10 research outputs found

    Optimized task scheduling based on hybrid symbiotic organisms search algorithms for cloud computing environment

    Get PDF
    In Cloud Computing model, users are charged according to the usage of resources and desired Quality of Service (QoS). Task scheduling algorithms are responsible for specifying adequate set of resources to execute user applications in the form of tasks, and schedule decisions of task scheduling algorithms are based on QoS requirements defined by the user. Task scheduling problem is an NP-Complete problem, due to the NP-Complete nature of task scheduling problems and huge search space presented by large scale problem instances, many of the existing solution algorithms incur high computational complexity and cannot effectively obtain global optimum solutions. Recently, Symbiotic Organisms Search (SOS) has been applied to various optimization problems and results obtained were found to be competitive with state-of-the-art metaheuristic algorithms. However, similar to the case other metaheuristic optimization algorithms, the efficiency of SOS algorithm deteriorates as the size of the search space increases. Moreover, SOS suffers from local optima entrapment and its static control parameters cannot maintain a balance between local and global search. In this study, Cooperative Coevolutionary Constrained Multiobjective Symbiotic Organisms Search (CC-CMSOS), Cooperative Coevolutionary Constrained Multi-objective Memetic Symbiotic Organisms Search (CC-CMMSOS), and Cooperative Coevolutionary Constrained Multi-objective Adaptive Benefit Factor Symbiotic Organisms Search (CC-CMABFSOS) algorithms are proposed to solve constrained multi-objective large scale task scheduling optimization problem on IaaS cloud computing environment. To address the issue of scalability, the concept of Cooperative Coevolutionary for enhancing SOS named CC-CMSOS make SOS more efficient for solving large scale task scheduling problems. CC-CMMSOS algorithm further improves the performance of SOS algorithm by hybridizing with Simulated Annealing (SA) to avoid entrapment in local optima for global convergence. Finally, CC-CMABFSOS algorithm adaptively turn SOS control parameters to balance the local and global search procedure for faster convergence speed. The performance of the proposed CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms are evaluated on CloudSim simulator, using both standard workload traces and synthesized workloads for larger problem instances of up to 5000. Moreover, CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms are compared with multi-objective optimization algorithms, namely, EMS-C, ECMSMOO, and BOGA. The CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms obtained significant improved optimal trade-offs between execution time (makespan) and financial cost (cost) while meeting deadline constraints with no computational overhead. The performance improvements obtained by the proposed algorithms in terms of hypervolume ranges from 8.72% to 37.95% across the workloads. Therefore, the proposed algorithms have potentials to improve the performance of QoS delivery

    Energy-efficient Nature-Inspired techniques in Cloud computing datacenters

    Get PDF
    Cloud computing is a systematic delivery of computing resources as services to the consumers via the Internet. Infrastructure as a Service (IaaS) is the capability provided to the consumer by enabling smarter access to the processing, storage, networks, and other fundamental computing resources, where the consumer can deploy and run arbitrary software including operating systems and applications. The resources are sometimes available in the form of Virtual Machines (VMs). Cloud services are provided to the consumers based on the demand, and are billed accordingly. Usually, the VMs run on various datacenters, which comprise of several computing resources consuming lots of energy resulting in hazardous level of carbon emissions into the atmosphere. Several researchers have proposed various energy-efficient methods for reducing the energy consumption in datacenters. One such solutions are the Nature-Inspired algorithms. Towards this end, this paper presents a comprehensive review of the state-of-the-art Nature-Inspired algorithms suggested for solving the energy issues in the Cloud datacenters. A taxonomy is followed focusing on three key dimension in the literature including virtualization, consolidation, and energy-awareness. A qualitative review of each techniques is carried out considering key goal, method, advantages, and limitations. The Nature-Inspired algorithms are compared based on their features to indicate their utilization of resources and their level of energy-efficiency. Finally, potential research directions are identified in energy optimization in data centers. This review enable the researchers and professionals in Cloud computing datacenters in understanding literature evolution towards to exploring better energy-efficient methods for Cloud computing datacenters

    A Divide-and-Conquer Bilevel Optimization Algorithm for Jointly Pricing Computing Resources and Energy in Wireless Powered MEC

    Get PDF
    This article investigates a wireless-powered mobile edge computing (MEC) system, where the service provider (SP) provides the device owner (DO) with both computing resources and energy to execute tasks from Internet-of-Things devices. In this system, SP first sets the prices of computing resources and energy whereas DO then makes the optimal response according to the given prices. In order to jointly optimize the prices of computing resources and energy, we formulate a bilevel optimization problem (BOP), in which the upper level generates the prices of computing resources and energy for SP and then under the given prices, the lower level optimizes the mode selection, broadcast power, and computing resource allocation for DO. This BOP is difficult to address due to the mixed variables at the lower level. To this end, we first derive the relationships between the optimal broadcast power and the mode selection and between the optimal computing resource allocation and the mode selection. After that, it is only necessary to consider the discrete variables (i.e., mode selection) at the lower level. Note, however, that the transformed BOP is still difficult to solve because of the extremely large search space. To solve the transformed BOP, we propose a divide-and-conquer bilevel optimization algorithm (called DACBO). Based on device status, task information, and available resources, DACBO first groups tasks into three independent small-size sets. Afterward, analytical methods are devised for the first two sets. As for the last one, we develop a nested bilevel optimization algorithm that uses differential evolution and variable neighborhood search (VNS) at the upper and lower levels, respectively. In addition, a greedy method is developed to quickly construct a good initial solution for VNS. The effectiveness of DACBO is verified on a set of instances by comparing with other algorithms

    Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system

    No full text
    Yao G, Ding Y, Jin Y, Hao K. Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system. Soft Computing. 2017;21(15):4309-4322.The workflow scheduling with multiple objectives is a well-known NP-complete problem, and even more complex and challenging when the workflow is executed in cloud computing system. In this study, an endocrine-based coevolutionary multi-swarm for multi-objective optimization algorithm (ECMSMOO) is proposed to satisfy multiple scheduling conflicting objectives, such as the total execution time (makespan), cost, and energy consumption. To avoid the influence of elastic available resources, a manager server is adopted to collect the available resources for scheduling. In ECMSMOO, multi-swarms are adopted and each swarm employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective. To avoid falling into local optima which is common in traditional heuristic algorithms, an endocrine-inspired mechanism is embedded in the particles’ evolution process. Furthermore, a competition and cooperation technique among swarms is designed in the ECMSMOO. All these strategies effectively improve the performance of ECMSMOO. We compare the quality of the proposed method with other algorithms for multi-objective task scheduling by hybrid and parallel workflow jobs. The results highlight the better performance of the proposed approach than that of the compared algorithms

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Otimização multiobjetivo com estimação de distribuição guiada por tomada de decisão multicritério

    Get PDF
    Orientadores: Fernando José Von Zuben, Guilherme Palermo CoelhoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Considerando as meta-heurísticas estado-da-arte para otimização multiobjetivo (MOO, do inglês Multi-Objective Optimization), como NSGA-II, NSGA-III, SPEA2 e SMS-EMOA, apenas um critério de preferência por vez é levado em conta para classificar soluções ao longo do processo de busca. Neste trabalho, alguns dos critérios de seleção adotados por esses algoritmos estado-da-arte, incluindo classe de não-dominância e contribuição para a métrica de hipervolume, são utilizados em conjunto por uma técnica de tomada de decisão multicritério (MCDM, do inglês Multi-Criteria Decision Making), mais especificamente o algoritmo TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), responsável por ordenar todas as soluções candidatas. O algoritmo TOPSIS permite o uso de abordagens baseadas em múltiplas preferências, ao invés de apenas uma como na maioria das técnicas híbridas de MOO e MCDM. Cada preferência é tratada como um critério com uma importância relativa determinada pelo tomador de decisão. Novas soluções candidatas são então amostradas por meio de um modelo de distribuição, neste caso uma mistura de Gaussianas, obtido a partir da lista ordenada de soluções candidatas produzida pelo TOPSIS. Essencialmente, um operador de roleta é utilizado para selecionar um par de soluções candidatas de acordo com o seu mérito relativo, adequadamente determinado pelo TOPSIS, e então uma novo par de soluções candidatas é gerado a partir de perturbações Gaussianas centradas nas correspondentes soluções candidatas escolhidas. O desvio padrão das funções Gaussianas é definido em função da distância das soluções no espaço de decisão. Também foram utilizados operadores para auxiliar a busca a atingir regiões potencialmente promissoras do espaço de busca que ainda não foram mapeadas pelo modelo de distribuição. Embora houvesse outras opções, optou-se por seguir a estrutura do algoritmo NSGA-II, também adotada no algoritmo NSGA-III, como base para o método aqui proposto, denominado MOMCEDA (Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Assim, os aspectos distintos da proposta, quando comparada com o NSGA-II e o NSGA-III, são a forma como a população de soluções candidatas é ordenada e a estratégia adotada para gerar novos indivíduos. Os resultados nos problemas de teste ZDT mostram claramente que nosso método é superior aos algoritmos NSGA- II e NSGA-III, e é competitivo com outras meta-heurísticas bem estabelecidas na literatura de otimização multiobjetivo, levando em conta as métricas de convergência, hipervolume e a medida IGDAbstract: Considering the state-of-the-art meta-heuristics for multi-objective optimization (MOO), such as NSGA-II, NSGA-III, SPEA2 and SMS-EMOA, only one preference criterion at a time is considered to properly rank candidate solutions along the search process. Here, some of the preference criteria adopted by those state-of-the-art algorithms, including non-dominance level and contribution to the hypervolume, are taken together as inputs to a multi-criteria decision making (MCDM) strategy, more specifically the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), responsible for sorting all candidate solutions. The TOPSIS algorithm allows the use of multiple preference based approaches, rather than focusing on a particular one like in most hybrid algorithms composed of MOO and MCDM techniques. Here, each preference is treated as a criterion with a relative relevance to the decision maker (DM). New candidate solutions are then generated using a distribution model, in our case a Gaussian mixture model, derived from the sorted list of candidate solutions produced by TOPSIS. Essentially, a roulette wheel is used to choose a pair of the current candidate solutions according to the relative quality, suitably determined by TOPSIS, and after that a new pair of candidate solutions is generated as Gaussian perturbations centered at the corresponding parent solutions. The standard deviation of the Gaussian functions is defined in terms of the parents distance in the decision space. We also adopt refreshing operators, aiming at reaching potentially promising regions of the search space not yet mapped by the distribution model. Though other choices could have been made, we decided to follow the structural conception of the NSGA-II algorithm, also adopted in the NSGA-III algorithm, as basis for our proposal, denoted by MOMCEDA (Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Therefore, the distinctive aspects, when compared to NSGA-II and NSGA-III, are the way the current population of candidate solutions is ranked and the strategy adopted to generate new individuals. The results on ZDT benchmarks show that our method is clearly superior to NSGA-II and NSGA-III, and is competitive with other wellestablished meta-heuristics for multi-objective optimization from the literature, considering convergence to the Pareto front, hypervolume and IGD as performance metricsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétrica2016/21031-0FAPESPCAPE

    Natural Computing and Beyond

    Get PDF
    This book contains the joint proceedings of the Winter School of Hakodate (WSH) 2011 held in Hakodate, Japan, March 15–16, 2011, and the 6th International Workshop on Natural Computing (6th IWNC) held in Tokyo, Japan, March 28–30, 2012, organized by the Special Interest Group of Natural Computing (SIG-NAC), the Japanese Society for Artificial Intelligence (JSAI). This volume compiles refereed contributions to various aspects of natural computing, ranging from computing with slime mold, artificial chemistry, eco-physics, and synthetic biology, to computational aesthetics

    Knowledge and Management Models for Sustainable Growth

    Full text link
    In the last years sustainability has become a topic of global concern and a key issue in the strategic agenda of both business organizations and public authorities and organisations. Significant changes in business landscape, the emergence of new technology, including social media, the pressure of new social concerns, have called into question established conceptualizations of competitiveness, wealth creation and growth. New and unaddressed set of issues regarding how private and public organisations manage and invest their resources to create sustainable value have brought to light. In particular the increasing focus on environmental and social themes has suggested new dimensions to be taken into account in the value creation dynamics, both at organisations and communities level. For companies the need of integrating corporate social and environmental responsibility issues into strategy and daily business operations, pose profound challenges, which, in turn, involve numerous processes and complex decisions influenced by many stakeholders. Facing these challenges calls for the creation, use and exploitation of new knowledge as well as the development of proper management models, approaches and tools aimed to contribute to the development and realization of environmentally and socially sustainable business strategies and practices
    corecore