91 research outputs found

    A Data Collecting Strategy for Farmland WSNs using a Mobile Sink

    Get PDF
    To the characteristics of large number of sensor nodes, wide area and unbalanced energy consumption in farmland Wireless Sensor Networks, an efficient data collection strategy (GCMS) based on grid clustering and a mobile sink is proposed. Firstly, cluster is divided based on virtual grid, and the cluster head is selected by considering node position and residual energy. Then, an optimal mobile path and residence time allocation mechanism for mobile sink are proposed. Finally, GCMS is simulated and compared with LEACH and GRDG. Simulation results show that GCMS can significantly prolong the network lifetime and increase the amount of data collection, especially suitable for large-scale farmland Wireless Sensor Networks

    Utilization of Internet of Things and wireless sensor networks for sustainable smallholder agriculture

    Get PDF
    Agriculture is the economy’s backbone for most developing countries. Most of these countries suffer from insufficient agricultural production. The availability of real-time, reliable and farm-specific information may significantly contribute to more sufficient and sustained production. Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such information to these levels. The tools must address details of spatial and temporal variability. The Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect. This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted. We explore the type and purpose of agricultural parameters, study and describe available resources, needed skills and technological requirements that allow sustained deployment of IoT and WSN technology. Our findings reveal significant gaps in utilization of the technology in the context of smallholder farm practices caused by social, economic, infrastructural and technological barriers. We also identify a significant future opportunity to design and implement affordable and reliable data acquisition tools and frameworks, with a possible integration of citizen science

    Optimal Deployment of Solar Insecticidal Lamps over Constrained Locations in Mixed-Crop Farmlands

    Get PDF
    Solar Insecticidal Lamps (SILs) play a vital role in green prevention and control of pests. By embedding SILs in Wireless Sensor Networks (WSNs), we establish a novel agricultural Internet of Things (IoT), referred to as the SILIoTs. In practice, the deployment of SIL nodes is determined by the geographical characteristics of an actual farmland, the constraints on the locations of SIL nodes, and the radio-wave propagation in complex agricultural environment. In this paper, we mainly focus on the constrained SIL Deployment Problem (cSILDP) in a mixed-crop farmland, where the locations used to deploy SIL nodes are a limited set of candidates located on the ridges. We formulate the cSILDP in this scenario as a Connected Set Cover (CSC) problem, and propose a Hole Aware Node Deployment Method (HANDM) based on the greedy algorithm to solve the constrained optimization problem. The HANDM is a two-phase method. In the first phase, a novel deployment strategy is utilised to guarantee only a single coverage hole in each iteration, based on which a set of suboptimal locations is found for the deployment of SIL nodes. In the second phase, according to the operations of deletion and fusion, the optimal locations are obtained to meet the requirements on complete coverage and connectivity. Experimental results show that our proposed method achieves better performance than the peer algorithms, specifically in terms of deployment cost

    Energy efficient in cluster head and relay node selection for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are defined as networks of nodes that work in a cooperative way to sense and control the surrounding environment. However, nodes contain limited energy which is the key limiting factor of the sensor network operation. In WSN architecture, the nodes are typically grouped into clusters where one node from each cluster is selected as the Cluster Head (CH) and relays utilisation to minimise energy consumption. Currently, the selection of CH based on a different combination of input variables. Example of these variables includes residual energy, communication cost, node density, mobility, cluster size and many others. Improper selection of sensor node (i.e. weak signal strength) as CH can cause an increase in energy consumption. Additionally, a direct transmission in dual-hop communication between sensor nodes (e.g. CH) with the base station (BS) uses high energy consumption. A proper selection of the relay node can assist in communication while minimising energy consumption. Therefore, the research aim is to prolong the network lifetime (i.e. reduce energy consumption) by improving the selection of CHs and relay nodes through a new combination of input variables and distance threshold approach. In CH selection, the Received Signal Strength Indicator (RSSI) scheme, residual energy, and centrality variable were proposed. Fuzzy logic was utilized in selecting the appropriate CHs based on these variables in the MATLAB. In relay node selection, the selection is based on the distance threshold according to the nearest distance with the BS. The selection of the optimal number of relay nodes is performed using K-Optimal and K-Means techniques. This ensures that all CHs are connected to at least one corresponding relay node (i.e. a 2-tier network) to execute the routing process and send the data to BS. To evaluate the proposal, the performance of Multi-Tier Protocol (MAP) and Stable Election Protocol (SEP) was compared based on 100, 200, and 800 nodes with 1 J and random energy. The simulation results showed that our proposed approach, refer to as Energy Efficient Cluster Heads and Relay Nodes (EECR) selection approach, extended the network lifetime of the wireless sensor network by 43% and 33% longer than SEP and MAP, respectively. This thesis concluded that with effective combinations of variables for CHs and relay nodes selection in static environment for data routing, EECR can effectively improve the energy efficiency of WSNs

    SINKTRAIL: A PROACTIVE DATA REPORTING PROTOCOL FOR WIRELESS SENSOR NETWORKS 1 SAI DIVYA KALAGATLA, 2 RAMANA REDDY B., 3 MOHANA ROOPA M. 1 Post-Graduate Student-M

    Get PDF
    Abstract-A large-scale Wireless Sensor Networks (WSNs), leveraging data sinks' mobility for data gathering has drawn substantial interests in recent years. Current researches either focus on planning a mobile sink's moving trajectory in advance to achieve optimized network performance, or target at collecting a small portion of sensed data in the network. In many application scenarios, however, a mobile sink cannot move freely in the deployed area. Therefore, the pre-calculated trajectories may not be applicable. To avoid constant sink location update traffics when a sink's future locations cannot be scheduled in advance, we propose two energy efficient proactive data reporting protocols, SinkTrail and SinkTrail-S, for mobile sink-based data collection. The proposed protocols feature low-complexity and reduced control overheads. Two unique aspects distinguish our approaches: 1) allow sufficient flexibility in the movement of mobile sinks to dynamically adapt to various terrestrial changes; and 2) without requirements of GPS devices or predefined landmarks. SinkTrail establishes a logical coordinate system for routing and forwarding data packets, making it suitable for diverse application scenarios. We systematically analyze the impact of several design factors in the proposed algorithms. Both theoretical analysis and simulation results demonstrate that the proposed algorithms reduce control overheads and yield satisfactory performance in finding shorter routing paths

    Wireless sensor networks, actuation, and signal processing for apiculture

    Get PDF
    Recent United Nations reports have stressed the growing constraint of food supply for Earth's growing human population. Honey bees are a vital part of the food chain as the most important pollinator for a wide range of crops. Protecting the honey bee population worldwide, and enabling them to maximise productivity, are important concerns. This research proposes a framework for addressing these issues by considering an inter-disciplinary approach, combining recent developments in engineering and honey bee science. The primary motivation of the work outlined in this thesis was to use embedded systems technology to improve honey bee health by developing state of the art in-hive monitoring systems to classify the colony status and mechanisms to influence hive conditions. Specific objectives were identified as steps to achieve this goal: to use Wireless Sensor networks (WSN) technology to monitor a honey bee colony in the hive and collect key information; to use collected data and resulting insights to propose mechanisms to influence hive conditions; to use the collected data to inform the design of signal processing and machine learning techniques to characterise and classify the colony status; and to investigate the use of high volume data sensors in understanding specific conditions of the hive, and methods for integration of these sensors into the low-power and low-data rate WSN framework. It was found that automated, unobtrusive measurement of the in-hive conditions could provide valuable insight into the activities and conditions of honey bee colonies. A heterogeneous sensor network was deployed that monitored the conditions within hives. Data were collected periodically, showing changes in colony behaviour over time. The key parameters measured were: CO2, O2, temperature, relative humidity, and acceleration. Weather data (sunshine, rain, and temperature) were collected to provide an additional analysis dimension. Extensive energy improvements reduced the node’s current draw to 150 µA. Combined with an external solar panel, self-sustainable operation was achieved. 3,435 unique data sets were collected from five test-bed hives over 513 days during all four seasons. Temperature was identified as a vital parameter influencing the productivity and health of the colony. It was proposed to develop a method of maintaining the hive temperature in the ideal range through effective ventilation and airflow control which allow the bees involved in the activities above to engage in other tasks. An actuator was designed as part of the hive monitoring WSN to control the airflow within the hive. Using this mechanism, an effective Wireless Sensor and Actuator Network (WSAN) with Proportional Integral Derivative (PID) based temperature control was implemented. This system reached an effective set point temperature within 7 minutes of initialisation, and with steady state being reached by minute 18. There was negligible steady state error (0.0047%) and overshoot of <0.25 °C. It was proposed to develop and evaluate machine learning solutions to use the collected data to classify and describe the hive. The results of these classifications would be far more meaningful to the end user (beekeeper). Using a data set from a field deployed beehive, a biological analysis was undertaken to classify ten important hive states. This classification led to the development of a decision tree based classification algorithm which could describe the beehive using sensor network data with 95.38% accuracy. A correlation between meteorological conditions and beehive data was also observed. This led to the development of an algorithm for predicting short term rain (within 6 hours) based on the parameters within the hive (95.4% accuracy). A Random Forest based classifier was also developed using the entire collected in-hive dataset. This algorithm did not need access to data from outside the network, memory of previous measured data, and used only four inputs, while achieving an accuracy of 93.5%. Sound, weight, and visual inspection were identified as key methods of identifying the health and condition of the colony. Applications of advanced sensor methods in these areas for beekeeping were investigated. A low energy acoustic wake up sensor node for detecting the signs of an imminent swarming event was designed. Over 60 GB of sound data were collected from the test-bed hives, and analysed to provide a sound profile for development of a more advanced acoustic wake up and classification circuit. A weight measuring node was designed using a high precision (24-bit) analogue to digital converter with high sensitivity load cells to measure the weight of a hive to an accuracy of 10g over a 50 kg range. A preliminary investigation of applications for thermal and infrared imaging sensors in beekeeping was also undertaken

    Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

    Full text link
    [ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto.[CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi.[EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol.García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17422

    The digitization of agricultural industry – a systematic literature review on agriculture 4.0

    Get PDF
    Agriculture is considered one of the most important sectors that play a strategic role in ensuring food security. However, with the increasing world's population, agri-food demands are growing — posing the need to switch from traditional agricultural methods to smart agriculture practices, also known as agriculture 4.0. To fully benefit from the potential of agriculture 4.0, it is significant to understand and address the problems and challenges associated with it. This study, therefore, aims to contribute to the development of agriculture 4.0 by investigating the emerging trends of digital technologies in the agricultural industry. For this purpose, a systematic literature review based on Protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses is conducted to analyse the scientific literature related to crop farming published in the last decade. After applying the protocol, 148 papers were selected and the extent of digital technologies adoption in agriculture was examined in the context of service type, technology readiness level, and farm type. The results have shown that digital technologies such as autonomous robotic systems, internet of things, and machine learning are significantly explored and open-air farms are frequently considered in research studies (69%), contrary to indoor farms (31%). Moreover, it is observed that most use cases are still in the prototypical phase. Finally, potential roadblocks to the digitization of the agriculture sector were identified and classified at technical and socio-economic levels. This comprehensive review results in providing useful information on the current status of digital technologies in agriculture along with prospective future opportunities
    corecore