6 V. One bank of the MSP430F5438A Flash is made up of 128 segments with

each segment being 512 B in size. An erase operation can be done only on a single

segment or on the entire bank. In Table 3.2, the read and write operation latencies

are reported per number of words read/written. Using these values, we simulate a

Flash-based baseline system that is described below.

Baseline Flash memory architecture and working

The Flash memory architecture that is chosen has a direct impact on the energy

and latency overhead of checkpointing. Consider a Flash architecture with 2 banks
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of N segments of size s words each. Assume that n segments (n < N) are allotted for

the checkpoint operation and a checkpoint is of size c words. Then, a maximum of

p =
⌊
n∗s
c

⌋
checkpoint operations could be performed before requiring a Flash erase

operation. Typically, Flash architectures allow erase operations to be performed

at a segment-level (Segment erase) or at a bank-level (Mass erase). The above

architecture provides an initial benefit of p checkpoint operations without any erase.

After that, either n separate segment erase operations have to be performed or a single

segment erase operation have to be performed for every additional b s
c
c checkpoint

operations. As Table 3.2 shows, the Flash erase operation is energy intensive and also

has a latency overhead. Allotting an entire bank for checkpoint operations increases

the memory footprint required and the associated cost. In case of such an architecture,

an erase operation is required only once in every
⌊
N∗s
c

⌋
power cycles. Therefore, a

trade-off exists between the memory footprint used and the erase overhead.

Certain Flash architectures allow the bank erase latency overhead to be hidden

by concurrently permitting write access to another Flash bank. However, such an

architecture still incurs an energy penalty for the erase operation albeit less frequently.

The number of power cycles per erase operation is directly related to the checkpoint

size of the program. The worst case checkpoint size for CRC, RSA, and SENSE are

100 B, 344 B, and 100 B respectively. Hence, Flash Checkpoint employs a single flash

segment (of 512 B) for checkpointing operations. This segment is initially assumed to

be erased and ready for checkpointing. Once the system starts computations across

power cycles, checkpoint writes are performed systematically to the flash segment.

The flash segment is erased only at the beginning of a computation window (CW)

if it is unable to incorporate a full checkpoint for that CW. During a segment erase

operation, the CPU is held and computations are stalled. Note that Flash Checkpoint

does not benefit a huge improvement in performance by increasing the number of flash

segments. This is because, most embedded system programs are non-terminating,

and hence, even if more flash segments are made available for checkpointing, they

will eventually be exhausted and a similar erase operation has to be performed for
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each flash segment 6. Choosing a VTRIG is comparatively harder for Flash as for

changes in stack depth, the energy required will vary drastically. Additionally, since

Flash writes consume more energy, VTRIG has to be set to a much higher value7 than

in QuickRecall to satisfy the energy requirements.

3.7.4 Quantitative comparison of QuickRecall

By reducing the checkpoint data size with in-situ checkpointing using FeRAM,

QuickRecall reduces the latency and energy overhead for a store-restore operation,

which translates into overall performance and energy benefits for the program.

As shown in Table 3.1, the QuickRecall overhead comprises of checkpoint (store)

overhead and wake-up overhead. Wake-up overhead comprises of an initialization

overhead and a restore overhead. Initialization overhead denotes the time spent

for waking up the embedded platform, stabilizing the internal voltage regulator and

PLLs, and includes the overhead for recalling the microcontroller and peripheral

states. The duration of the initialization overhead is application and platform depen-

dent. For example, SENSE has a longer wake-up overhead due to the time required

for the sensor and ADC to settle. The restoring overhead is the time taken to restore

the checkpoint data. For QuickRecall, this refers to the time required to populate the

GPRs, SR, SP, and PC registers with their retained values upon power up. Table 3.1

also shows that QuickRecall introduces constant overheads for storing and restoring

operations each power cycle. In comparison, for a Flash-based checkpointing scheme,

the data has to be transferred to and from the SRAM and this overhead depends on

the stack depth, number of global variables, etc. By employing FeRAM as a unified

memory, QuickRecall implements in-situ checkpointing and adds zero overhead. Ta-

ble 3.1 shows that the overhead related to data transfer is a constant 21.06 µs for

QuickRecall. This is an improvement of 100x-1000x over conventional checkpointing

6In a real deployment, increasing the number of segments may aid in wear-leveling as more segments
are subjected to flash erase-write cycles
7Mementos uses a VTRIG of 2.62V.
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Table 3.3.
Comparison of QuickRecall’s energy overhead with the baseline (µJ)

Non-Volatile CRC RSA SENSE

Memory Store Restore Store Restore Store Restore

Flash 22.38 0.8 76.95 2.75 22.38 0.8

Flash w/ erase 342.8 - 397.4 - 342.8 -

FeRAM w/ QuickRecall 0.017 0.013 0.017 0.013 0.017 0.013

schemes using Flash. Thus, QuickRecall significantly increases the time utilized to

perform meaningful computations in each power cycle.

The latency benefits that QuickRecall provides due to the reduced checkpoint size

translate into reduced energy overhead for checkpointing. Equation (3.5) shows the

components of energy overhead due to checkpointing and restore operations.

Epower cycle = Pstore ∗ tstore + Prestore ∗ trestore (3.5)

In addition to reducing tstore and trestore, QuickRecall reduces Pstore and Prestore by

employing an emerging NVM instead of Flash. Note that QuickRecall’s in-situ check-

pointing scheme improves the latency overheads as compared to a case where the

NVM directly replaces Flash. Further, even in a system whose Flash erase latency is

hidden, the energy required for performing an erase still exists and contributes to the

checkpointing overhead for Flash.

Table 3.3 quantifies and compares the energy overhead for store and restore opera-

tions for Flash and QuickRecall. The average power consumption for Flash operations

are given in Table 3.2. The average power consumption measured for write and read

operations of the MSP430FR5739 MCU are 1.37 mW and 1.4 mW respectively, which

is atleast 4x lower than its Flash counterpart. The energy benefits due to QuickRe-

call for the checkpoint operation is 1000x better for CRC and SENSE. As can be
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seen with RSA’s store and restore energy, the Flash checkpointing energy increases

as the checkpoint data size increases (by as much as 4500x and 200x). Additionally,

the Flash energy consumption includes an intermittent erase operation that requires

320 µJ. Comparatively, QuickRecall consumes only 0.03 µJ per power cycle and is

constant across programs. Even if a hypothetical microcontroller with infinite Flash

memory that require no erase operations is considered, QuickRecall still reduces the

energy overhead compared to Flash due to the much more compact checkpointing

size that is enabled by in-situ checkpointing.

The energy and latency overhead reductions achieved per power cycle by Quick-

Recall turn into overall program-level performance and energy benefits. Fig. 3.8

compares the normalized runtime for the aforementioned benchmarks. All experi-

ments are run with the microcontroller clock frequency set to 8 MHz. In the figure,

the baseline system (normalized value of 1) is SRAM single lifecycle, in which the

microcontroller system employs SRAM as the data memory. Experiments show that
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the total execution time for QuickRecall single lifecycle is the same as the baseline for

all the benchmarks, implying that QuickRecall does not intervene in normal program

execution, and that FeRAM memory accesses are comparable to SRAM accesses at

8 MHz. For evaluating QuickRecall across power cycles, the input capacitance, CIN

was chosen such that the average computation window is 40 ms. The computation

window for Flash Checkpoint simulations is also set to 40 ms. Fig. 3.8 shows that

QuickRecall outperforms Flash Checkpoint for all three benchmarks. By utilizing

FeRAM as a unified memory, QuickRecall is able to reduce the checkpoint size and

data transfer overheads. CRC and RSA have the same overheads for QuickRecall

and therefore theoretically, are expected to have the same slowdown. Our obser-

vation differs from the hypothesis due to the non-ideal electrical components used

in a real scenario. The runtime of RSA is longer than CRC by twenty times and

thus, RSA is more susceptible to variations in computation widths. The computation

widths per power cycle differ slightly due to the variations in current draw from the

capacitor and the MCU. Accordingly, the number of power cycles required for com-

pletion vary per experiment. For example, measurement of QuickRecall RSA with

a different capacitor with an average CW of 40ms recorded a slowdown of 1.18x

as compared to the 1.3x shown in Fig. 3.8 while the observed slowdown for CRC,

being a smaller computation, remained approximately the same in both cases. On

the otherhand, the slowdowns for CRC and RSA are significantly different for Flash

Checkpoint due to the difference in stack depth for each program. SENSE, even

though being the fastest of the three benchmarks, has a larger slowdown due to the

aforementioned larger wake-up overhead presented during initialization at each power

cycle. This consumes a significant portion of the computation window and therefore,

more number of power cycles are required for SENSE to complete the computation.

For Flash Checkpoint , more power cycles mean more checkpointing operations and

correspondingly, more erase operations.

Fig. 3.9 compares the slowdown of QuickRecall with Flash Checkpoint when exe-

cuting RSA across different computation windows. Predictably, QuickRecall does not
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slowdown the program as much as Flash Checkpoint and is almost 1 for larger com-

putation windows. Additionally, as Fig. 3.9 shows, due to the large overhead incurred

for Flash Checkpoint , it cannot guarantee correct operation without re-executions for

computation windows less than 36 ms, which is the minimum time required for an

erase followed by a write operation. Flash Checkpoint ceases to work for computation

windows less than 29 ms as erase operation cannot be performed. On the other hand,

we show that QuickRecall works for computation windows as small as 20 ms without

re-executions. The extremely low overhead introduced by QuickRecall gives a 1.8x

improvement in the computation window size for which the program can execute

across power cycles. Theoretically, QuickRecall can do computations and success-

fully perform a checkpoint of the system state for computation windows as small as

1 ms. Thus, QuickRecall is a major step in enabling systems to perform computations

across power cycles.

The program-level performance improvements translate into reduced energy con-

sumption for QuickRecall. To compare the overall energy consumption of Quick-
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Recall and Flash Checkpoint , we conducted a separate iso-input energy experiment.

The Qube platform was used for evaluating QuickRecall while a custom fabricated

MSP430F5438A board was used for evaluating Flash Checkpoint . A capacitor of size

200 µF and a VON of 2.6 V was used for both the boards. The higher VON is cho-

sen as it can supply the energy required for an erase operation in the case of Flash

Checkpoint . Note that the computation windows of both the platforms are different

due to the difference in computing power and energy overheads. We observed a CW

of 135 ms for Qube and 57 ms for the MSP430F5438A board. After waking up, the

system restores the state and computes until the supply voltage drops to VTRIG. For

Flash memory, the VTRIG is calculated for the worst case stack depth of a particu-

lar program as is required for a successful checkpoint. In case of RSA, the VTRIG

is computed to be 2.0 V. Note that for Flash Checkpoint , VOFF is 1.8 V and not

2.0 V as is with Qube. The platform then shuts off once the capacitor discharges

to SV Soff voltage. One bank (64 kB) of Flash memory is allotted for checkpoint-

ing so that the frequency of erase operations is reduced. We measure the total time

available for computations in a power cycle and then compute the total number of

power cycles required for completing a single run of the program. Using this, the

total energy consumed for QuickRecall and Flash Checkpoint to complete the RSA

program is computed to be 22.9 mJ and 71.5 mJ respectively, i.e., QuickRecall con-

sumes 3x lesser energy as compared to Flash Checkpoint for executing an application

across power cycles. Thus, QuickRecall enables most of the energy in a power cycle

to be spent on performing meaningful computations and reduces the overall energy

consumption for executing an application in an intermittently-powered system.

3.8 Related work

As mentioned in Section 2.3, checkpointing for intermittently-powered systems in

not a novel concept. Ransford et al. proposed Mementos [23,33,34], which is the first

work to incorporate checkpointing in the context of intermittently-powered systems.
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Mementos is a compile-time technique that employs a quasi-periodic checkpointing

scheme to save the state. It proposes to instrument user-written code with trigger

points at various stages of the code such as at the end of loops and function calls.

At each trigger point, Mementos polls the system voltage and performs a checkpoint

operation if the voltage is below a certain predefined trigger voltage (VTRIG). Since

the placement of trigger points disrupts the program execution flow, Mementos also

proposes a timer-based approach wherein the trigger points are enabled only in a

periodic manner. Mementos keeps two checkpoints stored in its non-volatile memory

and verifies the integrity of the last stored checkpoint on waking up. If the check-

point operation was incomplete (due to the system getting powered-off midway), then

Mementos picks up the checkpoint saved prior to the last one, and resumes execu-

tion from that point. However, Mementos is disadvantageous due to three reasons.

First, it impedes program execution by checking the supply voltage in a proactive

and repeated manner. Second, Mementos incurs a significant energy overhead by

adopting Flash as the NVM. Finally, the checkpoint size varies at each trigger point,

which results in Mementos requiring a large VTRIG to guarantee a successful check-

point. On the other hand, QuickRecall [45, 46] employs an interrupt-based scheme

for checkpointing that triggers a checkpoint operation only once in a power cycle.

By utilizing an eNVM in a unified memory architecture, QuickRecall reduces the

checkpoint overhead and is able to utilize a very low VTRIG.

Subsequent to QuickRecall [45], Balsamo et al. developed Hibernus [47], which

utilizes FeRAM as a drop-in replacement for Flash memory as the NVM, while the

SRAM is utilized as the RAM. Hibernus reduces the energy required for checkpoint-

ing by utilizing FeRAM instead of Flash, wherein the energy reduction benefits are

obtained by avoiding the energy intensive erase and write operations of Flash. In

comparison, QuickRecall’s energy benefits spawn from using the eNVM in a unified

memory architecture and thereby, reducing the checkpoint size and enabling in-situ

retention to sidestep the data transfer latency, in addition to avoiding the energy-

expensive Flash erase and write operations. Further, Hibernus differs from Quick-



55

Recall due to their checkpoint policy as well. In contrast to QuickRecall, Hibernus

checkpoints all the peripheral registers of the MCU onto the Flash memory, thus ab-

solving the designer from the responsibility of tracking and checkpointing the state

of the registers. Such a checkpoint scheme leads to wastage of energy as the registers

unused by the application will also be checkpointed in every power cycle. On the

other hand, QuickRecall advocates an approach wherein the designer builds in the

finite set of states that the peripherals can be in during the course of application exe-

cution, and checkpoints the particular state followed by restoring upon wake-up in the

ensuing power cycle. A quantitative comparison of both the three schemes namely,

Mementos, QuickRecall, and Hibernus was done by Rodriguez et al. in Ref. [48].

Other checkpoint techniques for intermittently-powered systems have since been

proposed including Refs. [49–51]. The authors in Ref. [49, 51] propose incremental

checkpointing schemes for intermittently-powered systems. The authors in Ref. [50]

also implement an interrupt-based intermittently-powered systems, similar to Quick-

Recall and Hibernus. Last, a system-agnostic technique to set VON and VTRIG accord-

ing to the nature of the ambient energy source has since been proposed in Ref. [52].

3.9 Summary of contributions

In this chapter, we have proposed a lightweight in-situ checkpointing technique

called QuickRecall, which enables long running computations to be executed in an

energy-efficient and seamless manner in intermittently-powered systems. QuickRe-

call is a novel scheme that utilizes an emerging non-volatile memory in a unified

memory architecture, wherein the same memory acts as both the RAM and ROM.

By utilizing the unified memory architecture, QuickRecall avoids the data transfer

to non-volatile memory that is otherwise required to retain the system state on an

imminent power loss. We implemented QuickRecall using an MCU embedded with

FeRAM and demonstrated that QuickRecall is able to perform a guaranteed check-

pointing operation each power cycle by consuming only 30 nJ. Further, we showed
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that QuickRecall reduces the checkpointing latency overhead by 100x-1000x over

conventional Flash-based systems. We also demonstrated that the per-power cycle

energy and performance benefits translate to reduction in overall application-level en-

ergy (by as much as 3x) and performance improvement (by as much as 8.4x). Thus,

QuickRecall reduces the checkpoint overhead and enables most of the energy received

in a power cycle to be utilized for performing meaningful computations.
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4. AN ENERGY-AWARE DYNAMIC MEMORY

MAPPING SCHEME FOR HYBRID eNVM-SRAM MCUs

IN INTERMITTENTLY-POWERED SYSTEMS

The advent of the Internet of Things (IoT) era has fueled the emergence of new ap-

plications that improve various aspects of everyday human life. An ever-increasing

number and type of IoT sensors are being deployed to seamlessly bridge the physical

world with the world of computing infrastructure. However as mentioned in Chap-

ter 1, powering such deeply-embedded IoT edge devices is extremely challenging due

to their unique constraints such as remote deployment location, tiny form factor,

and extreme longevity requirements. Environmental energy harvesting (where the

system powers itself using energy that it scavenges from its operating environment)

has been shown to be a promising and viable option for powering these IoT de-

vices [53–55]. However, ambient energy sources (such as vibration, wind, RF signals)

are often unreliable and intermittent in nature, which can lead to frequent intervals

of power loss. Performing computations reliably in the face of such power supply

interruptions is challenging and requires some form of checkpointing of system state

from SRAM to non-volatile memory when power loss is imminent. Traditionally,

microcontrollers have employed Flash memory as the primary non-volatile storage

technology. However, the energy (and latency) intensive erase/write operations of

Flash make it inefficient for frequent checkpointing.

The emergence of non-volatile memory technologies such as ferroelectric RAM

(FeRAM), Resistive RAM (ReRAM), and Magnetoresistive RAM (MRAM), which

have superior power and performance characteristics compared to Flash memory, has

led to new hybrid memory architectures. Low power microcontrollers (MCUs) that

integrate FeRAM [4, 6], ReRAM [13], and MRAM [11] have already been demon-

strated. In Chapter 3, we showed that the use of FeRAM as unified memory (where
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all program segments including text, stack, data, etc., are mapped to the FeRAM)

enables efficient in-situ checkpointing in IoT devices, thereby allowing them to seam-

lessly perform long-running computations in the face of frequent power loss. Even

though FeRAM outperforms Flash in terms of performance and power consumption,

it is still inferior to SRAM due to inherent device limitations. For example, in TI’s

MSP430FR5739 [10] microcontroller, accesses to FeRAM are 3x slower and consume

more energy as compared to SRAM. Therefore, executing programs from FeRAM

results in lower performance and higher energy consumption, compared to execut-

ing programs from SRAM. On the other hand, an entirely SRAM-based solution is

highly energy efficient when running continuously on reliable power, but is unreliable

in the face of power loss because SRAM is volatile. This chapter advocates (and

demonstrates the benefits of) an intermediate approach in hybrid FeRAM-SRAM

systems that involves judicious memory mapping of program sections to retain the

reliability benefits provided by FeRAM while performing almost as efficiently as an

SRAM-based system, thus obtaining the best of both.

4.1 Chapter contributions

In this chapter, we investigate energy-aware memory mapping for IoT devices

that are based on hybrid FeRAM-SRAM microcontrollers. We propose a compre-

hensive design methodology that synergistically combines the benefits of SRAM and

FeRAM technologies to efficiently, yet reliably, perform computations across power

cycles in intermittently-powered IoT systems. To that end, we propose a one-time

characterization mechanism, eM-map, that determines the optimal memory-mapping

at the granularity of functions in a program. eM-map performs this characterization

post-deployment, which makes our solution portable. We also propose energy-align,

a novel HW/SW technique that uses proactive system shutdown as a mechanism to

align the time intervals when the system is powered on with function execution bound-

aries, which results in further improvements in energy efficiency. We implemented our
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memory mapping technique on a custom hardware platform based on the Texas In-

struments MSP430FR5739 MCU and have evaluated it using six typical benchmark

applications used in IoT edge devices. Experimental results demonstrate performance

improvements and energy savings of up to 2x and 20% respectively, compared to an

existing state-of-the-art FeRAM-only solution. Last, we also discuss in detail issues

pertaining to the design of intermittently power systems, particularly the validity of

checkpoints to be restored, handling of interrupts, and the need for atomic execution.

4.2 Motivation for energy-aware memory mapping in intermittently-powered

systems

Previous works utilizing hybrid FeRAM-SRAM MCUs for intermittently-powered

systems have adopted two kinds of memory mapping schemes, namely, a unified

memory mapping scheme [45, 46] and a conventional memory mapping scheme [47].

A unified memory mapping scheme maps all the program sections to FeRAM, whereas

a conventional memory mapping scheme maps only the sections containing the exe-

cutable code and global constants to the FeRAM while other sections are mapped onto

the SRAM. Chapter 3 discusses QuickRecall, which is our proposed unified memory

mapping scheme and compares QuickRecall with a conventional memory mapping

scheme for an MCU that utilizes Flash as the NVM storage. For intermittently-

powered systems, the memory mapping scheme has a direct bearing on its overall

energy consumption. This is due to the fact that although FeRAM is better than

Flash by having lesser write energy and lacking an explicit erase operation, it com-

pares poorly to SRAM in terms of access latency. In an FeRAM-enabled MCU,

MSP430FR5739 [10], we observed that the FeRAM access latency is 3x longer as

compared to the on-chip SRAM. Consequently, a unified-FeRAM memory architec-

ture will result in longer execution times. To quantify the impact that memory-

mapping has on execution energy and latency, we perform an experiment wherein we

explore the entire design space of possible memory maps.
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For the experiment, we use the MSP430FR5739 MCU that consists of 1 kB of

SRAM and 16 kB of FeRAM. Two cyclic redundancy checksum (CRC) functions

are considered for evaluation and are described below. Both the functions compute

the 16-bit CRC of 64 bytes of data. CRC-I looks up a table (of size 512 bytes) for

computing the checksum and has a large memory footprint. CRC-I has three different

sections that are of interest, namely, a text section that contains the executable code,

a data section that contains the look-up table, and the stack. On the other hand,

CRC-II computes CRC using polynomials and uses only the text and stack sections.

For both the programs, we iteratively map each section to both FeRAM and SRAM

and measure the execution time and energy consumption.

Figs. 4.1(a) and 4.1(b) show the measured energy consumption and latency associ-

ated with each memory mapping for executing the test-cases CRC-I and CRC-II. The

memory mapping is represented as a 3-tuple where the first element denotes the mem-

ory map of the text section, followed by two elements representing the memory map

of the data and stack sections. An S signifies that the section is mapped onto SRAM

whereas an F indicates a mapping to the FeRAM. For example, configuration {SFS} in

Fig. 4.1(a) signifies that the text and stack sections of CRC-I are mapped onto the

SRAM and that the data section is mapped onto the FeRAM. Observe that for both

the programs, a unified SRAM mapping results in the least energy consumption while

a unified FeRAM mapping results in the maximum energy consumption. Overall, we

note that for both CRC-I and CRC-II, any of the SRAM-mapped configurations con-

sume less energy (by as much as 2.28x for {SSS}) and execute faster (by as much as

1.98x) as compared to the unified FeRAM configuration. However, additional data

transfer operations are required for operating in a memory map configuration that

has a section mapped to SRAM. This is because of two reasons. First, executing code

from SRAM requires an a priori copy of the text section to the SRAM. Second, to

ensure system reliability and continuity of program execution across power cycles, a

checkpoint operation needs to be performed from the SRAM to the FeRAM. Hence,

a trade-off exists between the data transfer cost and the execution cost for a memory
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Fig. 4.1. Energy consumption and execution time of CRC test-cases
across all possible memory map configurations in a hybrid FeRAM-
SRAM MCU

map configuration. Thus, an optimal memory map configuration may lie in between a

unified FeRAM configuration (that has the maximum execution energy but least data

transfer overhead) and a unified SRAM configuration (that has the least execution

energy but maximum data transfer overhead). In this chapter, we propose a solution

that finds the optimal memory map configuration, which minimizes the overall energy

cost for IoT edge devices while being reliable.

4.3 Challenges in determining optimal memory map

Determining the optimal memory map configuration for a program is challenging

due to the diverse nature of applications and IoT system implementations. While

the diverse nature of applications make estimating the data transfer overhead chal-

lenging, the variation of system parameters from one IoT platform to another makes

finding a cross-platform energy-optimal memory map infeasible. The data transfer

overhead associated with executing programs from SRAM can be attributed to the

processes of migration and checkpointing. Migration overhead is best defined as the

energy incurred in transferring sections from FeRAM to SRAM. For example, if the

considered function has the least energy consumption in configuration {SFF}, the ex-

ecutable code that resides in the non-volatile memory initially needs to be migrated
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to SRAM. Migration overhead is function-dependent (e.g., CRC-II does not use the

table thus having a smaller migration overhead) and application-dependent (e.g., the

same function may have different input data sets when called from two locations in

the program). Fig. 4.2 shows the measured energy overhead for migration as a func-

tion of the number of bytes to be migrated, for supply voltages ranging from 2.1 V

to 2.4 V. From the graph, we observe that migration incurs ∼1.6 nJ per byte of data

transferred from FeRAM to SRAM. Also, observe that the difference in migration

overhead is negligible across the range of supply voltages used in the experiment.

Therefore, migrating a section at any stage in the computing window (see definition

in Section 3.7.1) in an intermittently-powered system incurs comparable energy costs.

Checkpointing, in the context of this work, is the reverse process of saving the

system state from SRAM to FeRAM. Our experiments show that the energy-per-byte

cost of checkpointing is similar to that of migration. However, checkpoint energy is

non-deterministic due to the dynamic nature of stack and heap sizes. During the

course of task execution, the stack size, heap size, etc., can grow and shrink dynami-

cally, rendering the checkpoint size and thereby the checkpoint energy unpredictable.

An incomplete checkpoint results if the available energy is insufficient to save a full

snapshot of the system state on an imminent power loss, leading to a loss or cor-

ruption of the system state. The energy spent in executing the program in such a
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scenario is wasted and additional energy needs to be spent in program re-execution

subsequently. Further, the system loses reliability in such scenarios. On the other

hand, making an overly conservative estimate of the checkpoint energy will lead to

under-utilization of the available energy and cause wastage. Therefore, a determin-

istic policy that accurately estimates the checkpoint energy among all the possible

configurations is imperative in deciding the optimal memory-map.

Last, the diversity in the system parameters and device characteristics (such as

sizes of on-board capacitors, power consumption of on-board components, etc.) of

intermittently-powered systems introduce another dimension of complexity in deter-

mining the optimal memory map configuration. For example, a different value for the

supply capacitor (in Fig. 3.3) could make the CRC-I function run to completion in

a single power cycle in one IoT device but take multiple power cycles in another for

the same memory-map configuration. This renders generalizing a particular mem-

ory map configuration as an optimal memory-map across all platforms impossible,

affecting program portability.

4.4 Design

In this section, we first describe our design choices and then highlight the salient

features of the proposed design including energy-aware memory mapping and the

design of a scheme that performs proactive system shutdown.

4.4.1 Design choices for dynamic memory mapping

An important observation about the applications that are typically run on intermittently-

powered systems is that they exhibit a deterministic nature in their execution flow.

The typical execution flow involves an initial step wherein a physical phenomenon

(e.g., temperature, humidity, etc.) is sensed by collecting a fixed number of samples,

followed by performing computations on the collected data (e.g., filtering, statistical

computations such as mean, standard deviation, etc.) that take a deterministic and
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constant amount of clock cycles, and then transmitting it for further actuation or

logging depending upon the energy remaining in the system. Such a relatively simple

software design results in the absence of run-to-run variations in execution times,

data sizes, etc., thus making them predictable and deterministic.

However, the primary source of non-determinism in such systems spawns from the

unpredictability in checkpoint size whenever the memory map configuration includes

SRAM for data allocation. For example, when the system is memory-mapped to the

{SSS} configuration and is about to lose power, the stack and data sections need

to be copied over to the NVM. IoT applications rarely consist of self-modifying code

and, therefore, the need for checkpointing the text section that had been migrated to

SRAM is an uncommon case. Thus, the main goal of our proposed design is to reduce

the non-determinism associated with the checkpoint operation, and to improve the

overall performance.

Functions as the basic unit

Functions that constitute a program are by design, self-contained in terms of their

sections. A function can be considered to be an independent entity having its own

text, data, and stack sections that can be mapped onto memory at runtime. More-

over, a function also has the property that its stack ceases to exist upon returning

to its caller. Therefore, performing a checkpoint at the end of a function, at its

boundary, reduces the amount of data that needs to be checkpointed, which, in turn,

decreases the non-determinism. Hence, we propose to perform checkpoints only at

these boundaries where the checkpoint size is reduced. Fig. 4.3 illustrates our overall

approach wherein each function foon() in the program is an independent entity that

can be mapped to either FeRAM or SRAM.
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Memory architecture

Fig. 4.3 also shows the memory architecture for a hybrid FeRAM-SRAM MCU.

The non-volatile FeRAM memory is partitioned into two distinct regions, namely,

FeRAM-p and FeRAM-t . FeRAM-p is the memory space where persistent data such

as the text section, constants, etc., are stored. FeRAM-t defines the space where

a function can map temporary sections such as stack and data as dictated by the

memory-map configuration during function execution, i.e., FeRAM-t acts as a slower

but non-volatile RAM. Note that no section is mapped to the SRAM initially. As

the program executes, different functions can dynamically allocate sections onto the

SRAM. Since each function is handled as an independent entity, sections that are

mapped onto the SRAM become invalid once the function runs to completion. The

text section has a fixed size and therefore occupies one end of the address space. On

the other hand, the stack section grows and shrinks during the course of function-

execution, and hence occupies the other end of the SRAM address space. The data

section occupies the address space adjacent to the text section in SRAM. Note that in

spite of such an arrangement, the sections may still collide during execution depending
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on the total SRAM capacity and section sizes. Such memory-map configurations are

inherently disallowed by our solution as explained in the following section.

Last, the data section inside a program can be perceived to be consisting of

global variables, constants, heap, etc. In this work, we refer to the global variables,

arrays, and constants as the data section that can be migrated between the SRAM

and FeRAM. The heap section, which is set aside for dynamic memory allocation, is

statically mapped onto the FeRAM (as shown in Fig. 4.3). The underlying reason

that governs such a design decision are two-fold. First, since we propose to migrate

additional sections such as text and data to SRAM, migrating the entire heap section

will increase the chance of a collision in the SRAM and is better avoided. Additionally,

copying the entire heap might be a futile exercise as the heap may not be completely

utilized. Second, copying just the active part of the heap is challenging as it requires

keeping track of the allocations made to the heap. The heap may be partially filled

and fragmented, which makes tracking the active locations even more cumbersome.

Hence, in this work, the heap is mapped exclusively to the FeRAM.

4.4.2 Energy-aware memory mapping

Arriving at the optimal memory map for a particular function requires that the

energy consumption for performing the processes of migration, execution, and check-

pointing be considered together. The optimal memory map for a function is one that

can perform the three processes within a single power cycle with the least amount of

energy. However, since the amount of input energy is dependent on the system imple-

mentation, all memory map configurations may not be possible for a function. This

is because in certain memory map configurations, the energy required for migration,

execution, and checkpointing may exceed the input energy per power cycle. In fact,

functions may exist that cannot complete within a single power cycle for any config-

uration. Therefore, finding the optimal memory map configuration for a function has

to be performed in an energy-aware manner. We propose eM-map as a one-time char-
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ALGORITHM 1: eM-map: Energy-Aware Memory Mapping

Input : C(Fi): Configuration set for each function Fi

Output: M(Fi): Preferred configuration for each function Fi

Output: E(Fi): Energy table for all functions

1 Pick a configuration c from C(Fi);

2 C(Fi) = C(Fi) - c;

3 Vinit = measure voltage();

4 Migrate(Fi, c);

5 Execute(Fi);

6 Checkpoint(Fi, c);

7 Vfinal = measure voltage();

8 energy score = f(V init, V final);

9 Update energy table and preferred config(Fi, energy score, c);

10 Shutdown();

acterization step that arrives at the optimal memory map of constituent functions of

a program in an energy-aware manner. Additionally, we propose to execute eM-map

only after deployment to ensure that the resultant memory map is energy-optimized

for the particular IoT edge device, thus making eM-map a portable solution. A brief

description of the eM-map algorithm (Algorithm 1) follows.

eM-map successively iterates through all possible configurations for a function to

arrive at the energy-optimal configuration. The default memory map assignment is set

to be configuration {FFF}, which corresponds to the unified FeRAM configuration. In

cases wherein the function cannot complete in a single power cycle for any memory

map configuration, for the sake of reliability, eM-map chooses the unified FeRAM

configuration even though it might be not be energy optimal. Each iteration begins

with the supply capacitor charged to VON. A memory map is assigned to the function

and eM-map performs the processes of migration, execution, and checkpointing, and

measures the cumulative energy consumed for all three stages. A memory map is

considered valid only if the function successfully completes execution in that power
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cycle. At the end of each iteration, eM-map updates a table with the minimum energy

configuration for the considered function. A score (henceforth referred to as energy

score) is calculated by function f in line 8 of Algorithm 1. This score is proportional

to the energy consumption and is computed as V 2
init − V 2

final, which are indicative

of the initial and residual energy for the function being characterized, measured as

voltages in lines 3 and 7 of the algorithm. Note that the score is independent of the

capacitance, which is an invariant system parameter across iterations. Additionally,

calculating the score independent of the system capacitance makes the algorithm

portable across IoT devices. This score is used by eM-map to compare and select

the energy-optimal configuration. Further, the score is also saved in the energy-

table to be used for future comparisons and runtime calculations. However, if all

the configurations for a function become invalid, no score can be computed and eM-

map selects {FFF} as the memory configuration and denotes it in the energy table.

The configuration stored in the table is then used at run-time for allocating sections

to SRAM or FeRAM, while the accompanying energy score is used as a metric to

govern whether a function is executable in a power cycle or not. Thus, by performing

the characterization once for a device, at the granularity of functions and only a

single configuration per power cycle, eM-map is able to find the optimal memory-

map regardless of the non-deterministic nature of the data transfer overheads and

agnostic to the system parameters.

4.4.3 Energy-Align: Proactive system shutdown

Energy-Align is a run-time technique that improves the energy efficiency of IoT

devices that intrinsically initiates a system shutdown in an effort to reduce the charg-

ing interval in between power cycles. Algorithm 2 describes Energy-Align in detail.

The key concept of Energy-Align is that it allows the execution of a function only if

the system has sufficient energy to complete it. If Energy-Align finds that the energy

remaining is insufficient, it performs a proactive shut down of the system so that it can
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ALGORITHM 2: Energy-Align

Input: Energy Table: E(Fi)

Input: Memory Map Table M(Fi)

Input: FC = Current Function

1 while M(FC) is not (unified FeRAM) do

2 Erem = measure energy score();

3 if Erem >E(FC) then

4 Migrate(M(FC), FC);

5 Execute(TC);

6 Checkpoint(M(FC), FC);

7 FC = Next Function;

8 end

9 else

10 Shutdown();

11 end

12 end

recharge until VON faster. The characterization information from eM-map is used to

predict whether the function to be executed can be successfully completed in the cur-

rent power cycle. Such an approach facilitates in reducing the energy consumption in

two ways. First, Energy-Align ensures that migration, execution, and checkpointing

of the function happens atomically. Thus, by avoiding the partial execution of func-

tions, Energy-Align is able to reduce the unpredictability in checkpoint sizes, thereby

avoiding energy-inefficient worst-case VTRIG design. Hence, in our design, we are able

to keep the trigger voltage at 2.03 V, which is the same as that of QuickRecall. By

construction, Energy-Align will get triggered for a checkpoint at this voltage only if it

runs the function in configuration {FFF}. For all other configurations, checkpointing

happens at function boundaries and by design, the atomic operation will not extend

beyond the VTRIG voltage. Second, by powering the system off early, Energy-Align
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Fig. 4.4. Illustration of function-execution across power cycles for
QuickRecall, Lazy-ckpt , and Energy-Align

reduces the charging time for the supply capacitor to charge back up to VON. Thus,

Energy-Align executes the function in an energy-aware manner.

Fig. 4.4 shows the benefits of Energy-Align over QuickRecall and a lazy check-

pointing system (henceforth referred to as Lazy-ckpt). The lower portion of each figure

depicts the supply voltage and the top portion shows the functions F1 through F3

executing across power cycles. Note that the charging cycle is compressed for repre-

sentation. Lazy-ckpt is assumed to operate in an optimal memory configuration, albeit

without the capability to shut down the system to perform energy alignment. Hence,

Lazy-ckpt has equal execution time as Energy-Align but incurs a significant overhead

due to the conservative trigger voltage setting required for guaranteeing a successful

checkpoint. As depicted in Figs. 4.4(b) and 4.4(c), Energy-Align and Lazy-ckpt run

faster than QuickRecall. Additionally, note that for Energy-Align, functions are not

split across power cycles, and hence Energy-Align seldom discharges the capacitor

until VOFF. As illustrated in Fig. 4.4(c), when the system realizes it does not have



71

S
V

S

IEH Csupp

PWR 
SWITCH

VSUPPLY

CHECKPOINT 
TRIGGER

VDD

GPIO

MCU

Cdecap

N

P

Px.1

Fig. 4.5. Modified architecture for implementing Energy-Align

sufficient energy for executing F3, it shuts off. Since the energy consumed by Energy-

Align in a power cycle is lesser than the total energy available (i.e., E1, E2 < Ein), it

results in the system having a shorter capacitor charging time. Thus, Energy-Align

improves the performance and reduces the overall energy consumption of the IoT

device as compared to both Lazy-ckpt and QuickRecall.

Implementation of Energy-Align

To implement Energy-Align, we modified the architecture of the edge device as

shown in Fig. 4.5. P connects Csupp to the SVS input in the default scenario. The

SVS output controls the power switch that toggles the MCU between ON and OFF

states. When Energy-Align is to be performed, the MCU pulls Px.1 to logical high,

thus momentarily connecting the SVS input to ground through N , and disconnects

P , the path from Csupp to the SVS input. The path through P is disconnected

so as to isolate Csupp from the ground through N and avoid unwanted discharge.

Since the SVS input is grounded, power switch opens and disconnects the MCU

from Csupp, thus switching it OFF. When the MCU turns off, the pull down resistor

switches on P , thus connecting Csupp with the SVS input. Note that the SVS closes

the power switch only when VSUPPLY=VON. Since, Energy-Align is performed when

VOFF < VSUPPLY < VON, the power switch is not closed (turned ON) immediately by

the SVS. Once Csupp charges to VON, SVS closes the power switch, thus turning ON
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the MCU. Lastly, we note that even though we utilize a commercially-available MCU

that embeds FeRAM for evaluation purposes, our technique is equally applicable to

MCUs with other emerging NVMs (such as MRAM, ReRAM, etc.).

4.4.4 Handling interrupts

In traditional embedded systems, interrupts enable the CPU to provide immediate

attention to an event of high importance or are used to notify the CPU about the

status of an action initiated in the past. When an interrupt is triggered, the CPU

pushes its context onto the stack and executes the associated interrupt service routine

(ISR). Typically, the execution time of ISRs are intentionally kept short and fixed so as

to prevent them from taking too much time on the processor and from blocking other

interrupts in the system. The time-of-arrival of an interrupt is typically influenced

by factors that are either external to the system (such as notification of change in the

value of the physical phenomenon being sensed, initiation of communication, etc.) or

internal to the system (such as timers, peripherals, software initiated interrupts, etc.).

Broadly, interrupts can be classified as deterministic and non-deterministic according

to their time-of-arrival. We define deterministic interrupts as those interrupts whose

time-of-arrival is expected by software. These interrupts are usually either periodic

timer interrupts or notification signals indicating the completion of an action. For

example, analog measurements using an ADC take a few clock cycles to converge on

the value corresponding to the sensed voltage. Hence, often the arrangement between

the ADC and the CPU is one wherein once the ADC conversion is initiated, it will

interrupt the CPU only when the conversion completes, thus freeing the CPU to

proceed with other computations or enter a low power mode. The ISR for such an

interrupt is deterministic in execution time as well and typically involves copying

the contents of an output buffer into a memory location. Such interrupts naturally

fall within the energy analysis of eM-map and could be executed by Energy-Align.

Therefore, they are not a subject of further discussion in this section.
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However, non-deterministic interrupts are characterized by their unpredictability

in time-of-arrival. Event-triggered interrupts fall into this class of interrupts. An

example is a sensor that interrupts the system when the physical phenomenon it

monitors exceeds (or falls below) a particular threshold. In systems where available

energy is also a limited resource in addition to CPU time, such interrupts pose a major

challenge. In particular, the ISR of a non-deterministic (and hence, unexpected)

interrupt takes up energy and time away from the function that it interrupts, which

may result in incomplete execution of the function in that power cycle, prompting a

re-execution of the function in the next power cycle. Even though Energy-Align in its

current form has some inherent resilience to perturbations caused by such interrupts,

we enhance the robustness of our design by devising a methodology that incorporates

three design elements as described below.

Design element 1 Interrupt execution supersedes function execution as with con-

ventional interrupt design. Therefore, an interrupt will always be serviced imme-

diately as any delay might lead to loss of state or result in a false execution. For

example, an interrupt may be used to initiate data transfer from a sensor to the

MCU, and any delay could cause the state to be missed or more catastrophically, a

wrong state may be sensed leading to wrong inferences.

Design element 2 An interrupt service routine inherits certain characteristics from

the function it interrupts such as memory mapping of the stack, the state of MCU

peripherals, etc., that influence its power consumption and execution time. Therefore,

the exact energy consumed by an ISR depends on the function it interrupts and

will vary from one invocation to another. For example, consider two scenarios that

differ just on the kind of peripherals that are active when an interrupt triggers.

The first scenario is one wherein the MCU just performs computations (and has a

current consumption of 300 µA) while in the second scenario, the MCU executes a

function that requires the ADC and radio peripherals to be powered on (and has a

current consumption of 5.1 mA). The power consumption of the system in the latter
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case will be higher due to peripherals being powered on and as a result, the ISR

of an interrupt that triggers in the second scenario consumes more energy (17x) as

compared to the first. Actively monitoring the number of peripheral components

that are powered on at any particular stage of the program and controlling their

power state for ISRs is detrimental to application execution and hence, is avoided.

The other characteristic that the ISR inherits from the interrupted function is its

memory map configuration, albeit partially. Since ISRs are typically short pieces of

code that are executed once, the text section is not migrated but executed from the

non-volatile memory itself. Therefore, in our design, ISRs execute with the memory

map configuration of {Fxy} wherein x and y corresponds to the memory mapping of

the stack and data sections of the function that was interrupted. Since the memory

mapping influences the execution time, the function’s optimal memory map affects

the ISR’s energy consumption as well. Hence, we choose to execute the ISR with the

power and memory map configurations of the interrupted function.

Design element 3 To account for the energy required to service non-deterministic

interrupts (NDIs), we allot additional energy per function as a guard-band in excess of

its eM-map measured energy consumption. The additional amount of energy is calcu-

lated as a percentage of the function’s energy consumption and is equal to αE(FC),

where E(FC) corresponds to the energy consumption for the function as recorded

in the energy table by eM-map and α corresponds to a programmer-configurable

fudge factor that determines the additional percentage of energy. We modify Energy-

Align such that it compares Erem, which is the energy remaining in the system, with

(1 +α)E(FC) in line 3 of Algorithm 2 and also modify the function that updates the

energy table in eM-map to reflect the effect of α on the memory map configuration

as shown in Algorithm 3.

Since the term αE(FC) corresponds to the additional energy allotted for NDIs at

the beginning of each function, Energy-Align will determine whether the (subsequent)

function is to be executed or not by comparing Erem with (1 + α)E(FC). If Erem
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ALGORITHM 3: Modification for updating energy table

Input: α

1 Function Update energy table and preferred config(Fi,energy,c)

2 if (1 + α)× energy < Ein then

3 if Update E(Fi) is success then

4 Update M(Fi) with c;

5 end

6 end

7 else

8 Mark configuration as failed;

9 end

is found to be insufficient (Erem < (1 + α)E(FC)), then Energy-Align will shut-

down the system and defer execution of the function to the subsequent power cycle.

This ensures that the system will have αE(FC) amount of energy to service NDIs in

addition to that required by the function to execute successfully. The choice of value

for the fudge factor α is system-dependent and therefore, is beyond the scope of this

work. Although as a thumb rule, more number of NDIs in the system would mean

that α should be set to a larger value. However, setting α to a value too large would

impede program execution as more energy is buffered for NDIs and Energy-Align will

defer functions with more regularity. On the contrary, setting α to a value too low

reduces the number of NDIs that can be tolerated during the execution of a particular

function. Hence, a small value for α increases the risk of incomplete execution of a

function in the presence of multiple NDIs, which will result in re-execution of the

function in the following power cycle. Last, if the function completes without using

(some or all of) the energy, Energy-Align would automatically add the surplus amount

to the next function during the process of measuring Erem.
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4.4.5 Discussion: Design trade-offs

As mentioned in Section 4.4.1, the applications considered in this work exhibit

a deterministic nature in their execution flow. The typical execution flow of these

devices involve sensing, followed by a limited set of computations before transmitting

the data for further actuation or logging. Hence, they have fixed execution profiles

across invocations. Extending the approach to applications with non-deterministic

and dynamic execution profiles requires a modification to Algorithm 1. This is be-

cause the worst case execution time (WCET) of the function needs to be estimated

before finding the optimal memory map. One approach would be to combine well-

studied WCET analysis techniques [56] with eM-map and estimate the WCET of the

function before creating the energy table. While such an approach increases applica-

tion execution safety considerably, it would allot more energy than required for the

average case, which will make an impact on application performance as Energy-Align

will defer function execution with more regularity.

Another aspect of the proposed design is that the number of NDIs that are provi-

sioned for, hinges on the system designer’s ability to estimate and set α. In the case α

is set low, a possibility exists wherein NDIs drain the remaining system energy, thus,

leaving the function (it interrupted) with an insufficient amount of energy to complete.

Preventing such a scenario requires some form of state retention prior to the power

loss. Two approaches might be considered. The first one is to execute exclusively

in an FeRAM only configuration (similar to QuickRecall, albeit with Energy-Align).

However, as seen earlier (in Figs. 4.1(a) and 4.1(b)), this approach is energy-inefficient

and therefore discarded. The other approach is to make a decision during the course

of function execution to migrate and execute in an FeRAM-major configuration, i.e.,

pause function execution, checkpoint and map the sections containing volatile data to

FeRAM and then proceed with the remainder of the execution. However, a trade-off

exists between executing in an FeRAM-major memory configuration for safety, and

energy-efficiency. During the course of execution, a decision must be made by the
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system to checkpoint the SRAM contents (if any) to FeRAM. This operation must

be triggered upon reaching a critical energy level (which we defined as the trigger

voltage). As mentioned in Section 3.4.2, the choice of VTRIG depends on the check-

point energy, which depends on the amount of data that needs to be checkpointed;

and as mentioned earlier, the checkpoint size is unpredictable as it depends on the

program location at which the power loss happens. Hence, the VTRIG would have

to be set according to the worst case checkpoint size of the program in addition to

having a buffer for NDIs (for safety). This conservative setting of VTRIG will ensure

safety by moving into an FeRAM only configuration earlier (before the power loss) at

the expense of additional checkpoint overhead, higher execution cost due to FeRAM-

major configuration, and performance overhead due to increased function deferring

by Energy-Align.

4.5 Experimental results

This section describes the experimental setup, evaluation benchmarks, and the

results obtained.
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4.5.1 Experimental setup

Fig. 4.6 shows our experimental platform and measurement setup. The Texas

Instruments MSP430FR5739 [10] microcontroller with 16 kB of FeRAM and 1 kB

of SRAM is employed as the MCU. All the experiments are run with the MCU

frequency set at 24 MHz. An FeRAM access takes 3 clock cycles as compared to

a single cycle access for SRAM. Even though the MCU has an internal SVS, we

employ an external SVS to control the power switch, and set VON and VTRIG. The

VON and VTRIG voltages are set to 2.3 V and 2.03 V respectively. CIN is 330 µF for

initial experiments. A Tektronix 6430 Keithley source meter is used as the current

supply, which acts as the energy harvesting module. The IEH is set to 400 µA for all

our experiments. Finally, all the latency overheads are recorded using a Tektronix

MDO4104-3 oscilloscope.

4.5.2 Software implementation

On the software side, we implemented a modified boot-loader to incorporate eM-

map. The boot-loader finds the VTRIG of the system in the very first power cycle.

The first few power cycles after deployment is spent in characterizing the function.

The programmer provides the list of functions to be characterized and eM-map takes

it as an input to create the energy table and find the optimal memory map. The

default linking for the sections constituting the program is unified-FeRAM, similar to

QuickRecall. To enable the boot-loader to find VTRIG, QuickRecall’s ISR is modified.

Finally, a task manager is utilized that performs Energy-Align and the processes of

migration, execution, and checkpointing.

4.5.3 Evaluation benchmarks

For evaluation, we consider six different applications (shown in Table 4.1) that

are commonly used in IoT devices. As we mentioned in Section 4.4.1, all the ap-
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Table 4.1.
Evaluation benchmarks

SnC Sample sensor readings and perform computations

FFT FFT(): Perform FFT on sampled data

Sort(): Perform bit-reversal sorting for FFT

CRC CRC(): Compute 16-bit CRC for error detection

RSA RSA(): Encryption algorithm

AES AES algorithm made up of 4 functions, namely, addKey(),

shiftRows(), mixColumns(), and computeKey()

MMul matrixMultiply(): Perform matrix mult. on sensor data

plications are deterministic and do not vary in their execution times or input data

sizes. Sense and Compute (SnC) utilizes interrupts from the ADC for sampling. The

interrupts are deterministic in latency and time-of-arrival, and hence cause no run-

to-run variation. FFT() performs the fast-fourier transform on the gathered data.

Sort() is used to perform sorting for the FFT algorithm. Other applications in

the benchmark include CRC(), which computes the 16-bit CRC for error detection,

and encryption algorithms RSA() and AES. The AES program consists of four func-

tions, namely, addKey(), shiftRows(), mixColumns(), and computeKey(). Lastly,

matrixMultiply() performs a matrix multiplication on the sensor data and stores

it. Finally, we compare and evaluate our proposed solution against QuickRecall in

terms of energy and latency.

4.5.4 Results

Fig. 4.7 shows the energy-rank ordering of different configurations for functions

in the benchmark programs. The x-axis shows the different ranks from best to worst

while the y-axis shows the possible memory-map configurations. The configurations
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Fig. 4.7. Rank ordering of different memory map configurations

are represented in the 3-tuple format as discussed in Section 4.2. The configurations

corresponding to rank 1 denote the optimal configurations for executing the func-

tion. These are output by the eM-map algorithm and used by Energy-Align. Observe

that among all the different functions plotted in Fig. 4.7, only matrixMultiply()

has the preferred configuration to be all SRAM. This means that for most functions,

the data transfer overhead of migrating all the sections to SRAM is not amortized

by the reduction in energy consumption achieved by executing in a unified-SRAM

configuration, resulting in an optimal memory-map configuration that lies between

{FFF} and {SSS}. Additionally, note that the optimal memory map configuration for

all the seven functions have the stack section to be mapped onto the SRAM. This

is due to the fact that the number of memory accesses to the stack is often high

during the course of program execution and therefore mapping the stack section to

SRAM has a significant impact on performance and energy consumption. For most

functions, we observe that migrating the stack as well as just one more section of

either data or text to SRAM provides the maximum energy benefits. Further, we

note that the execution characteristics and memory access pattern of the function

have a bearing on the observed optimal memory map configuration. This is ascer-
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Fig. 4.8. Normalized energy consumption of different function config-
urations for AES

tained by the comparing the ranks of all the eight configurations of SnC-Sampling()

and SnC-LowPass(). In spite of having similar sizes for text and data sections, all

the ranks are different due to the fact that SnC-LowPass() is more stack and data

intensive as compared to SnC-Sampling(). Note that SnC-Sampling() involves de-

terministic interrupts from the ADC, and the energy and latency overhead for the

same is automatically accounted during characterization by eM-map.

Fig. 4.8 shows the normalized energy consumption of all the configurations for the

functions in the AES application. The energy consumption is normalized to configu-

ration {FFF}, which corresponds to QuickRecall. Note that for some functions, migra-

tion and checkpointing of sections actually result in additional energy being expended

than in the {FFF} case. For example, even though the shiftRows() in configuration

{SFF} has only the text section to be migrated (and nothing to be checkpointed),

the overall energy consumption increases. This is because shiftRows() is devoid of

repetitive computational kernels such as loops, and hence the cost of migration is

not amortized by the reduction in execution energy. In fact, migration of the text



82

0 %

10 %

20 %

30 %

40 %

50 %

60 %

RSA FFT CRC SnC AES Avg

E
n
er

g
y
 r

ed
u
ct

io
n

This work

Fig. 4.9. Energy reduction in % compared to QuickRecall

section involves a read of each of the bytes in the text section from FeRAM, which is

equivalent to executing the code once from FeRAM. Therefore, migrating the code to

SRAM and then executing it is wasteful. For this reason, shiftRows() has the least

energy benefit in its preferred configuration among the four AES functions. Note that

the optimal configuration for all the functions have stack in SRAM, which concurs

with our earlier observation. Overall, for the AES application, our proposed solution

reduces energy consumption by 20% as compared to QuickRecall. Fig. 4.9 shows the

energy reduced consumption for each benchmark as compared to QuickRecall.

Energy measurement is an integral component in both eM-map and Energy-Align.

This is achieved by a measurement of the supply voltage using the ADC that consumes

≤ 5 µJ of energy and 950 µs of latency per measurement. As Fig. 4.10 shows, this

overhead is negligible as compared to the improvement in overall performance and

reduction in energy consumption achieved by Energy-Align. Fig. 4.10 shows the

execution times of different IoT applications normalized to QuickRecall for a single

run of the application across power cycles. The execution time includes the time

required by the capacitor to regain charge and switch-on the system. As is evident,

the energy-aware memory-mapped solution has better performance (as much as 2x)
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Table 4.2.
Rank order of configurations for the FFT-Sort benchmark using two
different CIN (N.V.= not valid)

Csupply FFF FFS FSF FSS SFF SFS SSF SSS

330 µF 8 3 5 1 4 2 6 7

180 µF 4 3 N.V. 1 N.V. 2 N.V. N.V.

as compared to QuickRecall. The speed-up stems from the reduction in execution

time achieved by energy-efficient memory mapping of sections by eM-map and also

from the reduction in charging time achieved by Energy-Align. Note that, even if two

applications have the same overall migration overhead and optimal configurations,

the unique characteristics of function-execution and memory access patterns result in

different speed-ups.

Last, to show that eM-map is agnostic to system parameters, we run the algorithm

again for the FFT-Sort() function with CIN set to 180 µF. Results of the experiment

are shown in Table 4.2. Most of the configurations fail to execute successfully in a
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single power cycle in the new system rendering them invalid (shown as N.V.). eM-map

assigns the last outstanding rank to {FFF}, which is marked as rank 4 in the table.

We also note that the memory-map configuration output by eM-map is agnostic to

any variations in the input power trace. This is due to two reasons. First, because

the system architecture ensures the amount of available energy at the beginning of

each power cycle (see Section 3.4.2). Therefore, any variations in the input power

will only impact the amount of time the device spends in charging CIN and not in

the energy available at the beginning of the power cycle. Second, the intermittently-

powered systems considered in our work have the characteristic that IEH<<ISYS (see

Fig. 3.4). Therefore, the effect of the power variation has negligible impact on the

energy consumption characteristics of the device.

4.6 Discussion: Addressing inconsistency in intermittently-powered sys-

tems

As mentioned in Section 2.3.2, the semantic correctness of applications executing

in intermittently-powered systems depend on the validity of the restored checkpoint

after wake up. A checkpoint can become invalid or inconsistent with the current

state of the system in two scenarios. The first scenario occurs if a task that cannot

be distributed across two power cycles gets power-interrupted. These tasks can be

perceived to be analogous to “critical” sections in traditional programs for which

interrupts are disabled. Examples of such tasks include non-idempotent actions such

as I/O operations, NVM accesses, and communication [57]. A power loss during

communication can leave the IoT device in an inconsistent state unless proper re-

initialization of the protocol is performed before recommencing data transmission.

For example, in systems using WiFi, the transport layer security (TLS) parameters

such as session ID, session ticket, encryption keys, etc., that reside on the stack (and

thereby a part of the checkpoint) cannot be reused in a subsequent power cycle as they

need to be re-configured again to prevent malicious attacks on the system. Likewise



85

for BLE, the link layer connection parameters that set the channel map and the seed

value for the channel hop algorithm cannot be reused from a checkpointed state.

Similarly, certain digital peripherals need to be configured after wake-up before they

can become useful. Unfortunately, critical tasks in intermittently-powered systems

cannot disable (or stop) a power-interrupt from happening. Therefore, hardware-

software techniques have to be employed to ensure the complete execution of a critical

task before the inevitable arrival of the power-interrupt.

The second scenario is an artifact of the time spent by the system in the OFF state

in between consecutive power cycles. In energy harvesting systems with little notion

of time, continuing executions from the saved snapshot on power restoration is not

always functionally correct. This is because, the checkpointed state might become

stale, and hence become invalid on wake-up. For example, during the time in which

the system recovers energy to wake-up again, the collected data samples may have

already become stale and therefore should not be used for computations to follow.

Further, the length of time taken for charging is unpredictable as it depends on the

strength and availability of ambient source, both of which vary depending on multiple

uncontrollable factors. A plausible solution to the problem is to execute time-sensitive

tasks in an atomic manner. Atomic execution will ensure that sampled data is also

used in a timely manner that would result in correct inferences.

The notions of critical tasks and atomic execution are built into our proposed

algorithms, eM-map and Energy-Align. Energy-Align executes a function at runtime

only if it can be completed within the power cycle. It utilizes a pre-characterized

energy score for this purpose. Critical tasks within the program, when constructed as

functions could be subjected to eM-map and Energy-Align and be completed before a

power loss. For atomicity purposes, the pre-characterization can be performed to just

find the energy consumption of executing the atomic task. Our proposed eM-map

algorithm extends beyond this basic requirement and further reduces the energy con-

sumption of the task by finding the optimal memory map. For eM-map, the atomic

tasks could be encompassed into a function that is input into the algorithm. The re-



86

Initialize MCU 

Peripherals and 

Sensors

Process (filtering, 

average, etc.) 

and Store Data

Wake-up and 

Configure Radio

Transmit 

Environmental 

Data

II. Data Collection III. Update Data over BLEI. Initialize

Measure humidity, 

pressure, temperature, 

and light

Fig. 4.11. Program flow used in case study for environmental monitoring

sponsibility of identifying atomic tasks and partitioning the program into constituent

functions lies with the programmer. However, partitioning and creating functions

is insufficient for atomic execution since eM-map does not guarantee a single power

cycle execution. If the function execution energy exceeds the energy available at the

beginning of a power cycle, the eM-map algorithm decides to split the function ex-

ecution across power cycles. To avert such an outcome, the system has to provide

sufficient input energy (adaptively or otherwise).

4.7 Case Study: An environmental monitoring edge device

In this section, we describe the case study of an IoT edge device, which executes a

real application that monitors environmental conditions such as ambient temperature,

humidity, pressure, light, etc., performs computations on them, and also transmits

the data over Bluetooth Low Energy (BLE). The program flow for the application

is shown in Fig. 4.11 and consists of three segments (colored differently) that are

to be performed atomically, i.e., without any power interruptions disrupting their

execution. Atomicity is an essential criteria for applications that are to be run on

intermittently-powered systems for functional correctness, consistent execution, and

efficient utilization of harvested energy [57]. Consider the three segments shown in

Fig. 4.11, namely, the initialization of MCU peripherals and sensors, collection of envi-

ronmental data, and transmission of the sensed data over BLE. Initialization involves

configuring the MCU peripherals (such as ADC, SPI, I2C, etc.) that communicate
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with the sensors along with configuring the sensors themselves (e.g., frequency of

sampling, setting output voltage, etc.). If the initialization step is not performed in

an atomic manner and a power interruption occurs, it would result in energy being

wasted as the step needs to be repeated in the subsequent power cycle. The second

segment, collecting the environmental data, involves sampling the sensor, perform-

ing computations that involve filtering, statistical calculations, etc., and converting

the sensed data into comprehensible units of measurement. Many present-day sen-

sors communicate with the MCU over synchronous buses such as SPI and I2C. The

communication in such a system is via a command-response mechanism wherein com-

mands issued by the MCU initiates operations such as sensing, transmission, etc., in

the sensor, and the sensor responds to the MCU with data or associated messages.

Losing power and checkpointing the state in between such a transaction would force

the MCU into an inconsistent state upon recall. This is because while the state within

the MCU can be checkpointed, a checkpoint of the external sensor’s state is not pos-

sible with the state-of-the-art. Hence, appropriate commands to the sensor have to

be re-issued again in the subsequent power cycle to avoid the inconsistent state. Ad-

ditionally, utilizing sampled data from multiple power cycles might not be acceptable

as the interval between consecutive power cycles is dependent on the unreliable en-

ergy source, which may cause the data to become stale. Hence, the step of collecting

data has to be performed atomically. Finally, the last step that has to be performed

in an atomic manner is the transmission of data. In addition to the aforementioned

inconsistencies that occur for communication parameters across power cycles, com-

municating data wirelessly is an energy-intensive operation and therefore, waking up

the radio multiple times to transmit the same set of data across multiple power cycles

is an overhead best avoided.

For the case study conducted in this work, we perform Energy-Align at the seg-

ment boundaries to enforce atomic execution of each segment as shown in Fig. 4.12.

Initialization and data collection steps happen in the same power cycle atomically

before the system is forcefully shutdown to gather enough energy for BLE transmis-
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sion. Following this, the collected data is transmitted also in an atomic manner. The

procedure is repeated as and when energy is available. To visualize the transmitted

data and verify the functionality of the IoT edge device, we designed an Android

mobile application and ran it on a Samsung Galaxy S5 mobile phone whose GUI is

also shown in Fig. 4.12.

4.8 Related work

In this section, we first discuss the related work corresponding to inconsistent

checkpoint states in periodic checkpointing schemes, software techniques for executing

applications in an atomic manner, and then give an overview of non-volatile processors

targeted for intermittently-powered systems.

4.8.1 Inconsistency due to periodic checkpointing

As discussed in Section 4.61, the location of the program at power loss has direct

consequences to the correctness of the application and affects the validity of the check-

1The reader is suggested to refer Sections 2.3.2 and 4.6 prior to the study of this section
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point in the subsequent wake-up cycle. Research conducted by Lucia et al. [57–60]

consider scenarios that could result in an inconsistency between the checkpointed state

of the system and the state it wakes up to. They consider a software design that has

predefined checkpoint locations in the program (akin to Mementos [34] discussed in

Section 3.8). When the program execution reaches such a location, a checkpointing

operation is performed, and the program continues to execute with the remaining en-

ergy (in somewhat a greedy manner) until power is lost or until the next checkpoint

location is reached. If power is lost in between two checkpoint locations, the system

rolls-back to the last saved checkpoint in the subsequent wake-up cycle. However, if

the program alters any data (state) of the non-volatile memory during the (greedy)

execution phase after it has performed the checkpoint, then the restore operation

would roll-back to a state that is inconsistent with the checkpointed state causing

the application to proceed in an unintended direction. This scenario is an artifact

of the fact that it allows (greedy) execution of the program even after a checkpoint

operation without buffering enough energy to guarantee another checkpoint opera-

tion. QuickRecall, on the other hand waits for enough energy to be buffered before

proceeding execution and thereby, avoids greedy execution (as shown in Fig. 3.2).

4.8.2 Software techniques for atomic execution

Software techniques that propose to execute critical tasks of a program in an

atomic manner such that it is not interrupted by a power loss have been explored.

Such techniques ensure the semantic correctness of applications executing in intermittently-

powered systems. DINO [57] is such a compiler that partitions the program into con-

stituent tasks utilizing programmer annotations. DINO analyzes the task boundaries

that are annotated by the programmer and performs an analysis of the costs of check-

pointing and restoring operations to emit warnings and suggestions for minimizing

the overhead.
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For programs already partitioned into tasks, Dewdrop [61] adjusts the input energy

to allow completion. Dewdrop is an energy-aware run-time that lets the system

replenish its available energy until it is sufficient to execute the particular task. It

learns about the amount of energy required per constituent task in an iterative manner

by increasing and decreasing the amount of energy so as to converge upon the desired

amount. Another approach is to utilize an energy-buffer in the system that would

provide the necessary additional energy, if required, to complete the task even if a

power interrupt occurs. Ref. [50] performs such an approach and an energy analysis

is performed off-line to calculate the amount of buffer energy.

Other techniques such as Ref. [62] assume a greedy checkpointing and execution

scheme and propose techniques for making execution consistent.

4.8.3 Non-volatile processors

An orthogonal approach for retaining state in IoT systems with unreliable power

supply is to perform the checkpoint operation entirely in hardware using non-volatile

processors (NVPs). These processors are designed using memory elements (flip-flops

and RAM) that are augmented with a non-volatile storage. The memory elements

automatically checkpoint the volatile state on power loss and restore it on the sub-

sequent power cycle without any software support. Kothari et al. [63] simulated

an Intel P4 processor augmented with nanomagnetic devices to enable checkpoint-

ing in large-scale systems. Yu et al. [64] simulated an 8-bit microcontroller whose

volatile memory elements were integrated with floating gate elements for checkpoint-

ing. Wang. et al. [4] fabricated a nonvolatile processor that used ferroelectric flip-

flops to make the processor core non-volatile. Bartling et al. [5] and Khanna et al. [6]

created an 8 MHz processor having all flip-flops to be non-volatile using ferroelec-

tric capacitors. Sakimura et al. [11] fabricated a completely non-volatile microcon-

troller based on the MSP430 architecture, integrated with nonvolatile flip-flops (using

MTJs) and a 64 kB MTJ based RAM. Singhal et al. [8] fabricated a single cycle
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16 MHz microcontroller with ferroelectric elements. Onizawa et al. [65] simulated an

ARM-based non-volatile processor that uses STT-MRAM as the non-volatile element.

Liu et al. [13] fabricated a 100 MHz non-volatile processor that utilizes non-volatility

provided by ReRAM. They employ a non-volatile SRAM consisting of a resistive

memory element, that acts as an SRAM under normal operation.

Researches have also been conducted for exploring the architecture of non-volatile

processors. Ma et al. [66, 67] explores different policies and provides a comparative-

analysis on the different kinds of non-volatile processor architectures (using ferroelec-

tric elements). Non-volatile processors reduce the overhead in storing and recalling

the state as no instructions are required to be executed for data transfer. Solutions

in Refs. [5, 11, 13] can bypass boot procedures and execute the next instruction on

wake-up. For other NVPs, the SRAM contents still need to be checkpointed and

software techniques to reduce the checkpoint size have been explored [68–71]. How-

ever, the initialization step that includes configuring the external sensors have to be

performed again via a software boot-up method before resuming application code

execution. Similarly, a software strategy is required for NVPs to enable atomicity

in application execution. Like traditional processors, NVPs also suffer from afore-

mentioned problems of stale data, false execution states, inconsistent communication

states, and communication overhead arising due to program segments being broken

and spread over multiple power cycles. Recent research in NVPs have tried to address

the initialization overhead of peripheral registers by making them non-volatile [72].

However, the inconsistency in communication and the need for re-performing the pro-

tocol’s necessary hand-shaking still exists in these NVPs. Chien et al. [73] proposed

an ReRAM-based non-volatile processor to partially address the inconsistency issue.

Their NVP utilizes a programmable restore point, to which the processor can wake-up

to. In case the power interruption happens in between an IO communication (such

as UART, SPI, etc.), utilizing the programmable restore point would roll-back to the

location corresponding to the beginning of data transmission. Such an architecture

improves the checkpointing support from hardware while still being able to provide
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the programmer with the control of partitioning the program into tasks. However, the

NVP allows greedy execution and therefore is susceptible to inconsistent checkpoints

and energy wastage due to partial transmission. Therefore, even though NVPs help

reduce the checkpoint and restore overheads, systems utilizing them would require a

well-designed software architecture to enable atomicity and resolve the consistency

issues in application execution.

At the time of composing this article, none of the above fabricated NVPs are

commercially available off the shelf. Therefore, we utilize the MSP430FR5739 MCU

that is embedded with FeRAM (instead of Flash) and based on Texas Instruments’

MSP430 architecture similar to [7, 9].

4.9 Summary of contributions

In this chapter, we proposed techniques for performing energy aware memory

mapping of program sections in hybrid FeRAM-SRAM MCUs used in intermittently-

powered IoT edge devices to retain the reliability benefits of non-volatile FeRAM

while performing as efficiently as SRAM. To this end, we defined a one-time char-

acterization technique, eM-map that finds the optimal memory maps for constituent

functions of a program across the hybrid FeRAM-SRAM memory. We also proposed

a technique, Energy-Align, that performs proactive shutdown to align function and

power cycle boundaries, thereby achieving energy and performance benefits. Our

implementation using the MSP430FR5739 MCU demonstrates a speed-up of up to

2x (1.6x on average) and energy reduction of up to 45% (30% on average) compared

to a state-of-the-art baseline solution.
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5. SLEEP MODE VOLTAGE SCALING: ENABLING

SRAM DATA RETENTION AT ULTRA-LOW POWER IN

EMBEDDED MCUs

In this chapter, we consider IoT devices that are battery-powered but operate inter-

mittently transitioning between active and idle modes. The work-load profile of such

devices are characterized by long continuous durations of sleep interjected by short

bursts of activity, during which the MCU performs the intended task. Due to the

intermittent nature of operation, the sleep mode energy consumption dominates the

overall power consumption. This chapter proposes a new ultra-low power sleep mode

for embedded MCUs, which reduces sleep-mode power consumption by performing

extreme voltage scaling of its supply voltage.

5.1 Chapter overview and contributions

As mentioned in Chapter 2, the dominant component in a system’s total energy

consumption is its idle-mode energy consumption. Even though MCUs provide mul-

tiple shallow and deep sleep modes to counter the sleep-mode power consumption,

they still suffer from one or the other drawbacks related to energy-efficiency, wake-up

latency, and lack of data retention. Shallow sleep is sub-optimal from a sleep-mode

power consumption perspective as the MCU stays powered on to retain the state

information (consisting of the MCU registers and the contents of on-chip SRAM)

during sleep. Whereas, deep sleep involves a significant energy and time overhead for

copying the volatile state information to and from the non-volatile memory before

entering sleep and after waking up from it. To address this issue, this chapter pro-

poses a new ultra-low power sleep mode for MCUs that is as good as deep sleep in

terms of sleep-mode power consumption, but still preserves the contents of SRAM,
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thus avoiding the energy-expensive data transfer overhead. The key insight behind

the proposed sleep mode is the observation that the minimum voltage required for

SRAM data retention is often much lower (by as much as 10x) than the minimum op-

erating voltage of the MCU. By lowering the supply voltage when the MCU is in sleep

mode to just above the SRAM data retention voltage (we call this extreme voltage

scaling1), we demonstrate that dramatic reductions in sleep mode power consumption

can be obtained. Additionally, we propose and demonstrate the use of energy har-

vesting from commonly found on-board sensors in IoT devices (such as a photodiode

used for sensing light) for supplying the required scaled voltage for the MCU.

Specifically, this chapter proposes and demonstrates a novel, lightweight on-chip

SRAM data retention scheme, called Hypnos, for embedded MCUs. Hypnos is a

HW/SW approach that significantly reduces the power required for in-situ data reten-

tion through the use of extreme supply voltage scaling in sleep mode. We use Hypnos

to design, implement, and evaluate a new ultra-low power sleep mode, LPMH, for the

TI MSP430G2452 MCU. In our experiments, the MCU draws only 26 nA when in

LPMH, which is 4x lower than any existing sleep mode of this MCU that preserves

SRAM data. Further, we propose the use of a light sensing photodiode as an energy

harvesting source to supply power to the MCU during LPMH, which eliminates (al-

most entirely) the power overheads associated with performing voltage scaling. We

demonstrate that utilizing the photodiode for power supply reduces the LPMH current

consumption to only 1 nA, which is over 100x lower as compared to the conventional

low power mode of the MSP430G2452 MCU. Finally, we show that, for a typical wire-

less sensing application, the use of the Hypnos scheme translates to a substantial

reduction in the average power consumption of the entire system (by 6.45x in our

configuration), compared to a well-optimized baseline. Operating at such extremely

low power raises the possibility of perpetual system operation by harvesting energy

from ambient sources.

1Conventionally, voltage scaling is done when the MCU is in active mode and is accompanied by a
reduction in the MCU clock frequency. In contrast, here we are talking about scaling the MCU’s
supply voltage when it is in sleep mode.
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5.2 Preliminary study: SRAM data retention at scaled MCU supply

voltages

This section initially provides the underlying reasons for SRAM data retention at

low voltages and then describes an experiment that demonstrates the key insight that

motivates our work.

5.2.1 SRAM data retention at low voltages

An SRAM cell is made up of two back-to-back inverters as shown in Fig. 5.1(a).

The back-to-back connection creates a positive feedback loop that reinforces the value

written into the cell. This characteristic has a direct dependence on the VDDRAM of the

two inverters. Fig. 5.1(b) shows the variation in inverter characteristics of the SRAM

cell as a function of VDDRAM. As VDDRAM decreases, the reinforcing action loses its

strength until it collapses and cannot regenerate the stored value. The lowest voltage

at which the cell can retain the stored value is called the data retention voltage (VDRV)

or the hold voltage and is usually lower than its operating voltage. Characterizing

the VDRV of SRAM cells has been a well-studied topic [74–76]. The ability of SRAM

cells to retain data at a lowered supply voltage has also been exploited by circuit

designers to reduce the leakage power of SRAMs when idle [77–80]. In order to verify

this observation at a system-level, we conducted an experiment using a commercially

available MCU and decreased its supply voltage to find its VDRV (in Section 5.2.2).
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Strong and weak states in SRAM cells

Due to the asymmetric nature of the butterfly curve (as illustrated in Fig. 5.1 (b)),

SRAM cells have an affinity to one of the two logic levels when powered up. The area

of the lobes also denote the stability of the SRAM cell for each logic value. An SRAM

cell that has a larger lobe for logic level 0 is referred as a strong-0 cell and likewise

for a strong-1 cell. Therefore, a larger difference in potential is required to flip the

cell from its stronger logic value as compared to flipping the cell from its weaker

logic value. As the supply voltage is lowered, the asymmetric nature of the butterfly

curve is more or less preserved. Therefore, when the MCU is powered up, the default

value will correspond to its stronger logic level [81]. In this work, we also verified this

observation in the context of powering up a microcontroller with on-chip SRAM.

5.2.2 Motivational study

The experimental setup is shown in Fig. 5.2. VDDH is kept at a constant 3.3 V,

while VDDL is varied for the experiment. The procedure of the experiment is described

as follows. The switch S is initially in the closed state, and the microcontroller receives

a supply voltage of VDDH. 128 bytes of data is written into a predefined location in

the on-chip SRAM of the MCU. The data values written are chosen corresponding

to the weaker logic value for each bit, i.e., if a cell is strong-0, a logic value of 1 is

written to it and vice versa. The strong and weak value for each cell is known a priori
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by reading its default value at power up. Then, the switch S is opened for exactly

10 seconds (topen) using a timer and closed again. The data is then read back and

compared to the written data. Writing the weaker value ensures that even worst case

data flips are detected. This procedure is repeated for different values of VDDL. The

MCU used for this experiment is the TI MSP430G2452 [82], which does not have an

internal power management unit2 (PMU). The results are shown in Fig. 5.3.

As Fig. 5.3 shows, the on-chip SRAM retains 100% of the written data for VDDL

up to 220 mV, henceforth referred to as VDRV. Observe that when the supply voltage

is less than VDRV, the data retention degrades rapidly. This is due to the fact that

an increasing number of SRAM cells flip to their stronger value, and thus become

unreliable for voltages lesser than VDRV. Note that the normalized BER degrades to

a value close to 0% because each SRAM cell always resets to its stronger logic value

upon power up.

We repeated the above experiment for 20 different MSP430G2452 MCUs and

plot their VDRV in Fig. 5.4. As Fig. 5.4 shows, the VDRV of the 20 MSP430G2452

2The impact of an internal PMU on the experiment is discussed in Section 5.7.2
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MCUs range from 165 mV to 220 mV that can be attributed to variations in the

manufacturing process of the MCUs. Hence, we choose the highest voltage for which

100% data retention is observed across the 20 different MCUs as the chip DRV for

the MSP430G2452 MCU. An alternative approach could be to perform an in-situ

characterization for the specific MCU chip that is used in a system. If such per-chip

characterization is not feasible, a simpler alternative would be to simply guard-band

the DRV to counter variation-induced deviations, as we discuss in Section 5.7.1.

The experiment is repeated once more to verify data retention by varying topen

from 10 s to 240 s (and, in a subsequent experiment, setting topen to 24 hours) by

setting the VDDL to a constant 220 mV. Results confirm that SRAM data is retained

without even a single bit flip for all topen. We conclude that at VDRV = 220 mV,

the on-chip SRAM cells of the MSP430G2452 MCU can retain data for practically

infinite time. We define this voltage to be the chip DRV of the MCU. This observation

that microcontrollers can retain SRAM data at much lower supply voltages than

the specified operating voltage motivates us to investigate and propose a new LPM

for MCUs.
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Table 5.1.
Dependency of SRAM retention on ambient temperature at various voltages

Temperature (°C) 220 mV 260 mV 300 mV 310 mV 320 mV

23 Yes Yes Yes Yes Yes

40 Yes Yes Yes Yes Yes

60 No Yes Yes Yes Yes

70 No No No No Yes

Yes denotes 100% SRAM retention, a No is indicative of even

a single bit-flip

5.2.3 Impact of temperature on chip DRV

In Section 5.2.2, we defined chip DRV to be the smallest supply voltage at which

100% data retention is observed across the entire SRAM memory in the chip, and

for the MSP430G2452 MCU, VDRV was observed to be 220 mV. The theoretically

estimated DRV of an SRAM cell is 50 mV [74] for a 90 nm technology. However,

process variations cause the actual DRV of an SRAM cell to diverge from the esti-

mated value [83], thus resulting in a much higher value for the chip DRV. To gauge

the impact of temperature on the VDRV of MSP430G2452, we conducted an experi-

ment wherein SRAM retention was verified after varying the ambient temperature of

the system in LPMH. The experimental methodology is similar to Section 5.2.2 but

with the addition of a control knob for tuning the ambient temperature. Table 5.1

tabulates the results showing the impact on SRAM data retention for different supply

voltages (VDDL) as the ambient temperature of the system is varied. Even a single bit

flip is considered to be an error and is marked as No implying that SRAM retention

is not guaranteed for that operating condition.

As can be seen, the data residing in SRAM is not reliably retained for a chip DRV

of 220 mV when the ambient temperature is greater than 40 °C. The table also shows



100

that for an increase of 100 mV in the chip DRV, 100% of SRAM data retention can

be achieved for ambient temperatures up to 70 °C. Therefore, the chosen value of

VDDL has to be the chip DRV, which includes a guard-band that can reliably retain

the SRAM data according to the environmental conditions (such as temperature)

at the deployment location. However, note that over compensating for temperature

variation with a higher voltage for VDDL increases the current consumption of the

MCU in LPMH and hence, will affect the amount of reduction in energy consumption

that is achieved.

5.2.4 Discussion: Impact of technology scaling on chip DRV

The MSP430G2452 used in this work is fabricated using the 130 nm technology

node [84]. It is well known that as technology scales down, the amount of leakage

current also increases. Consequently, the chip DRV also increases with scaling as more

energy is required to prevent data bits from flipping. The authors in [85] show that

chip DRV increases by almost 100 mV with each successive technology node. Further,

as technology scales, process variations have a bigger impact leading to an increase

in the DRV [75]. Circuit techniques could be employed to improve the DRV [76], but

that does not mitigate the issue completely. Hence for scaled technology nodes, the

VDRV has to be set at a much larger voltage.

5.3 HYPNOS architecture and design

In this section, we describe the hardware and software architectures for Hypnos

in detail.

5.3.1 Hardware architecture

Conventional implementations of LPM in microcontrollers primarily halt the clock

subsystem and the microcontroller core, thereby stalling computations and entering
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the low power mode. The system then waits for an interrupt upon which the LPM

is exited. Often, an internal or external real time clock (RTC) is used to wake the

system up with a periodic interrupt. On receiving the interrupt, the corresponding

interrupt service routine (ISR) is executed, following which the program may remain

in the active state or re-enter the sleep mode. Any new LPM should be identical

to the conventional LPMs with respect to the aforementioned features exhibited and

only differ in their latency and power overheads. We propose and define a new sleep

mode (henceforth referred to as LPMH) that decreases the static power consumption

of embedded microcontrollers in idle mode by supplying a lower voltage while still

retaining data. Fig. 5.5 shows the Hypnos hardware architecture.

As discussed in Section 5.2, data can be retained even when supply voltage is as

low as 220 mV for the MSP430G2452 MCU. Therefore, the primary design decision

for Hypnos is to enable the scaled supply voltage (VDDL) to power the system in

idle mode. The VDDL could be derived from VDDH itself, or it could be a stand

alone supply. A discussion on the same can be found in Sections 5.5 and 5.7. An

external PMU, which consists of a power selection unit (PSU) and a multiplexer is

designed to address the dual voltage requirements during active and idle state. The

design of the power selection unit is critical to the PMU architecture. Identical to

conventional LPMs, the MCU has to wake up from LPMH as soon as an interrupt is
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received. Likewise, the PMU needs to supply a voltage of VDDH continuously to the

MCU in the active mode and make a successful transition to VDDL upon initiating

LPMH. The program executing on the MCU controls the different power-modes and

alternate between them as required by the application. Since the PMU lies external

to the MCU, a general purpose input/output (GPIO) pin is required to administer

control to it. PxOUT (shown in Fig. 5.5) is utilized to convey the state of the MCU

to the PMU. When the MCU is active, PxOUT is pulled high and the VDDH selection

is reinforced. To enter LPMH, PxOUT is pulled low by the MCU, which causes the

multiplexer output to switch to VDDL. The PSU keeps the MCU in LPMH until an

interrupt is received or an external power-up event occurs. An interrupt prompts the

PSU to swap the multiplexer output back to VDDH, thus putting the MCU into active

mode.

External interrupts are generally characterized by pulses of extremely short dura-

tion. The interrupts are not only used to wake the MCU up from a sleep mode, but

also to trigger an ISR that executes some application task. In conventional LPMs,

the interrupt triggers a transition to active mode and gets registered at the appro-

priate GPIO by the software. The time taken for this transition is minimal, and is

usually in the order of a few microseconds to milliseconds depending on the LPM in

use. In addition, the ports of the microcontroller receive a supply voltage, which is

equal to VDDH and therefore, the application software can register the interrupt from

the associated GPIO instantaneously. In comparison, LPMH reduces the microcon-

troller supply voltage to VDDL, and therefore the port logic is defunct and unreliable,

which may result in an interrupt being missed. Therefore, a new interrupt interface

is envisaged whose primary function is to latch the interrupt that is received when

the MCU is in LPMH (shown in Fig. 5.5). The modifications required for registering

the interrupt by the application software are discussed in the following subsection.

Note that all the interrupts of the microcontroller need not have an interrupt inter-

face. Only those interrupts that are designated to wake up the microcontroller from
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LPM and cause a transition into the active mode need to be implemented with the

interface. We classify such interrupts as wake up interrupts (WInts).

Fig. 5.5 shows that an additional microcontroller GPIO (PxIC) needs to be uti-

lized so as to control the interrupt interface. PxIC is used to reset the interface after

the latched interrupt has been registered by the software. Depending on the number

of interrupts that have wakeup capability, the designer could re-use PxIC. Mathe-

matically, for n WInts, a minimum of log2n + 1 GPIOs are required for controlling

the interrupt interface. Thus, a total of log2n + 2 GPIOs are needed to implement

Hypnos.

5.3.2 Software architecture

The software architecture for Hypnos is slightly different from conventional LPMs.

The software flow for entering a traditional LPM involves configuring the registers of

the GPIOs and enabling the appropriate WInts before proceeding to shut off the clock

module and other sub-systems. For example, to enter LPM4 in the MSP430G2452

MCU, first the GPIO directions and signals are set such that the pin leakage is min-

imized. Secondly, the WInts are enabled and lastly, the clock subsystem is switched

off, halting the computations and forcing the system into LPM4. Subsequently, when

an interrupt is received, the microcontroller, the clock subsystem, and the system pe-

ripherals have to be re-initialized in that order, after which the application execution

can commence.

By design, Hypnos retains only the data present in the SRAM. The data pertain-

ing to the processor registers (i.e. the PC, SP, SR, etc.) and GPIO configurations

are not retained in-situ. Hence for applications that require to resume computations

upon wake-up, the processor registers, the state of the microcontroller, and that of

its peripherals need to be preserved. In Hypnos, we propose to achieve this by

checkpointing the processor registers onto SRAM before entering LPMH.
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Fig. 5.6 illustrates a general software flow for implementing Hypnos. It tries to

address two types of applications. The first set consists of periodic sensing applica-

tions wherein the system wakes up on an interrupt and executes an ISR that does the

required sampling and computation. Once the execution completes, the system goes

back into LPMH and sleeps until the next interrupt arrives. Examples of periodic sens-

ing applications are in-vivo glucose monitoring [35], ambulatory urodynamics [37],

environmental sensing, etc. The second kind of applications are event-driven and

conserve power by waiting for the event to occur in a low power mode. Once the

event is detected, the system wakes up and executes a sequence of operations specific

to the application before re-entering the low power mode. Examples of such appli-

cations are structural health monitoring systems, disaster management systems like

flood detection, forest fire warning systems, etc. [36].
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An MCU can wake up either due to a normal power up event or due to the arrival

of a WInt. Fig. 5.6 shows the Hypnos software flow for both these wake-up (boot-

up) scenarios. Once the MCU is powered up, the software routine re-initializes the

microcontroller and its peripherals. Then, it checks a flag (hypnosflag) to verify if

it is waking up from LPMH. Note that, the hypnosflag is stored in SRAM and its

location in the memory is chosen such that it has a default (strong) value of 0x0. If the

flag is not set, the application continues with the program execution just like a normal

power-up event. Otherwise, the Hypnos software routine proceeds to evaluate the

values of all the WInts in the system to identify the particular one that triggered the

wake-up. This is explained as follows using an example. Consider a system having

two WInts, IntA and IntB. If IntB is triggered, then the interrupt interface latches

the value and wakes up the MCU. Once the MCU wakes-up, the Hypnos software

flow sequentially compares the values of IntA and IntB according to a predefined

order of priority. Once IntB is identified to have caused the wakeup, a software

trigger is issued that executes the appropriate ISR for IntB. The implementation

of the software trigger can vary from MCU to MCU and, for the MSP430G2452,

a simple write to the internal GPIO interrupt register triggers the ISR execution.

Thus in Hypnos, the WInt that triggered the wakeup event gets registered and the

corresponding ISR is executed. Depending on the application, the program can either

return to the saved state and resume computations or re-enter LPMH.

The data in processor registers, GPIO configuration registers, and GPIO values

are not retained when the microcontroller is supplied with a voltage VDDL. Therefore,

a checkpoint operation has to be performed before entering LPMH. As Fig. 5.6 shows,

Hypnos defines a function enter lpm() that triggers a software interrupt. The pro-

gram context gets pushed onto the stack upon entering the Hypnos ISR. Then, the

processor registers (whose number depends on the application) get checkpointed onto

the SRAM for retention. The GPIO configurations are restored while waking (boot-

ing) up in the Initialize MCU and peripherals step. The specific cases where

GPIOs change their values or configurations in the course of program execution are



106

handled separately. A turn-key solution would copy all the register values into the

SRAM, thus making the solution application-agnostic. However, such an approach

will incur additional latency and reduce the total amount of SRAM memory available

for program execution. Another approach is to utilize the programmer’s knowledge

about the application to determine a subset of registers that may change state during

the course of program execution, and checkpoint this subset only while initializing the

rest of the registers in the Initialize MCU and peripherals step. This approach

is application-specific and will incur lesser memory and latency overheads. Therefore,

a trade-off exists in saving the state of the GPIO registers in regard to the latency

overhead and amount of SRAM memory that is required, and programmer involve-

ment. After checkpointing, the ISR finally proceeds to set the hypnosflag and the

WInt interface control signals, and toggles the PxOUT to select VDDL as the power

supply. Thus, the microcontroller enters LPMH.

5.4 Sleep mode voltage scaling

As discussed in Section 5.3, Hypnos requires two different voltages to supply

power to the system. Conventionally, microcontrollers are powered with only a sin-

gle power supply. Including another power supply introduces additional complexity

in system design and implementation. Hence, our implementation consists of a sin-

gle voltage source corresponding to VDDH while VDDL is either derived from it or

generated using an energy harvesting source. Both of these are described in detail

below.

5.4.1 VDDL generation from VDDH

Generation of VDDL from VDDH is performed by a voltage converter block, whose

architecture is chosen such that the power overhead of implementing LPMH is mini-

mized. For example, the required VDDL could be generated using a reference constant

voltage source (VREF) or by using a voltage divider. At the time of composing this
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article, an off-the-shelf VREF module that supplies VDRV draws 250 nA as quiescent

current. To avoid this, we implement the voltage converter block using a voltage

divider that consists of a resistor on the high-side in series with the microcontroller,

which provides the voltage and current that is required by the system to implement

LPMH. Note that the block is architected in such a manner that it does not consume

power when the MCU is active. However in LPMH, it consumes power equivalent to

that of the MCU, which is considerably lesser due to scaling of the supply voltage.

5.4.2 VDDL generation by energy harvesting

The VDDL generation for Hypnos is of considerable importance as it affects the

idle mode power consumption and the overall energy consumption of the system.

Using the resistive divider still impacts the idle mode power consumption due to the

I2R loss involved in VDDL generation. An alternate method to generate the required

VDDL is to utilize some kind of energy harvesting technique from an ubiquitous source.

A few options are described below. For applications that use RF for communication,

harvesting energy from a dedicated RF source [86–88] or ambient RF signals [89] could

provide sufficient power to meet the requirements of LPMH. Another kind of energy

harvesting source that could power the system in LPMH are nanogenerators [90–92].

Nanogenerators convert mechanical energy to electrical energy and provide power

in the range of microwatts to milliwatts. Light is another ubiquitous energy source

that could be utilized for VDDL generation. The choice of the energy harvesting

source is governed by factors such as the deployment location and form-factor of the

embedded system [2]. The location determines ambient energy availability while the

form-factor determines the amount and rate at which the energy can be harvested

(e.g., it determines the size of a photovoltaic cell). However, note that since we

propose to use energy harvesting only as a means to support LPMH (and not for

regular system operation), these constraints can easily be met.
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(a) A well-lit office gets around 600 lux (b) SRAM data retained in near darkness (light

intensity of 20 lux)

Fig. 5.7. Light intensity measurements in an office environment

Utilizing a light-sensing photodiode as an energy harvesting source for

LPMH

Photodiodes are passive transducers that convert the incident light energy into

electric current. They have a very small form-factor and are conventionally used to

measure light intensity in various embedded applications. Previous work has shown

that such a light-sensing photodiode could be utilized as an energy source to supply

power to the real time clock (RTC) of an embedded system [25]. In this work we

build on the same concept to eliminate the power overhead for VDDL generation.

The architecture of Hypnos is kept the same as shown in Fig. 5.5 except that the

resistive voltage converter circuit is now replaced with a photodiode that is connected

to the VDDL port of the power selector unit. Therefore, once the MCU enters LPMH,

power to the MCU is supplied by the photodiode output. The photodiode acts as

a current source and the voltage (VDDL) that appears across the MCU is a result

of the amount of load offered to the photodiode by a combination of the MCU and

the voltage selector multiplexer. The amount of current generated by the photodiode

depends on the intensity of light that falls on it. Light intensity is measured in lux and
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Fig. 5.8. Variation of MCU VDD according to incident light intensity

a well-lit indoor office receives light intensity in the range of 300− 700 lux as shown

in Fig. 5.7(a). As the light intensity varies, the output current from the photodiode

also varies, which in turn affects the voltage supplied to the MCU. Fig. 5.8(a) shows

this variation of VDDL as a function of the incident light intensity. Fig. 5.8(b) is a

magnified version of the same. As can be seen, the voltage across the MCU increases

sharply at first for light intensities less than 200 lux, and then plateaus off for further

increase in light intensity. The initial (almost linear) surge in the voltage can be

attributed to the fact that the current generated by the photodiode has a linear

dependence on light intensity. The plateau that follows is due to the fact that the

open-circuit voltage (VOC) of the photodiode is 470 mV. Therefore, as light intensity

increases, the output voltage of the photodiode tends to and saturates at 470 mV.

Note that the light intensity at which the MCU receives the data retention volt-

age (VDRV = 220 mV) was observed to be 11 lux. Also, observe that for light inten-

sities greater than 36 lux, the photodiode is able to provide a stable supply voltage

that includes the 100 mV guard-band required for accommodating variations in tem-

perature. Further, we successfully verified 100% SRAM data retention in LPMH (for

over 10 hours) for a light intensity as low as 20 lux, which is near-darkness as shown
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in Fig. 5.7(b). Finally, note that in Fig. 5.8(a), for the region corresponding to indoor

light intensities, the voltage across the MCU is more than the guard-banded 320 mV.

Therefore, embedded applications located in well-lit indoor offices can retain 100% of

SRAM data.

5.5 Low power implementation

In this section, we explain our hardware implementation for Hypnos and discuss

the design decisions in detail. Fig. 5.9 shows the Hypnos hardware circuitry in detail

and Figs. 5.10(a) and 5.10(b) shows the experimenter boards that we designed and

implemented. In particular, Fig. 5.10(b) shows our modified experimenter board with

the Si1133 photodiode (from Hamamatsu) being employed as the energy harvester

for VDDL generation.

5.5.1 Power supply

VDDH, which is the primary supply voltage for the system, is supplied from a bat-

tery. On the other hand, VDDL is either derived from VDDH using a voltage converter
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Fig. 5.10. Custom Hypnos experimenter boards

block or generated from an energy harvesting source as mentioned in the previous

section. The other component within the power supply architecture shown in Fig. 5.9

is the decoupling capacitor (Cdecap). Note that Cdecap is placed before the voltage

selector on the VDDH rail and not on the microcontroller VDD rail. The placement

of Cdecap is of considerable importance due to the charging overhead it may present

while transitioning from LPMH to active mode. This overhead has a direct impact

on the wakeup latency of Hypnos. Hence, to minimize the overhead, the placement

of Cdecap is performed in such a way that avoids redundant charge-discharge cycles.

In addition, the current consumption in LPMH is stable since the MCU is idle and

does not perform any operation. Thus, a Cdecap on the VDDH rail would suffice.

5.5.2 Power management unit

The primary function of the external PMU in Hypnos is to effectively switch

the MCU’s power supply between VDDH and VDDL. The PMU consists of a volt-

age selector and two single pole-single throw (SPST) switches. The voltage selector

multiplexer is implemented with a single pole-double throw (SPDT) switch that is

controlled by the voltage on node Y as shown in Fig. 5.9. The voltage selector sup-

plies the MCU with VDDH for a logic high input and VDDL for a logic low input. The
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Hypnos implementation utilizes a network of normally-open (NO) and normally-

closed (NC) SPST switches that provide isolation between different modules. The

SPDT and SPST switches are chosen such that the power overhead is minimized.

The NO/NC SPST switches (MAX4645/6) that constitute the PMU and interrupt

interface is chosen for its ultra low current consumption of 100 pA [93] each. For the

SPDT voltage selector multiplexer, we choose the ADG819 [94].

Active to LPMH transition

As discussed in Section 5.3, the PMU is controlled by a GPIO, PCTRL. Fig. 5.9

shows the two paths that are controlled by PCTRL. When the MCU is in active mode,

it sets PCTRL to logic high. This has two implications, the first of which is the isolation

of node Y from the interrupt interface module. Switch S2, which connects the nodes

X and Y is of NC type, and therefore when it receives a logic high, the connection

is severed. Secondly, PCTRL activates path 1 (shown in red), which pulls node Y to a

logic high and consequently reinforces the selection of VDDH.

As discussed in Section 5.3.2, transitioning to LPMH from the active mode is

preceded by configuring the interrupt interface and pulling PCTRL to logic low. The

reset latch signal (RSTL) is used for this purpose and in particular, to configure the

interrupt interface. Setting RSTL to logic high configures the interrupt interface by

pulling node X to ground and thereby, closing S3. Simultaneously, PCTRL is set to

logic low for opening S1 and closing S2, which activates path 2 (shown in green). As

a result, the MCU supply voltage drops to VDDL and it enters LPMH. The wake up

operation of the PMU is discussed in the following subsection.

5.5.3 Interrupt interface

The primary functionality of the interrupt interface is to preserve the interrupt

signal until the microcontroller wakes up and is ready to register the interrupt. In our

system, the MCU is configured to register a positive edge-triggered interrupt on P2.
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The interrupt interface consists of a unidirectional latch that captures a low-to-high

transition. The working of the unidirectional latch and the MCU wake-up is described

as follows.

Wake-up from LPMH

On receiving an interrupt signal, the switch S7 closes, pulling INT and node X to

logic high. This opens S3 and node Y gets charged to VDDH causing the PMU to

supply the microcontroller with VDDH. Simultaneously, S5 connects the logic high

voltage to node Z , which closes S4. In the event that the wake-up overhead of the

MCU is more than the pulse width of the interrupt signal, it is important to latch

the interrupt. The positive feedback from node X through node Z helps node X to

retain VDDH via S4.

Once the MCU wakes up, PCTRL is set, which disconnects the interrupt interface

from the PMU by opening S2. Then, once the interrupt is registered by the MCU, it

is reset using RSTL. When RSTL is logic high, it closes S6 and pulls node Z to ground,

and voltage at node X discharges until S3 closes, upon which node X is immediately

pulled to the ground voltage. Thus, the interrupt interface is ready to latch the next

interrupt.

5.6 Experimental results

In this section, we describe the experimental setup, the application used for eval-

uation, and the baselines with which we compare Hypnos. Finally, we present the

results obtained and discuss the trade-offs involved.

5.6.1 Experimental setup

For our experiments, a Tektronix 6430 Keithley source meter is used as the power

supply. It can act as a voltage source as well as measure currents as small as fem-
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toamperes. All power measurements are made using the source meter itself. The

VDDH for all the experiments is set to 2.2 V. Lastly, all the latency overheads are

recorded using a Tektronix MDO4104-3 oscilloscope.

Evaluation application

For evaluation, we consider a simple periodic sensing application. The applica-

tion is described as follows. The microcontroller wakes up on receiving an external

interrupt, and then collects a few samples following which an averaging operation

is performed. As soon as the computations are completed, the application is put

into the idle state. After a few such sense-sleep cycles, the application transmits the

gathered data.

Baselines

We use two baselines, which are described below, to compare the energy and

latency benefits of our proposed technique, Hypnos.

Conventional LPM The first baseline that we choose to compare with is the

conventional LPM (CLPM ) that is currently prevalent in microcontrollers and corre-

sponds to the shallow sleep mode. In particular, the LPM4 mode of the MSP430G2452

is chosen as CLPM , as it is the least power consuming data retention mode available.

In CLPM , power is supplied to the internal registers and SRAM to retain the state.

Power consumption of the MCU is reduced by halting the clock and shutting off the

peripherals. Typically, the MCU wakes up from LPM4 through a WInt. Note that

CLPM does not require the additional peripheral circuitry that is needed for imple-

menting Hypnos. The MSP-TS430PW28A evaluation board was used for evaluating

CLPM .
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Checkpointing to non-volatile flash The second baseline that we compare Hyp-

nos with is a flash-based checkpointing scheme (NVLPM ). We denote the low power

mode for the NVLPM scheme as LPMNV. NVLPM corresponds to the deep sleep

mode, which is the lowest power consuming mode available in advanced MCUs of to-

day, wherein the SRAM and register files are also powered off. In LPMNV, the MCU

consumes power to keep the GPIOs related to the WInt active. Typically, this power

ranges in the order of tens of nanoamperes. For applications with a very low duty

cycle, the RAM data, processor register contents, and peripheral configurations may

be checkpointed into the available on-chip flash memory to retain the state. Once the

checkpointing is completed, the system goes into a low power mode wherein it waits

for a WInt. Unfortunately, the MSP430G2452 MCU does not possess such a mode.

Therefore, we create an LPMNV mode that has an interface similar to Hypnos, which

powers off the MCU when it enters LPMNV. Thus, the implementation for NVLPM

is same as that of Hypnos except that VDDL = 0 V. Note that NVLPM imple-

mented this way is more energy-efficient than conventional LPMNVs as the GPIOs

are completely powered off. NVLPM has an additional power overhead component

as compared to Hypnos due to the periodic erase operations required by flash. The

MSP430G2452 MCU has 8 kB of flash memory divided into 16 segments of 512 B

each. A segment is the smallest unit of memory that can be erased. Hence, for a

checkpoint size of 256 B, an erase operation has to be performed once in every two

cycles (in steady state).

5.6.2 Latency overhead

The latency overhead associated with Hypnos arises from the time taken by the

wake-up, recall, and sleep steps. We define the wake-up overhead to be the time taken

by the processor to be able to begin code execution from the time the MCU receives

the interrupt. In particular, it incorporates the time taken by the PMU to toggle

the supply voltage from VDDL to VDDH. The sleep overhead is the time taken for the
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Table 5.2.
Time-interval definitions

twakeup Time from interrupt to first execution.

trecall Time required to recall the previous state

tsleep Time required to save state and enter sleep from the time of issuing command

system to enter LPMH from the time enter lpm() is invoked, and includes the time

taken for checkpointing. Recall overhead is the overhead associated with restoring the

checkpointed state. The latency overhead for the three schemes is shown in Fig. 5.11

and Table 5.2 defines the time intervals. Among the three schemes, CLPM is a

complete in-situ retention solution, NVLPM is a complete checkpointing solution,

while Hypnos is a mixture of both.

CLPM has the least twakeup because the MCU VDD is VDDH in LPM4. On the other

hand, Hypnos and NVLPM have similar and larger twakeup due to the lower VDDL

voltage being used in the respective low power modes. Both Hypnos and NVLPM

undergo a brown-out reset (BOR) on waking up in addition to stabilizing internal
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PLLs, clocks, etc. The time required for the MCU VDD to reach VDDH is measured

as 64 ns for Hypnos and 68 ns for NVLPM . The slight variation in charging times

for Hypnos and NVLPM is due to the difference in their respective VDDL voltages.

The charging is quick because of the placement of Cdecap on the VDDH rail before

the voltage selector multiplexer. Thus, only the effective capacitance of the MCU

needs to be charged. After waking up, the microcontroller initializes its peripherals.

This is shown in the figure as First Execution. The time required for initializing is

application dependent and is same for all the three schemes. Hence, its overhead is

not separately accounted for in our calculations.

The length of trecall is determined by the number of registers that need to be check-

pointed. Hypnos requires a trecall of 74 µs to restore the 30 B of checkpointed data

pertaining to the processor registers. Any additional GPIO register that needs to be

checkpointed incurs an additional latency of 5 µs. On the contrary, NVLPM has a

trecall of 1.2 ms arising from the larger data transfer overhead due to a checkpoint size

of 256 B that includes SRAM contents in addition to the processor registers. Similar

to LPMH, checkpointing each additional peripheral register incurs 5 µs overhead. Fur-

ther, for NVLPM , an already written flash-segment has to be erased before it can be

written to again. The erase operation adds a latency of terase = 18.1 ms to NVLPM ’s

recall overhead once every two cycles. Finally, the tsleep of the three solutions are

compared. The tsleep of CLPM encompasses two operations. First, CLPM configures

the directions of GPIOs and associated pull-up resistors to appropriate values in or-

der to reduce the leakage power consumption at the GPIOs. Then, the WInt needs

to be enabled before issuing the command to shut-off the clocks and transition into

LPM4. Hypnos’ tsleep encompasses the overhead for CLPM and also includes the

checkpointing overhead incurred in retaining processor registers, GPIO registers, and

in executing the mandatory operations discussed in Section 5.3.2. On the contrary,

NVLPM has a large tsleep as it utilizes flash memory to store data. A flash write

operation is as cumbersome as the flash erase operation and as a result, dominates

the tsleep duration.
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Table 5.3.
Idle mode current consumption

Current consumption (nA)

LPMHV 26

LPMHE 1

LPMNV 1

Conventional LPM 102

Active mode current consumption for the microcontroller =

296 µA

5.6.3 Power consumption

Table 5.3 shows the idle mode current consumption of Hypnos, CLPM , and

NVLPM . For differentiating between the two different VDDL generation techniques

and their corresponding low power mode, we use the notations LPMHV and LPMHE .

The notation LPMHV corresponds to the case when VDDL is derived from VDDH and

the notation LPMHE corresponds to the resultant low power mode where an energy

harvesting source is used to generate VDDL. When the MCU is in LPMHV , the

active system components include all the switches, the voltage converter, and the

voltage selector. A VDDL of 220 mV is achieved for Hypnos using a series resistor as

explained in Section 5.5, which makes the total power consumption for Hypnos in

idle mode to be 57.2 nW. CLPM does not have any additional circuits, and only the

microcontroller contributes to the power consumption. Hence, the power consumption

for LPM4 is 224.4 nW. Thus, LPMHV decreases the idle mode power consumption

by 4x as compared to a conventional implementation. As explained before, the MCU

is completely turned off in LPMNV. Hence, the current consumed in LPMNV is due

to the peripheral circuitry making up the Hypnos hardware architecture, which is

measured to be 1 nA. In other words, out of the 26 nA consumed for LPMHV , only
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1 nA accounts for the peripheral circuitry. These additional components contribute

only 2.2 nW of the 57.2 nW of power that is consumed in LPMHV . Hence, the

major portion of the consumed power is spent on generating the required voltage of

VDRV through the use of the resistive divider. When VDRV is generated by energy

harvesting, the power cost of implementing the low power mode is further reduced

to that of powering just the peripheral circuitry, which is just 2.2 nW. Thus LPMHE

consumes 100x lower power than LPM4.

In order to quantify the energy consumption of Hypnos, we devise an energy

model as given by the following equations. The latency overhead presented by each

approach is represented by TOH as shown in Equation (5.1). In addition, T1 refers to

the duration spent by the MCU in executing useful application tasks, and T2 indicates

the time spent in sleep mode. Equation (5.6) defines T
′
1 as the total time for which

the MCU is not in sleep mode. We use T
′
1 to compute the duty cycle (Equation (5.7))

for a particular T1 and T2.

TOH,i = twakeup,i + trecall,i + tsleep,i (5.1)

i ∈ {Hypnos,CLPM,NVLPM}

EHypnos,V = PActive ∗ (T1 + TOH,Hypnos) + PLPMHV
∗ T2 (5.2)

EHypnos,E = PActive ∗ (T1 + TOH,Hypnos) + PLPMHE
∗ T2 (5.3)

ECLPM = PActive ∗ (T1 + TOH,CLPM) + PLPM4 ∗ T2 (5.4)

ENVLPM = PActive ∗ (T1 + TOH,NVLPM − tsleep,nvlpm) + Pwrite ∗ tsleep,nvlpm

+
Perase ∗ terase

2
+ PLPMNV

∗ T2

(5.5)

T
′

1 = T1 + TOH (5.6)

Duty Cycle(%) =
T

′
1

T
′
1 + T2

∗ 100 (5.7)

The current consumption during T
′
1 was measured and found out to be close to the

active mode current consumption. While switching to active mode, an instantaneous

surge in current consumption is noticed. This inrush current is observed to be 296 µA.
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Fig. 5.12. Energy consumption for the MCU across different active
and idle durations

As we are not privy to the internal architecture of the MSP430G2452 MCU, we

can only speculate about the reason for the high inrush current. We presume that

when the MCU enters low power mode, the internal circuitry switches off a few logic

paths and power-gates certain modules as a power saving strategy. Hence, the inrush

current may be due to the sudden additional capacitance load presented to the supply

upon wakeup. Finally, Perase and Pwrite correspond to the power required to erase

and write to the flash memory. The measured values for the same are 5.72 mW

and 2.2 mW respectively. Equating equation (5.5) with equations (5.2) and (5.2)
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shows that duration of sleep required for NVLPM to break-even in terms of energy

consumption is 40 minutes for LPMHV and over 17 hours for LPMHE .

Using this model, we depict the average energy consumption (Eqs. (5.2) - (5.5))

by varying T1 and T2 in Fig. 5.123. We consider any heavily duty cycled application

for our experiments. Therefore, T1 is varied from 6 ms to 30 ms, while T2 is varied

from 60 s to 300 s. Fig. 5.12 shows that in spite of having almost zero idle-time

power consumption, ENV LPM is much more than ECLPM and EHypnos(V,E). This can

be attributed to the large power demand and huge latency overhead of the flash erase

and write operations that dominate ENV LPM . The dependence of ENV LPM on T2 is

negligible as compared to T1.

The advantage of LPMH
4, an ultra low power idle mode over a conventional

idle mode implementation is evident by comparing Figs. 5.12(a) and 5.12(b) with

Fig. 5.12(c). To begin with, the improvement in power savings due to LPMH trans-

lates to overall energy savings for a system operating with a low duty cycle. For any

T1, LPMH consumes lesser energy than CLPM due to the lower slope of EHypnos(V,E)

with respect to T2. Further, the impact of the energy consumed due to the additional

latency overhead of LPMH becomes insignificant in heavily duty cycled systems. The

slope of EHypnos(V,E) and ECLPM with respect to T1 is a testament to the dominating

effect that idle time power consumption places on the overall energy cost. In other

words, this signifies that the energy cost due to the higher latency overhead for LPMH

gets amortized in heavily duty cycled systems.

The average system power consumption when utilizing LPM4 or LPMH as the

low power mode is given by the following equation where Pidle denotes the respective

sleep-mode’s power consumption.

Pavg =
PActive ∗ T

′
1 + Pidle ∗ T2

T
′
1 + T2

(5.8)

3For this model, we assume that no GPIO registers are saved
4In this section, we refer to both LPMHV and LPMHE as LPMH. Whenever distinction is required,
the appropriate notation is used.
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Fig. 5.13. Average power vs duty cycle for MCUs utilizing different
sleep-mode schemes

Figs. 5.13(a) and 5.13(b) compares the average power consumption of Hypnos and

CLPM schemes as a function of the operational duty cycle. Lower duty cycles trans-

late to larger power savings for Hypnos as a direct result of spending more time in

the idle state. For example, consider a typical sensing system that collects samples

for a duration of 100 ms (T
′
1 = 100 ms) once every 5 minutes (T2 = 299.9 s). Then,

the microcontroller of that system, which has a duty cycle of 3.33 ∗ 10−2%, is 1.6x

power efficient than LPM4 when implementing LPMHV and 1.9x power efficient when

utilizing LPMHE . For lower duty cycles, the disparity in average power consumption

between the conventional low power mode and LPMH increases. However, for systems

with higher duty cycles, the power consumption gets dominated by the active mode

power. Therefore, the power consumption for both Hypnos and CLPM schemes

become comparable and for applications that have duty cycle greater than 0.5%, the

power difference is almost negligible.
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Impact of VDDL generation by energy harvesting on power consumption

As can be inferred from the above discussion, PLPMNV
corresponds to the power

consumed by the Hypnos peripheral circuitry. Hence, when VDDL is generated uti-

lizing the photodiode, the power consumption in LPMHE is equal to that in LPMNV,

i.e., PLPMHE
= PLPMNV

. Therefore, putting the MCU into LPMHE is more energy-

efficient than putting it into LPMNV for any duration of the sleep-mode, T2, as the

cost of entering and exiting LPMNV is much larger as compared to the overhead for

entering and exiting LPMHE . On the other hand, ECLPM ≥ EHypnos for T2 > 3 s and

for any T1. Therefore, when the idle mode duration exceeds 3 s, LPMHE is energy effi-

cient than CLPM . Hence Hypnos, which provides an additional VDDL rail for MCUs,

enables a new low power mode that is 102x times (from Table 5.3) better than CLPM

in terms of current consumption. Finally, Fig. 5.12(b) shows the energy consump-

tion of Hypnos while harvesting from the photodiode, and Fig. 5.13(b) compares

the power consumption of CLPM with Hypnos when VDDL is generated through

energy harvesting. As compared to Fig. 5.12(a), the energy consumption for LPMHE

is reduced when utilizing the energy output from the photodiode. Similarly, decrease

in idle mode power consumption results in a larger gap in the average power con-

sumed between LPM4 and LPMHE for applications with low duty cycle as is shown

in Fig. 5.13(b).

5.7 Discussions

In this section, we discuss the impact that the Hypnos scheme has on the overall

energy consumption of a system using an example application followed by a discussion

on the complexity of implementing Hypnos in an MCU.
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Fig. 5.14. Periodic sense & send application

5.7.1 Impact on application-level energy consumption

For heavily duty-cycled embedded applications, a reduction in sleep mode power

consumption translates to significant savings in application-level energy consump-

tion. In order to quantify the far-reaching impact that Hypnos has on the overall

energy consumption, we consider the wireless embedded application described in Sec-

tion 5.6.1. Assume that the system performs a sensing operation every 30 seconds,

wherein three samples are acquired and their average is computed. These samples

are then stored in the RAM before the system enters sleep mode. This cycle is re-

peated 120 times and the gathered data is transmitted by the system once every hour.

Fig. 5.14 shows the application behavior and two different duty cycles. The first is

the duty cycle for sampling, and the second is the duty cycle for radio transmissions.

The red rectangles correspond to the sensor measurements and accompanying com-

putations. The width of the rectangle represents the active time while the height

roughly denotes the power consumption. The much larger blue rectangle depicts the

power consumption and time required to perform the radio transmission in addition

to a sense and compute operation. Table 5.4 documents the cumulative time spent by

the application in each task for a time-span of one hour. The corresponding energy

consumption per task for CLPM and Hypnos, using both the resistive divider and

the photodiode for VDDL generation, are shown. The components considered for the
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Table 5.4.
Break-up of overall energy consumption for different sleep-mode schemes

Application

Task

Cumulative

Time Spent

per hr (ms)

Energy per hr

CLPM (µJ)

Energy per

hr Hypnos

(µJ)

Energy per hr Hypnos

using energy harvesting

(µJ)

Sensea &

Computea

89.14 26.2 64.88 64.88

Sleepa 35.9 ∗ 105 807.83 205.91 7.92

Sense,

Compute &

Sendb

5.26 66.61 66.94 66.94

Total Energy

per hour (µJ)

900.64 337.73 139.74

Reduction in

overall energy

consumption

1 2.67x 6.45x

aMeasured from experiment bComputed from datasheet

system are the MSP430G2452 MCU, the TMP20 analog temperature sensor from

Texas Instruments, and the AT86RF233 2.4 GHz RF transceiver from Atmel.

As is evident from Table 5.4, the sleep mode energy dominates the overall energy

consumption. LPMHE accounts for only 5.7% of the total energy consumption when

the Hypnos scheme is employed, whereas LPM4 (in CLPM ) accounts for 89.7% of

the total energy consumption. Note that LPMHE is over 100x energy efficient than

LPM4. However, the Hypnos scheme consumes more energy (1.42x) than CLPM

for both sensing and sending operations due to the additional overhead present in

waking up and sleeping. In spite of this, the proposed Hypnos scheme achieves a

reduction in application level energy consumption of 6.45x over the CLPM scheme.
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Choosing VDRV and its impact on energy consumption

For any MCU, deciding the value of VDDL for Hypnos involves a characterization

step to find its VDRV. As seen in Section 5.2.2, the VDRV for the MSP430G2452 MCU

was chosen to be 220 mV as it was the highest DRV seen in the characterization exper-

iment across 20 different chips. However, since it is infeasible to perform exhaustive

characterization, process variations could still result in a specific MCU having a data

retention voltage that is higher than the VDRV found by characterization. Hence, as

mentioned in Section 5.2.3, we propose guard-banding the VDRV as a solution to this

issue.

Guard-banding the VDRV of an MCU will result in a higher sleep-mode power

consumption when using a voltage converter, or increase the minimum light inten-

sity required for data retention while supplying power using the photodiode output.

For example, setting a guard-banded VDRV of 320 mV for the MSP430G2452 MCU

results in an increased power consumption of 112 nW in LPMHV , or places a min-

imum requirement of 36 lux for supporting LPMHE with the photodiode. The first

scenario results in a degradation in the energy-reduction achieved by Hypnos. For

the application scenario illustrated in Fig. 5.14, the guard-band results in an increase

of sleep-mode energy consumption from 205.91 µJ to 403.9 µJ, thus lowering the

system-level energy reduction provided by Hypnos from 2.67x to 1.68x. However,

when using energy harvesting as the power supply during LPMHE , there is no degra-

dation in the energy reduction provided by Hypnos and it remains the same at 6.45x,

albeit with a higher constraint on the minimum light intensity required to support

LPMHE .

5.7.2 LPMH Implementation in an MCU

For implementing Hypnos in an MCU, two critical requirements need to be sat-

isfied. First, the additional voltage (VDDL) has to be generated with minimum power

overhead. The above discussions elucidate the fact that employing an energy harvest-
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Fig. 5.15. Comparison of SRAM data retention with varying VDDL

for MCUs with and without an internal PMU

ing source could enable a full retention low power mode, similar to a shallow sleep

mode, with ultra-low power consumption comparable to that of a deep sleep mode.

Note that this is made possible by using just a photodiode that occupies minimal

board-area (2.8 mm×2.4 mm), and which is already present as a light sensor in many

embedded systems. However, the MSP430G2452 MCU used in this work does not

have a complex internal PMU. Therefore, we repeat the experiment conducted in

Section 5.2.2 with the TI MSP430F5438A MCU, which has an internal PMU that

consists of a supply voltage supervisor (SVS), a low dropout regulator (LDO), and a

reset circuitry. The PMU generates and provides the voltages required by the pro-

cessing core, on-chip flash, on-chip SRAM, peripherals, etc., from the supply voltage.

Fig. 5.15 shows the impact of an internal PMU on the MCU’s capability to retain data

as the supply voltage is scaled. Of the many voltage domains that are present in the

microcontroller, the voltage domain corresponding to the processing core and on-chip

SRAM is the one supplied by the VCORE rail5. We find that when VDDL is lowered be-

5In the MSP430F5438A MCU, the VCORE rail is brought out as a GPIO pin. In our experiment,
we make voltage measurements using the same.
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yond 1.56 V (say VOFF ), the VCORE rail is switched off by the PMU. Hence, the power

supply to the internal SRAM is cut off completely making data retention infeasible

for voltages lesser than VOFF . The power management unit of most microcontrollers

of today do not allow for the direct control of the SRAM voltage below the specified

range of normal operation. If the PMU design in these microcontrollers could be

modified such that the power supply to the internal SRAM be brought out to an

external pin, then energy harvesting could be utilized to generate the VDRV required

to retain the data in SRAM. Such a design would allow the SRAM to be powered

by the energy harvesting source only when it is in retention mode while utilizing the

voltages generated by the internal PMU in active mode. Second, the relevant GPIOs

that should register a WInt should be powered on. In existing designs, the GPIOs

receive adequate power to register a wakeup interrupt and a similar approach would

guarantee a wakeup from LPMH. This could possibly result in additional power re-

duction from the current Hypnos implementation, as the amount of accompanying

logic required to support n WInts would be significantly reduced. Most importantly,

the entire interrupt interface can be eliminated, although the power selection unit

should be replicated at the IO level of the MCU.

5.8 Related work

SRAM retention and the associated data retention/ hold voltage has been a topic

of sufficient interest and research in the past as mentioned in Section 5.2.1. Con-

ventionally in shallow sleep modes of MCUs, registers and other related circuitry in

addition to the SRAM memory are kept powered on. On the contrary, Hypnos keeps

just the SRAM powered on at VDRV by scaling the supply voltage of the MCU during

idle time.

Over the past decade, there has been sufficient interest in exploring data retention

and remanence characteristics of different memories. This has primarily been driven

by the need for understanding and characterizing potential security vulnerabilities
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of systems. Refs. [95, 96] explore data remanence of memories in the context of cold

boot system attacks. Ref. [97] explores SRAM data remanence for generating random

numbers in RFID tags.

The variation of SRAM data retention with changes in power-supply voltage has

also been explored by Ref. [98]. The work aims to quantify the different retention

times associated with different commercial off-the-shelf SRAM chips to prove the

existence of data remanence and the negative impact that remanence has on system

security. Recent work has proposed the use of an MCU’s chip VDRV characteristic as

a fingerprint for chip identification [99]. The authors also observe the loss of processor

state when the core voltage is lowered and perform checkpointing of state to a non-

volatile memory. In contrast, Hypnos reduces power consumption in idle mode by

lowering the core voltage and stores state information in-situ in the SRAM itself.

Tardis [100] is an algorithm designed to utilize SRAM data decay with loss in supply

voltage to provide a notion of elapsed time. Tardis quantifies the amount of data

decay, which is characterized by the number of bit flips that occur due to a loss of

power, and use it to thwart repeated security attacks within a short-span of time.

On the other hand, Hypnos defines a HW/SW architecture that ensures no bit flips

occur while going to an ultra-low power data retention idle mode. Idealvolting [101]

reduces the voltage beyond the manufacturer-specified operating voltage in active

mode. Reducing the SRAM supply voltage below VDRV has recently been explored for

approximate computing [102]. Finally, this work has been presented in Refs. [103,104].

5.9 Summary of contributions

In this chapter, we have proposed and implemented Hypnos, a hardware-software

architecture that reduces the overall energy consumption in heavily duty cycled appli-

cations. This is achieved by introducing a novel low power mode, LPMH that retains

data in the on-chip SRAM of embedded microcontrollers (which have the processing

core and SRAM share the same voltage rail) by performing extreme voltage scaling
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of the MCU’s supply voltage. We demonstrate that our proposed LPMH consumes

only 1 nA when powered using a light sensing photodiode, which is over 100x bet-

ter than existing LPMs. Using an MSP430G2452 MCU, we showed that putting it

into LPMH is more energy-efficient than a conventional shallow sleep mode if the idle

time is more than 3 s. For an example application, we quantified the reduction in the

overall energy consumption to be 6.45x when utilizing LPMH as opposed to CLPM .

Thus by performing extreme voltage scaling during idle time, our proposed Hypnos

architecture defines a new low power mode (LPMH) whose power consumption is

comparable to a deep sleep mode while still being able to retain data like a shallow

sleep mode.
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6. SUMMARY

The Internet of Things (IoT) is poised to pervade all facets of human life with the vi-

sion of improving everyday life such that human energy could be diverted to perform

and solve more attractive problems. The variety of societal-scale problems that the

IoT seeks to tackle include telemetry, healthcare, home automation, energy conserva-

tion, security, wearable computing, asset tracking, maintenance of public infrastruc-

ture, waste management, environmental monitoring, and so on. The work-horses of

IoT are the devices that sense and communicate different physical phenomena of in-

terest to the cloud. The cloud then processes the data and makes intelligent decisions

upon it. Various forecasts estimate that around 50 billion devices will be deployed

by 2020. Powering such a large amount of devices is challenging due to various fac-

tors such as the need for untethered operation, adverse deployment location, stringent

form-factor constraints, etc. While a battery-based approach is highly enticing, the

cost and effort of performing maintenance for billions of devices renders it infeasible.

Energy harvesting has long been thought of as a promising solution, but the unreliable

and intermittent nature of ambient sources has deterred designers from adopting it in

the past. An emerging class of embedded devices called intermittently-powered IoT

devices, envisions to work on scanty and unreliable ambient energy sources. However,

performing computations energy-efficiently and reliably in the face of frequent and

sudden power loss remained a challenging proposition.

In the first part of this dissertation (Chapter 3), we proposed a solution for

intermittently-powered IoT devices to perform computations reliably and energy-

efficiently. We made a case for an emerging non-volatile memory, Ferroelectric RAM

to be used as unified memory to enable in-situ checkpointing such that more energy

per power cycle could be used for executing computations as compared to a conven-

tional memory architecture using Flash. In-situ checkpointing does away with the
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data transfer overheads required for storing the state and hence, reduces the check-

pointing energy overhead. The chapter contributions included a proposed software

flow for these systems to enable application execution in a seamless and transparent

manner.

In the second part of the dissertation, we built upon the contributions made in

Chapter 3 to further enhance energy efficiency and performance of these systems

(Chapter 4). This is achieved by a judiciously mapping different program sections

across SRAM and FeRAM, such that the beneficial characteristics of both kinds of

memories could be utilized. We proposed a run-time dynamic memory mapping

scheme that finds an energy-optimal memory mapping at the granularity of functions

that constitute a program. We also proposed a technique called Energy-Align, that

performs proactive system shutdown to further improve the energy-efficiency and

performance of the system.

The third part of the dissertation (Chapter 5) addressed IoT devices that operate

intermittently and reduced the sleep-mode energy consumption of these devices. We

increased the lifetime of the battery by reducing the sleep mode power consumption to

such an extent that the sleep mode could be sustained by energy harvesting alone even

in the harshest of conditions. This was achieved by intelligently exploiting SRAM’s

device characteristics at the system-level, by performing sleep mode voltage scaling

of the MCU’s supply voltage.

In summary, this dissertation makes a significant step in enabling IoT devices

to achieve a set-and-forget mode of operation energy-efficiently and reliably. We

hope that the solutions presented in this dissertation will facilitate in the widespread

adoption of IoT devices and help in realizing the vision of the Internet of Things.
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APPENDIX

QUBE: AN FeRAM-BASED, LOW POWER, MODULAR

PLATFORM ARCHITECTURE FOR

INTERMITTENTLY-POWERED IoT DEVICES

This appendix describes the design and power consumption characteristics of an IoT

platform, Qube, that was used for evaluating QuickRecall in Chapter 3 and the later

techniques proposed in Chapter 4.

A.1 Introduction

Various industry forecasts project that, by 2020, there will be around 50 billion

devices [1] connected to the Internet of Things (IoT), helping to engineer new solu-

tions to a variety of societal-scale problems such as health-care, energy conservation,

transportation, etc. Most of these devices will be wireless due to the expense, incon-

venience, or in some cases, the sheer infeasibility of wiring them. Further, many of

them will have stringent size constraints. With no cord for power and limited space

for a battery, powering these devices (to achieve several months to possibly years

of unattended operation) becomes a daunting challenge [2, 3]. Therefore, designing

ultra low power platforms with minuscule amount of sleep mode power consumption

is crucial to the success and widespread adoption of the IoT vision.

Recent advances in semiconductor technology have resulted in the emergence of

memory technologies such as Ferroelectric RAM (FeRAM), Magnetoresistive RAM

(MRAM), etc., that combine the speed, flexibility, and endurance of SRAM with

the non-volatility of flash, all at a very low power consumption. This work utilizes

QuickRecall [45] that utilize the emerging NVM as both the RAM and ROM of the
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system to reduce checkpointing and restore overheads. Thus, Qube makes the case

that the use of these emerging memories, with better power performance characteristic

than flash, significantly advances the state-of-the-art in ultra-low power computing

platforms for IoT edge devices. Specifically, our contributions are listed below:

• We propose Qube, a novel FeRAM-based hardware platform for IoT edge devices

that enables ultra-low power operation. Qube utilizes a modular architecture,

which is composed of separate 1 inch × 1 inch modules stacked together in a

plug-and-play manner.

• We define a generic bus architecture, Qubus, that binds the constituent modules

of Qube together. Adherence to a fixed bus architecture expedites the design,

development, and testing of the individual modules and enables seamless inte-

gration of the complete IoT edge device.

• Qube features several low power optimizations, such as individual power do-

mains for modules. The power domains can be independently disabled, which

allows for module-level power gating of the system. Also, Qube’s use of FeRAM,

instead of SRAM, means that the contents of memory are preserved in-situ across

power cycles, avoiding the need for (and the energy overhead of) backing them

up to persistent storage, such as flash, when power loss is imminent. Using

these low power features, we demonstrate a typical wireless sensing application

on Qube that consumes only 4 µA in sleep mode.

A.2 Hardware architecture

The design goal for Qube is to create an ultra-low power platform that is modular

and has a small form factor. In this section, we first describe the modular Qube

design, followed by the bus architecture that enables it. Finally, we explain the

design decisions made to enable the ultra-low power operation of Qube.
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Fig. A.1. QUBE Modular Architecture

A.2.1 Modular design

An IoT edge device is typically composed of multiple functional sub-systems such

as a computation sub-system, a radio sub-system, a sensor sub-system, a power sub-

system, etc. In the Qube design, this functional demarcation is also adopted in the

physical sense to create an implementation that places each functional sub-system on

a physically separate module. Fig. A.1 illustrates the proposed Qube architecture

wherein four such modules are placed in a stack and connected using a common bus.

The primary advantage of such an architecture is the effortless customizability of the

entire system. First, the modular architecture offers easy addition and removal of

features to the edge device. For example, a designer wishing to work with a Zigbee

radio instead of a Bluetooth radio can simply replace the radio module in the stack.

In another case, a designer who wants to add a new sensor can just plug in an

additional sensor module to the stack. Second, the architecture indirectly assists in

accelerating the design, debug, and prototyping phases involved in the development of

the entire system. A modular design, such as Qube, will enable designers to focus on

the development of each module as an independent entity. Each module can then be

tested separately in an isolated environment without interference from other modules.

Once each module is tested, the entire system can be integrated by stacking the
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Fig. A.2. The QUBE interconnect topology

Table A.1.
The QUBUS Architecture

Function #Ports Bus Channels

Power Enable 4 4

UART 1 4

Analog Channels 4 4

Interrupt Capable GPIOs 4 4

I2C 1 2

SPI 1 7

GPIO & Auxiliary ports - 12

modules and be subjected to further verification and debugging. Therefore, Qube’s

design philosophy is aligned with the logical flow of system integration and testing

that hardware engineers typically adhere to.

A.2.2 The QUBE interconnect

A key feature that enables the Qube modular architecture is the interconnect

topology. The interconnect structure in Qube has two parts, namely, a general

purpose bus (Qubus) and a power bus. Fig. A.2 illustrates the Qube interconnect

topology and Table A.1 details the Qubus architecture.
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Fig. A.3. Power bus and QUBUS on headers

QUBUS Architecture: The Qubus is a bidirectional bus connecting the MCU

module to other modules. Its primary function is to enable communication between

various system components. The Qubus architecture specifies a minimum set of pe-

ripheral functions to be brought out from the MCU module. The Qubus supports

four different power domains with dedicated power enable signals. It also contains

interfaces for typical serial communication protocols such as UART (4-wire), I2C,

and SPI (with 4 different chip selects). The Qubus also has a minimum of 4 analog

channels and 4 GPIOs with interrupt capabilities. Additionally, 4 GPIOs are brought

out to the bus from the MCU that may be multiplexed with other peripheral func-

tionality as the designer may deem fit. Finally, 8 channels are left unused on the bus

to facilitate ease of debugging, make application-specific assignments, and allow for

future expansion.
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The interconnect is implemented as two rows of 20-pin headers on each module

as shown in Fig. A.3. The headers propagate the signals across the layers of the

stack. Adhering to such a fixed bus architecture simplifies the task of designing

a new module. For example, if a new sensor module wants to use the I2C bus, the

designer can simply route to the I2C channels of the Qubus. To avoid multiple slaves

using the same bus channel, it is important to define a module to Qubus interface on

each module. The Qube design places a constraint on the designer to adhere to the

defined module to bus interface for select functions. For example, the bus interface

for enabling SPI on a module is shown in Fig. A.4. The SPI clock and data lines

go directly into the module. However, all the four SPI chip selects on the Qubus

are brought onto the interface of the module. During system integration, one of the

four chip select paths is closed using a 0 Ω resistor and fed into the module. Thus,

the designer can decide upon the chip select to use at deployment time and avoid

potential conflicts with other SPI-enabled modules with minimal change in software.

Note that each SPI slave on the Qubus needs to replicate this interface.

Power Bus: The power bus consists of 3 channels, i.e., 2 ground lines and 1

power supply line. It originates from the power module and supplies power to the

entire Qube. The power bus also has a power-enable interface in each module that

is discussed next.
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A.2.3 Ultra-low power design

To enable ultra-low power consumption, Qube supports a maximum of five dif-

ferent power domains; namely, the main power supply domain and four domains

controlled by the power enable bits of the Qubus. As illustrated in Fig. A.4, each

module has a power domain interface similar to the SPI chip select interface that

connects the correct power enable to the module. The selected power enable is fed

into a switch that gates the power supply to the module. Such an architecture serves

two purposes. First, it grants a system designer the freedom to effortlessly implement

and allocate power-domains. The designer could consider each discrete module to

be an independent power-domain oblivious to the control required at a system level.

Then, during the stack assembly, he/she can allocate the appropriate power domain

to each module. Second, since all the peripherals and components associated with

a module (such as pull-up resistors, decoupling capacitors, etc.) are located on the

module itself, the low power mode implementation becomes much more efficient as

none of these components consume power when the entire module is power gated.

To maintain signal integrity and to prevent unwanted leakage or capacitive loading

on bus channels that are used by multiple modules on the stack, a bus isolation

interface is defined. The function of the interface is to provide isolation for the

connected channels and thereby prevent any floating lines when the module is in

power-gated mode. The isolation must be done universally for the channel across

the system. Qube achieves isolation using simple analog switches controlled by the

particular module’s power enable signal. Therefore, when a module is powered on, all

its bus channels are active as well. Thus, multiple power domains can be controlled

in this fashion to optimize the power consumption. The following describes the power

management of a typical wireless sensing Qube.

The MCU controls the power supply of the other modules depending on the ap-

plication task. For example, a wireless sensor’s activities can be broken down into

the atomic operations of sense, store, send, and sleep, which are often repetitive in
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Fig. A.5. QUBE Stack

(a) MCU Module (b) Radio Module (c) Sensor Module

Fig. A.6. QUBE Functional Modules

nature. All these operations have varying power requirements. Therefore, on waking

up, only the MCU module needs to be powered on. During a sense operation, the

MCU wakes up the sensor module. For the ensuing transmit operation, the MCU

and radio module need to be powered on. Therefore, only the relevant modules can

be supplied with power depending on the task currently being executed.
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A.3 Low power implementation

To evaluate the Qube architecture, we designed and fabricated an MCU module,

a sensor module, and a radio module. Fig. A.6 shows our implementation of each

module separately, and Fig. A.5 shows the stacked Qube. For uniformity, the size of

each module is 25 mm x 25 mm and the height of each module is bounded by a post

length of 4 mm.

The MCU module consists of the TI MSP430FR5739 microcontroller [10] that

has 16 KB of FeRAM. The sensor module consists of an analog temperature sensor,

TMP20 from TI [105], and a power management unit (PMU). The PMU consists of a

supply voltage supervisor (SVS), NCP302 [106], and a power switch, TPS22901 from

TI [107]. The radio module consists of a bluetooth low energy SoC module, BLE113

from BlueGiga [108]. Additionally, the signal isolation and power gating on each

module are provided by ultra-low quiescent current SPST switches (MAX4652 [109]

and ISL84715 [110]).

The Qube architecture facilitates easy allotment of power domains according to

modules. Thus, two power domains are defined for Qube, namely, the radio domain

and the sensor domain. The MCU receives power from the source directly and routes

power to the two power domains depending on the application state. For example,

the BLE module receives power only when the application is required to transmit

data. This modular power management technique allows us to switch off the unused

components according to functionality, thus enabling ultra low power operation.

As Fig. A.5 shows, the modules are stacked vertically and are connected through

the headers. The BLE module occupies the top-most layer in order to reduce antenna

interference. It is programmed as a slave and interacts with the MCU master module

through the UART interface on the Qubus. The BLE is programmed to transmit at

its lowest power configuration of −24 dbm. Lastly, the sensor module uses an analog

channel on the Qubus to interface with the MCU.
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A.4 Example usage scenario

Intermittently-powered devices are a new class of batteryless IoT devices that

receive energy from unreliable power sources. Therefore, it often receive power in

intermittent bursts. To enable computations across these power cycles is a challenge

for such systems. The target application needs to store data pertaining to the pro-

gram and processor states in a non-volatile memory before power is lost so that the

state can be recalled after a subsequent power up. QuickRecall [45] is a lightweight,

in-situ checkpointing technique using FeRAM that seamlessly enables long-running

computations in intermittently-powered systems.

SVS

Isys

Isupp

PWR SWITCH

Cin

Vin

Vsys

PMU

QUICKRECALL

 Interrupt

SVSOutput

Target System

MCU Sensor Radio

Fig. A.7. QUBE setup for enabling intermittently-powered systems

QuickRecall is unlike conventional checkpointing schemes that are either periodic

in nature or are initiated by inserting appropriate triggers at vantage locations in the

program. QuickRecall performs a checkpoint operation only when it detects that the

supply voltage is below a critical operating threshold voltage. Such a checkpointing

scheme does not impede normal program execution and only triggers a checkpoint if

power loss is imminent. Fig. A.7 shows the setup required for implementing Quick-

Recall on Qube. An external SVS is used to monitor the supply voltage, Vin, and
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trigger the MCU interrupt when it falls below the SVSOFF threshold. Alternatively, it

closes the power switch when Vin ≥ SVSON and supplies power to the target system.

The interrupt triggers a checkpoint operation that saves the system context. The

system context consists of program state, processor state, and the state of configu-

ration registers of various peripheral subsystems. Each of the above mentioned state

information has to be retained for a successful recall and resumption of computation

across power cycles. Fig. A.8 shows the linker map proposed by QuickRecall that uses

an NVM technology such as FeRAM as unified memory. Conventionally, the linker

maps the code section to a non-volatile storage like flash, and the data, bss, and

stack sections to the volatile SRAM. The same non-volatile memory is partitioned

by the linker to include all the sections. The non-volatile memory now acts as the

conventional RAM as well as the ROM. As a result, while the MCU powers off, the

RAM data is saved in-situ. Similarly, while waking up, the program can pick up

the data from exactly the same address locations. By using FeRAM as the RAM,

QuickRecall is superior to previous checkpointing schemes as there is no time or en-

ergy overhead incurred to retain RAM data. Processor state denotes the state of the

microcontroller register file, which includes the program counter (PC), stack pointer

(SP), status register (SR), and General Purpose Registers (GPRs). QuickRecall saves

the values of these registers during checkpointing. Finally, it saves the configuration

registers for the MCU and associated peripherals onto the FeRAM as per application

requirement and recalls the state in the subsequent boot sequence.
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Fig. A.9. Experimental setup

A.5 Evaluation

This section describes our experimental setup and evaluation of Qube.

A.5.1 Experimental setup

Fig. A.9 shows the experimental setup for Qube. For all the experiments, the

system was supplied with power using DC voltage and current sources. Power was

measured using a Tektronix 6430 Keithley source meter [44], which can measure up

to femtoamperes, and a Monsoon Power Monitor [111]. A Tektronix MDO4104-3

oscilloscope [112] was used to measure the latency overheads. Lastly, the Saleae logic

analyzer [113] was used to snoop the Qubus.

A.5.2 QUBE power measurements

In this experiment, Qube’s power consumption is characterized. A constant power

source is used to supply power to the system. A simple program that was used for

evaluation is described below. Initially, only the microcontroller module is powered

on and all the other power domains are shutdown. Then, the microcontroller activates

the sensor module and samples temperature data from the sensor. Once the sampling
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Table A.2.
Stand-alone current consumption

Mode Current Consumption (mA) Execution time (ms)

Sense 0.51 1.167

Compute 0.3 0.453

Transmit (−24 dbm) 18 330.8

Idle 0.004 -

is done, the sensor module is turned off. The samples are then averaged and the

average is subjected to an encryption step. Subsequently, the BLE power domain is

enabled and the encrypted data is packed and advertised1 using the Bluetooth radio.

Finally, the BLE power domain is cut-off and the microcontroller enters low power

mode.

Table A.2 shows the current consumption and execution time of each mode. The

measurements are made in steady-state after the entire system is powered on. The

sense and compute operations are done on 10 samples of sensor data, and the transmit

time noted is the time taken to advertise a single packet. Sense consumes more power

than compute due to the ADC being utilized for conversion.

Fig. A.10 shows the current consumption of Qube for each atomic task in a sense-

and-send application with a supply voltage of 2.6 V. Note that we intentionally collect

more samples, perform computations, and transmit multiple times in order to make

a visual distinction between the current consumption of the different modes. 2048

samples are collected for performing sense and compute operations. After compute

operation is completed, the radio power domain is enabled for transmission, which

leads to an in-rush current that charges up the capacitors of the BLE module. About

1Advertising does not require bluetooth pairing to occur.



155

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

Time (s)

M
ax

im
um

 C
ur

re
nt

 C
on

su
m

pt
io

n 
(m

A
)

SENSE &
COMPUTE IDLE

RADIO TX

Fig. A.10. QUBE current consumption trace

500 ms later, the BLE begins its boot process, which is denoted by the second spike

at 1 s. The BLE then enters active mode and transmits two times. Each time two

different packets are advertised: a normal packet and the sensor data packet leading

to four transmission peaks as shown in the figure. Then the system enters idle mode

wherein all the power domains are disabled and the MCU enters the lowest power

mode. Note that during idle time, the current consumption is as low as 4 µA. Only

the components in the power supply domain contribute to the idle power, and this

primarily includes the PMU and associated logic for power supply management.

A.5.3 Computing across power cycles

In the usage scenario described in Section A.4, the goal of Qube is to enable

computations seamlessly across power cycles. To demonstrate this property, two ex-

periments are performed. The evaluation application for the experiments performs a

64-bit RSA encryption program on 128 different characters. A “Done” signal indicates
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Fig. A.11. Execution of RSA encryption on QUBE

the successful completion of encryption and is brought out on a GPIO channel of the

Qubus. The experiments are described below.

For the first experiment, the supply voltage is provided continuously and is kept at

a constant 2.5 V. Fig. A.11(a) shows the supply voltage for Qube and the Done signal

for the application. Observe that the Done signal is set 11.12 s after receiving the

power supply, which is the application’s execution time. In the second experiment,

Qube is supplied using an intermittent power source (that power-cycles three times),

and the total time required for application execution is measured. Fig. A.11(b) shows

the power-cycle operation on the supply voltage and the Done signal. The duration

of a single power cycle is 4.035 s, and successive power cycles are separated by an

OFF duration of 4.08 s as denoted in the figure. Therefore, a single power cycle is

insufficient for completing the program. However, observe that the done signal is

raised in the third cycle, which proves that the program computed successfully across

power cycles.
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Table A.3.
Program Exec. Time (CPU Freq = 8 MHz)

Program Overheada Total Exec. Time

RSA 12.06 µs + 580 µs + 9 µs 11.12 s

CRC 12.06 µs + 580 µs + 9 µs 547 ms

SENSE 12.06 µs + 17.6 ms + 9 µs 73 ms

a
Store Overhead + Initialization Overhead + Restore

Overhead

Additionally, the QuickRecall overhead per power cycle and the single power cycle

execution time for three different programs are tabulated in Table A.3. The overhead

comprises of constant store and restore overheads of 12.06 µs and 9 µs respectively,

and an initialization overhead that varies from one application to another. The ini-

tialization overhead is defined as the time required for the program to configure the

MCU and enable the necessary peripherals. For RSA, note that the QuickRecall over-

head is in the order of microseconds. Therefore, the overhead for the completing

the application across three power cycles is negligible, which concurs with our result

(19.28 s− 2 × 4.08 s = 11.12 s) as shown in Fig. A.11. The sense application requires

the sensor and ADC to settle before an accurate reading can be made. Therefore,

the initialization overhead is relatively longer than that of the other programs. For

all the three programs, Qube was able to implement QuickRecall and successfully

compute across power cycles.

A.6 Conclusions

In this design, we have demonstrated Qube, a generic low power modular ar-

chitecture for IoT edge devices that consumes only 4 µA in idle mode. A new bus

architecture, Qubus, is defined that facilitates modular development, testing and
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integration of the constituent modules of an embedded system. Qube is generic

and allows effortless addition and removal of features by its plug-n-play architecture.

Finally, using Qube, we demonstrated successful and seamless computation across

power cycles with negligible overhead in an intermittently-powered IoT device.
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