2,970 research outputs found

    A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing

    Get PDF
    Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort

    Thermal environment

    Get PDF
    Human tolerance in thermal environment, thermal physiology of space clothing, and biothermal considerations in space cabin desig

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    USSR Space Life Sciences Digest, volume 2, no. 3

    Get PDF
    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided

    Moisture transport properties of selected knit fabrics

    Get PDF
    The purpose of this research was to examine the role of fiber content and fabric structure on the moisture transport properties of selected knit fabrics. Moisture transport is an important factor in clothing comfort as related to evaporative cooling. Test fabrics included jersey and interlock weft knit structures in 100 percent cotton, 100 percent polyester, and 50/50 percent cotton/ polyester. The knits represented double and single knit structures and hydrophobic, hydrophilic, and blended fibers. No standard moisture transport test methods have been adopted for apparel fabrics. Most tests used previously measured only vapor transport in ambient air currents. A series of four moisture transport tests were developed to more fully replicate use conditions which included vapor and liquid transport with and without moderate air currents over the upper surface of the fabric

    EFFECT OF RELATIVE HUMIDITY AND TEMPERATURE CONTROL ON IN-CABIN THERMAL COMFORT STATE

    Get PDF
    This dissertation discusses the effect of manipulating the relative humidity RH levels inside vehicular cabins on the thermal comfort and human occupants\u27 thermal sensation. Three different techniques are used to investigate this effect. Firstly, thermodynamic and psychometric analyses are used to incorporate the effect of changing RH along with the dry bulb temperature on the human comfort window. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. Secondly, a 3-D finite difference simulation is used to predict the RH effects on the thermal sensation metrics. The study uses the Berkeley and the Fanger models to investigate the human comfort using four specific perspectives; (i) the effect on other environmental conditions, (ii) the effect on the body segments temperature variation within the cabin, (iii) the cabin local sensation (LS) and comfort (LC) for the different body segments; in addition to the overall sensation (OS) and overall comfort (OC), (iv) the human sensation is also measured by the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices during the summer and the winter periods following the Fanger model calculations. Thirdly, the analysis and modeling of the vehicular thermal comfort parameters is conducted using a set of designed experiments aided by thermography measurements. The experiments employed a full size climatic chamber to host the test vehicle, to accurately assess the transient and steady state temperature distributions of the test vehicle cabins. The experimental and simulation work show that controlling the RH levels along with the Dry Bulb Temperature helps the A/C system achieve the human comfort zone faster than the case if the RH value is not controlled. Also, the results show that changing the RH along with Dry Bulb Temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the amount of heat removed. Finally, this work has developed the passenger thermal-comfort psychometric zones during summer and winter periods using Berkeley and Fanger models

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 165, March 1977

    Get PDF
    This bibliography lists 198 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1977

    Multiphysics Modeling of a Wearable Sensor for Sweat Rate Measurements

    Get PDF

    Human acclimation and acclimatization to heat A compendium of research

    Get PDF
    Annotated bibliography on human acclimation and acclimatization to hea
    • …
    corecore