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“There are in fact two things, science and opinion; the former begets knowledge, the latter
ignorance.”

(Hippocrates)



Resumo
Considerando as meta-heurísticas estado-da-arte para otimização multiobjetivo (MOO, do in-
glês Multi-Objective Optimization), como NSGA-II, NSGA-III, SPEA2 e SMS-EMOA, apenas
um critério de preferência por vez é levado em conta para classificar soluções ao longo do
processo de busca. Neste trabalho, alguns dos critérios de seleção adotados por esses algo-
ritmos estado-da-arte, incluindo classe de não-dominância e contribuição para a métrica de
hipervolume, são utilizados em conjunto por uma técnica de tomada de decisão multicrité-
rio (MCDM, do inglês Multi-Criteria Decision Making), mais especificamente o algoritmo
TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), responsável por
ordenar todas as soluções candidatas. O algoritmo TOPSIS permite o uso de abordagens
baseadas em múltiplas preferências, ao invés de apenas uma como na maioria das técnicas
híbridas de MOO e MCDM. Cada preferência é tratada como um critério com uma impor-
tância relativa determinada pelo tomador de decisão. Novas soluções candidatas são então
amostradas por meio de um modelo de distribuição, neste caso uma mistura de gaussianas,
obtido a partir da lista ordenada de soluções candidatas produzida pelo TOPSIS. Essenci-
almente, um operador de roleta é utilizado para selecionar um par de soluções candidatas
de acordo com o seu mérito relativo, adequadamente determinado pelo TOPSIS, e então
um novo par de soluções candidatas é gerado a partir de perturbações gaussianas centradas
nas correspondentes soluções candidatas escolhidas. O desvio padrão das funções gaussia-
nas é definido em função da distância das soluções no espaço de decisão. Também foram
utilizados operadores para auxiliar a busca a atingir regiões potencialmente promissoras do
espaço de busca que ainda não foram mapeadas pelo modelo de distribuição. Embora hou-
vesse outras opções, optou-se por seguir a estrutura do algoritmo NSGA-II, também adotada
no algoritmo NSGA-III, como base para o método aqui proposto, denominado MOMCEDA
(Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Assim, os aspectos
distintos da proposta, quando comparada com o NSGA-II e o NSGA-III, são a forma como
a população de soluções candidatas é ordenada e a estratégia adotada para gerar novos indi-
víduos. Os resultados nos problemas de teste ZDT mostram claramente que nosso método é
superior aos algoritmos NSGA- II e NSGA-III, e é competitivo com outras meta-heurísticas
bem estabelecidas na literatura de otimização multiobjetivo, levando em conta as métricas
de convergência, hipervolume e a medida IGD.

Palavras-chaves: otimização multiobjetivo; tomada de decisão multicritério; estimação de
distribuição.



Abstract
Considering the state-of-the-art meta-heuristics for multi-objective optimization (MOO),
such as NSGA-II, NSGA-III, SPEA2 and SMS-EMOA, only one preference criterion at a time
is considered to properly rank candidate solutions along the search process. Here, some of
the preference criteria adopted by those state-of-the-art algorithms, including non-dominance
level and contribution to the hypervolume, are taken together as inputs to a multi-criteria
decision making (MCDM) strategy, more specifically the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS), responsible for sorting all candidate solutions.
The TOPSIS algorithm allows the use of multiple preference based approaches, rather than
focusing on a particular one like in most hybrid algorithms composed of MOO and MCDM
techniques. Here, each preference is treated as a criterion with a relative relevance to the de-
cision maker (DM). New candidate solutions are then generated using a distribution model,
in our case a Gaussian mixture model, derived from the sorted list of candidate solutions
produced by TOPSIS. Essentially, a roulette wheel is used to choose a pair of the current
candidate solutions according to the relative quality, suitably determined by TOPSIS, and
after that a new pair of candidate solutions is generated as Gaussian perturbations centered
at the corresponding parent solutions. The standard deviation of the Gaussian functions is
defined in terms of the parents distance in the decision space. We also adopt refreshing opera-
tors, aiming at reaching potentially promising regions of the search space not yet mapped by
the distribution model. Though other choices could have been made, we decided to follow the
structural conception of the NSGA-II algorithm, also adopted in the NSGA-III algorithm, as
basis for our proposal, denoted by MOMCEDA (Multi-Objective Multi-Criteria Estimation
of Distribution Algorithm). Therefore, the distinctive aspects, when compared to NSGA-II
and NSGA-III, are the way the current population of candidate solutions is ranked and the
strategy adopted to generate new individuals. The results on ZDT benchmarks show that our
method is clearly superior to NSGA-II and NSGA-III, and is competitive with other well-
established meta-heuristics for multi-objective optimization from the literature, considering
convergence to the Pareto front, hypervolume and IGD as performance metrics.

Keywords: multiobjective optimization; multicriteria decision making; estimation of distri-
bution.
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1 Introduction

In the past decades, it has been observed an increase in the demand for finding high
quality solutions to problems involving the optimization of multiple objectives, eventually
under multiple constraints. These problems arise in relevant research and application areas
such as economics (MODIRI-DELSHAD; RAHIM, 2016), logistics (YANG et al., 2015) and
engineering (YAO et al., 2016); therefore, more elaborate mathematical formulations are
needed to address multiobjective optimization and decision making problems, in order to
describe practical optimization problems with high dimension and complexity.

Alongside the development of these formulations, several studies have been conducted
aiming at finding solutions for the corresponding mathematical programming problems, cov-
ering two well-established and distinct research fronts:

∙ Multi-Objective Optimization (MOO) (BRANKE et al., 2008), whose goal is to sample
the Pareto front in the objective space, composed of solutions presenting a trade-off
between their different objective values, allowing the decision maker preferences to be
taken into account a posteriori, i.e., after the process of finding the solutions.

∙ Multi-Criteria Decision Making (MCDM) (KÖKSALAN et al., 2011), where the pref-
erences of the decision maker are considered a priori, in order to rank multiple alter-
natives.

In single objective optimization problems, finding the best alternative among candi-
date solutions is a quite simple process: it suffices to evaluate the objective function. There-
fore, there is a global optimal solution and the relative merit of solutions can be directly
established. However, when dealing with multiple conflicting objectives, sorting the solutions
can be a challenging task, because there is a trade-off between their different objective values.
In this case, the concept of dominance is widely used to compare candidate solutions (DEB
et al., 2002). A solution 𝑥(1) is said to dominate a solution 𝑥(2) if all the objective values
for 𝑥(1) are better than or equal to the ones for 𝑥(2), and there is at least one objective
for which 𝑥(1) has a strictly better value than 𝑥(2). The solutions at the Pareto front are
non-dominated, i.e., there is no solution dominating any of them, and represent the best set
of trade-offs between the objective values for a given problem.

Many techniques have been developed to deal with MOO problems. Among them,
we can highlight the adapted versions of single objective optimization solvers to the multi-
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objective context, e.g., using scalarizing functions (WIERZBICKI, 1982), as well as opti-
mization meta-heuristics (COELLO COELLO et al., 2007). Essentially, there are two main
goals to be fulfilled by an MOO meta-heuristic: to sample solutions as close as possible to
the Pareto front, and to guarantee that these solutions are diversified, in order to promote
a uniform covering of the Pareto front. Usually, performance metrics are evaluated over the
set of candidate solutions obtained by two or more methods to compare how efficient they
were in achieving those goals.

Aiming at using the least possible amount of computational resources to achieve the
solutions at the Pareto front, most population-based meta-heuristics focus on iteratively
finding new candidate solutions that are diverse and non-dominated by the already found
solutions. Many proposals have been conceived to decide which candidate solutions will be
left behind and which ones will be used as starting points to find new promising candidate
solutions. In general, non-dominated solutions are the preferred ones to keep in the popula-
tion and, given a set of non-dominated solutions, their effective contribution to population
diversity in the objective space is traditionally adopted as a secondary sorting criterion, to-
gether with performance metrics that emphasize particularities of each application. NSGA-II
(DEB et al., 2002) and NSGA-III (DEB; JAIN, 2013), SPEA2 (ZITZLER et al., 2001) and
SMS-EMOA (BEUME et al., 2007) are examples of widely used meta-heuristics to solve
MOO problems. The first three adopt secondary criteria based on diversity, while the last
one uses a criterion that measures the contribution to the hypervolume indicator (ZITZLER;
THIELE, 1998), a commonly used metric to compare the performance of different algorithms.

When dealing with MCDM problems, we are interested in sorting a set of alternatives
according to multiple preferences of a decision maker (DM). This is not a trivial problem
when the criteria used to evaluate each alternative are conflicting. The alternatives can be, for
instance, the candidate solutions provided by an MOO algorithm. Not all the solutions at the
Pareto front can be of interest to the decision maker. The MCDM technique helps to filter the
most suited solutions according to the preferences of the decision maker. This is a scenario in
which MOO and MCDM techniques can be combined to solve practical optimization problems
in an a posteriori decision making approach, i.e., when the user preferences are incorporated
after the search.

MOO and MCDM techniques can also be combined prior to or during the execution
process (a priori and interactive decision making approaches, respectively) in order to guide
the search towards regions of interest for the decision maker, assuming that the goal is not to
sample the entire Pareto front, but only the portions that matter. This way, computational
resources are expected to be better employed, since they can focus on the most relevant solu-
tions among the non-dominated ones. Most MOO meta-heuristics involve multiple decisions
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along the population-based search to select the most promising population members. Gen-
erally, each decision is associated with user preferences, and multi-criteria decision making
techniques may help defining a proper ranking for the current individuals in the population.
Many hybrid approaches composed of MOO and MCDM approaches have been proposed in
the literature (PURSHOUSE et al., 2014), such as methods based on reference points and
weighted techniques. Reference points based methods extend the dominance concept to ac-
commodate aspiration levels, i.e., desired values for the objective functions defined by the
decision maker. Hence, non-dominated candidate solutions can be classified by considering
how close their objective values are to these reference points. On the other hand, weighted
techniques usually incorporate preference information into an achievement scalarizing func-
tion (ASF), which must be optimized to guide the search. The multi-objective optimization
problem now becomes a single objective optimization task, and the candidate solutions are
sorted according to the value of the ASF. In most cases of a priori decision making ap-
proaches, the decision maker must have some knowledge about the nature of the problem
to define his/her preferences, to define the aspiration levels in a reference point approach
or the weights in a weighted technique, as an example. If the user does not have any idea
about what he is looking for, the hybrid technique will not be as useful as approaches that
do without such a priori information.

Most MOO meta-heuristics sorts their solutions according to only one preference
criterion at a time. A distinct aspect of our approach when compared to other hybrid ap-
proaches composed of MOO and MCDM approaches is that the adopted MDCM technique,
the TOPSIS algorithm (HWANG; YOON, 1981), allows the use of multiple preference based
approaches, rather than focusing on a particular one. Each preference is treated as a criterion
with a relative relevance to the DM. It is up to him/her to decide which criterion is more
important than the other, and express that in the form of a weighting vector responsible
for defining the relative relevance of the criteria. This information is used by TOPSIS to
properly rank the candidate solutions. Making the reasonable assumption that better ranked
candidate solutions are located in more promising regions of the search space, the sorted list
of candidate solutions may be explored to conceive a method to generate new potentially
high-ranked candidate solutions.

Generating new individuals is an important part of the search process. Traditionally,
evolutionary meta-heuristics apply recombination and/or mutation operators in this step.
New members are created by recombining information from the already existing ones. An-
other interesting alternative is to resort to an Estimation of Distribution Algorithm (EDA)
(HAUSCHILD; PELIKAN, 2011), a class of stochastic optimization methods employing esti-
mation of distribution techniques to guide the search for solutions. Instead of using traditional
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variation operators, new candidate solutions are generated by building and sampling explicit
probabilistic models of promising candidate solutions among the already found ones. The idea
behind it is that promising regions of the search space are associated with higher probabili-
ties of generating candidate solutions, which implies that the exploration of the search space
will focus on these regions. The use of EDA in optimization problems has proven, in many
practical situations, to improve performance both in terms of the demand for computational
resources and of the quality of solutions. In this work, we follow this approach and adopt a
mixture of Gaussian functions as distribution model, so that each Gaussian distribution is
centered at its corresponding current candidate solution and the weights used to compose
the mixture are non-negative and add up to unity. The weight of each Gaussian is as high as
the relative quality of the corresponding candidate solution, determined by TOPSIS, so that
higher quality candidate solutions will contribute more to the probability density function. A
roulette wheel operator can then be used to sample a uniformly distributed random number
in the interval [0, 1] to select the corresponding Gaussian function, and use it to actually
sample the new member. Nevertheless, we adopt a particular sampling scheme, in which new
candidate solutions are generated in pairs. Each time, two distinct individuals are selected
using the roulette wheel operator, and a new pair of candidate solutions is generated as Gaus-
sian perturbations centered at the corresponding parent solutions. The standard deviation
of the Gaussian functions is defined in terms of the parents distance in the decision space,
so that the spread of the generated candidate solutions is close to the spread of the parent
solutions. This is an interesting property, also observed in a widely used crossover operator in
real-coded Genetic Algorithms (GA’s), the SBX operator (DEB; AGRAWAL, 1994). Thus,
our sampling scheme is able to incorporate the advantages of using a distribution model as
well as some of the interesting properties of a powerful operator.

However, the aforementioned assumption may not always be true: sometimes, there
may be high quality solutions located in unexplored regions of the search space, that will
most likely not be represented by the distribution model. Hence, the process of generating
new solutions should be able to eventually reach those regions as well, so that they can be
further mapped by the distribution model and thus contribute to the search. This can be
achieved, for instance, by resorting to operators that insert randomness in the process, such
as a mutation operator.

Essentially, we propose here a hybrid technique denoted by MOMCEDA (Multi-
Objective Multi-Criteria Estimation of Distribution Algorithm), combining NSGA-II, NSGA-
III, TOPSIS and a mixture of Gaussian functions. The main structure of the evolutionary
meta-heuristic follows the one present in NSGA-II and NSGA-III, but endowed with dis-
tinct sorting and sampling mechanisms. Sorting is performed by TOPSIS, based on user
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preferences derived from state-of-the-art decision policies already proposed as part of well-
established meta-heuristics. Sampling is implemented by a mixture of Gaussians, so that
regions in the search space containing higher quality candidate solutions tend to be explored
more intensively. A special sampling scheme and refreshing operators are also adopted, to
help the algorithm reach unexplored promising regions of the search space. Hence, the main
goal of this research was to contribute to the insertion of MCDM techniques to promote itera-
tive decision making in MOO population based meta-heuristics, improving its computational
performance toward better solutions.

The first chapters of this dissertation focus on presenting the three research areas
explored in this work: Multi-Objective Optimization, Multi-Criteria Decision Making and
Estimation of Distribution Algorithms. In Chapter 2, we introduce single and multi-objective
optimization problems. Chapter 3 is devoted to introduce Multi-Criteria Decision Making
problems, emphasizing its applications to support iterative decision making processes in
EMOA (Evolutionary Multi-Objective Algorithm) to solve MOO problems. In Chapter 4, we
discuss Estimation of Distribution Algorithms (EDA’s), a class of evolutionary optimization
methods. The main contributions of this research are presented in Chapters 5 and 6. In
chapter 5, MOMCEDA is formally introduced. Chapter 6 summarizes the computational
experiments performed to evaluate MOMCEDA’s performance. The final chapter draws the
main conclusions and suggests some ideas for future works.
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2 Multi-Objective Optimization

Optimization problems have applications in many disciplines, such as physics, biology,
engineering, economics and business. An optimization strategy can be defined as the act of
selecting the best option, with regard to some criteria, from a set of available alternatives
under given constraints. For instance, finding the best route between two places, considering
the limitations imposed by the traffic and the city roads, is an optimization problem. An-
other example is the problem of finding the dimensions of a building maximizing its area of
occupation, given a certain amount of materials.

Mathematical optimization problems are usually characterized by three fundamental
elements (WRIGHT, 2016). The first one is a numerical quantity, defined as an objective
function, used to evaluate candidate solutions. In many optimization problems, there is only
one objective function, and finding the best candidate solution is equivalent to finding the
element with the best possible value of the objective function, denoted as optimal solution.
The objective function represents a value we wish to minimize (or maximize, depending
on the context), such as company’s production costs or profits, the duration of an event
or the distance between two points of interest. However, there are problems with multiple
objective functions that cannot be optimized independently. This kind of problems will be
formalized later in this chapter. The second element is a collection of decision variables,
which are quantities that can be manipulated in order to optimize the objective functions. As
examples, they can be represented by quantities of stock to be bought or sold, the dimensions
of a building or the route to be followed by a vehicle through a traffic network. The third
element are the constraints, which are conditions that must always be true no matter what
the solution is, imposing restrictions on the values that the decision variables can take. For
instance, a manufacturing process cannot require more resources than what is available.

The mathematical formulation of an optimization problem is the first step in its
resolution. It corresponds to the translation of the problem into equations and inequations
that represent its three elements: the objective functions, the decision variables and the
constraints. The methods that will be applied to solve the optimization problem will depend
on its mathematical formulation. An incomplete or incorrect formulation will lead the method
to produce wrong solutions, or no solution at all.

This chapter formally introduces Single and Multi-Objective Optimization (MOO)
problems and presents some commonly used methods to address the latter, with an emphasis
on evolutionary meta-heuristics.
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2.1 Single Objective Optimization
In single objective optimization problems, there is only one objective function, which

means there is only one value we want to minimize or maximize. The minimization problem
is formulated as follows:

min 𝑓(𝑥)

s.t. 𝑔𝑗(𝑥) ≥ 0 𝑗 = 1, 2, ..., 𝐽

ℎ𝑘(𝑥) = 0 𝑘 = 1, 2, ..., 𝐾

𝑥 =
[︁
𝑥1 𝑥2 . . . 𝑥𝑛

]︁𝑇
𝑥 ∈ Ω

(2.1)

where 𝑓(.) : Ω → R+ is the objective function of the problem, 𝑥 is the array of 𝑛 decision
variables, Ω is the search space, 𝑔𝑗(.) : Ω → R, 𝑗 = 1, ..., 𝐽 are the inequality constraints
and ℎ𝑘(.) : Ω → R, 𝑘 = 1, ..., 𝐾 are the equality constraints. A point in the search space
that violates these constraints is an infeasible point. A feasible solution that minimizes the
objective function is called optimal solution. A maximizing problem can be converted into
a minimizing problem by negating the objective function: max(𝑓(𝑥)) = − min(−𝑓(𝑥)). An
inequality constraint of the type 𝑔𝑗(𝑥) ≤ 0 is equivalent to −𝑔𝑗(𝑥) ≥ 0. Hence, all single
objective optimization problems can be formulated as presented in Eq. (2.1).

A local minimum 𝑥* is defined as an element for which there exists some 𝛿 > 0 such
that, for all 𝑥 ∈ Ω such that ‖𝑥 − 𝑥*‖ ≤ 𝛿, we have 𝑓(𝑥*) ≤ 𝑓(𝑥). In other words, the
values of the objective function are greater than 𝑓(𝑥*) in a sufficiently small neighborhood
around 𝑥*. If 𝑓(𝑥*) ≤ 𝑓(𝑥) for every 𝑥 in the feasible set of the search space, then 𝑥* is
also a global minimum, which is the optimal solution to the optimization problem. Local and
global maxima are defined similarly. Because a global optimal solution is also a local optimal
solution, some optimization methods will find it difficult to make the distinction between
them, and will often treat a local optimal solution as an actual solution to the problem.
In some cases, a local optimal solution is good enough; however, knowing that there is a
better solution is an important information. Figure 1 shows an example of a unidimensional
continuous function and its respective global and local minima and maxima for 0.1 ≤ 𝑥 ≤ 1.1.

The approach that will be used to solve a single objective optimization problem de-
pends on its characteristics. For instance, if there is a discrete and manageable number of
feasible candidate solutions, solving the problem is as simple as evaluating the objective func-
tion and sorting the candidate solutions accordingly. Also, problems in which the variables
are continuous quantities require a different approach from problems in which the variables
are discrete or combinatorial quantities. Solving these kinds of problems is out of scope here.
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Figure 1 – Local and global maxima and minima for a unidimensional function in the interval
0.1 ≤ 𝑥 ≤ 1.1.

The interested reader can find more about that in RAO (2009).

2.2 Multi-Objective Optimization: Formulation and definitions
In many situations, there is more than one quantity we wish to optimize at the same

time and they are not independent optimization problems. For instance, consider the problem
of finding the fastest and the shortest route between two points of interest in a city, subject
to limitations imposed by the city roads and the traffic flow. Here, there are two quantities
to be minimized: the length of the route and the travel time. This is a Multi-Objective
Optimization (MOO) problem with two conflicting objective functions. In MOO, the goal
is to find solutions minimizing (or maximizing) the values of multiple objective functions,
formalized as follows:

min
[︁
𝑓1(𝑥) 𝑓2(𝑥) . . . 𝑓𝑀(𝑥)

]︁
s.t. 𝑔𝑗(𝑥) ≥ 0 𝑗 = 1, 2, ..., 𝐽

ℎ𝑘(𝑥) = 0 𝑘 = 1, 2, ..., 𝐾

𝑥 =
[︁
𝑥1 𝑥2 . . . 𝑥𝑛

]︁𝑇
𝑥 ∈ Ω

(2.2)
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where 𝑓𝑖(.) : Ω → R+, 𝑖 = 1, ..., 𝑀 is the 𝑖-th objective function of the problem, 𝑥 is the
array of 𝑛 decision variables, Ω is the search space, 𝑔𝑗(.) : Ω → R, 𝑗 = 1, ..., 𝐽 are the
inequality constraints and ℎ𝑘(.) : Ω → R, 𝑘 = 1, ..., 𝐾 are the equality constraints. The
feasible set is formed by points in Ω not violating these constraints. For the same reasons
already discussed in the single objective case introduced in Section 2.1, all multi-objective
optimization problems can be formulated as presented in Eq. (2.2).

In MOO problems, the objective functions are conflicting, which means that searching
for a solution that improves the value of one of the objectives may lead to worse values for at
least some other objective. In this case, unlike single objective optimization problems, there is
no global optimal solution; instead, there are several solutions that present trade-offs between
the values of the different objective functions. Going back to our example at the beginning
of this section, the problem can have a solution that minimizes the distance between the two
points, but it is not the fastest route because of traffic jam; in this case, there is another route
which is faster because it uses less congested streets, but it is longer than the other option.
The problem may have a third solution with an even faster or shorter route than the second
one, but not both simultaneously, and so on. All these solutions present a trade-off between
the values of the two objectives to be minimized: distance and travel time. From the multi-
objective optimization perspective, none of the solutions is better than the other. However,
any of them is better than a solution with the worst values for travel time and distance, for
obvious reasons. In this example, we can realize that comparing candidate solutions in MOO
problems is not as simple as in the single objective case. It becomes even more complicated
when the number of objective functions gets higher.

Particularly in the case of a reduced number of objective functions, the concept of
dominance is of great relevance (DEB et al., 2002). Given two solutions 𝑥(1) and 𝑥(2), the
solution 𝑥(1) is said to dominate the solution 𝑥(2) if all the objective values for 𝑥(1) are better
than or equal to the ones for 𝑥(2), and there is at least one objective for which 𝑥(1) has a
strictly better value than 𝑥(2). According to the definition presented in Equation (2.2), we
say that 𝑥(1) dominates 𝑥(2) (𝑥(1) ≺ 𝑥(2)) if and only if:

𝑖) 𝑓𝑖(𝑥(1)) ≤ 𝑓𝑖(𝑥(2)) ∀𝑖 ∈ {1, ..., 𝑀}

𝑖𝑖) ∃𝑖 ∈ {1, ..., 𝑀} : 𝑓𝑖(𝑥(1)) < 𝑓𝑖(𝑥(2))
(2.3)

A solution 𝑥 to a multi-objective optimization problem is said to be efficient, Pareto-
optimal or non-dominated if and only if there is no other feasible solution 𝑥′ for the problem
such that 𝑥′ dominates 𝑥 (𝑥′ ≺ 𝑥). In our route example, the first three aforementioned
solutions are non-dominated, while the solution with the worst objective values is dominated
by the others. We are interested in finding as many non-dominated solutions as possible,
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since they present the best trade-offs available between their objective values.

In MOO problems, there are two search spaces to be considered: the decision space,
which contains the decision variables, and the objective space, featuring its corresponding
objective values. A point in the decision space has only one corresponding point in the
objective space, but many points in the decision space can be mapped to the same point in
the objective space. Figure 2 illustrates this idea for bi-dimensional spaces. Note that it is not
mandatory for both spaces to have the same dimension. The correspondence between points
in the different spaces is represented by the arrows. The feasible set is delimited by the gray
area. The optimization search process takes place on the decision space, by manipulating the
decision variables, but the relative quality analysis of solutions is carried out in the objective
space.

Figure 2 – Example of mapping points between decision and objective spaces.

The set of efficient solutions in the decision space is called Pareto set, and its image
on the objective space is the Pareto front. Formally, the Pareto set is given by:

𝑃 * = {𝑥 ∈ Ω|@𝑥′ ∈ Ω : 𝑥′ ≺ 𝑥} (2.4)

while the Pareto front is given by:

𝑃𝐹 = {
[︁
𝑓1(𝑥) 𝑓2(𝑥) . . . 𝑓𝑀(𝑥)

]︁
|𝑥 ∈ 𝑃 *} (2.5)

In Figure 3, we see an example of representation of the objective space, considering
a minimization problem with two objectives. The Pareto front is represented by a line, with
some highlighted efficient solutions represented by triangles, which are non-dominated among
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each other. Some dominated solutions, represented by circles, are depicted as well. They are
dominated by a subset of solutions at the Pareto front.

Figure 3 – Illustration of the dominance concept and the Pareto front.

Now that we have established the definitions for relative quality comparison between
solutions in MOO problems, we can identify two primary goals for MOO algorithms: to obtain
solutions as close as possible to the Pareto front, and to maintain diversity among solutions,
such that the Pareto front is uniformly covered. These two goals are illustrated in Figure 4
for a bi-objective minimization problem: the approximation of the Pareto front is represented
by the blue arrows, and the coverage is represented by the red arrows.

2.3 Multi-Objective Optimization methods
In order to accomplish the aforementioned goals for MOO problems, a variety of meth-

ods have been proposed. They can be roughly divided into two categories: exact resolution
methods and meta-heuristics. The methods from the first category make use of mathematical
tools (such as gradient and Hessian matrix) to extract information from the decision variables
and find solutions with a given precision. Among them, we can highlight the adapted versions
of single objective optimization solvers to the multi-objective context, e.g., using scalarizing
functions (WIERZBICKI, 1982) to convert the multi-objective optimization problem into a
single objective one. Most of the exact methods have poor performance in real-world prob-
lems (such as problems with large dimensions, hardly constrained problems, multi-modal
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Figure 4 – Illustration of the two primary goals for MOO algorithms (VON ZUBEN;
COELHO, 2017).

and/or time-varying problems). On the other hand, meta-heuristic techniques are powerful
and flexible search methodologies that have successfully tackled practical challenging prob-
lems. Although there is no guarantee that these algorithms will be able to find Pareto-optimal
solutions, they are usually able to produce good-quality solutions in reasonable computa-
tion times and good enough for practical purposes. In MOO, evolutionary meta-heuristics
(COELLO COELLO et al., 2007) are among the most used methods, and represents the main
focus of this research.

The idea behind an Evolutionary Multi-objective Optimization Algorithm (EMOA)
is to maintain a population of candidate solutions and evolve its members along generations,
based on Darwin’s Theory of Evolution. At each generation, the population’s best members
are selected according to some given criteria, and new members are generated from them. The
worst members are discarded, and the evolutionary process restarts until it reaches a stopping
condition. Aiming at using the least possible amount of computational resources to achieve
the solutions at the Pareto front, most population-based meta-heuristics focus on iteratively
finding new candidate solutions that are diverse and non-dominated by the already found
solutions. Many proposals have been conceived to decide which candidate solutions will be
left behind and which ones will be used as starting points to find new promising candidate
solutions. In the next sections, we will present some state-of-the-art methods in this category.

2.3.1 NSGA-II

The second version of the Non-dominated Sorting Genetic Algorithm, NSGA-II, was
proposed in DEB et al. (2002) and is one of the most popular MOO methods, due to its
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efficiency and good performance in several problems. This population-based evolutionary
meta-heuristic exploits the concept of non-dominated fronts. For every generation 𝑡 of the
genetic algorithm, the individuals from the population 𝑃𝑡 and the corresponding offspring
𝑄𝑡, both with the same size 𝑁 , are sorted according to the dominance relation using a
process called Fast Non-dominated Sorting. A list ℱ = (ℱ1, ℱ2, ...) of non-dominated fronts
is then produced. Solutions in a non-dominated front are non-dominated among each other.
The first non-dominated front ℱ1 contains the non-dominated individuals amongst the entire
population, being the algorithm’s solution for the problem at the end of its execution. The
following fronts, if any, are populated by dominated individuals, such that an individual
belonging to the front ℱ𝑖, 𝑖 > 1, is dominated by at least one individual in the front ℱ𝑖−1.
The non-dominated front level of an individual is therefore a criterion to be minimized. Figure
5 illustrates four non-dominated fronts in a bi-objective minimization problem.

Figure 5 – Non-dominated fronts in a bi-objective minimization problem.

To perform the Non-dominated Sorting, each member of the population is compared
with all the others with respect to the dominance relation. The first non-dominated front is
formed by the non-dominated members. To find the next front, the members of the previous
front are removed from the population, and the next front is formed by the non-dominated
members among the remaining ones. The procedure is repeated until all members have been
sorted. The Fast Non-dominated Sorting procedure proposed in DEB et al. (2002) is an
optimized version of this algorithm.

After the sorting process, the population of the next generation 𝑃𝑡+1 is filled with
individuals from the first non-dominated fronts, until it is no longer possible to insert all the
individuals from a given front 𝑘 without exceeding the population size. Let ℱ𝑘 be this front.
If 𝑃𝑡+1 is already complete, the algorithm proceeds directly to the creation of the offspring
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population 𝑄𝑡+1. Otherwise, the individuals in ℱ𝑘 are sorted according to a second criterion,
which evaluates the diversity of the population: the crowding distance measure. This measure
computes the population’s density in the objective space, and attributes higher values to
the members located in less populated areas. The remaining vacancies of 𝑃𝑡+1 are filled by
the individuals from ℱ𝑘 with the highest values of crowding distance, aiming at promoting
population diversity.

Once 𝑃𝑡+1 is complete, the process of sampling new solutions initiates. The parents are
selected by binary tournament, whose winner is determined using the same criteria adopted
to form the population: non-dominance level and, in case of a tie, crowding distance. The
offspring population 𝑄𝑡+1 is obtained by applying recombination and mutation operators in
the selected individuals. This completes a generation of the algorithm, which will restart
the whole process for a new generation unless the stopping condition is achieved. A maxi-
mum number of generations or objective functions evaluations are commonly used to stop
the execution. The steps performed by NSGA-II are summarized in Algorithm 1. The over-
all complexity of one generation of the algorithm is 𝑂(𝑀𝑁2), where 𝑀 is the number of
objectives and 𝑁 is the population size, which is governed by the non-dominated sorting
procedure.

Algorithm 1: NSGA-II
Result: Non-dominated individuals of 𝑃𝑡

1 𝑡 = 1;
2 𝑃𝑡, 𝑄𝑡 = initialize_population(𝑁);
3 while stopping condition not satisfied do
4 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡;
5 ℱ = fast_non_dominated_sort(𝑅𝑡);
6 𝑃𝑡+1 = ∅, 𝑖 = 1 ;
7 while |𝑃𝑡+1| + |ℱ𝑖| ≤ 𝑁 do
8 evaluate_crowding_distance (ℱ𝑖);
9 𝑃𝑡+1 = 𝑃𝑡+1 ∪ ℱ𝑖;

10 𝑖 = 𝑖 + 1;
11 end
12 sort_crowding_distance(ℱ𝑖);
13 𝑃𝑡+1 = 𝑃𝑡+1 ∪ ℱ𝑖[1 : 𝑁 − |𝑃𝑡+1|];
14 𝑄𝑡+1 = offspring(𝑃𝑡+1);
15 𝑡 = 𝑡 + 1;
16 end
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2.3.2 NSGA-III

NSGA-III uses a reference-point-based approach focusing on Many-Objective Opti-
mization (MOO problems with more than three objectives) (DEB; JAIN, 2013). Problems
with a large number of objectives pose challenges to any optimization algorithm: the pro-
portion of non-dominated solutions in a randomly chosen set of objective vectors becomes
exponentially large with an increase in the number of objectives, making it difficult to ac-
commodate an adequate number of new solutions in the population, since non-dominated
solutions occupy most of its slots. Also, the diversity-preservation operators, such as the
crowding distance operator, are computationally expensive in high dimensions. Instead of
searching the entire search space for Pareto-optimal solutions, NSGA-III adopts a predefined
multiple targeted search, which helps alleviating the computational burden and the loss of
discriminant power associated with non-dominance.

NSGA-III is based on the same concepts adopted by NSGA-II to sort non-dominated
individuals, but now a different secondary criterion is used to evaluate diversity within a
non-dominance level: the size of an individual’s neighborhood, defined as follows. First, the
user defines a set of 𝐻 reference points, or a structured approach is used to create them,
with 𝑝 divisions for each objective axis, in an 𝑀 -dimensional hyperplane which intercepts
each objective axis at 1.0; every reference point gives origin to a reference direction, taking
as origin the ideal point of the population in the objective space (the point with the best
values for each objective found so far); then, another 𝑀 -dimensional hyperplane is found by
identifying the extreme points in each objective axis, and the objectives are normalized such
that the new hyperplane matches the other one marked with the reference points; after that,
the individuals are associated with the closest reference direction in the normalized objective
space; finally, a neighborhood is formed by the closest individuals to a given direction. Small
sized neighborhoods are preferred to maintain diversity. Ideally, one member for each reference
point is the desired result at the end of the run. Figure 6 shows an example of 𝐻 = 15
structured reference points distributed over a normalized hyperplane, with 𝑀 = 3 objectives
and 𝑝 = 4 divisions. The ideal point and one of the reference directions are depicted as well.
The points were created using Denis and Das’s systematic approach (DENNIS; DAS, 1998).
The total number of reference points (𝐻) in this case is given by:

𝐻 =
(︃

𝑀 + 𝑝 − 1
𝑝

)︃
(2.6)

The steps performed by NSGA-III are summarized in Algorithm 2. In line 3, we call
the method to build the set 𝑍𝑠 of structured reference points, or we use a set of aspiration
levels provided by the user. In the loop from lines 8 to 10, the population 𝑆𝑡 is formed by
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the first non-dominated fronts of the combined population 𝑅𝑡, and ℱ𝑙 is the last front that
was added to 𝑆𝑡. If 𝑃𝑡+1 has already 𝑁 members, then we are done with it; otherwise, the
new population 𝑃𝑡+1 is filled with members from 𝑆𝑡∖ℱ𝑙, and the last 𝐾 members to be added
to 𝑃𝑡+1 will be chosen from ℱ𝑙 according to the diversity criterion. In line 18, the Normalize
procedure performs the objective normalization and produces the normalized objective values
fn and the set of normalized reference points 𝑍𝑟. In line 19, the Associate procedure associates
each population member s to its closest reference direction 𝜋(s), where 𝑑(s) is the Euclidean
distance between s and 𝜋(s). In line 20, the neighborhood size 𝜌 for each reference direction
is updated by the niche_count procedure. Finally, the remaining 𝐾 members are added to
𝑃𝑡+1 in line 21 in the Niching procedure. The overall worst-case complexity of one generation
of NSGA-III is 𝑂(𝑁2 log𝑀−2 𝑁) or 𝑂(𝑁2𝑀), whichever is larger, where 𝑀 is the number of
objectives and 𝑁 is the population size.

Figure 6 – Distribution of 15 structured reference points in a 3-dimensional normalized hy-
perplane with 4 divisions for each objective axis.

2.3.3 SMS-EMOA and the hypervolume measure

The S -Metric Selection Evolutionary Multi-objective Optimization Algorithm (SMS-
EMOA) was proposed in BEUME et al. (2007). Again, the concept of non-dominated sorting
is adopted to primarily classify individuals, but now combined with a criterion based on the
S -metric, commonly known as hypervolume, which is a frequently applied quality measure
for comparing the results of EMOA’s. This metric rewards the convergence towards the Pareto
front as well as the representative distribution of points along the front. The hypervolume
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Algorithm 2: NSGA-III
Result: Non-dominated individuals of 𝑃𝑡

1 𝑡 = 1;
2 𝑃𝑡, 𝑄𝑡 = initialize_population(𝑁);
3 𝑍𝑠 = structured_reference_points(𝑀, 𝑝);
4 while stopping condition not satisfied do
5 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡;
6 ℱ = fast_non_dominated_sort(𝑅𝑡);
7 𝑆𝑡 = ∅, 𝑖 = 1 ;
8 while |𝑆𝑡| ≥ 𝑁 do
9 𝑆𝑡 = 𝑆𝑡 ∪ ℱ𝑖;

10 𝑖 = 𝑖 + 1;
11 end
12 ℱ𝑙 = ℱ𝑖;
13 if |𝑆𝑡| = 𝑁 then
14 𝑃𝑡+1 = 𝑆𝑡;
15 else
16 𝑃𝑡+1 = ∪𝑙−1

𝑗=1ℱ𝑗;
17 𝐾 = 𝑁 − |𝑃𝑡+1|;
18 fn, 𝑍𝑟 = Normalize(𝑆𝑡, 𝑍𝑠);
19 𝜋(s), 𝑑(s) = Associate(𝑆𝑡, 𝑍𝑟);
20 𝜌 = niche_count(𝑍𝑟, 𝑆𝑡, 𝐹𝑙, 𝜋);
21 𝑃𝑡+1 = Niching(𝐾, 𝜌, 𝜋, 𝑑, 𝑍𝑟, 𝐹𝑙, 𝑃𝑡+1);
22 end
23 𝑄𝑡+1 = offspring(𝑃𝑡+1);
24 𝑡 = 𝑡 + 1;
25 end

measure was described as the size of the dominated space by its authors (ZITZLER; THIELE,
1998). Let Λ denote the Lebesgue measure (LEBESGUE, 1902), then the S metric is defined
as:

S (𝐵, y𝑟𝑒𝑓 ) := Λ
(︂ ⋃︁

y∈𝐵

{y′|y ≺ y′ ≺ y𝑟𝑒𝑓}
)︂

, 𝐵 ⊆ R𝑀 (2.7)

where 𝐵 is a set of points in the objective space and y𝑟𝑒𝑓 denotes a reference point that
should be dominated by all Pareto-optimal solutions. The exclusive contribution ΔS (𝑠, 𝐵)
of a given point 𝑠 ∈ 𝐵 to the hypervolume measure is defined as:

ΔS (𝑠, 𝐵) = S (𝐵) − S (𝐵∖{𝑠}) (2.8)

Given a finite search space and a reference point, maximization of the hypervolume
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measure is equivalent to finding the Pareto set. In two dimensions, the hypervolume is equiv-
alent to the dominated area. Figure 7 shows an example of this concept for a set of seven
points. In this example, the candidate solution located at the coordinates (𝑓1, 𝑓2) = (2, 3)
has the maximum exclusive contribution to the indicator.

Figure 7 – Bi-dimensional example: the hypervolume is given by the colored area. The ex-
clusive contribution of each point to this metric is highlighted in dark blue.

The steps performed by SMS-EMOA are summarized in Algorithm 3. The algorithm
starts with a population 𝑃𝑡 of 𝑁 individuals. A new individual 𝑞𝑡+1 is generated by means
of randomised variation operators. The non-dominated sorting procedure is applied to the
population combined with the new individual. Then, the individual from the last front that
has the smallest value of exclusive contribution to the hypervolume with respect to that
front is removed from the population, and the procedure restarts until it reaches a stopping
condition. As expected, the method outperforms most of its concurrents in many MOO
problems when the hypervolume is adopted as the performance measure. However, calculating
this metric is a computationally expensive operation. The best known algorithms calculate the
hypervolume in a runtime that is polynomial in the number of points, but grows exponentially
with the number of objectives. This poses limitations to the applicability of the method in
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the case of high dimensional problems. For two or three objectives, there are faster algorithms
to directly calculate the ΔS (𝑠, 𝐵) values instead of making repetitive calls of procedures to
compute the hypervolume as a whole.

In case of two objectives, we take the points of the worst-ranked non-dominated front
ℱ𝜈 and sort them in ascending order according to the values of the first objective function 𝑓1.
We get a sequence that is additionally sorted in descending order concerning the 𝑓2 values,
because the points are mutually non-dominated. Given a sorted front ℱ𝜈 = {𝑠1, 𝑠2, ..., 𝑠|ℱ𝜈 |},
ΔS is calculated as follows:

ΔS (𝑠𝑖, ℱ𝜈) = (𝑓1(𝑠𝑖+1) − 𝑓1(𝑠𝑖)) · (𝑓2(𝑠𝑖−1) − 𝑓2(𝑠𝑖)) (2.9)

where 𝑖 = {1, ..., |ℱ𝜈 |}, 𝑓1(𝑠|ℱ𝜈 |+1) = 𝑓1(y𝑟𝑒𝑓 ), 𝑓2(𝑠0) = 𝑓2(y𝑟𝑒𝑓 ) and y𝑟𝑒𝑓 is the reference point.
A fast algorithm for computing all contributions in a three objective space is presented in
NAUJOKS et al. (2005) and is based on a two-dimensional projection of the set of points. It
has a runtime of 𝑂(𝑁3), where 𝑁 is the population size.

Algorithm 3: SMS-EMOA
Result: Non-dominated individuals of 𝑃𝑡

1 𝑡 = 1;
2 𝑃𝑡 = initialize_population(𝑁);
3 while stopping condition not satisfied do
4 𝑞𝑡+1 = offspring(𝑃𝑡);
5 𝑅𝑡 = 𝑃𝑡 ∪ 𝑞𝑡+1;
6 {ℱ1, ..., ℱ𝜈} = fast_non_dominated_sort(𝑅𝑡);
7 𝑟 = arg mins∈ℱ𝜈 [ΔS (𝑠, ℱ𝜈)];
8 𝑃𝑡+1 = 𝑅𝑡∖{𝑟} ;
9 𝑡 = 𝑡 + 1;

10 end

2.4 Summary
In this chapter, we introduced single and multi-objective optimization problems. In

single objective optimization, we saw that a direct comparison between solutions can be es-
tablished by evaluating the objective function. In MOO, however, the concept of dominance
among solutions is of great relevance. The goal is to find the so-called Pareto front, formed
by non-dominated solutions, which represent the best attainable trade-offs between their
objective values. We presented some MOO methods, with an emphasis on Multi-objective
Optimization Evolutionary Algorithms (EMOA), which are able to produce good quality
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solutions in reasonable computation times for practical problems. As we saw, only one cri-
terion at a time is taken into account to classify individuals in these methods: first, the
non-dominance level, and in case of a tie, the diversity in the objective space for NSGA-II
and NSGA-III, and the exclusive contribution to the hypervolume measure for SMS-EMOA.
The three methods presented here were used as basis to elaborate our method. In the next
chapter, we will discuss a related problem to the one of finding Pareto-optimal solutions:
how to select a final candidate solution according to user preferences. The preference criteria
adopted by our method were inspired by the criteria adopted by NSGA-II, NSGA-III and
SMS-EMOA.
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3 Multi-Criteria Decision Making

Decision making is the process of identifying and selecting an alternative among sev-
eral possibilities with respect to the preferences of a person, designated as Decision Maker
(DM). Decision making is regarded as a cognitive process. In single objective optimization
problems, finding the best alternative among candidate solutions is quite simple: we simply
evaluate the objective function. Therefore, the relative merit of solutions can be directly es-
tablished. However, when dealing with multiple conflicting objectives, sorting the solutions
can be a challenging task, specially because of the non-domination concept discussed in the
previous chapter. Furthermore, the number of Pareto optimal solutions required for describ-
ing the entire Pareto optimal front of an MOO problem is usually very large or even infinite.
Selecting one preferred solution from all of these solutions is cognitively challenging. Multi-
Criteria Decision Making (MDCM) methods can be used to support the decision making steps
in MOO methods. In fact, multi-criteria decision making is closely related to multi-objective
optimization (DYER et al., 1992).

MDCM methods address complex problems featuring conflicting objectives, where
a choice among alternatives is needed. The purpose is to sort the solutions based on the
DM preferences. Every decision is made within a decision environment, which is defined
as the collection of information, candidate solutions and preferences available at the time
the decision must be made. This major class of MCDM methods is further divided into
Multi-attribute decision-making, when dealing with discrete candidate solutions, and Multi-
objective decision-making, when a theoretically infinite number of continuous candidate so-
lutions is defined (SAN CRISTÓBAL, 2012).

The field of MCDM has developed well-established methods for helping DMs address
MOO problems over the last decades (MIETTINEN, 1999). More recently, MCDM tools have
been applied together with evolutionary multi-objective optimization algorithms (EMOA) in
order to find better solutions for MOO problems. Historically, EMOA tends to emphasize the
search for the Pareto optimal set, leaving the task of selecting a single solution as subsequent
work for an MCDM method. The MCDM community, however, tends to emphasize the use of
preference models either as a precursor to, or during, the search for a single preferred Pareto
optimal solution.

This chapter is devoted to discuss MCDM methods as tools to support iterative
decision making processes in EMOA to solve MOO problems. In a hybrid technique composed
of EMOA and MCDM approaches, the population members are the candidate solutions to be
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classified regarding the preference criteria defined by a DM. Multi-attribute decision-making
techniques are the most used in these cases, since most EMOAs have a finite number of
population members.

3.1 Hybrid composition of EMOA and MCDM techniques
A hybrid composition of EMOA and MCDM methods is characterized by the incor-

poration of preference information provided by a decision maker, in the search process of
an MOO problem. The goal is to explore the search process towards the regions of interest
(ROI) for the decision maker, assuming the goal is not to sample the entire Pareto front,
but only the portions that matter. Therefore, computational resources are expected to be
better employed, since they can focus on the most relevant candidate solutions among the
non-dominated ones.

Regarding the moment the decision maker preferences are incorporated, i.e. before,
after or during the search, hybrid MOO approaches can be divided into three classes - a
priori, a posteriori and interactive, respectively (PURSHOUSE et al., 2014).

In an a priori decision making approach, the decision maker expresses his/her pref-
erences before the search process takes place. The provided information is used to replace or
supplement the Pareto dominance relation, establishing a total order of the space instead of a
partial order as in the non-domination sorting (GOULART, 2014). When the decision maker
preferences can be faithfully captured in a mathematical model, an a priori method would
be effective. However, this is rarely the case. Representative approaches of these methods are
based on reference points and weight information, among other forms.

In a reference point based approach, the decision maker preferences are expressed as
aspiration levels, representing the desired values for each criterion. The non-domination rank-
ing mechanism is extended to accommodate aspiration levels, and non-dominated solutions
can be compared regarding how close they are to the desired values (FONSECA; FLEMING,
1993; MOLINA et al., 2009; DEB; SUNDAR, 2006). A difficulty imposed by this approach is
that it requires the decision maker to know the ranges of objective values so as to initialize
coherent aspiration levels.

Weights related methods usually make use of an achievement scalarizing function
(ASF) to guide the search. The decision maker establishes a relative importance for each
criterion. The ASF incorporates the preference information and the candidate solutions can
be sorted according to the ASF values. The TOPSIS algorithm (HWANG; YOON, 1981)
is one of the most used methods of this class, due to its simplicity and its intuitive rules.
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This method will be detailed in the next section. Other examples of this approach include
lexicographical ordering, reference direction (DEB; KUMAR, 2007a) and light beam search
(DEB; KUMAR, 2007b).

In an a posteriori method, the decision maker preferences are incorporated after the
search process is completed. In this case, the MOO method first computes an approximation
of the Pareto optimal front, and then the MCDM technique finds the preferred solutions
according to the DM preferences. This approach may be effective for MOO problems with
three objectives or less. However, as the number of objectives increases, this approach becomes
inefficient, because solving these problems is computationally expensive and the number of
solutions required to properly describe the Pareto front is usually very large in this case. Also,
it is cognitively harder for the DM to choose a preferred solution from all these solutions, not
to mention the fact that the DM is usually interested only in particular regions of the Pareto
front. Among representatives of this class, we can cite modified Pareto dominance relation
based EMOAs, such as 𝜖-MOEA (DEB et al., 2003), and decomposition based EMOAs, e.g.,
MOEA/D (ZHANG; LI, 2007).

In an interactive decision making approach, the decision maker preferences are incor-
porated as part of the optimization process. The DM has the opportunity to learn about
the problem as the search progresses, and his/her preferences can be refined if necessary. In
this case, the DM does not need to have a formidable previous knowledge about the problem
like in an a priori approach, nor computational resources are wasted processing undesirable
solutions like in an a posteriori approach. However, the main limitation of this scheme is
that the DM may need to be involved intensively during the search process. Representatives
of this and other approaches are reviewed in PURSHOUSE et al. (2014).

Each hybrid decision making approach has its advantages and disadvantages, and
can be efficient or not, depending on many factors: the nature of the problem, the decision
maker previous knowledge, the way the preferences are represented, the moment when the
preferences are available, among others. In the next section, we will detail the TOPSIS
algorithm, the MCDM technique used in our work. This technique is best suited to be used
in a priori approaches, since it requires the DM to previously establish the relative relevance
for each preference criterion, although it could also be used in an interactive scheme, allowing
the DM to redefine the relative importance of the criteria as the search progresses. It could
be difficult, however, to analyze how these changes are influencing the search results.
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3.2 TOPSIS algorithm
In our hybrid approach, we want to sort a finite number of multiple candidate solutions

to an MOO problem according to the multi-criteria preferences of a decision maker. Among
the available tools in the literature, the TOPSIS (Technique for Order of Preference by
Similarity to Ideal Solution) algorithm (HWANG; YOON, 1981) is one of the most used
methods, due to its simplicity and its intuitive rules (BEHZADIAN et al., 2012).

The TOPSIS algorithm sorts multiple candidate solutions by evaluating their dis-
tances to ideal solutions in the objective space. The method is based on the concept that the
best alternative is considered to be the closest one to the positive ideal solution (which has
the best values for all criteria) and as far as possible from the negative ideal solution (which
has the worst values for all criteria).

Consider the problem of finding one among 𝑄 candidate solutions. Each solution is
evaluated considering 𝑀 criteria. Let 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑄} be the set of 𝑄 candidate solutions
and 𝐶 = {𝐶1, 𝐶2, ..., 𝐶𝑀} be the set of 𝑀 criteria. The decision matrix is presented as follows:

𝐶1 𝐶2 . . . 𝐶𝑀⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
𝑆1 𝑣11 𝑣12 . . . 𝑣1𝑀

𝑆2 𝑣21 𝑣22 . . . 𝑣2𝑀

... ... ... . . . ...
𝑆𝑄 𝑣𝑄1 𝑣𝑄2 . . . 𝑣𝑄𝑀

(3.1)

where 𝑣𝑖𝑗 represents the evaluation of the 𝑖-th candidate solution (𝑖 ∈ {1, ..., 𝑄}) with respect
to the 𝑗-th criterion (𝑗 ∈ {1, ..., 𝑀}). The algorithm takes as input the decision matrix and
an array 𝑤 ∈ R𝑀 of the criteria relative relevance, provided by the decision maker, where 𝑤𝑗

is the numerical value for the relative importance of the 𝑗-th criterion. If 𝑤𝑘 > 𝑤𝑗, it means
that the DM considers the 𝑘-th criterion to be more important than the 𝑗-th criterion. At
the end of the execution, the TOPSIS algorithm provides a sorted list of the alternatives (or
candidate solutions, in the case of an MOO method). The steps performed by TOPSIS are
presented in Algorithm 4.

As an a priori decision making approach, the TOPSIS method requires the decision
maker to have a sufficient knowledge about the problem in order to establish the relative
relevance of the criteria. In some cases, the DM may not know how to properly express the
relative relevance in numbers, e.g., the DM may know that the 𝑖-th criterion is more important
than the 𝑘-th criterion, but he/she may not know if it is 2, 5 or 10 times more important.
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These values may need to be adjusted, comparing the results of multiple executions. In some
situations, however, these values do not need to be extensively tuned.

Algorithm 4: TOPSIS
1 Normalize the decision matrix:

𝑟𝑖𝑗 = 𝑣𝑖𝑗√︃
𝑄∑︀

𝑘=1
𝑣2

𝑘𝑗

(3.2)

2 Calculate the weighted normalized decision matrix:

𝑑𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 (3.3)

3 Determine the positive ideal solution 𝑑+
𝑗 and the negative ideal solution 𝑑−

𝑗 for each
one of the 𝑀 criteria: 𝑑+

𝑗 = min(𝑑1𝑗, ..., 𝑑𝑄𝑗) and 𝑑−
𝑗 = max(𝑑1𝑗, ..., 𝑑𝑄𝑗) for

minimization, and vice versa for maximization.
4 Calculate the separation distance for each candidate solution:

𝑆+
𝑖 =

⎯⎸⎸⎸⎷ 𝑀∑︁
𝑗=1

(𝑑+
𝑗 − 𝑑𝑖𝑗)2 𝑖 = 1, ..., 𝑄 (3.4)

𝑆−
𝑖 =

⎯⎸⎸⎸⎷ 𝑀∑︁
𝑗=1

(𝑑−
𝑗 − 𝑑𝑖𝑗)2 𝑖 = 1, ..., 𝑄 (3.5)

5 Calculate the similarity coefficients to the ideal solution for each candidate solution:

𝐶𝐶𝑖 = 𝑆−
𝑖

𝑆−
𝑖 + 𝑆+

𝑖

𝑖 = 1, ..., 𝑄 (3.6)

6 Sort the candidate solutions in descending order of similarity coefficients: the higher
𝐶𝐶𝑖, the better the 𝑖-th candidate solution.

3.3 Summary
In this chapter, we introduced multi-criteria decision making (MCDM) problems,

emphasizing its applications to support iterative decision making processes in EMOA to
solve MOO problems. Hybrid compositions of EMOA and MCDM techniques are classified
according to when the preferences are incorporated: before, after or during the search process
- a priori, a posteriori and interactive approaches, respectively. Each one of these classes
has advantages and disadvantages. A priori approaches can be effective in cases where the
number of objectives is low, but they require the decision maker to have a good previous
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knowledge of the problem. The other approaches do not have this limitation. A posteriori
methods, however, waste computational resources with undesirable solutions, specially when
the number of objectives is high. This is not an issue in interactive approaches, where the
decision maker is allowed to learn about the problem as the search progresses and can refine
his/her preferences. The problem here is that the DM needs to be intensively involved during
the optimization. Finally, we presented the TOPSIS algorithm, which will be used in the
method proposed in this dissertation.
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4 Estimation of Distribution Algorithms

Over the last few years, the search for solutions to optimization problems in continuous
spaces of high dimension has observed a paradigm shift. Not long ago, the state-of-the-art
was represented by population-based meta-heuristics with "blind" operators which added
a random perturbation to the current solutions, which came along with some local search
mechanism to make up for the lack of knowledge about the search space. Three limitations of
these meta-heuristics can be highlighted: (1) a high number of parameters to determine, which
directly affects the search performance; (2) the need for efficient local search mechanisms; (3)
the inability of using the already available knowledge about the search space, obtained from
the acquired experience throughout the search.

Lately, some meta-heuristics have chosen to adopt methodologies using estimation of
distribution models of the search space, namely EDA (Estimation of Distribution Algorithm)
(LARRAÑAGA; LOZANO, 2001). The core idea is that promising regions of the search space
are associated with higher probabilities of generating candidate solutions, which implies that
the search space exploration will focus on these regions. Hence, the search still has a stochastic
character, but is oriented by the distribution model, which is derived from the acquired
experience throughout the search. The decision making of how to explore the search space
is limited to the quality of the already encountered solutions and to the a priori knowledge
about the nature of the search space, if available.

The practical consequences of this initiative is that EDA’s lead to search methods
characterized by: (1) a noticeable decrease in the number of evaluation of candidate solutions
to reach a given level of performance; (2) an improvement of the search robustness, such
that there is not much performance variation through multiple executions of the algorithm
for the same problem; (3) the possibility to adjust parameters automatically, derived from
the attributes of the distribution model. These properties imply, in many situations, a higher
performance both in terms of computational resources and of the quality of solutions. These
are the main reasons to support the use of EDA’s in multi-objective optimization problems.

On the other hand, building explicit probabilistic models is often more time consuming
than using implicit models defined with simple search operators, such as tournament selection
and two-point crossover. That is why it may sometimes be advantageous to use implicit
models of conventional evolutionary algorithms instead of explicit ones of EDAs. However,
doing this is only practical when search operators are available that allow scalable solutions
of the target problem class; otherwise, the time complexity of learning a model is a small
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price to pay. Furthermore, the discovery of such operators may not be straightforward and
it also comes at a cost (HAUSCHILD; PELIKAN, 2011).

This chapter is devoted to introduce Estimation of Distribution Algorithms (EDAs),
a class of stochastic optimization methods employing estimation of distribution techniques
to guide the search for solutions. EDAs are evolutionary algorithms with a distinct aspect:
instead of using traditional variation operators, new candidate solutions are generated by
building and sampling explicit probabilistic models of promising candidate solutions, selected
from the already found ones.

4.1 Estimation of the probability density function
Consider an application and the data set involved in its process. Extracting informa-

tion from these data is important to analyze the application’s performance. Finding a model
that represents the data set helps in the analytical task. Furthermore, new data points can
be generated from this model, if desired. One way of building this model is by analyzing
the data distribution in the space. The distribution provides important information about
spatiality, asymmetry and multi-modality of the density function. The distribution can be
modeled with random variables, by estimating the probability density function that best
represents the sampled data, employing a given distance metric (GONÇALVES, 2011).

The problem of estimating the probability density function (pdf) of a continuous data
distribution requires model identification. These models are essentially divided in parametric
and non-parametric distribution models. The former assumes that data distribution follows a
known parametric model, and we estimate the model’s parameters based on data (e.g., mix-
ture models), while in the latter there is no a priori assumption about the data distribution -
the density estimation is performed locally with a small number of neighbors (e.g., 𝑘-nearest
neighbors and kernel-based methods).

There is a variety of methods to determine the estimation of probability density func-
tions. In the class of parametric distribution models, when the data probability distribution
is known a priori, a simple way of finding the model is by estimating the distribution param-
eters from its analytical expression. A commonly used method to determine these parameters
is the maximum-likelihood estimation given the observations, which can be done depending
on the type of the distribution mode. This method is computationally efficient, and despite
the fact that data probability distribution is rarely known a priori, the method’s applicability
is not seriously compromised if a sufficiently flexible distribution model is adopted.

Among the non-parametric estimation models, when the data distribution is unknown,
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we can highlight the kernel density estimator (PARZEN, 1962; ROSENBLATT, 1956). This
method employs kernel functions to estimate the pdf. Commonly used kernel functions are:
uniform, triangular, Epanechnikov, normal and cosine. There is a smoothing parameter ℎ

called the bandwidth, which has a strong influence on the resulting estimate. Restricted
Boltzmann machine-based estimation of distribution algorithms are also an example of non-
parametric estimation models (SHIM et al., 2013).

4.2 Mixture models
Mixture models belong to the class of parametric distribution models. This implies an

a priori assumption about the probability density function that represents the data. Finding
the model consists of estimating the distribution parameters. A mixture model is formed
by a composition of several probability density functions, distinct or not, in order to better
represent the data set. This kind of model has been demonstrated as an efficient tool when
used in optimization problems (BOSMAN; THIERENS, 2000).

Consider a data set divided in 𝐾 subsets. Each subset is modeled by a probability
density function (pdf), denoted as 𝑓𝑘, 𝑘 = 1, ..., 𝐾, and its vector of parameters 𝜃𝑘 is estimated
from the data. Depending on the subset importance, a pdf can be more representative than
the others. Hence, a weighting coefficient 𝜋𝑘 is attributed to each pdf to express how important
is the portion of the data that is represented by this function. These coefficients are called
mixture coefficients and must satisfy the following relation for the mixture model be a pdf
as well:

𝑁∑︁
𝑘=1

𝜋𝑘 = 1, 0 ≤ 𝜋𝑘 ≤ 1 (4.1)

where 𝑁 is the number of functions. When sampling new data from the mixture model, the
coefficients indicate the chance that a new data point has been generated by its corresponding
pdf.

There are different approaches to estimate the model parameters. As mentioned be-
fore, the maximum-likelihood estimation is one of them. The maximization problem can be
solved with gradient-based methods or resorting to the well-known and widely used EM
algorithm (BISHOP, 2007).

In this research, we propose the use of a Gaussian mixture model to represent the
population members of an MOO method. In a Gaussian mixture model, the probability
density functions are normal distributions. Here, the model parameters are not estimated,
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but adjusted according to the information provided by an MCDM technique, the TOPSIS
algorithm described in Section 3.2. Each Gaussian function represents a candidate solution,
so each population member is the center of a Gaussian function in the space of decision
variables. The standard deviation of each function depends on a pairwise distance to be
better explained later. The association between a weight coefficient and the corresponding
position of its candidate solution in the ranking follows a predefined function, so that the
coefficient is as high as the relevance of its corresponding candidate solution. The principle
behind this proposition is that new candidate solutions close to well-ranked current candidate
solutions have a higher chance of being generated.

Once the distribution model is built, new candidate solutions can be sampled. Sam-
pling data from a Gaussian mixture model is simple: first, one of the 𝑁 Gaussian functions is
selected by a process similar to a roulette wheel operator: each 𝜋𝑘 coefficient corresponds to
a portion of the interval [0, 1]; it suffices to generate a uniformly distributed random number
in this interval to find out which Gaussian function will be used. Then, the chosen Gaussian
function is taken to actually sample the new point. In this research, however, we adopted a
modified sampling scheme to generate new members: new solutions are sampled in pairs and
the Gaussian functions standard deviation is not fixed, but depends on a pairwise distance
that will be detailed in the next chapter. This modified sampling scheme has proven to be
more efficient in the case of our method.

It is important to note that the whole sampling process takes place in the space of
decision variables: we find a Gaussian mixture model to represent the decision variables of
each candidate solution, and we use this model to generate new variables representing new
candidate solutions. The relative quality of solutions, however, is evaluated in the objective
space, as explained in Section 2.2.

Despite the advantages of using EDAs, in some situations the assumption that high
quality solutions are located close to well-ranked current candidate solutions may not always
be true: sometimes, there may be high quality solutions located in unexplored regions of the
search space as well. New points generated by the distribution model will most likely avoid
these regions. Furthermore, it is possible for stochastic errors in population sampling to lead
to a loss of diversity. If this loss of diversity continues over time (by producing simplified
models), it is possible for the population to no longer contain enough information to solve
the problem (HAUSCHILD; PELIKAN, 2011). To address this issue, a possible solution is to
incorporate operators into EDAs, such as mutation operators (HANDA, 2007). In this work,
we apply two refreshing operators to the solutions sampled from the mixture model, aiming
at reaching other promising regions of the search space.
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4.3 Summary
In this chapter, we introduced Estimation of Distribution Algorithms (EDA’s), a class

of evolutionary optimization methods where new candidate solutions are generated by build-
ing and sampling explicit probabilistic models of promising candidate solutions among the
already found ones. Among the advantages of using EDA’s, we can highlight an improvement
on the performance and robustness of the search for solutions when compared to traditional
optimization techniques. There are essentially two types of distribution models, parametric
and non-parametric. The former assumes that data distribution follows a known parametric
model, while in the latter there is no a priori assumption about the data distribution. In
this dissertation, we make use of a parametric model, more specifically a Gaussian mixture
model, to represent the candidate solutions of a MOO method. This model is formed by
a composition of Gaussian functions, each representing a member of the population in the
decision space. The model parameters are obtained from the information provided by an
MCDM technique, the TOPSIS algorithm. New candidate solutions are sampled from this
model using a special scheme that will be detailed in the next chapter, where we formally
present our method.
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5 The proposed method

In this chapter, we formally detail the proposed method, denoted by MOMCEDA
(Multi-Objective Multi-Criteria Estimation of Distribution Algorithm) (SOUSA BEZERRA
et al., 2018). We propose a hybrid algorithm, composed of EMOA and MCDM techniques to
solve MOO problems. The search is guided by the preference information established a priori
by a decision maker, which is used by the MCDM technique to rank the solutions and build
a distribution model of the population, such that promising regions of the search space are
associated with higher probabilities of sampling new candidate solutions. This way, we expect
the method to produce better solutions that will improve its performance in multi-objective
optimization problems.

The MCDM technique used by MOMCEDA is the TOPSIS algorithm, introduced in
Section 3.2. This technique allows the candidate solutions to be evaluated regarding multiple
criteria defined by a decision maker. Each criterion represents a decision maker’s preference,
and its evaluation represents the extension with which a candidate solution reaches this
preference.

In the case of a hybrid technique composed of EMOA and MCDM techniques, like
in our method, it is important to distinguish the evaluation of the objective functions from
the evaluation of the preference criteria. Although the decision maker can choose to have the
objective functions as part of the criteria set, this is not mandatory. In fact, this approach may
not be a good idea to maintain population diversity. As explained in Section 3.2, the TOPSIS
method will classify the candidate solutions based on their distance to the ideal values of
the criteria set. If the objective functions are part of the criteria set, the candidate solutions
that are close to the ideal point in the objective space will have a better classification. Unless
this behavior is desired by the decision maker, this approach should be avoided, since the
non-dominated solutions located far from the ideal point will most likely be discarded during
the search.

5.1 MOMCEDA
The main structure of MOMCEDA follows the one proposed on NSGA-II and NSGA-

III methods, described in sections 2.3.1 and 2.3.2, respectively. The algorithm has a fixed
population size of 𝑁 candidate solutions that are submitted to an evolutionary search process
until it reaches a stopping condition. This condition can be based on a maximum number of
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generations, on a maximum number of objective functions evaluations, on desired values of
performance metrics, among other options.

The steps performed by MOMCEDA are summarized in Algorithm 5. In lines 1 and 2,
we set the counter 𝑡 of generations to its initial value and randomly initialize the population
of candidate solutions 𝑃𝑡 and the offspring population 𝑄𝑡. The main loop of the algorithm
comprises the steps from lines 4 to 16, corresponding to one generation.

Algorithm 5: MOMCEDA
Result: Non-dominated individuals of 𝑃𝑡

1 𝑡 = 1;
2 𝑃𝑡, 𝑄𝑡 = initialize-population(𝑁);
3 while stopping condition not satisfied do
4 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡;
5 ℱ = fast-non-dominated-sort(𝑅𝑡);
6 𝑃𝑡+1 = ∅ ;
7 while |𝑃𝑡+1| ≤ 𝑁 do
8 evaluate-criteria (𝑅𝑡, ℱ);
9 ℒ = TOPSIS(𝑅𝑡);

10 𝑃𝑡+1 = 𝑃𝑡+1 ∪ ℒ[1];
11 𝑅𝑡 = 𝑅𝑡∖(ℒ[1]);
12 end
13 ℒ′ = TOPSIS(𝑃𝑡+1);
14 ℳ =mixture-model(𝑃𝑡+1, ℒ′);
15 𝑄𝑡+1 = offspring(𝑃𝑡+1, ℳ, 𝛼, 𝑝𝑚, 𝜎𝑚);
16 𝑡 = 𝑡 + 1;
17 end

In line 5, we use the non-domination sorting process, described in Section 2.3.1, to
classify all the candidate solutions from both populations (represented by the unified popu-
lation 𝑅𝑡) into non-domination levels. In line 6, we initialize the next generation’s population
𝑃𝑡+1, which will be filled in the steps performed in the loop from lines 8 to 11. In line 8, we
update the evaluation of the remaining candidate solutions in 𝑅𝑡 regarding the preference
criteria set. The adopted criteria set will be detailed in the next section. In line 9, the TOPSIS
method is called to sort these candidate solutions in a list ℒ according to the criteria values.
In line 10, the best individual obtained from the TOPSIS result is added to the next gener-
ation’s population 𝑃𝑡+1, and in line 11 it is removed from the current pool 𝑅𝑡 of individuals
being evaluated. Note that removing members from this pool may change the evaluation of
the criteria for its remaining members. This is the reason why individuals are added to 𝑃𝑡+1

one at a time. Depending on the criteria set, however, the criteria values may not be affected
by changes in 𝑅𝑡, and will not need to be re-evaluated after a member is removed. In this
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case, the first 𝑁 members of the sorted list ℒ can be directly added to 𝑃𝑡+1 at once.

Once 𝑃𝑡+1 is filled with the best 𝑁 members from 𝑅𝑡, we call the TOPSIS method
in line 13 one more time to sort all the members of the new population. In line 14, the
sorted list of members is used to derive a distribution model ℳ in the search space, more
specifically a Gaussian mixture model, as described in Section 4.2. In line 15, new solutions are
sampled from this model to originate a new offspring population 𝑄𝑡+1. The steps performed
by the offspring function are detailed in Section 5.4. Finally, the counter 𝑡 of generations is
incremented in line 16.

5.2 The preference criteria
A distinct aspect of our approach when compared to other hybrid techniques is that

the TOPSIS algorithm allows the use of multiple preference approaches. Most MOO meta-
heuristics sorts their solutions according to only one preference criterion at a time. Since
non-dominated solutions are desired in this kind of problem, the non-domination level is
the most important criterion to be observed. Usually, another criterion is evaluated to sort
solutions that are non-dominated among each other. This criterion varies according to the
approach. For instance, NSGA-II, NSGA-III and SPEA2 favor candidate solutions which
contribute the most to improve the population diversity, while SMS-EMOA uses a measure
of the solution’s contribution to the hypervolume indicator. In a type of reference point based
approach, non-dominated solutions are compared regarding how close they are to the user
defined aspiration levels. In our method, however, it is possible to simultaneously include
all these preference criteria, or as many as the decision maker wishes. It is up to him/her
to decide which one is more important than the other, and express that in the form of a
weighting vector responsible for defining the relative relevance of the criteria.

As mentioned in Section 3.1, the use of MCDM techniques in a priori approaches
depends on the decision maker’s knowledge about the problem. Here, we took the criteria
used by the previously mentioned algorithms as inspiration to define the set of preferences
used by our method. The first and most important criterion is the non-domination level,
for obvious reasons. The next two criteria evaluate the population’s diversity by recurring
to the NSGA-III reference-point-based approach, introduced in Section 2.3.2: the second
criterion measures the neighborhood size 𝜌(𝜋(s)) of the closest reference direction 𝜋(s) of an
individual s in the normalized space, and the third criterion is the Euclidean distance 𝑑(s)
between s and 𝜋(s). Since we want to maintain the population’s diversity, minimizing these
last two criteria is desired. The fourth and final criterion is the solution’s contribution to the
hypervolume indicator, as in the SMS-EMOA algorithm introduced in Section 2.3.3. This is
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a maximization criterion, so we negate it to obtain another minimization criterion.

5.3 The Gaussian mixture model
The distribution model adopted by MOMCEDA to represent the candidate solutions

in the decision space is a Gaussian mixture model, as explained in Section 4.2. Each candidate
solution is the center of a Gaussian function, whose weighting coefficient 𝜋𝑘 is proportional
to the relative quality of that solution. The relation between the weighting coefficient and the
position of its corresponding candidate solution in the ranking follows a predefined function,
so that the coefficient is as high as the relevance of its corresponding candidate solution.
In this research, we adopted three kinds of decreasing functions: linear, exponential and
logarithmic, represented in equations (5.1), (5.2) and (5.3), respectively:

⎧⎨⎩𝜋𝑘 = 𝐴 · 𝑘 + 𝐵

𝜋𝑁 = 𝐾𝑙𝑖𝑛

(5.1)

⎧⎪⎨⎪⎩
𝜋𝑘 = 𝐶 · 𝐷−𝑘

𝜋𝑁

𝜋1
= 𝐾𝑒𝑥𝑝

(5.2)

⎧⎨⎩𝜋𝑘 = 𝐸 · 𝑙𝑜𝑔(𝑁 − 𝑘 + 𝐹 )

𝜋𝑁 = 𝐾𝑙𝑜𝑔

(5.3)

where 𝑘 is the position of the candidate solution in the sorted list provided by the TOPSIS
algorithm, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are constants, determined by substituting equations (5.1),
(5.2) and (5.3) in Eq. (4.1), and 𝐾𝑙𝑖𝑛, 𝐾𝑒𝑥𝑝 and 𝐾𝑙𝑜𝑔 are initial conditions defined by the user.

For 𝐾𝑙𝑖𝑛 = 0, we have:

𝜋𝑁 = 0 ⇔ 𝐴𝑁 + 𝐵 = 0 ⇔ 𝐵 = −𝐴𝑁

∴ 𝜋𝑘 = 𝐴(𝑘 − 𝑁)
𝑁∑︀

𝑘=1
𝐴(𝑘 − 𝑁) = 1 ⇔ 𝐴

𝑁∑︀
𝑘=1

(𝑘 − 𝑁) = 1

⇔ 𝐴
[︁

𝑁(𝑁+1)
2 − 𝑁2

]︁
= 1 ⇔ 𝐴

[︁
𝑁−𝑁2

2

]︁
= 1

⇔ 𝐴 = 2
𝑁(1−𝑁)

∴ 𝜋𝑘 = 2(𝑘 − 𝑁)
𝑁(1 − 𝑁) (5.4)

For 𝐾𝑒𝑥𝑝 = 𝛾, we have:

𝜋𝑁 = 𝛾𝜋1 ⇔ 𝐶𝐷−𝑁 = 𝛾𝐶𝐷−1 ⇔ 𝐷 = 𝛾
−1

𝑁−1
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∴ 𝜋𝑘 = 𝐶 · 𝛾
𝑘

𝑁−1

𝑁∑︀
𝑘=1

𝐶 · 𝛾
𝑘

𝑁−1 = 1 ⇔ 𝐶
𝑁∑︀

𝑘=1
(𝛾

1
𝑁−1 )𝑘 = 1

⇔ 𝐶 · 𝛾
1

𝑁−1 · (1−𝛾
𝑁

𝑁−1 )

(1−𝛾
1

𝑁−1 )
= 1 ⇔ 𝐶 = 1−𝛾

1
𝑁−1

𝛾
1

𝑁−1 (1−𝛾
𝑁

𝑁−1 )

∴ 𝜋𝑘 = (1 − 𝛾
1

𝑁−1 )
(1 − 𝛾

𝑁
𝑁−1 )

· 𝛾
𝑘−1
𝑁−1 (5.5)

For 𝐾𝑙𝑜𝑔 = 0, we have:

𝜋𝑁 = 0 ⇔ 𝐸 log(𝐹 ) = 0 ⇔ 𝐹 = 1
∴ 𝜋𝑘 = 𝐸 · 𝑙𝑜𝑔(𝑁 − 𝑘 + 1)

𝑁∑︀
𝑘=1

𝐸 · 𝑙𝑜𝑔(𝑁 − 𝑘 + 1) = 1 ⇔ 𝐸
𝑁∑︀

𝑘=1
𝑙𝑜𝑔(𝑁 − 𝑘 + 1) = 1

⇔ 𝐸 · 𝑙𝑜𝑔

(︃
𝑁∏︀

𝑘=1
(𝑁 − 𝑘 + 1)

)︃
= 1 ⇔ 𝐸 = 1

𝑙𝑜𝑔(𝑁 !)

∴ 𝜋𝑘 = 𝑙𝑜𝑔(𝑁 − 𝑘 + 1)
𝑙𝑜𝑔(𝑁 !) (5.6)

Figure 8 shows a graphical representation of the three types of decreasing functions
adopted for the weighting coefficients, given by Equations (5.4), (5.5) and (5.6), for 𝑁 =
100 and 𝛾 = 10−3. In this case, the exponential function has the largest decreasing rate,
emphasizing the first members of the sorted list. On the other side, the logarithmic function
has the smallest decreasing rate, penalizing only the last members of the sorted list. The
linear function is between the other two.

Once the mixture coefficients are determined, new solutions can be sampled. Tradi-
tionally, sampling data from a Gaussian mixture model is a simple task: first, one of the
𝑁 Gaussian functions is selected by a process similar to a roulette wheel operator: each 𝜋𝑘

coefficient corresponds to a portion of the interval [0, 1]; it suffices to generate a uniformly
distributed random number in this interval to find out which Gaussian function will be used.
Then, this function is taken to actually generate the new data. In MOMCEDA, however,
we adopted a modified sampling scheme, where new solutions are sampled in pairs, and the
Gaussian functions parameters are not defined a priori. This scheme will be detailed in the
next section.

5.4 Offspring generation
As mentioned in Section 4.2, MOMCEDA generates a new offspring population by

applying refreshing operators responsible for perturbing new individuals sampled by the
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Figure 8 – Graphical representation of the three types of decreasing functions adopted for
the weighting coefficients for 𝑁 = 100 and 𝛾 = 10−3.

Gaussian mixture model. These operators are used to increase the chance of reaching unex-
plored areas of the search space while simultaneously exploring promising regions detected
by already found candidate solutions.

Many established methods, such as NSGA-II and NSGA-III, adopt an offspring gen-
eration scheme based on the use of crossover and mutation operators that are applied to
selected individuals from the population. The Simulated Binary Crossover, or SBX opera-
tor (DEB; AGRAWAL, 1994) is a widely used operator on real-coded Genetic Algorithms
(GA’s) due to its efficiency and search power. The search power of a crossover operator is
defined in terms of the probability of creating an arbitrary child solution from a given pair
of parent solutions. In other words, it is a measure of how flexible the operator is in creating
an arbitrary point in the search space. Deb and Agrawal defined a spread factor 𝛽 as the
ratio of the absolute differences of the children points 𝑐(1), 𝑐(2) to that of the parent points
𝑥(1), 𝑥(2):

𝛽 =
⃒⃒⃒⃒
⃒ 𝑐(1) − 𝑐(2)

𝑥(1) − 𝑥(2)

⃒⃒⃒⃒
⃒ (5.7)

The SBX operator was proposed to simulate the search power of single-point crossover
used in binary-coded GA’s. Then, the probability distribution of 𝛽 for the SBX operator
should be similar to the one for the single-point crossover, which leads to higher occurrences
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of values of 𝛽 close to 1, meaning that the average distance of children points tends to be close
to the average distance of parent points. This implies an interesting property: as the search
progresses and the population members become closer in the decision space, the crossover
operator will also generate children that are closer among them, refining the search.

Motivated by the properties of this operator, we decided to define the standard de-
viation of the Gaussian functions from the mixture model in terms of the distance between
individuals in the decision space. The steps performed by the offspring function are sum-
marized in Algorithm 6, which takes as input a population 𝑃 of 𝑁 candidate solutions and
its distribution model ℳ and produces as output an offspring population 𝑄 of the same
size. We sample new individuals in pairs. From lines 3 to 7, the roulette wheel operator is
executed twice or more (as many times as necessary) to produce two distinct individuals 𝑥(1)

and 𝑥(2) from the mixture model. Then, in lines 9 and 10, two new individuals 𝑐(1) and 𝑐(2)

are sampled from the Gaussian functions centered at 𝑥(1) and 𝑥(2). We assume there is no
correlation between the variables in the decision space so that the standard deviation 𝜎𝑖 for
the 𝑖-th decision variable is given by:

𝜎𝑖 = 𝛼|𝑥(1)
𝑖 − 𝑥

(2)
𝑖 | (5.8)

where 𝛼 is a proportionality constant to be defined. This constant has a relation with the
spread parameter 𝛽, since the standard deviation affects the spread of the generated individ-
uals. For a random variable 𝒳 that follows a normal distribution 𝒩 (𝜇, 𝜎), the 95% confidence
interval of 𝒳 is approximately given by:

𝜇 − 1.96𝜎 ≤ 𝒳 ≤ 𝜇 + 1.96𝜎 (5.9)

Let Δ(𝑐𝑖) = 𝑐
(1)
𝑖 − 𝑐

(2)
𝑖 , where 𝑐

(𝑘)
𝑖 ∼ 𝒩 (𝑥(𝑘)

𝑖 , 𝜎𝑖), 𝑘 = {1, 2}. The variance of Δ(𝑐𝑖),
denoted Var[Δ(𝑐𝑖)], is given by:

Var[Δ(𝑐𝑖)] = Var[𝑐(1)
𝑖 ] + Var[𝑐(2)

𝑖 ] − 2Cov[𝑐(1)
𝑖 , 𝑐

(2)
𝑖 ] (5.10)

where Var[𝑐(𝑘)
𝑖 ] = (𝜎𝑖)2 and Cov[𝑐(1)

𝑖 , 𝑐
(2)
𝑖 ] is the covariance between 𝑐

(1)
𝑖 and 𝑐

(2)
𝑖 . Since 𝑐

(1)
𝑖

and 𝑐
(2)
𝑖 are independent random variables, Cov[𝑐(1)

𝑖 , 𝑐
(2)
𝑖 ] = 0 and it follows that Var[Δ(𝑐𝑖)] =

2(𝜎𝑖)2. Thus Δ(𝑐𝑖) ∼ 𝒩 (Δ(𝑥𝑖),
√

2𝜎𝑖), where Δ(𝑥𝑖) = 𝑥
(1)
𝑖 − 𝑥

(2)
𝑖 . Hence, the 95% confidence

interval for Δ(𝑐𝑖) is given by:

Δ(𝑥𝑖) − 1.96 ·
√

2𝜎𝑖 ≤ Δ(𝑐𝑖) ≤ Δ(𝑥𝑖) + 1.96 ·
√

2𝜎𝑖 (5.11)



Chapter 5. The proposed method 52

If Δ(𝑥𝑖) = 0, the parent variables are equal, and the children will be assigned to
these same values, since the standard deviation will be zero. If Δ(𝑥𝑖) < 0, we can switch
the individuals to make Δ(𝑥𝑖) positive in this analysis. If Δ(𝑥𝑖) > 0, then Δ(𝑐𝑖) > 0 for
sufficiently small values of standard deviation, which implies that the children are generated
close to their respective parents. Substituting 𝜎𝑖 by Eq. (5.8) in Eq. (5.11), we obtain:

Δ(𝑥𝑖)(1 − 1.96 ·
√

2𝛼) ≤ Δ(𝑐𝑖) ≤ Δ(𝑥𝑖)(1 + 1.96 ·
√

2𝛼) (5.12)

Since we are in the case where Δ(𝑥𝑖) > 0 and Δ(𝑐𝑖) > 0, we can divide all members of
the previous inequations by Δ(𝑥𝑖) and substitute 𝛽 by Eq. (5.7), which gives a 95% confidence
relation between 𝛼 and 𝛽:

1 − 1.96 ·
√

2𝛼 ≤ 𝛽 ≤ 1 + 1.96 ·
√

2𝛼 (5.13)

By choosing a sufficient small value for 𝛼, we notice from Eq. (5.13) that the spread
factor for our sampling scheme will be around 1 in 95% of the cases, similar to the behavior of
the SBX operator. Thus, our offspring generation scheme is able to incorporate the advantages
of using a distribution model as well as some of the interesting properties of the SBX operator.

To promote refreshing, once the two individuals are generated, a first refreshing op-
erator is applied, which gives a 50% probability of switching each variable between the in-
dividuals. This is essentially the uniform crossover operator usually adopted in evolutionary
computation. In Algorithm 6, these steps are represented from lines 11 to 15, where 𝑛 is
the number of decision variables and random-number(0,1) samples a uniformly distributed
random number in the interval [0, 1]. After generating all 𝑁 individuals, we apply a second
refreshing operator to each variable of every member with a small probability 𝑝𝑚. It consists
of a Gaussian mutation operator, which adds to a decision variable a number obtained from
a normal distribution with zero mean and a initial value of standard deviation 𝜎𝑚 to be
defined. If a bounded variable falls out of range, its value is attributed to the closest bound.
After applying the mutation operator in line 22, we verify in line 23 if the new individual
is better than the original one - in our case, we adopt the dominance relation to compare
individuals. If it is better, then we keep the new individual, as shown in line 24; otherwise, we
keep the original one. The standard deviation of the mutation operator is adjusted according
to its performance. After five consecutive positive results for this operator, we increase by
10% the standard deviation for the variables involved in the mutation; after five consecutive
negative results, we reduce it by 10%. This is represented by the update-std-dev(𝜎𝑗) function
in line 26. The refreshing operators are adopted to help the search reach other potentially
promising regions of the search space not yet mapped by the distribution model.
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Algorithm 6: offspring(𝑃, ℳ, 𝛼, 𝑝𝑚, 𝜎𝑚)
Result: Offspring population 𝑄

1 𝑄 = ∅;
2 while |𝑄| ≤ 𝑁 do
3 𝑥(1) = roulette-wheel(𝑃, ℳ);
4 𝑥(2) = roulette-wheel(𝑃, ℳ);
5 while 𝑥(1) = 𝑥(2) do
6 𝑥(2) = roulette-wheel(ℳ);
7 end
8 𝜎 = 𝛼|𝑥(1) − 𝑥(2)|;
9 𝑐(1) = sample-Gaussian-function(𝑥(1), 𝜎);

10 𝑐(2) = sample-Gaussian-function(𝑥(2), 𝜎);
11 for 𝑖 = 1; 𝑖 ≤ 𝑛 do
12 if random-number(0,1) ≤ 0.5 then
13 switch(𝑐(1)

𝑖 , 𝑐
(2)
𝑖 );

14 end
15 end
16 𝑄 = 𝑄 ∪ {𝑐(1), 𝑐(2)};
17 end
18 for 𝑖 = 1; 𝑖 ≤ 𝑁 do
19 for 𝑗 = 1; 𝑗 ≤ 𝑛 do
20 if random-number(0,1) ≤ 𝑝𝑚 then
21 𝜎 = 𝜎𝑚;
22 𝑥 = sample-Gaussian-function(𝑄[𝑖]𝑗, 𝜎𝑗);
23 if 𝑥 is better than 𝑄[𝑖]𝑗 then
24 𝑄[𝑖]𝑗 = 𝑥;
25 end
26 𝜎𝑗 = update-std-dev(𝜎𝑗);
27 end
28 end
29 end

5.5 Time Complexity of MOMCEDA
The non-dominated sorting (line 5 in Algorithm 5) of a population of size 2𝑁 having

𝑀 -dimensional objective vectors requires 𝑂(𝑁2𝑀) computations. The evaluation of criteria
(line 8) requires 𝑂(𝑁2𝑀) computations for NSGA-III criteria (DEB; JAIN, 2013). The eval-
uation of the hypervolume contributions is the bottleneck of the algorithm, since the time
complexity to calculate the hypervolume indicator grows exponentially with the number of
objectives. However, for 𝑀 ≤ 3, there are faster methods to directly calculate the hypervol-
ume contributions, requiring 𝑂(𝑁 log 𝑁) computations (BEUME et al., 2007). The TOPSIS
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method (lines 9 and 13) requires 𝑂(𝑀𝑁) computations. Sorting individuals to build the
mixture model (line 14) requires 𝑂(𝑁 log 𝑁) computations. The offspring generation (line
15) requires 𝑂(𝑁) computations. Hence, the overall worst-case complexity of one generation
of MOMCEDA is 𝑂(𝑁2𝑀) for 𝑀 ≤ 3.

5.6 Summary
In this chapter, we presented the proposed method, denoted by MOMCEDA (Multi-

Objective Multi-Criteria Estimation of Distribution Algorithm), which follows the structural
conception of NSGA-II, also adopted in NSGA-III. Here, some of the preference criteria
adopted by state-of-the-art EMOAs, including non-domination level, diversity measures and
contribution to the hypervolume indicator, are taken together as inputs to a multi-criteria
decision making (MCDM) strategy, more specifically the TOPSIS algorithm, responsible for
sorting all candidate solutions. New candidate solutions are then generated from this sorted
list using a Gaussian mixture model. Essentially, a roulette wheel is used to choose a pair
of the current candidate solutions according to the relative quality, suitably determined by
TOPSIS, and after that a pair of new candidate solutions is generated as Gaussian perturba-
tions centered at the corresponding parents. The standard deviation is defined in terms of the
absolute distance of the parents in the decision space, and refreshing operators are applied
after the sampling, aiming at reaching other promising regions of the search space not yet
mapped by the distribution model. Therefore, the distinctive aspects, when MOMCEDA is
compared to NSGA-II and NSGA-III, are the way the current population of candidate so-
lutions is ranked and the strategy adopted to generate new individuals. Table 1 summarizes
MOMCEDA’s parameters.

Table 1 – MOMCEDA’s parameters.

Parameter Description
𝑁 Population size

𝑤
Relative relevance of
the user preferences

𝛼 Mixture model parameter
𝑝𝑚 Mutation probability
𝜎𝑚 Mutation parameter
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6 Computational experiments

In this chapter, we present the results of some computational experiments executed to
evaluate MOMCEDA’s performance in distinct MOO scenarios. The results analysis is based
on the values of commonly used performance metrics in the field, comparing MOMCEDA
with other state-of-the-art methods. Part of the results on this chapter were based on SOUSA
BEZERRA et al. (2018). We implemented our method using Python 2.7.12, with a version
available at the repository https://github.com/pedro-mariano/MOMCEDA.

6.1 Test problems

6.1.1 Two-on-One problems

The Two-on-One is a set of problems with two objectives, consisting of a polynomial
function 𝑓1 of degree four with two optima, and the sphere function 𝑓2, which is of degree
two, as shown in Eq. (6.1) (PREUSS et al., 2006):

min

⎧⎪⎨⎪⎩𝑓1(𝑥) = 𝑥4
1 + 𝑥4

2 − 𝑥2
1 + 𝑥2

2 − 𝑐𝑥1𝑥2 + 𝑑𝑥1 + 20

𝑓2(𝑥) = (𝑥1 − 𝑘)2 + (𝑥2 − 𝑙)2
(6.1)

where 𝑥𝑖 ∈ [−3, 3] ∀𝑖 ∈ {1, 2}.

The level (niveau) of the optima of 𝑓1 can be adjusted smoothly via parameter 𝑑. With
parameter 𝑐 = 0, both minima are located at the 𝑥1 axis, but for increasing 𝑐, their connecting
line is rotated counterclockwise, until its gradient is nearly 1. Function 𝑓2 is unimodal and
the location of its minimum is determined by parameters 𝑘 and 𝑙. For 𝑘 = 𝑙 = 0 it is located
at the origin, right between the minima of the bimodal function 𝑓1. By variation of 𝑘 and 𝑙

the minimum is moved away from the connecting line of the minima of 𝑓1. Besides changing
the Pareto front, this also affects the Pareto set.

6.1.2 ZDT problems

The classical ZDT test benchmark was originally proposed in ZITZLER et al. (2000),
and is a widely used test set to compare MOO methods. The set contains six test problems



Chapter 6. Computational experiments 56

with two objectives and different characteristics, and has the following structure:

min

⎧⎪⎨⎪⎩𝑓1(𝑥)

𝑓2(𝑥) = 𝑔(𝑥) · ℎ(𝑓1(𝑥), 𝑔(𝑥))
(6.2)

The functions 𝑓1(𝑥), 𝑔(𝑥) and ℎ(𝑥) define the different characteristics for each prob-
lem. They feature different Pareto front conformations, such as convex, non-convex, discon-
nected and non-uniformly spaced, as illustrated in Fig. 9. For all problems, except ZDT5,
which is defined for binary variables and is not used in this work, the Pareto optimal solutions
are such that 𝑔(𝑥) = 1 (COELHO, 2011). Next, the problems will be detailed.

Figure 9 – Graphical representation of the Pareto front for each ZDT test problem used in
this work.

6.1.2.1 ZDT1

The ZDT1 problem has 𝑛 = 30 variables belonging to the domain 𝑥𝑖 ∈ [0; 1], 𝑖 =
1, ..., 𝑛. It figures a continuous, convex Pareto front with uniformly distributed solutions (see
Fig. 9.(a)). Its functions are represented in Eq. (6.3). The Pareto optimal decision variables
are such that 0 ≤ 𝑥*

1 ≤ 1 and 𝑥*
𝑖 = 0 for 𝑖 = 2, ..., 𝑛.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1(𝑥) = 𝑥1

𝑔(𝑥) = 1 + 9
𝑛 − 1

𝑛∑︁
𝑖=2

𝑥𝑖

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 −

⎯⎸⎸⎷𝑓1(𝑥)
𝑔(𝑥)

(6.3)
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6.1.2.2 ZDT2

The ZDT2 problem also has 𝑛 = 30 variables belonging to the domain 𝑥𝑖 ∈ [0; 1], 𝑖 =
1, ..., 𝑛, but now it figures a continuous, non-convex Pareto front with uniformly distributed
solutions (see Fig. 9.(b)). Its functions are represented in Eq. (6.4). The Pareto optimal
decision variables are such that 0 ≤ 𝑥*

1 ≤ 1 and 𝑥*
𝑖 = 0 for 𝑖 = 2, ..., 𝑛.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1(𝑥) = 𝑥1

𝑔(𝑥) = 1 + 9
𝑛 − 1

𝑛∑︁
𝑖=2

𝑥𝑖

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 −
(︃

𝑓1(𝑥)
𝑔(𝑥)

)︃2

(6.4)

6.1.2.3 ZDT3

The ZDT3 problem also has 𝑛 = 30 variables belonging to the domain 𝑥𝑖 ∈ [0; 1], 𝑖 =
1, ..., 𝑛, but this time it figures a discontinuous Pareto front formed by five segments (see
Fig. 9.(c)). Its functions are represented in Eq. (6.5). The Pareto front is defined by points
in 𝑥*

𝑖 = 0 for 𝑖 = 2, ..., 𝑛 and some points in 0 ≤ 𝑥*
1 ≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1(𝑥) = 𝑥1

𝑔(𝑥) = 1 + 9
𝑛 − 1

𝑛∑︁
𝑖=2

𝑥𝑖

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 −

⎯⎸⎸⎷𝑓1(𝑥)
𝑔(𝑥) −

(︃
𝑓1(𝑥)
𝑔(𝑥)

)︃
· sin(10 · 𝜋 · 𝑓1(𝑥))

(6.5)

6.1.2.4 ZDT4

The ZDT4 problem has 𝑛 = 10 variables, whose domain is defined by 𝑥1 ∈ [0; 1] and
𝑥𝑖 ∈ [−5; 5], 𝑖 = 2, ..., 𝑛. It figures a continuous, convex Pareto front (see Fig. 9.(d)), but this
problem has a large number of Pareto local optimal solutions, corresponding to 0 ≤ 𝑥*

1 ≤ 1
and 𝑥*

𝑖 = 0.5𝑚 for 𝑖 = 2, ..., 𝑛, where 𝑚 is an integer number in the interval [−10, 10]. Its
functions are represented in Eq. (6.6). The Pareto optimal decision variables are such that
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0 ≤ 𝑥*
1 ≤ 1 and 𝑥*

𝑖 = 0 for 𝑖 = 2, ..., 𝑛.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1(𝑥) = 𝑥1

𝑔(𝑥) = 1 + 10(𝑛 − 1) +
𝑛∑︁

𝑖=2
[𝑥2

𝑖 − 10 · cos(4 · 𝜋 · 𝑥𝑖)]

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 −

⎯⎸⎸⎷𝑓1(𝑥)
𝑔(𝑥)

(6.6)

6.1.2.5 ZDT6

The ZDT6 problem has 𝑛 = 10 variables belonging to the domain 𝑥𝑖 ∈ [0; 1], 𝑖 =
1, ..., 𝑛. It figures a continuous, non-convex Pareto front with a non-uniform distribution
of solutions (see Fig. 9.(e)). Its functions are represented in Eq. (6.7). The Pareto optimal
decision variables are such that 0 ≤ 𝑥*

1 ≤ 1 and 𝑥*
𝑖 = 0 for 𝑖 = 2, ..., 𝑛.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1(𝑥) = 1 − exp(−4𝑥1) · sin6(6 · 𝜋 · 𝑥1)

𝑔(𝑥) = 1 + 9 ·

⎛⎜⎜⎝
𝑛∑︀

𝑖=2
𝑥𝑖

9

⎞⎟⎟⎠
0.25

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 −
(︃

𝑓1(𝑥)
𝑔(𝑥)

)︃2

(6.7)

6.2 Performance metrics
To analyze MOMCEDA’s performance on the test problems and compare it with

other state-of-the-art algorithms, we adopted three performance metrics. The first one is the
hypervolume indicator, introduced in Section 2.3.3 which should be maximized. This metric
rewards the convergence towards the Pareto front as well as the representative distribution
of points along the front.

The second metric is the convergence measure (DEB et al., 2003). When the exact
knowledge of the Pareto front is available, we calculate 𝐵 uniformly distributed (on the
𝑓1 − 𝑓2 − · · · − 𝑓𝑀−1−plane) solutions P* at the Pareto front. For each point in the (𝑀 −
1)−dimensional plane, 𝑓𝑀 is calculated from the known Pareto front description. Then, the
Euclidean distance of each obtained solution from the nearest solution in P* is computed.
The average of the distance value of all obtained solutions is defined as the convergence
measure here. It is a metric to be minimized.
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The third metric is the Inverse Generational Distance (IGD metric) (DEB; JAIN,
2013), a metric which can provide a combined information about the convergence and di-
versity of the obtained solutions. When reference points or reference directions are supplied,
and the exact Pareto-optimal surface is known, we can exactly locate the targeted Pareto-
optimal points. We compute these targeted points and call them a set Z. For any algorithm,
we obtain the final non-dominated points in the objective space and call them the set A.
Now, we compute the IGD metric as the average Euclidean distance of points in set Z with
their nearest members of all points in set 𝐴, as expressed in Eq. (6.8), where 𝑧𝑖 ∈ Z, 𝑎𝑗 ∈ A.
A set with a smaller value for the IGD metric is better.

𝐼𝐺𝐷(A, Z) = 1
|Z|

|Z|∑︁
𝑖=1

|A|
min
𝑗=1

‖𝑧𝑖, 𝑎𝑗‖2 (6.8)

6.3 Results

6.3.1 Distribution analysis

To analyze and understand how the distribution model operates in the search process,
we tested MOMCEDA on the Two-on-One problem with 𝑑 = 𝑙 = 𝑘 = 0 and the parameter
settings listed in Table 2, where 𝑛 is the number of decision variables of the test problem. The
array 𝑤 of relative relevance of the user preferences follows the criteria order presented in
Section 5.2. We adopted the decreasing linear weighting coefficient function of Eq. (5.6). More
details about the choice of parameters will be provided in the next sections. The objective
functions of this problem are bi-dimensional, which means that we are able to visualize the
probability density function of the distribution model built by MOMCEDA to represent the
population variables in different moments of the search. Since the Pareto set of the Two-on-
One problem is known, we can analyze the evolution of the distribution model throughout
the search.

The pdf of a Gaussian mixture model can be easily obtained, since it is formed by a
composition of Gaussian functions, each one with a weighting coefficient. For a given point
(𝑥1, 𝑥2) of the decision space, we calculate the mixture’s pdf value by adding the values
from the pdf’s of each component of the model and multiplying them by their corresponding
coefficient. In the case of our method, however, new points are sampled in pairs and the
components’ pdf parameters depend on the chosen individuals. Given two components 𝒩𝑖,
𝒩𝑗, with coefficients 𝑐𝑖, 𝑐𝑗, the probability 𝑃𝑖𝑗 that these two components are chosen together
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Table 2 – Parameter settings for MOMCEDA.

Parameter Value Description
𝑁 100 Population size

𝑤 [10, 5, 3, 1]𝑇 Relative relevance of
the user preferences

𝛼 0.025 Mixture model parameter
𝑝𝑚 1/𝑛 Mutation probability
𝜎𝑚 0.5(max(𝑥) − min(𝑥)) Mutation parameter

𝑝 𝑁 − 1 Number of divisions of
each objective axis

Neval 20000 Evaluation budget

by two independent executions of the roulette wheel operator is given by:

𝑃𝑖𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑃 (𝒩𝑖, 𝒩𝑗)

𝑃{ ⋃︀
∀𝑚,𝑛∈{1,...,𝑁}

(𝒩𝑚, 𝒩𝑛)} = 2𝑐𝑖𝑐𝑗

1 −
𝑁∑︀

𝑘=1
𝑐2

𝑘

, if 𝑖 ̸= 𝑗

0, if 𝑖 = 𝑗

(6.9)

We also must take into account the fact that each variable has a 50% probability
of being switched between the two sampled individuals. Let (𝑥(𝑖)

1 , 𝑥
(𝑖)
2 ) and (𝑥(𝑗)

1 , 𝑥
(𝑗)
2 ) be

the coordinates of two chosen individuals 𝑖 and 𝑗, respectively, in the decision space. After
applying the refreshing operator that switches variables, the new pair of points can be seen
as being sampled by the original pair of Gaussian components, centered at (𝑥(𝑖)

1 , 𝑥
(𝑖)
2 ) and

(𝑥(𝑗)
1 , 𝑥

(𝑗)
2 ), or by the components centered at (𝑥(𝑗)

1 , 𝑥
(𝑖)
2 ) and (𝑥(𝑖)

1 , 𝑥
(𝑗)
2 ) in case the variables

were switched. Let 𝒩𝑖𝑖, 𝒩𝑗𝑗, 𝒩𝑗𝑖 and 𝒩𝑖𝑗 represent respectively each one of these normal
components. Each component has a chance of 25% of generating new points. We can now
express the final pdf value 𝑓(𝑥1, 𝑥2) for our mixture model:

𝑓(𝑥1, 𝑥2) =
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗=1

0, 25𝑃𝑖𝑗[𝒩𝑖𝑖(𝑥1, 𝑥2) + 𝒩𝑗𝑗(𝑥1, 𝑥2) + 𝒩𝑗𝑖(𝑥1, 𝑥2) + 𝒩𝑖𝑗(𝑥1, 𝑥2)] (6.10)

where 𝒩𝑖𝑗(𝑥1, 𝑥2) is given by:

𝒩𝑖𝑗(𝑥1, 𝑥2) = 1
2𝜋𝜎1𝜎2

exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣
⎛⎝(𝑥1 − 𝑥

(𝑖)
1 )

𝜎1

⎞⎠2

+
⎛⎝(𝑥2 − 𝑥

(𝑗)
2 )

𝜎2

⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭ (6.11)
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and the other normal components are defined similarly. The standard deviations 𝜎1 and 𝜎2

are calculated as described in Section 5.4:

⎧⎨⎩𝜎1 = 𝛼|𝑥(𝑖)
1 − 𝑥

(𝑗)
1 |

𝜎2 = 𝛼|𝑥(𝑖)
2 − 𝑥

(𝑗)
2 |

(6.12)

The pdf function from Eq. 6.10 was evaluated for the whole decision space. We can
see the graphical representation of its values in Fig. 10 in three different moments of the
search: at the beginning (Fig. 10a), at the middle (Fig. 10b) and at the end (Fig. 10c). The
figures on the right show a representation of the contour lines of the figures on the left.
Regions of the decision space close to the peaks have higher chances of generating a new
individual. The black points represent a sampling of 𝑁 individuals from each distribution at
the given moment. By looking at the three figures, we can see the evolution of the search
from an apparently random behavior in Fig. 10a to a refined search in Fig. 10c. In Fig. 11,
we see a graphical representation of the Pareto set for the Two-on-One problem, obtained
with two different methods in PREUSS et al. (2006). We can see from Figure 10 that the
distribution model evolves to set higher probabilities for individuals located close to the line
that represents the Pareto set, which is an expected behavior. We also see a peak in Fig.
10c that is much higher than the others, indicating a concentration of high ranked candidate
solutions in that region.

6.3.2 Weighting coefficients function analysis

In Section 5.3, we introduced the three types of decreasing functions, linear, exponen-
tial and logarithmic, adopted by MOMCEDA to represent the relation between the position
𝑘 of a member in the sorted list provided by the TOPSIS algorithm and the weighting coeffi-
cient 𝜋𝑘 of its corresponding Gaussian function of the mixture model. To analyze the impact
of the choice of this function, we present here a comparison of the algorithm’s performance
regarding the final values of the hypervolume indicator for each one of the three functions on
the ZDT test problems, using (1.1, 1.1) as reference point for the hypervolume indicator. The
parameter settings used are listed in Table 2, where 𝑛 is the number of decision variables of
the test problem. Ten runs were executed for each case, and the results are presented in Table
3. The highlighted values show the function with the best results for the hypervolume indi-
cator in each test problem, and the 𝑝-value represents the result of the 𝑡-test of significance
comparing the highlighted value with the other two.
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(a)

(b)

(c)

Figure 10 – Evolution of the mixture model’s pdf along the seach process for the Two-on-One
problem with 𝑑 = 𝑘 = 𝑙 = 0.
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Figure 11 – Graphical representation of the Pareto sets for the Two-on-One problem, ob-
tained with grid and stochastic enumerators (figure extracted from PREUSS et
al. (2006)).

Table 3 – Hypervolume comparison for different weighting coefficient functions.

Test function Function Hypervolume
𝑝-valueAverage Std. dev.

ZDT1 Linear 0.87130 1.00e-04 -
𝑛 = 30 Exponential 0.87129 9.26e-05 7.58e-01

Logarithmic 0.87129 1.84e-04 7.91e-01

ZDT2 Linear 0.53808 4.49e-05 8.88e-08
𝑛 = 30 Exponential 0.53827 4.97e-05 -

Logarithmic 0.53809 7.13e-05 8.89e-06

ZDT3 Linear 1.32807 1.73e-04 5.18e-03
𝑛 = 30 Exponential 1.32833 1.86e-04 -

Logarithmic 1.32817 1.80e-04 6.87e-02

ZDT4 Linear 0.86609 3.81e-03 -
𝑛 = 10 Exponential 0.85089 1.71e-02 2.08e-02

Logarithmic 0.86462 7.67e-03 5.94e-01

ZDT6 Linear 0.50422 9.91e-05 -
𝑛 = 10 Exponential 0.50416 2.88e-04 5.47e-01

Logarithmic 0.50418 1.49e-04 5.35e-01

Analyzing the statistical results in Table 3 at the 5% level, we see that there is no
significant difference between the hypervolume values obtained for the three functions on the



Chapter 6. Computational experiments 64

ZDT1 and ZDT6 problems, because the 𝑝-values are greater than 0.05. On the ZDT2 and
ZDT3 problems, however, the exponential function results are significantly better than the
others, except when compared to the logarithmic function on the ZDT3 problem, for which
the exponential function is significantly superior only at the 10% level. On the ZDT4 problem,
there is no significant difference between the linear function and the logarithmic function,
but the linear result is significantly better than the exponential one. The statistical results
show that no function is significantly superior at the 5% level to the others in all problems.
The exponential function results are the most consistent, since they are significantly better
in more cases and worse in less cases than the other functions results, but the linear function
results are not far behind. This suggests that as long as the coefficients of the first members
of the sorted list are assigned to sufficiently higher values than the last members, the results
will not be greatly affected.

6.3.3 Specifying the array of relative relevance of the user preferences

The array 𝑤 of relative relevance of the user preferences follows the criteria order
presented in Section 5.2: non-domination level, neighborhood size, distance to reference di-
rection and exclusive contribution to the hypervolume indicator. To analyze the impact of
each criterion on the algorithm’s performance, we first performed tests considering four dif-
ferent configurations 𝑤(𝑖), 𝑖 = {1, ..., 4}, where 𝑤(𝑖) has 1 for the 𝑖-th coordinate and 0 for
the others, i.e., only the 𝑖-th criterion was considered for the TOPSIS ranking. For each con-
figuration, MOMCEDA was executed ten times on the ZDT1 problem using the parameters
listed in Table 2, where 𝑛 = 30 is the number of decision variables of the test problem, and
the decreasing linear weighting coefficient function from Eq. (5.4) is adopted. Table 4 shows
the results for the hypervolume indicator for each configuration, using (1.1, 1.1) as reference
point for its calculation. A zero hypervolume value indicates that the non-dominated individ-
uals at the end of the algorithm’s execution are dominated by an individual located at this
reference point. Since we are not interested in solving a particular problem, but in analyzing
the impact of different configurations for 𝑤, it is not relevant to include results for the other
ZDT problems.

The results in Table 4 show that the configurations with a single criterion TOPSIS
sorting with the best hypervolume values are 𝑤(1) and 𝑤(4). As expected, the non-domination
level and exclusive contribution to the hypervolume are important criteria regarding the
hypervolume metric. However, these criteria alone are not able to promote diversity in the
population, which explains why the results are worse than the values obtained before in Table
3. The results for the configurations 𝑤(2) and 𝑤(3), figuring diversity criteria, indicate that
these criteria are not able to promote the approximation of the search towards the Pareto
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Table 4 – Hypervolume comparison for different configurations of 𝑤 on ZDT1 problem, con-
sidering only one criterion.

𝑤
Hypervolume

Average Std. dev.

𝑤(1) = [1, 0, 0, 0]𝑇 0.86186 1.82e-03
𝑤(2) = [0, 1, 0, 0]𝑇 0.05374 2.75e-02
𝑤(3) = [0, 0, 1, 0]𝑇 0.00000 0.00e00
𝑤(4) = [0, 0, 0, 1]𝑇 0.86965 3.24e-04

front.

Next, we performed tests on the same conditions with different configurations of 𝑤,
but now combining multiple criteria. The results are reported in Table 5. In configurations
𝑤(5) and 𝑤(6), we tested only the non-domination level and the exclusive contribution to the
hypervolume, switching their priorities, and the results were equivalent. Then, from configu-
rations 𝑤(7) to 𝑤(10), we incorporated the neighborhood size criterion, switching the priorities
of the three criteria, but keeping the non-domination level or the exclusive contribution to the
hypervolume as high priority criterion. The best results were achieved for the configuration
𝑤(10), with the non-domination level having the highest priority, and the exclusive contribu-
tion to the hypervolume having the lowest priority. In the sequence, we tested configurations
with all four criteria. In configuration 𝑤(11), each criterion receives the same weight. From
configurations 𝑤(12) to 𝑤(14), we keep the diversity criteria as second and third priority crite-
ria and keep as high priority criterion the non-domination level or the exclusive contribution
to the hypervolume. The configuration 𝑤(15) had the best result, with the neighborhood size
criterion having higher priority than the distance to the reference direction criterion, and
non-domination level as the high priority criterion. A final test was performed for configura-
tion 𝑤(16), keeping the same priorities of 𝑤(15), but with different values for 𝑤. There was no
significant difference at the 5% level of the significance test comparing the mean hypervolume
values of configurations 𝑤(15) and 𝑤(16) (𝑝-value 0.0506), implying that the priority order of
the relative relevance of the criteria is more important than the actual values assigned to 𝑤.

6.3.4 Refreshing operators analysis

To analyze the impact of the refreshing operators, detailed in Section 5.4, on MOM-
CEDA’s performance, we tested our method in four different situations: without applying
any of the refreshing operators, applying one of the two operators each time and applying
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Table 5 – Hypervolume comparison for different configurations of 𝑤 on ZDT1 problem, con-
sidering multiple criteria.

𝑤
Hypervolume

Average Std. dev.

𝑤(5) = [2, 0, 0, 1]𝑇 0.86993 5.61e-04
𝑤(6) = [1, 0, 0, 2]𝑇 0.86988 2.96e-04
𝑤(7) = [1, 3, 0, 5]𝑇 0.86989 2.88e-04
𝑤(8) = [3, 1, 0, 5]𝑇 0.87008 2.36e-04
𝑤(9) = [5, 1, 0, 3]𝑇 0.87003 3.38e-04
𝑤(10) = [5, 3, 0, 1]𝑇 0.87104 2.60e-04
𝑤(11) = [1, 1, 1, 1]𝑇 0.86998 2.59e-04
𝑤(12) = [1, 3, 5, 10]𝑇 0.86957 4.18e-04
𝑤(13) = [1, 5, 3, 10]𝑇 0.86943 4.01e-04
𝑤(14) = [10, 3, 5, 1]𝑇 0.87098 1.74e-04
𝑤(15) = [10, 5, 3, 1]𝑇 0.87130 1.00e-04
𝑤(16) = [20, 10, 5, 3]𝑇 0.87120 1.23e-04

both of them. For each scenario, MOMCEDA was executed ten times on the ZDT1 problem
using the parameters listed in Table 2, where 𝑛 = 30 is the number of decision variables
of the test problem, and the decreasing linear weighting coefficient function from Eq. (5.4)
is adopted. Table 6 shows the results for the hypervolume indicator for each configuration,
using (1.1, 1.1) as reference point for its calculation.

Table 6 – Hypervolume comparison on ZDT1 problem, in the presence/absence of refreshing
operators.

Refreshing operator(s) Hypervolume
Average Std. dev.

None 0.05951 6.88e-2
First operator 0.75502 5.87e-02

Second operator 0.86878 6.24e-04
Both 0.87130 1.00e-04

The results in Table 6 indicate that, in the absence of refreshing operators, the algo-
rithm’s performance was poor. Applying only one of the operators led to better results, but
still far from the best possible result, achieved when both of the operators were applied. This
outcome reassures the importance of these operators to help the algorithm reach unexplored
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promising regions of the search space in order to overcome the difficulty discussed in Section
4.2.

6.3.5 Results on ZDT test problems

In this section, we present the tests performed to compare MOMCEDA’s performance
with other state-of-the-art algorithms on the ZDT test problems. The parameter settings used
to test MOMCEDA on the ZDT problems are listed in Table 2, where 𝑛 is the number of
decision variables for the problem. The choices of parameters values were determined by
the best results achieved on the tests described in the previous sections. For the weighting
coefficient function, we chose the exponential decreasing relation. We adopted the structured
approach presented in Section 2.3.2 to generate the reference points. Since we are dealing
with problems with 𝑀 = 2 objective functions, the number 𝐻 of reference points given by
Eq. 2.6 is 𝐻 = 𝑝 + 1, where 𝑝 is the number of divisions of each objective axis. We set 𝑝 so
that the number of reference points 𝐻 is equal to the population size 𝑁 (DEB; JAIN, 2013).

To make a fair comparison with the results available in the literature, ten runs were
executed for each of the test problems, like in BEUME et al. (2007). In order to analyze the
performance of the proposed algorithm, we firstly present in Figure 12 an average hypervol-
ume evolution comparison between MOMCEDA and the NSGA-II, SPEA2 and SMS-EMOA
algorithms for the ZDT1, ZDT2 and ZDT6 problems, using (1.1, 1.1) as reference point for the
hypervolume indicator. The competing methods were chosen due to their good performance
in practical applications in the literature, and to the ease of access to their implementa-
tions. For NSGA-II and SPEA2, we used the implementation from the Python DEAP 1.2.2
framework (FORTIN et al., 2012), and for the SMS-EMOA, the implementation from the
Python evoalgos 1.0 package (WESSING, 2017). We did not consider the results for the
ZDT3 and ZDT4 in this first comparison due to the occurrence of some unsuccessful runs for
the SMS-EMOA implementation.

We also compared the final values of some performance metrics. Part of the results in
Table 7 was extracted from YANG et al. (2016) and shows a comparison with the NSGA II,
C-NSGA-II, NSGA-III, SPEA2, 𝜖-MOEA, MOEA/D, SMS-EMOA and SMS-EMOA mdrp
algorithms using the hypervolume indicator and the convergence measure like in DEB et al.
(2003). Finally, Table 8 compares the IGD metric results with the three implementations
used to analyze the hypervolume evolution for all problems, except for the ZDT3 problem,
since it is non-trivial to calculate the exact location of the targeted points in this case.

The results in Figure 12 show that MOMCEDA outperformed established methods
such as NSGA-II and SPEA2 for the three selected problems, and was competitive against
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the original SMS-EMOA, which is outperformed on the ZDT6 problem. The evolution of
the hypervolume indicator showed a faster convergence towards the Pareto front for the
proposed method in the first generations, since it reached higher hypervolume values before
the other methods. Besides, the error bars reveal smaller values of standard deviation for
MOMCEDA, which means its results are consistent. However, our method was surpassed
on later generations by SMS-EMOA on the ZDT1 and ZDT2 problems, implicating that
there is room for improvement of solutions at this stage of the search. These results are
reinforced in Table 7, where we can see the final values for the hypervolume indicator and the
convergence measure. With respect to the hypervolume indicator, the proposed algorithm was
outperformed mostly by the versions of SMS-EMOA, which explicitly focus on maximizing
this metric. Nevertheless, MOMCEDA is in the top 4 among the 9 compared techniques. It
is worth noting that for some methods, such as the SMS-EMOA mdrp (YANG et al., 2016),
only the successful runs were used to calculate the metrics for the ZDT4 problem. This is
not the case for our algorithm, reinforcing its robustness. Also, MOMCEDA performed well
for the ZDT6 problem, whose Pareto front is known to be non-convex and non-uniformly
spaced.

As for the convergence measure, our method ranks from the 3rd to the 6th position.
This is likely due to the limitations imposed by the NSGA-III criteria used in our algorithm,
which tends to give better rankings to the solutions closer to the reference directions; however,
these directions are not necessarily equi-spaced along the Pareto front, as with the solutions
used to evaluate the convergence measure. This can be verified by looking at the poor results
in this metric for the NSGA-III in Table 7. In fact, except for the ZDT2 problem, NSGA-
II also performs badly, which can be another reason for MOMCEDA’s difficulties with the
convergence measure. Meanwhile, the results in Table 8 show how close are the solutions
to the Pareto front on the desired reference directions. Here, we can see that MOMCEDA
outperformed the other algorithms in most of the cases. There is a performance trade-off on
the ZDT6 problem, for which our method performed worse on the IGD metric, but better
on the hypervolume and the convergence measures. This problem features a non-uniformly
distributed Pareto front, which can explain why methods including diversity measures had
worse values of IGD metric than SMS-EMOA.

Finally, regarding MOMCEDA’s runtime for the ZDT problems, our implementation
took on average 100 seconds for each execution. However, this version is not fully optimized
and can be improved to reduce this value. Runtime information is not available on the
literature for all the methods analyzed in this Section. MOMCEDA’s runtime is likely to be
higher due to its nature, but still in the same order of magnitude of its competitors. As shown
in sections 2.3.1, 2.3.2 and 5.5, MOMCEDA’s time complexity is the same as NSGA-II and
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NSGA-III, depending on the case.

6.4 Summary
This chapter was devoted to analyze the performance of the proposed method, MOM-

CEDA. We first introduced the test problems and the performance metrics that were adopted
in this research. We proceeded with an analysis of the distribution model to understand how
it operates on the search space, by visualizing the pdf function at different moments of
the algorithm’s execution. Then, several tests were conducted to analyze the impact of the
choices that had to be made, regarding the weighting coefficients function, the definition of
the array of relative relevance of the user preferences and the refreshing operators. Finally,
the chapter ends with performance comparisons with other state-of-the-art algorithms on
the ZDT problems. The results showed a competitive method, able to incorporate multiple
decision maker’s preferences and to perform better than some established algorithms such
as NSGA-II, C-NSGA-II and SPEA2, with higher values for the hypervolume indicator and
more robustness. Even though MOMCEDA is outperformed by the SMS-EMOA versions
on these metrics in some cases, the performance trade-off of our technique can be verified
when comparing these algorithms with the IGD metric. In this research, MOMCEDA’s per-
formance was evaluated only for bi-dimensional MOO problems, which does not imply that
the algorithm cannot be extended to solve problems with more than two objective functions.
However, given the fact that our method is based on an a priori approach, previous knowledge
about the problem may be useful to help the user make proper choices of the criteria set, the
relative relevance priorities and the parameter settings, in order to improve the algorithm’s
performance.
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Figure 12 – Average hypervolume evolution comparison for ZDT1, ZDT2 and ZDT6 prob-
lems.
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Table 7 – Hypervolume and convergence metric results.

Test function Algorithm Convergence Measure Hypervolume
Average Std. dev. Rank Average Std. dev. Rank

NSGA-II 0.00054898 6.62e-05 5 0.8701 3.85e-04 9
C-NSGA-II 0.00061173 7.86e-05 6 0.8713 2.25e-04 4
NSGA-III 0.00098752 5.37e-05 8 0.8703 8.53e-05 6

SPEA2 0.00100589 12.06e-05 9 0.8708 1.86e-04 5
ZDT1 𝜖-MOEA 0.00039545 1.22e-05 1 0.8702 8.25e-05 8
𝑛 = 30 MOEA/D 0.00081172 10.94-05 7 0.8706 2.40e-04 7

SMS-EMOA 0.00044394 2.88e-05 2 0.8721 2.26e-05 2
SMS-EMOA mdrp 0.00048308 2.77e-05 4 0.8721 7.54e-06 1

MOMCEDA 0.00046290 7.90e-05 3 0.8713 7.46e-05 3

NSGA-II 0.00037851 1.88e-05 1 0.5372 3.01e-04 8
C-NSGA-II 0.00040011 1.91e-05 3 0.5374 4.42e-04 7
NSGA-III 0.00111081 1.48e-04 9 0.5366 4.72e-04 9

SPEA2 0.00082852 11.38e-05 8 0.5374 2.61e-04 6
ZDT2 𝜖-MOEA 0.00046448 2.47e-05 6 0.5383 6.39e-05 3
𝑛 = 30 MOEA/D 0.00063619 14.97e-05 7 0.5378 3.91e-04 5

SMS-EMOA 0.00041004 2.34e-05 4 0.5388 3.60e-05 2
SMS-EMOA mdrp 0.00038116 1.28e-05 2 0.5389 8.94e-06 1

MOMCEDA 0.00043439 4.28e-05 5 0.5382 4.28e-05 4

NSGA-II 0.00232321 13.95e-05 7 1.3285 1.72e-04 5
C-NSGA-II 0.00239445 12.30e-05 8 1.3277 9.82e-04 6
NSGA-III 0.00100283 8.61e-05 4 1.3253 5.76e-04 8

SPEA2 0.00260542 15.46e-05 9 1.3276 2.54e-04 7
ZDT3 𝜖-MOEA 0.00175135 7.45e-05 6 1.3287 1.31e-04 3
𝑛 = 30 MOEA/D 0.00067269 4.99e-05 3 1.3252 2.64e-04 9

SMS-EMOA 0.00057233 5.81e-05 2 1.3295 2.11e-05 2
SMS-EMOA mdrp 0.00054332 1.83e-05 1 1.3296 7.49e-06 1

MOMCEDA 0.00123011 2.33e-04 5 1.3286 1.51e-04 4

NSGA-II 0.00639002 0.0043 8 0.8613 0.00640 5
C-NSGA-II 0.00618386 0.0744 7 0.8558 0.00301 7
NSGA-III 0.00377216 0.0017 5 0.8436 0.01742 9

SPEA2 0.00769278 0.0043 9 0.8609 0.00536 6
ZDT4 𝜖-MOEA 0.00259063 0.0006 4 0.8509 0.01537 8
𝑛 = 10 MOEA/D 0.00241215 0.0012 2 0.8679 0.0018 2

SMS-EMOA 0.00251878 0.0014 3 0.8677 0.00258 3
SMS-EMOA mdrp 0.00237157 0.0005 1 0.8684 0.00094 1

MOMCEDA 0.00428322 0.0038 6 0.8652 0.0038 4

NSGA-II 0.07896111 0.0067 8 0.3959 0.00894 9
C-NSGA-II 0.07940667 0.0110 9 0.3990 0.01154 8
NSGA-III 0.01234263 0.0012 6 0.4668 0.00168 5

SPEA2 0.00573584 0.0009 4 0.4968 0.00117 4
ZDT6 𝜖-MOEA 0.06792800 0.0118 7 0.4112 0.01573 7
𝑛 = 10 MOEA/D 0.00030160 9.60e-06 1 0.5045 1.73e-06 1

SMS-EMOA 0.05043192 0.0217 5 0.4354 0.02957 6
SMS-EMOA mdrp 0.00055733 0.00003 2 0.5040 0.00005 3

MOMCEDA 0.00817433 0.00019 3 0.5041 0.00019 2



Chapter 6. Computational experiments 72

Table 8 – IGD metric results.

Test function Algorithm IGD metric
Average Std. dev.

NSGA-II 0.005212 2.47e-04
ZDT1 SPEA2 0.004570 2.10e-04
𝑛 = 30 SMS-EMOA 0.003738 3.00e-04

MOMCEDA 0.001574 8.85e-05

NSGA-II 0.011373 4.04e-03
ZDT2 SPEA2 0.010857 3.93e-03
𝑛 = 30 SMS-EMOA 0.010375 3.79e-03

MOMCEDA 0.001222 1.51e-04

NSGA-II 0.009392 3.21e-03
ZDT4 SPEA2 0.023939 1.90e-02
𝑛 = 10 SMS-EMOA 0.012299 3.92e-03

MOMCEDA 0.005738 1.44e-03

NSGA-II 0.020354 2.65e-03
ZDT6 SPEA2 0.020700 3.95e-03
𝑛 = 10 SMS-EMOA 0.004001 2.36e-04

MOMCEDA 0.066887 2.05e-02
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7 Conclusion

The main goal of this research was to contribute to the insertion of MCDM techniques
to promote iterative decision making in MOO population based meta-heuristics, improving
its computational performance toward better solutions. As result of the study developed in
this work, we proposed a hybrid technique, denoted by MOMCEDA (Multi-Objective Multi-
Criteria Estimation of Distribution Algorithm), composed of MOO and MCDM methods in
an a priori approach. MOO problems arise in relevant research and application areas, and
evolutionary meta-heuristics have proven to be powerful and flexible search methodologies
that have successfully tackled practical challenging problems, being able to produce good-
quality solutions in reasonable computation times and good enough for practical purposes.

The first chapters of this dissertation focused on presenting the three research areas
concerned by this work: Multi-Objective Optimization, Multi-Criteria Decision Making and
Estimation of Distribution Algorithms. In Chapter 2, we introduced single and multi-objective
optimization problems, defined important concepts such as the domination among solutions
and Pareto optimality, and presented some important EMOA’s to solve MOO problems that
were used as inspiration to conceive our method: NSGA-II, NSGA-III and SMS-EMOA. We
saw that most state-of-the-art algorithms sort their candidate solution according to only
one criterion at a time: first, the non-domination level is considered, and in case of a tie, the
diversity in the objective space or the contribution to a performance metric is evaluated. This
is the first distinction between these classical algorithms and our method, since MOMCEDA
is able to classify solutions simultaneously according to multiple criteria with the help of a
MCDM technique.

Chapter 3 was devoted to introduce Multi-Criteria Decision Making problems, em-
phasizing its applications to support iterative decision making processes in EMOA to solve
MOO problems. We defined the classification of hybrid compositions of EMOA and MCDM
techniques according to when the preference information is incorporated: before, after or dur-
ing the search process - a priori, a posteriori and interactive approaches, respectively, each
one having its advantages and disadvantages. The TOPSIS algorithm, the MCDM technique
adopted in MOMCEDA to classify the candidate solutions, was presented in this chapter.
It is considered an a priori approach, since the decision maker needs to define the relative
relevance of the criteria before the search process, which implies that the user needs to have
a good previous knowledge of the problem to define his/her preferences properly.

In Chapter 4, we discussed Estimation of Distribution Algorithms (EDA’s), a class of
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evolutionary optimization methods where new candidate solutions are generated by building
and sampling explicit probabilistic models of promising candidate solutions among the al-
ready found ones. When compared to traditional optimization techniques, an improvement on
the performance and robustness of the search for solutions is observed on EDA’s. MOMCEDA
makes use of a distribution model, more specifically a Gaussian mixture model, to represent
its candidate solutions. This model is formed by a composition of Gaussian functions, each
representing a member of the population in the decision space. The model parameters are
obtained from the information provided by the TOPSIS algorithm. Since distribution models
are based on the acquired experience throughout the search, unexplored promising regions
of the search space may not be represented by them. Another important contribution of
this research is the special sampling scheme adopted to generate new members, which was
conceived to overcome this difficulty.

In Chapter 5, MOMCEDA was formally introduced. The main structure of the evo-
lutionary meta-heuristic follows the one present in NSGA-II and NSGA-III, but endowed
with distinct sorting and sampling mechanisms. The classification of candidate solutions
is performed by the TOPSIS algorithm, based on user preferences derived from state-of-
the-art decision policies already proposed as part of well-established meta-heuristics: the
non-domination level, the neighborhood size, the distance to the closest reference direction
and the exclusive contribution to the hypervolume indicator. The process of sampling new
candidate solutions is implemented with the aid of a mixture of Gaussians, so that regions
in the search space containing higher quality candidate solutions tend to be explored more
intensively. The special sampling scheme adopted by MOMCEDA generates new candidate
solutions in pairs and makes use of refreshing operators. The standard deviation of the Gaus-
sian functions is defined in terms of the distance of the individuals in the decision space,
motivated by the properties of the successful SBX operator, widely adopted in real-coded
Genetic Algorithms.

The final chapter summarized the computational experiments performed to evaluate
MOMCEDA’s performance. The chapter began by presenting the adopted test problems and
performance metrics. Then, an analysis of the Gaussian mixture model was carried out, by
visualizing its probability distribution function at three different moments of the search for
the Two-On-One problem. The results revealed an expected behavior: the model evolved to
set higher probabilities for individuals located close to the Pareto set, which was known a
priori. In the following sections, a series of tests was executed to evaluate the impact on
the performance of the choices of different aspects of the algorithm: the type of weighting
coefficients function, the priorities for the relative relevance of the user preferences and the
refreshing operators. With respect to the weighting coefficients function, no alternative was
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significantly superior to the others in all cases, but the exponential and linear decreasing
functions had more consistent results. Regarding the relative relevance of the user prefer-
ences, the priority order that achieved the best results had the non-domination level as the
highest priority criterion, followed by the diversity criteria, and finishing with the exclusive
contribution to the hypervolume indicator with the lowest priority. As for the refreshing op-
erators, the results of the tests reassured their importance to help the algorithm overcome
the aforementioned difficulty.

Finally, MOMCEDA’s performance was compared to several state-of-the-art algo-
rithms on the classical ZDT test problems. The hypervolume evolution comparison revealed
that our method converged faster towards the Pareto front in the first generations, but was
surpassed on later generations by SMS-EMOA on the ZDT1 and ZDT2 problems, implicating
that there is room for improvement of solutions at this stage of the search. The comparison
of final values of hypervolume indicator placed MOMCEDA in a competitive position: it per-
formed better than some established algorithms such as NSGA-II, C-NSGA-II and SPEA2,
with higher values for the indicator and more consistent results. Regarding the convergence
measure, our method did not perform so well, probably due to the limitations imposed by
the NSGA-III criteria adopted by MOMCEDA, which tends to give better rankings to the
solutions closer to the reference directions. When the IDG metric was evaluated, however,
MOMCEDA outperformed the other algorithms in most of the cases.

Regarding future studies, we propose further investigations to analyze MOMCEDA’s
behavior on later generations, in order to improve the quality of the candidate solutions at
this stage. The refreshing operators seem to have a great impact on the search performance,
and can be a starting point of these investigations. As for the MCDM technique, another
suggestion is to evaluate the impact of using other sets of criteria and other alternatives to
define and normalize the values for the array of relative relevance of the user preferences
(HUANG, 2008). Finally, MOMCEDA can also be extended to be tested on other bench-
mark problems, with three objectives and more, and also on real-world problems. Given the
algorithm’s nature, previous knowledge about the problem may be useful to help the user
properly set his/her preferences, the relative relevance priorities and the parameter settings,
aiming at improving its performance on different scenarios.
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