395 research outputs found

    A migration aware scheduling technique for real-time aperiodic tasks over multiprocessor systems

    Get PDF
    Multi-processor systems consist of more than one processor and are mostly used for computationally intensive applications. Real-time systems are those systems that require completing execution of tasks within a pre-defined deadline. Traditionally, multiprocessor systems are given attention in periodic models, where tasks are executed at regular intervals of time. Gradually, as maturity in a multiprocessor design had increased; their usage has become very common for real-time systems to execute both periodic and aperiodic tasks. As the priority of an aperiodic task is usually but not essentially greater than the priority of a periodic task, they must be completed within the deadline. There is a lot of research works on multiprocessor systems with scheduling of periodic tasks, but the task scheduling is relatively remained unexplored for a mixed workload of both periodic and aperiodic tasks. Moreover, higher energy consumption is another main issue in multiprocessor systems. Although it could be reduced by using the energy-aware scheduling technique, the response time of aperiodic tasks still increases. In the literature, various techniques were suggested to decrease the energy consumption of these systems. However, the study on reducing the response time of aperiodic tasks is limited. In this paper, we propose a scheduling technique that: 1) executes aperiodic tasks at full speed and migrates periodic tasks to other processors if their deadline is earlier than aperiodic tasks-reduces the response time and 2) executes aperiodic tasks with lower speed by identifying appropriate processor speed without affecting the response time-reduces energy consumption. Through simulations, we demonstrate the efficiency of the proposed algorithm and we show that our algorithm also outperforms the well-known total bandwidth server algorithm

    3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems

    Get PDF
    Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system workload, and makes trade-offs between energy consumption and user expected finish times. Compared with other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the system elasticity

    Energy-efficient thermal-aware multiprocessor scheduling for real-time tasks using TCPNs

    Get PDF
    We present an energy-effcient thermal-aware real-time global scheduler for a set of hard real-time (HRT) tasks running on a multiprocessor system. This global scheduler fulfills the thermal and temporal constraints by handling two independent variables, the task allocation time and the selection of clock frequency. To achieve its goal, the proposed scheduler is split into two stages. An off-line stage, based on a deadline partitioning scheme, computes the cycles that the HRT tasks must run per deadline interval at the minimum clock frequency to save energy while honoring the temporal and thermal constraints, and computes the maximum frequency at which the system can run below the maximum temperature. Then, an on-line, event-driven stage performs global task allocation applying a Fixed-Priority Zero-Laxity policy, reducing the overhead of quantum-based or interval-based global schedulers. The on-line stage embodies an adaptive scheduler that accepts or rejects soft RT aperiodic tasks throttling CPU frequency to the upper lowest available one to minimize power consumption while meeting time and thermal constraints. This approach leverages the best of two worlds: the off-line stage computes an ideal discrete HRT multiprocessor schedule, while the on-line stage manage soft real-time aperiodic tasks with minimum power consumption and maximum CPU utilization

    Control techniques for thermal-aware energy-efficient real time multiprocessor scheduling

    Get PDF
    La utilización de microprocesadores multinúcleo no sólo es atractiva para la industria sino que en muchos ámbitos es la única opción. La planificación tiempo real sobre estas plataformas es mucho más compleja que sobre monoprocesadores y en general empeoran el problema de sobre-diseño, llevando a la utilización de muchos más procesadores /núcleos de los necesarios. Se han propuesto algoritmos basados en planificación fluida que optimizan la utilización de los procesadores, pero hasta el momento presentan en general inconvenientes que los alejan de su aplicación práctica, no siendo el menor el elevado número de cambios de contexto y migraciones.Esta tesis parte de la hipótesis de que es posible diseñar algoritmos basados en planificación fluida, que optimizan la utilización de los procesadores, cumpliendo restricciones temporales, térmicas y energéticas, con un bajo número de cambios de contexto y migraciones, y compatibles tanto con la generación fuera de línea de ejecutivos cíclicos atractivos para la industria, como de planificadores que integran técnicas de control en tiempo de ejecución que permiten la gestión eficiente tanto de tareas aperiódicas como de desviaciones paramétricas o pequeñas perturbaciones.A este respecto, esta tesis contribuye con varias soluciones. En primer lugar, mejora una metodología de modelo que representa todas las dimensiones del problema bajo un único formalismo (Redes de Petri Continuas Temporizadas). En segundo lugar, propone un método de generación de un ejecutivo cíclico, calculado en ciclos de procesador, para un conjunto de tareas tiempo real duro sobre multiprocesadores que optimiza la utilización de los núcleos de procesamiento respetando también restricciones térmicas y de energía, sobre la base de una planificación fluida. Considerar la sobrecarga derivada del número de cambios de contexto y migraciones en un ejecutivo cíclico plantea un dilema de causalidad: el número de cambios de contexto (y en consecuencia su sobrecarga) no se conoce hasta generar el ejecutivo cíclico, pero dicho número no se puede minimizar hasta que se ha calculado. La tesis propone una solución a este dilema mediante un método iterativo de convergencia demostrada que logra minimizar la sobrecarga mencionada.En definitiva, la tesis consigue explotar la idea de planificación fluida para maximizar la utilización (donde maximizar la utilización es un gran problema en la industria) generando un sencillo ejecutivo cíclico de mínima sobrecarga (ya que la sobrecarga implica un gran problema de los planificadores basados en planificación fluida).Finalmente, se propone un método para utilizar las referencias de la planificación fuera de línea establecida en el ejecutivo cíclico para su seguimiento por parte de un controlador de frecuencia en línea, de modo que se pueden afrontar pequeñas perturbaciones y variaciones paramétricas, integrando la gestión de tareas aperiódicas (tiempo real blando) mientras se asegura la integridad de la ejecución del conjunto de tiempo real duro.Estas aportaciones constituyen una novedad en el campo, refrendada por las publicaciones derivadas de este trabajo de tesis.<br /

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Energy-Efficient Thermal-Aware Scheduling for RT Tasks Using TCPN

    Get PDF
    This work leverages TCPNs to design an energy-efficient, thermal-aware real-time scheduler for a multiprocessor system that normally runs in a low state energy at maximum system utilization but its capable of increasing the clock frequency to serve aperiodic tasks, optimizing energy, and honoring temporal and thermal constraints. An off-line stage computes the minimum frequency required to run the periodic tasks at maximum CPU utilization, the proportion of each task''s job to be run on each CPU, the maximum clock frequency that keeps temperature under a limit, and the available cycles (slack) with respect to the system with minimum frequency. Then, a Zero-Laxity online scheduler dispatches the periodic tasks according to the offline calculation. Upon the arrival of aperiodic tasks, it increases clock frequency in such a way that all periodic and aperiodic tasks are properly executed. Thermal and temporal requirements are always guaranteed, and energy consumption is minimized

    Real time scheduler for multiprocessor systems based on continuous control using timed continuous petri nets

    Get PDF
    This work exploits Timed Continuous Petri Nets (TCPN) to design and test a novel energy-efficient thermal-aware real-time global scheduler for a hard real-time (HRT) task set running on a multiprocessor system. The TCPN model encompasses both the system and task set, including thermal features. In previous work we calculated the share of each task that must be executed per time interval by solving off-line an Integer Programming Problem Problem (ILP). A subsequent on-line stage allocated jobs to processors. We now perform the allocation off-line too, including an allocation controller and an execution controller in the on-line stage. This adds robustness by ensuring that actual task allocation and execution honor the safe schedule provided off-line. Last, the on-line controllers allow the design of an improved soft RT aperiodic task manager. Also, ee experimentally prove that our scheduler yields fewer context switches and migrations on the HRT task set than RUN, a reference algorith
    corecore