13,474 research outputs found

    An investigation on the effect of driver style and driving events on energy demand of a PHEV

    Get PDF
    Environmental concerns, security of fuel supply and CO2 regulations are driving innovation in the automotive industry towards electric and hybrid electric vehicles. The fuel economy and emission performance of hybrid electric vehicles (HEVs) strongly depends on the energy management system (EMS). Prior knowledge of driving information could be used to enhance the performance of a HEV. However, how the necessary information can be obtained to use in EMS optimisation still remains a challenge. In this paper the effect of driver style and driving events like city and highway driving on plug in hybrid electric vehicle (PHEV) energy demand is studied. Using real world driving data from three drivers of very different driver style, a simulation has been exercised for a given route having city and highway driving. Driver style and driving events both affect vehicle energy demand. In both driving events considered, vehicle energy demand is different due to driver styles. The major part of city driving is reactive driving influenced by external factors and driver leading to variation in vehicle speed and hence energy demand. In free highway driving, the driver choice of cruise speed is the only factor affecting vehicle energy demand

    Transport energy consumption in mountainous roads. A comparative case study for internal combustion engines and electric vehicles in Andorra

    Get PDF
    This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.Peer ReviewedPostprint (author’s final draft

    A BAYESIAN NETWORK APPROACH TO BATTERY AGING IN ELECTRIC VEHICLE TRANSPORTATION AND GRID INTEGRATION

    Get PDF
    Nowadays, batteries in electric vehicles (EVs) are facing a variety of tasks in their connection to the power grid in addition to the main task, driving. All of these tasks play a very significant role in the battery aging, but they are highly variable due to the change in the driver behavior, grid connection availability and weather conditions. The effect of these external factors in the battery degradation have been studied in literature by mostly deterministic and some stochastic approaches, but limited to specific cases. In this dissertation, first, a large-scale deterministic approach is implemented to evaluate the effect of variations in the EV battery daily tasks. To do so, a software tool named REV-Cycle is developed to simulate the EV powertrain and studied the effect of driving behavior, recharging facilities and timings, grid services and temperature/weather change effects, one by one. However, there are two main problems observed in the deterministic aging evaluation: First, the battery capacity fade factors such as temperature, cycling current, state of charge (SOC) … are dependent to the external variables such as location, vehicle owner’s behavior and availability of the grid connection. Therefore, it is not possible to accurately evaluate the battery degradation with a deterministic model, while its inputs are stochastic. Second, the battery aging factors’ dependency is hierarchical and it is not easy to follow and implement this hierarchy with deterministic models. Therefore, using a hierarchical probabilistic framework is proposed that can better represent the problem and realized that the Bayesian statistics with Markov Chain Monte Carlo (MCMC) can provide the problem solving structure needed for this purpose. A comprehensive hierarchical probabilistic model of the battery capacity fade is proposed using Hierarchical Bayesian Networks (HBN). The model considers all uncertainties of the process including vehicle acceleration and velocity, grid connection for charging and utility services, temperatures and all unseen intermediate variables such as battery power, auxiliary power, efficiencies, etc. and estimates the capacity fade as a probability distribution. Metropolis-Hastings MCMC algorithm is applied to generate the posterior distributions. This modeling approach shows promising result in different case studies and provides more informative evaluation of the battery capacity fade

    Making meaningful comparisons between road and rail – substituting average energy consumption data for rail with empirical analysis

    No full text
    Within the transport sector, modal shift towards more efficient and less polluting modes could be a key policy goal to help meet targets to reduce energy consumption and carbon emissions. However, making comparisons between modes is not necessarily straightforward. Average energy and emissions data are often relied upon, particularly for, rail, which may not be applicable to a given context. Some UK train operating companies have recently fitted electricity metres to their trains, from which energy consumption data have been obtained. This has enabled an understanding to be gained of how energy consumption and related emissions are affected by a number of factors, including train and service type. Comparisons are made with existing data for road and rail. It is noted that although more specific data can be useful in informing policy and making some decisions, average data continue to play an important role when considering the overall picture

    Electric vehicle assistant based in driver profile

    Get PDF
    This paper presents the outcomes of a research work consisting in the development of an Electric Vehicle Assistant (EVA), which creates and stores a driver profile where are contained the driving behaviours related with the EV energy consumption, the EV battery charging information, and the performed routes. This is an application for mobile devices that is able to passively track the driver behaviour and to access several information related with the EV in real time. It is also proposed a range prediction approach based on probability to take into account unpredictable effects of personal driving style, traffic or weather.FCT -Fuel Cycle Technologies(SFRH/BD/80155/2011

    Strategic Approach for Electric Vehicle Charging Infrastructure for Efficient Mobility along Highways: A Real Case Study in Spain

    Get PDF
    The Electric Vehicle (EV) market has been growing exponentially in recent years, which is why the distribution network of public charging stations will be subject to expansion and upgrading. In order to improve the public charging infrastructure, this paper aims to develop a model capable of analyzing the current situation of a stretch of highway, identifying the congestion points, created by the formation of queues at the charging points. A specific section of a highway in Spain was selected as a case study to evaluate the performance of the model, allowing for rigorous testing and thorough analysis of its performance in a real-world scenario. The first step is to define and evaluate the effects of factors affecting EV consumption, such as the slope of the road, weather conditions, and driving style. Subsequently, a simulation model is developed using the agent-based simulation software AnyLogic, which simulates the journey of a fleet of electric vehicles, taking into account the battery charging and discharging process. Based on the obtained results, the charging infrastructure is improved to minimize the total travel time of an electric vehicle on a long-distance trip
    corecore