15,655 research outputs found

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    CMOS Vision Sensors: Embedding Computer Vision at Imaging Front-Ends

    Get PDF
    CMOS Image Sensors (CIS) are key for imaging technol-ogies. These chips are conceived for capturing opticalscenes focused on their surface, and for delivering elec-trical images, commonly in digital format. CISs may incor-porate intelligence; however, their smartness basicallyconcerns calibration, error correction and other similartasks. The term CVISs (CMOS VIsion Sensors) definesother class of sensor front-ends which are aimed at per-forming vision tasks right at the focal plane. They havebeen running under names such as computational imagesensors, vision sensors and silicon retinas, among others. CVIS and CISs are similar regarding physical imple-mentation. However, while inputs of both CIS and CVISare images captured by photo-sensors placed at thefocal-plane, CVISs primary outputs may not be imagesbut either image features or even decisions based on thespatial-temporal analysis of the scenes. We may hencestate that CVISs are more “intelligent” than CISs as theyfocus on information instead of on raw data. Actually,CVIS architectures capable of extracting and interpretingthe information contained in images, and prompting reac-tion commands thereof, have been explored for years inacademia, and industrial applications are recently ramp-ing up.One of the challenges of CVISs architects is incorporat-ing computer vision concepts into the design flow. Theendeavor is ambitious because imaging and computervision communities are rather disjoint groups talking dif-ferent languages. The Cellular Nonlinear Network Univer-sal Machine (CNNUM) paradigm, proposed by Profs.Chua and Roska, defined an adequate framework forsuch conciliation as it is particularly well suited for hard-ware-software co-design [1]-[4]. This paper overviewsCVISs chips that were conceived and prototyped at IMSEVision Lab over the past twenty years. Some of them fitthe CNNUM paradigm while others are tangential to it. Allthem employ per-pixel mixed-signal processing circuitryto achieve sensor-processing concurrency in the quest offast operation with reduced energy budget.Junta de Andalucía TIC 2012-2338Ministerio de Economía y Competitividad TEC 2015-66878-C3-1-R y TEC 2015-66878-C3-3-

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER
    corecore