3,032 research outputs found

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    Security for Ubiquitous Internet-Connected Smart Objects

    Get PDF
    Ubiquitous computing, also called the Internet of Things (IoT), is rapidly transforming our lives and our society. The vision of an interconnected world where physical devices are seamlessly integrated into the Internet is becoming a reality. The emergence of low-cost microcontrollers, energy-efficient wireless communications, and embedded sensors and actuators has transformed everyday devices into connected smart objects that can understand and react to their environment. These devices include both resource-constrained battery-operated devices, such as body sensors, and more powerful Internet-connected appliances, such as televisions and cameras. However, the security mechanisms for smart objects are still not ready for wide-scale deployment. There is additionally a concern that the existing solutions are not sufficiently usable for adoption in everyday devices, which often have very limited user interfaces. In this dissertation, we develop new secure deployment and communication methods for connected smart objects that are simple, user-friendly, and also energy efficient. We take into account the entire lifecycle of a smart object. We first build a secure and energy-efficient communication model that uses a proxy to serve data on behalf of sleeping resource-constrained smart objects, thereby allowing them to appear as always-online web servers. Next, we demonstrate how these smart objects can leverage the existing mobile network infrastructure to securely authenticate and communicate with Internet services. Thereafter, we study the deployment challenges of electronic displays. We found that deploying large numbers of ubiquitous displays is cumbersome as they need to be correctly configured to access both the Internet and online servers, despite their minimal input capabilities. In our secure bootstrapping solution, the displays show a bar code which, when scanned by the user, enables automatic configuration of the wireless network along with the online management service and content to be shown. For effortless deployment, we build our solution on standard protocols without requiring changes to the network infrastructure. Finally, we develop a solution for securely pairing mobile devices. Instead of relying on inconvenient user-entered codes, our solution uses an out-of-band (OOB) channel which is secret from anyone that is not physically present. The protocol development was motivated by the invention of a new human source for fuzzy secrets: synchronized drawing with two fingers of the same hand on two touch screens or surfaces. We show the feasibility of each of our proposed solutions with prototype implementation. Where relevant, we also provide experimental results confirming that our solutions incur minimal memory and computational overhead, while also being energy efficient and easy to use. Lastly, we actively contribute the research results to relevant standards bodies

    IETF standardization in the field of the internet of things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 258885 (SPITFIRE project), from the iMinds ICON projects GreenWeCan and O’CareCloudS, a FWO postdoc grant for Eli De Poorter and a VLIR PhD scholarship to Isam Ishaq

    Federated Identity and Access Management for the Internet of Things

    Get PDF

    Secure service proxy : a CoAP(s) intermediary for a securer and smarter web of things

    Get PDF
    As the IoT continues to grow over the coming years, resource-constrained devices and networks will see an increase in traffic as everything is connected in an open Web of Things. The performance- and function-enhancing features are difficult to provide in resource-constrained environments, but will gain importance if the WoT is to be scaled up successfully. For example, scalable open standards-based authentication and authorization will be important to manage access to the limited resources of constrained devices and networks. Additionally, features such as caching and virtualization may help further reduce the load on these constrained systems. This work presents the Secure Service Proxy (SSP): a constrained-network edge proxy with the goal of improving the performance and functionality of constrained RESTful environments. Our evaluations show that the proposed design reaches its goal by reducing the load on constrained devices while implementing a wide range of features as different adapters. Specifically, the results show that the SSP leads to significant savings in processing, network traffic, network delay and packet loss rates for constrained devices. As a result, the SSP helps to guarantee the proper operation of constrained networks as these networks form an ever-expanding Web of Things

    Integration of UAVS with Real Time Operating Systems and Establishing a Secure Data Transmission

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In today’s world, the applications of Unmanned Aerial Vehicle (UAV) systems are leaping by extending their scope from military applications on to commercial and medical sectors as well. Owing to this commercialization, the need to append external hardware with UAV systems becomes inevitable. This external hardware could aid in enabling wireless data transfer between the UAV system and remote Wireless Sensor Networks (WSN) using low powered architecture like Thread, BLE (Bluetooth Low Energy). The data is being transmitted from the flight controller to the ground control station using a MAVlink (Micro Air Vehicle Link) protocol. But this radio transmission method is not secure, which may lead to data leakage problems. The ideal aim of this research is to address the issues of integrating different hardware with the flight controller of the UAV system using a light-weight protocol called UAVCAN (Unmanned Aerial Vehicle Controller Area Network). This would result in reduced wiring and would harness the problem of integrating multiple systems to UAV. At the same time, data security is addressed by deploying an encryption chip into the UAV system to encrypt the data transfer using ECC (Elliptic curve cryptography) and transmitting it to cloud platforms instead of radio transmission
    • …
    corecore