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Abstract

Environmental concerns, security of fuel supply and CO2 regulations are driving innovation in the

automotive industry towards electric and hybrid electric vehicles. The fuel economy and emission

performance of hybrid electric vehicles (HEVs) strongly depends on the energy management system

(EMS). Prior knowledge of driving information could be used to enhance the performance of a HEV.

However, how the necessary information can be obtained to use in EMS optimisation still remains a

challenge. In this paper the effect of driver style and driving events like city and highway driving on plug in

hybrid electric vehicle (PHEV) energy demand is studied.

Using real world driving data from three drivers of very different driver style, a simulation has been

exercised for a given route having city and highway driving. Driver style and driving events both affect

vehicle energy demand. In both driving events considered, vehicle energy demand is different due to driver

styles. The major part of city driving is reactive driving influenced by external factors and driver leading to

variation in vehicle speed and hence energy demand. In free highway driving, the driver choice of cruise

speed is the only factor affecting vehicle energy demand.

Keywords: Energy consumption, power management, PHEV, vehicle performance, simulation

1 Introduction
Environmental concerns, security of fuel supply
and CO2 regulations are driving innovation in the
automotive industry towards electric and hybrid
electric vehicles. Fuel economy and emission
performance of hybrid electric vehicle (HEV)
strongly depends on the energy management
system (EMS).

Definition of terminology used:-

1. Drive cycle: Vehicle speed - time data is
referred as drive cycle.

2. Driver style: Driver has own characteristic
way in driving vehicle like starting,
stopping and cruising. In the process they
can be efficient, inefficient, aggressive
and calm. For a given condition, the
variation in vehicle performance due to
the driver behaviour is called as driver
style.
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3. Driving events: Route data is divided
into city and highway driving. These are
called as driving events.

4. Specific energy: Specific energy
(Wh/km) is the vehicle energy required
to travel one kilometre.

This paper focuses on the effect of driver style
and driving events on EMS optimisation for
HEVs. It also gives an outline of how driving
events and driver style information can be used
as a future cost in EMS.

The key objectives in the design of an EMS are
[1, 2]

A. Maximise fuel economy and minimise
emissions

B. Achieve good driving performance
C. Maintain state of charge (SOC)
D. Strive for optimal performance under all

conditions
E. Perform in real time and
F. Minimise system cost

1.1 Drive cycles

For a given drive cycle or a set of drive cycles, it
is possible to deliver optimal results like high
fuel economy, low emission and maintain desired
state of charge (SOC). Legislative drive cycles
(LDC) are commonly used for EMS optimisation
[3, 4]. In real world driving, vehicles are not
driven in LDC. Hence their performance may not
be optimal.

Real world drive cycles are more transient in
comparison to LDC. They are used for vehicular
emission inventory calculation and emission
modelling based on time (per day, month and
year) and region (urban, rural and national
level)[5, 6]. Some examples are ARTEMIS,
EMPA and TRAMAQ. They are also used for
vehicle durability assessment and study.

Alternatively, EMS can be designed with
reduced drive cycles dependence [7, 8]. The
basic assumption is that the driver behaviour can
be approximated with a Markovian process. The
EMS is optimised over various drive cycles in an
average sense. The transition probabilities are
determined using LDC and real world drive
cycles. The weakness in this model is that the
transition of events like urban and highway
driving do not happen randomly. They are fixed
for a given route. Only their characteristics like

traffic may vary over time. Hence drive cycle for a
given route is not a series of random events as
represented by Markov driver. In real world
driving they do not represent the actual future cost.

Instantaneous fuel economy optimisation
technique like ECMS are used in [9, 10]. In this
method tuning parameters adapt to the current
driving conditions or SOC. It assumes that future
driving conditions will be similar to the current
conditions. Such an approach will lead to sub
optimal results in maintaining the desired SOC and
fuel economy.

The current research challenge is focused on the
last three objectives of EMS (D-F). To make EMS
deliver optimal results for varied driving
conditions.

An adaptive EMS using PI controller with the
basic assumption that the past speed profile
provides a good representation of the future drive
cycle is presented in [11]. The corrective action for
deviation in SOC is taken by PI controller at the
end of the trip, assuming the speed profile in the
next trip will be same. This method may make
EMS highly sensitive without understanding the
root cause for the variation.

In pattern recognition method [12, 13] a pre-
determined control action is taken based on the
pattern match. Each time this window considered
for pattern match is only a small part of the future
cost. Thus the complete future cost is not studied
leading to undesired performance. This method is
also sensitive to the recognition of the initial
pattern of the drive cycle set.

Kutter[14] demonstrated the requirement for
adaptive EMS in situation were the actual speed
profile deviate from the originally predicted speed
profile after a period of time. This is similar to
change in destination planned in the midway. In
such situation, almost balanced SOC is achievable
only by having adaptive EMS.

In the quest to develop optimal and adaptive EMS,
various driving data are used. Use of upcoming
driving data like velocity and elevation with EMS
are found beneficial [15].

Similarly Kessels[16] shows that use of static
vehicle speed and road elevation helps to improve
result. In this study, a very simple drive cycle is
constructed out of NEDC and an imaginary
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elevation. As in most studies, the actual benefit
in real world driving was not studied to make a
meaningful conclusion.
In recent research work, the most commonly
used sources to get driving data like speed profile
is to use ITS data. Use of ITS data in EMS is far
better than relying on LDCs.

Gong used WisTransPortal data for drive cycle
modelling using historic traffic information for
power management study of PHEV. Vehicle
speed – time series aggregate data for 10
weekdays was used to develop a freeway driving
cycle[17].

As part of ITS, WisTransPortal supported by the
university of Wisconsin – Madison, data is
collected from detectors placed along the road to
measure volume, speed and occupancy for
purposes of corridor-based performance analysis
and freeway management. Each detector records
data at five minute intervals. From this aggregate
data, volume speed and occupancy for a region is
generated[18]. So, ITS vehicle speed data is
aggregate data of various vehicle type and driver
styles. Use of such data in EMS as future cost
will be advisable only in situations where vehicle
type and driver style have relatively less
influence for example driving during peak traffic
time.

Prior knowledge of driving information is
required to enhance the full potential of HEV.
But how the necessary information can be
obtained to use in EMS optimisation still remains
as a challenge.

Previous research has shown that speed profiles
and sometimes road elevations can be considered
in future cost estimation in EMS. But each driver
has their own style of driving for a given
situation. A review on the study of driver style is
discussed in the next section.

1.2 Driver style

Driver style has a significant bearing on fuel
consumption and emissions [19-24]. A lot of
work is focused towards improving driver style
by providing driver assist both in conventional
vehicles [25] and HEVs [26, 27]. To date, little is
understood about considering driver style in
control strategy optimization of HEV. Normally
PI or PD controllers are used as the driver [11,

28]. Thus variation in energy demand due to real
world driving style is neglected.

Phuc et al proposed a torque distribution strategy
for a parallel HEV, which incorporates driving
characteristics by interpreting accelerator pedal
operation during vehicle following conditions [29].
For driver using large accelerator pedal position,
the required motor torque is reduced to avoid
engine operation in low efficiency areas. This
strategy is questionable, as reducing performance
may not be acceptable to the driver.

The effects of driver behaviour during vehicle
cruising on control strategy was presented in [30].
Two drivers were compared for fuel economy. It
was concluded the smoother acceleration pedal
movement in cruise driving could reduce the fuel
consumption and show less switching between
operating points of the hybrid vehicle.

Johannesson [31] used a driver model with fixed
acceleration and deceleration values and hence
lacked scope to make control strategy adaptive to
driver or address variation due to individual
drivers.

In intelligent energy management agent (IEMA)
presented [13], driver behaviour was classified
based on average acceleration and standard
deviation of acceleration over a specific driving
range. For the effect of driver variability, the idea
is to compensate a factor of ±10% of total torque
distribution in control strategy. EMS was proposed
based on pattern recognition method as discussed
in section 1.1.

1.3 Objectives

For optimal performance in real world driving
advance knowledge about driving information is
required. Vehicles are not driven in any specific
standard drive cycles whilst driving from
destination A to B. ITS data is a better option but
the aggregate data do not reflect the effect of
vehicle type and driver style. Each driver has a
different style for a given driving event. EMS
devices control strategy is based on vehicle
demand to achieve optimal performance and
maintain the required SOC. The objective of this
work is to study the effect of,

1. Driver style on vehicle energy demand for
a given vehicle and route.

2. Driving event like city and highway
driving on vehicle energy demand.
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Control strategy optimisation is not considered in
this study. This study will help in developing a
method to gather knowledge about driving
information for EMS in real world driving.

2 Methodology
Real world driving data of three different driver
styles are used to study city driving and highway
driving. Audi Duo is converted to a plug-in HEV
(PHEV) of parallel architecture to study the
vehicle energy demand by simulation. Vehicle
specification is given in table 1.

Table1: Basic PHEV specification

Parameter Specification
Vehicle mass 1450 kg
IC engine power 120 kW
Motor power 75 kW
Battery capacity 28 Ah
Transmission Automatic
Initial SOC 0.9

2.1 Drive cycle data

Real world driving data for various drivers which
was collected in the Sustainable Action on
Vehicle Energy (SAVE) project at the WMG,
University of Warwick is used in this study. Data
was collected for a given vehicle and route for a
mix of driving events - city and highway driving.

Based on extreme and mean fuel economy, three
drivers are selected out of 20 drivers in this
study. Driver 1 (D1) is observed to be highly
efficient, steady and anticipative in driving,
having the best fuel economy. Driver 2 (D2) is
observed to have mean fuel economy. And
finally driver 3 (D3) is highly inefficient,
aggressive and reactive driving having the worst
fuel economy.

The route considered is comprised of both
highway and city driving. The initial 4.8 km and
after 13.3 km is city driving. These regions are
called as region A and C respectively. Region B,
between A and C is highway driving.

In region A, speed limit is 18 m/s (40mph)
having five round-about (R) as shown in figure 1.
Similarly in region C, speed limit is 18 m/s
having four traffic junctions (T) and one round-
about. In between city driving is highway driving
of 8.5 km. Region B having speed limit of 31 m/s
(exact 70mph).

New European Driving Cycle (NEDC) is also used
for comparison study. In this study NEDC is
repeated till the study destination distance of 19.3
km is matched as shown in below.

2.2 PHEV modelling and simulation

The model is simulated using an in house package
called Warwick Powertrain Simulation Tool for
Architecture (WARPSTAR) [32]. WARPSTAR is
a model based simulation suite built using
MATLAB/Simulink. It offers the required
flexibility and functionality for HEV modelling.

Figure1: Route description

Figur2: Driver & NEDC extended vehicle speed

3 Results & Analysis
All three drivers were simulated using real world
driving data for driving events like city and
highway driving. In section 3.1, the effect of driver
style and driving events on total vehicle energy
demand, demand on electric motor and internal
combustion engine (ICE) are analysed. The

R R R R R T T T RT
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implication on prior knowledge development for
HEV is discussed in section 3.2.

3.1 Vehicle energy demand

All three drivers exhibit different total vehicle
energy demand for a given route and vehicle as
shown in table 2 and 3. Driver 2 requires 690 to
767 Wh more energy in comparison to driver 1
and 3. In terms of specific energy, driver 2 needs
around 40 Wh/km more.

Table2: Total vehicle energy (Wh) demand
comparison

Driver D1 D2 D3 NEDC

Engine
energy

935.9 1849.0 1034.0 881.4

Motor
energy*

2130.0 1984.0 2109.0 2910.0

Total
energy

3065.9 3833.0 3143.0 3791.4

*Regenerative braking energy included

Fuel economy for extended NEDC is high, as
engine is hardly used which is expected for the
typical operation of a PHEV.

Table3: Vehicle level fuel consumption

Driver D1 D2 D3 NEDC

Fuel
economy,
mpg (UK)

119.70 60.26 90.43 641.4

Final
SOC, %

0.63 0.64 0.63 0.54

Specific
energy,
Wh/km

158.85 198.60 162.85 196.45

3.1.1 Initial city driving – region A

For initial city driving vehicle energy demand is
compared including NEDC. NEDC of initial 4.8
km is considered as shown in figure 3.

Drivers’ vehicle speed profile is varying from 0
to 25 m/s. All three drivers are driving at
different speed at different points. These are a
typical real world city driving conditions.
Similarly for NEDC vehicle speed is varying
from 0 to 20 m/s.

In city driving a driver’s speed profile is highly
transient and different to each other as shown in
figure 3. But the vehicle net energy demand is
fairly close to each other as shown in table 4.

Frequent stop-starts in NEDC do not have adverse
effect on energy demand. This is due to the
maximum use of electric motor which has high
efficiency over wide speed range unlike in ICE.

Figure3: Energy demand comparison at city driving-
region A

Table4: Vehicle energy demand comparison in region A

Driver D1 D2 D3 NEDC

Engine,
Wh

19.39 63.46 0.85 9.10

Motor,
Wh

873.60 864.90 930.80 930.80

Total, Wh 892.99 928.36 931.65 845.9

Specific
energy,
Wh/km

186.04 193.41 194.09 176.23

Final
SOC, %

0.79 0.79 0.78 0.80

Normally in city driving electric motor is used
predominantly. In this study ICE is used whenever
vehicle speed exceeds 20 m/s. Normally in UK
city driving speed limit is 18 m/s.

3.1.2 Highway driving – region B

On highway drivers’ speed profiles are fairly
steady but their choice of speed is different. Driver
1 and 3 energy demand is similar as their high
speed cruise is both around 30 m/s. Driver 2
exhibiting cruise speed of 40 m/s takes around 500
Wh more energy than other drivers.

This explains the major part of the difference in
total energy demand between drivers. In terms of
specific energy 60 Wh/km more is required for
driver 2.



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 6

Table5: Vehicle energy demand comparison in
highway driving - region B

Driver D1 D2 D3

Engine, Wh 905.11 1662.54 1033.15
Motor, Wh 336.40 79.90 192.20
Total, Wh 1241.51 1742.44 1225.35
Specific
energy,
Wh/km

146.40 205.47 144.49

Usually in highway driving the engine or both
engine and motor will be operating based on
SOC and peak speed demand. In this study, only
engine is working at cruise speed.

3.1.3 Final city driving – region C

After highway driving the remaining part is again
city driving of 6 km. Like region A, in region C
vehicle speed is highly transient and changing
from 0 to 25 m/s. But in this case vehicle energy
demand of all drivers is not same. For driver 2 it
is higher by 231 and 176 Wh in comparison to
driver 1 and 3 respectively.

Table6: Vehicle energy demand comparison in city
driving - region C

Driver D1 D2 D3

Engine, Wh 11.4 123.00 0
Motor, Wh 920.00 1039.20 986.00
Total, Wh 931.4 1162.20 986.00
Specific
energy,
Wh/km

155.23 193.70 164.33

3.2 Implication

In real world driving, vehicle speed profile is a
function of driving events and driver style as
shown in figure 1 and 2.

Driving events are not random or probabilistic
phenomena as considered in Markov driver
model. They are fixed to a location or route. For
a given driving event, vehicle speed changes due
to traffic and driver variation.

The importance of driver style is demonstrated
with the speed profile in figure 2 and energy
demand results in table 2.

3.2.1 City driving

In city driving, vehicle speed is low but highly
transient as shown in figure 3. So prediction is
difficult due to various external factors like

traffic, traffic signal and driver. The major part of
city driving is reactive driving.

During regions A and C, city driving conditions
are fairly similar. But the vehicle energy demand
for a given driver is not same. In region C after 16
km, vehicle speed is restricted due to traffic and
signal. The influence of these external factors are
significant but cannot be predicted in exact sense.
Also variation due to the driver can be expected
even driving exactly the same route again.

Reactive driving, role of the driver, uncertainty of
traffic and signal makes the prediction of exact
vehicle speed to use in EMS for control strategy
optimization not possible. By seeing speed profiles
at region A and C, the use of average vehicle speed
or range does not reflect the complete picture. Use
of specific energy range for a given driver and
event appears to be the better option.

Vehicle energy demand range observed for all
drivers and events in this study is shown in table 7.
For driver D2 it is a very specific value which will
make for the EMS easier devising the control
strategy.

Table7: Specific energy (Wh/km) comparison of drivers

Driver D1 D2 D3
City
driving

155 – 186 193 – 194 164 – 194

Highway
driving

146 205 144

In control strategy, use of the electric motor in city
driving helps in negating the effect of transient
speed as explained in 3.1.1. This is due to the high
efficiency over wide speed range of electric
motors. So ideally operation of only electric motor
is preferred in city driving. The control strategy
and component sizing goes hand in hand. Sizing
battery and motor as a function of real world
driving to ideally cover all transient operations will
help in improving HEV performance.

3.2.2 Highway driving

In highway driving, vehicle speed is high and
relatively steady. The cruise speed depends
entirely on the driver choice. Usually uncertainties
in highway driving are comparatively fewer.

In this study, a wide variation in energy demand is
observed for highway driving among drivers. The
reason is entirely due to the driver’s choice of
cruise speed. Higher cruise speed leads to high
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energy demand. Transport departments can take
note of this to work on speed limits to improve
CO2 emissions. Again as in city driving, energy
demand for highway cruising can be a range
instead of a specific value as shown in table 7.
However the highway energy demand range is
expected to be a narrower range due to relatively
steadier speeds.

With the help of individual driver’s historic data
or accepting the driver’s choice, the vehicle
cruise speed and hence the vehicle energy
demand might be predicted for highway driving.

Live ITS or other traffic data can be used as
secondary information to refine the estimation.
But ITS aggregate data cannot serve as a drive
cycle itself.

It is worth remembering that the real world data
used in this work is of the same vehicle and
given route, and still a wide variation in energy
demand is observed both in city and highway
driving.

Similarly use of fixed acceleration, deceleration
and vehicle speeds will mislead the EMS when it
comes to real world driving. Such a
representation neglects driver style leading to
non-optimal future cost estimation.

Overall, vehicle speed profiles for city driving
cannot be predicted and driver style has an
influence. In highway driving, driver choice of
cruise speed has a significant impact. It is not
possible to maintain or sustain SOC, with only
vehicle speed as prior knowledge. Driver style
knowledge is crucial too.

With the above knowledge, vehicle energy
demand and mode of EMS operation like
electric, ICE and hybrid can be planned for the
complete route with fair accuracy.

Unlike in the current production PHEV where
the mode of operation is predetermined, EMS
can take decision on optimal mode of operation
based on events, driver style and anticipated
vehicle energy demand.

4 Conclusions and future work
To achieve optimal performance of HEV prior
knowledge about driving information is required.
For that one of the challenges is how this prior
knowledge can be developed and used.

This study was carried out to understand the effect
of driver style and driving events on vehicle
energy demand and the following conclusions are
made.

 Driver style and driving events like city
and highway driving both affects vehicle
energy demand. Hence both have to be
considered in developing prior knowledge.

 In city driving, prediction of vehicle speed
profile is not possible due to reactive
driving. Also average vehicle speed and
range do not reflect the complete picture.
Traffic, traffic signal and driver style has a
significant effect on energy demand.

 In highway driving, the choice of cruise
speed by the driver has the major impact
on vehicle energy demand.

In future work, variation in energy demand at
repetitive trip for a given route and driver will be
studied. Use of specific energy range for future
demand estimation has to be investigated further.
Finally an effective use of this prior knowledge
developed in adaptive EMS will be investigated.
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