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Abstract—Internet of Things (IoT) refers to an inter-connected
world where physical devices are seamlessly integrated into
the Internet. The emergence of technologies such as Zigbee,
Bluetooth low energy, and embedded sensors has transformed
simple physical devices into smart objects that can understand
and react to their environment. Such smart objects form the
building blocks for the Internet of Things.

Although the need for security is widely accepted, there is
no clear consensus on how IP-based Internet security protocols
can be applied to resource-constrained smart object networks.
In this paper, we develop a new secure and energy-efficient
communication model for the Constrained Application Protocol
(CoAP), a light-weight communication protocol designed for
smart object networks. This architecture and the communication
model ensures data integrity and authenticity over a multi-hop
network topology. It provides a mirroring mechanism that uses a
proxy to serve data on behalf of sleeping smart objects, thereby
allowing them to act as always-online web servers. A working
prototype implementation of the architecture is also developed.

The security features in the architecture presented in this
paper are based on using strong public-key cryptography. Con-
trary to popular belief, our performance evaluation shows that
asymmetric public-key cryptography can be implemented on
small 8-bit microcontrollers without modifying the underlying
cryptographic algorithms using public libraries.
Index Terms—IoT, smart objects, security, CoAP, asymmetric
cryptography, integrity, authenticity.

I. INTRODUCTION

The term Internet of Things (IoT) was first coined by the
MIT Auto-ID center [1] which had envisioned a world where
every physical object is tagged with an RFID tag having a
globally unique identifier. This would allow for tracking of
objects in real-time and querying of data about them over the
Internet. However, since then, the meaning of the Internet of
Things has expanded and now encompasses a wide variety
of technologies, objects and protocols. With the progress
made in near field communication and sensor technology, the
physical objects no longer act as unresponsive nodes but rather
understand and react to the environment they reside in. Such
objects, referred to as smart objects, form the building blocks
of the Internet of Things.

Security is an important consideration in all modern com-
munication systems. Since a wide variety of actors are in-
volved in the manufacturing, installation and actual use of
smart objects, the security challenges associated with a net-
work of such objects is more perplexing than the Internet.

Smart objects need to be protected against a wide variety
of attacks during their lifecycle. For example, during the
provisioning phase, an adversary may be able eavesdrop and
obtain keying materials, security parameters, or initial settings
if they are exchanged in the clear over a wireless medium. It
can be non-trivial to perform device authentication since smart
objects usually do not have a priori knowledge of each other
and cannot always differentiate malicious network nodes from
innocent neighbors via completely automated mechanisms.

Another factor that plays an important role while designing
security solutions for smart objects is the resource-constrained
nature of these devices. The devices not only have a small
amount of memory and computational power but also a
minimalistic energy supply available to them. Therefore, in
many circumstances, the devices need to sleep for long periods
in order to save energy and can wake up only for short periods
to report sensor data. Such smart objects cannot afford to
stay online for long durations to be polled data or support
computationally intensive security protocols. We believe that
extremely resource-constrained “sleepy” smart objects would
form a large part of the deployment space and need appropriate
treatment in terms of security and delegation mechanisms. Our
work has the following contributions:

• Designing a standards-compliant security architecture for
smart objects with an energy-efficient communication
model.

• Developing a prototype based on the new architecture.
• Implementing and evaluating the performance of asym-

metric public-key cryptography on 8-bit architectures.
The rest of the paper is organized as follows. In section II,
we present our work on public-key cryptography on smart
objects. The background information required to understand
our proposed architecture is provided in section III. The
entire architecture and its functioning is elucidated in section
IV. In section V, we describe the proof-of-concept prototype
developed for this architecture. Finally, section VI provides a
summary of the paper and examines the potential future work
in this area.

II. ASYMMETRIC CRYPTOGRAPHY IN IOT
There are several proposals that attempt to secure smart

object networks with non-public symmetric-key based au-
thentication and key distribution mechanisms [2], [3], [4].



The underlying assumption being that public-key cryptography
is too resource intensive for implementation on constrained
devices. In symmetric-key based approaches, if an individual
key is used for every node in a network of n nodes, then
each node is required to store n − 1 keys. Although this
provides strong resilience against individual node compromise,
it also leads to scalability issues making it undesirable for large
networks. Conversely, when a single symmetric key is used
for all the nodes in the network, the memory requirement for
each node is reduced, but the resilience of the network also
decreases.

In response to these problems, many probabilistic key
distribution schemes for symmetric-key algorithms have been
proposed [5], [6]. These schemes either need a pre-distribution
of keys with complex configuration during provisioning, or
large amount of network traffic that results in higher energy
consumption. In general, symmetric-key schemes do not offer
the flexibility of not having pre-shared keys that is provided
with public-key asymmetric cryptography. Moreover, there are
several studies that contradict the aforementioned assumption
of feasibility of public-key cryptography on smart objects.
We discuss some of the previous work related to public-key
cryptography on smart objects in the next sub-section.

A. Previous Experiments with Asymmetric Cryptography
Gura et al. [7] carry out a performance comparison of RSA

and ECC based public-key cryptographic schemes on 8-bit
microcontrollers. They include several well known mathemati-
cal optimizations for improving the performance. The modular
multiplication algorithm for RSA and ECC used a hybrid ap-
proach comprising of row-wise and column-wise schoolbook
multiplication to increase the performance efficiency while
keeping the SRAM consumption small. The authors were able
to achieve 1024-bit RSA private key operation with exponent
e = 216 + 1 in 0.43 seconds and 160-bit elliptic curve point
multiplication in 0.81 seconds on an 8-bit microcontroller with
a clock speed of 8 MHz.

Blaß and Zitterbart [8] implement elliptic curve public-
key cryptography on an 8-bit ATmega128 microcontroller. By
using several optimizations they were able to achieve ECDSA
based signature generation in 6.88 seconds. Besides the rel-
atively slow performance, it is demonstrated that the 112-bit
ECDLP can be solved in 3.5 months using 200 PlayStation 3
game consoles [9], making 113-bit elliptic curves vulnerable
to attacks as well. In general, it is suggested that applications
use 128-bit curves or higher to ensure sufficient security.

The work done by Uhsadel et al. [10] accomplishes a
standards-compliant 160-bit secp160r1 curve based signature
generation operation in 2881 cycles (0.39 seconds) on an 8-bit
8 MHz microcontroller. This is faster than the work done by
Gura et al. [7] discussed earlier. The authors claim that the
work provides the fastest known implementation of 160-bit
elliptic curve point multiplication (in 2007).

Toheed and Razi [11] evaluate the feasibility of asymmetric
public-key cryptography on the Contiki Operating System1.

1The Contiki OS, http://www.contiki-os.org/

Their thesis provides a comprehensive performance compari-
son of two libraries, namely Libtomcrypt [12] and Relic [13]
on the MSP430F1612 microcontroller [14] and on the COOJA
simulator [15]. The authors evaluate ECC based signature
generation and verification performance in terms of execution
time, SRAM/ROM usage and energy consumption.

Gupta et al. [16] not only perform public-key cryptography
on 8-bit platforms but also implement an entire web stack
with a fully functional Secure Sockets Layer (SSL) [17] suite
based on ECC. The implementation discussed can perform an
entire SSL handshake on 8-bit 8 MHz microcontroller with
4 kB of SRAM in one second and can communicate 1 kB
of application data over SSL in 0.4 seconds. This allows the
sensors to be monitored and controlled remotely over the web
without compromising on end-to-end security. The authors
claim that the implementation provides the world’s smallest
secure web server (in 2005).

There have been several other works that have measured the
energy efficiency of asymmetric cryptography on small plat-
forms [18], [19]. With all the works presented thus far, there
is a strong argument against the assumption that public-key
cryptography is too resource intensive for execution on small
platforms without changing the underlying cryptographic algo-
rithms. However, most of the research work that was presented,
did not have code in the public domain. Therefore, we set out
to find code that is easily available online for use on 8-bit
platforms and evaluate its performance.

B. Available Cryptographic Libraries

We provide a brief description of the libraries we found were
suitable for such platforms and that were publicly available:

• AvrCryptolib [20]: Provides a variety of symmetric-key
algorithms such as DES, Triple DES, AES, and RSA
as an asymmetric public-key algorithm. The library only
performs modular exponentiation and does not provide
standardized padding such as PKCS #1 version 1.5 [21].
Parts of RSA algorithm were written in AVR 8-bit assem-
bly language to reduce the execution time. The library
also provides an option to store the keys in flash and
access them directly from there, thus, saving the amount
of SRAM consumed.

• Relic [13]: Written entirely in C, it provides a highly
flexible and customizable implementation of a large va-
riety of cryptographic algorithms. This not only includes
RSA and ECC, but also pairing based asymmetric cryp-
tography. Relic provides an option to build and include
only the desired components for the required platform.
While building the library, it is possible to select a variety
of mathematical optimizations that can be combined to
obtain the desired performance. Relic can be customized
to use different bit-length words thus making it easy to
compile for different architectures.

• TinyECC [22]: Designed for using elliptic curve cryp-
tography on smart objects. It is written in the nesC
programming language and is designed for specific use on
TinyOS. However, the library can be ported to standard



TABLE I
RSA PRIVATE-KEY MODULAR EXPONENTIATION PERFORMANCE WITH AVRCYRPTOLIB

RSA Key
Length (bits)

Execution Time (ms):
Keys in SRAM

Memory footprint
(bytes): Keys in SRAM

Execution Time (ms):
Keys in ROM

Memory footprint
(bytes): Keys in ROM

64 64 40 69 32
128 434 80 460 64
256 3516 80 3818 64
512 25,076 320 27,348 256
1,024 199,688 640 218,367 512
2,048 1,587,567 1,280 1,740,258 1,024

C99 by rewriting parts of the code. This allows for the
library to be used on platforms that do not have TinyOS
running on them. The library includes a wide variety of
mathematical optimizations such as sliding window and
Barrett reduction. While TinyECC only performs curves
over prime fields, Relic performs curves over prime as
well as binary fields.

• Wiselib [23]: Wiselib is a generic library written for
sensor networks containing a wide variety of algorithms.
It includes algorithms for routing, cryptography, localiza-
tion, topology management. The library was designed to
easily interface it with operating systems such as iSense.
However, since the library is written entirely in C++
with a template based model similar to Boost/CGAL, it
can be used on any platform directly without using any
of the operating system interfaces provided. Similar to
TinyECC, it implements curves over prime fields only.
Wiselib does not implement many of the well known
theoretical performance enhancement features.

C. Performance Analysis

For experimenting with public-key cryptography on
resource-constrained platforms, we chose Arduino Uno
board2. Arduino Uno has an ATmega328P (an 8-bit micro-
controller with a clock rate of 16 MHz), 2 kB of SRAM,
and 32 kB of flash memory. We specifically chose an 8-bit
platform to demonstrate that our security architecture can be
implemented even on very constrained platforms.

We have summarized the initial results of raw RSA private-
key modular exponentiation performance using AvrCryptolib
in Table I. The keys were generated separately with the
value of public exponent as 3 and were hard coded into
the program. The performance was faster for smaller key
lengths as was expected. With longer keys the execution time
increased exponentially. We performed two different sets of
experiments for each key length. In the first case, the keys
were loaded into the SRAM from the flash memeory before
they were used by any of the functions. In the second case,
the keys were addressed and used directly from the flash
memory. As was expected, the second case used less SRAM
but led to slightly longer execution time. The SRAM values
indicate RSA processing only and do not reflect the SRAM
consumption of the entire program. The execution times were
calculated as mean of five consecutive experiments.

2Arduino Uno, http://arduino.cc/en/Main/arduinoBoardUno

It is worth noting that the implementation performs basic
modular exponentiation without mathematical optimizations
used by Gura et al. [7]. With more SRAM, we believe that
1024/2048-bit RSA operations can be performed in much less
time as has been shown elsewhere.

In Figure 1 we present the results from the performance
comparison of ECDSA signature generation for all the libraries
surveyed. Although we tested the libraries with various differ-
ent curve parameters providing different levels of security, we
only present the performance of curves with 80-bit symmetric-
key equivalent security. The libraries were tested with National
Institute of Standards and Technology (NIST) and Standards
for Efficient Cryptography Group (SECG) standardized curve
parameters provided in the libraries. All the libraries provide
a SHA-1 hash algorithm, which was used in our performance
analysis. While performing experiments on the Relic library,
we were unable to use the Arduino Uno board because
of memory constraints. However, since the library looked
promising from previous experiments [11] we chose to test
it on Arduino Mega3 which has similar microcontroller as the
Uno but has more SRAM (8 kB) and ROM (128 kB).

In order to measure the SRAM consumption for each of
the curves we used the Avrora simulator [24]. Since all the
libraries and our code use only stack based allocation, the stack
trace produced by the simulator gives an accurate value for
the memory footprint. The execution times were calculated on
Arduino boards using the on-board ATmega internal oscillator
which provides an accuracy of four microseconds. We use the
rand() function provided in the Arduino library for creating
random numbers. We performed all the experiments with a
common seed (300) to the pseudo-random number generator
so that the results are reproducible.

While Wiselib used the least amount of SRAM among all
the libraries, its execution times for signature generation were
the highest. In comparison, TinyECC was able to perform
signature generation for the same curve parameters in times
ranging from 2.2 to 2.5 seconds with 50 bytes of extra SRAM.
TinyECC provides several optimizations which include Barrett
reduction [25], hybrid multiplication and squaring [7], curve
specific optimizations [7], projective coordinate system [26],
sliding window for scalar multiplication [26], and Shamir
trick [26]. We however only use the projective coordinate
system, sliding window optimization for scalar multiplication
and SECG curve specific optimizations for our experiments.

3Arduino Mega, http://arduino.cc/en/Main/ArduinoBoardMega
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Fig. 1. ECC Performance

While we did not include Shamir trick as it helps only during
verification, hybrid multiplication and squaring could not be
ported to Arduino Uno as they were coded in incompatible
assembly. Liu and Ning [22] demonstrate that Barrett reduction
is only efficient when used with hybrid multiplication. Since
we could not port hybrid multiplication, we also chose to
exclude Barrett reduction from our code. Finally, we used
assembly code only for simultaneous multiplication with ad-
dition and simultaneous multiplication with subtraction which
were compatible with Arduino platforms.

Both the libraries implemented three different SECG curves
over prime fields (secp160k1, secp160r1 and secp160r2 de-
picted as 160k1, 160r1 and 160r2 respectively) and their
execution times and SRAM consumption are depicted in Fig-
ure 1. We experimented TinyECC with and without assembly
optimizations. It was interesting to observe here that the
assembly version consumed the same amount of SRAM but
saved about 1.5 seconds of execution time for each of the three
curves tested. It is evident that using assembly optimizations
for the target platform can result in improved performance.

For Relic we tested curves with equivalent security over
binary fields only. Though Relic implements curves over
prime fields as well, previous work [27], [28] shows that
binary fields are more suited for Atmel platforms used on
Arduino boards. We tested two different configurations of the
library for curves over binary fields: one which resulted in the
least execution time and another which consumed the least
amount of memory4. We tested two standard NIST curves
over binary fields (NIST-K163 and NIST-B163 shown as k163
and b163 respectively). While experimenting with Koblitz
curves, we tested a special case where the binary arithmetic
was implemented in assembly (shown as k163-asm). As was
expected, the assembly versions performed significantly faster

4Relic-Configurations, https://github.com/ms88/relic-configurations

than the non-assembly versions.
We intentionally did not focus any of the experiments

towards the flash memory consumption of the libraries as it is
available at low cost and is generally not the limiting factor
on constrained devices. However, as a rough estimate Wiselib
consumed about 17 kB of ROM, TinyECC consumed about
20 kB of ROM, while relic consumed 27-40 kB of ROM
depending on the configuration. The TinyECC values differ
from those in [22] as we no longer use the original nesC code
and re-wrote the library in standard C99.

From these results it is clear that software implementation of
public-key cryptography on smart objects is not only possible,
but can be efficient with publicly available code. There is
scope further performance enhancement and we believe, with
increase in computational power and cost reduction, it will
be even more trivial to achieve basic public-key cryptography
on such devices. We did not measure signature verification
times since our architecture described later, does not require
verification on such devices.

III. DESIGN

In order to understand the proposed security architecture,
we first introduce a few basic concepts:

• CoAP: Constrained Application Protocol (CoAP) [29]
is a RESTful application layer protocol designed for
resource constrained devices in M2M and smart object
networks. It is currently being developed by the Con-
strained RESTful Environments (CoRE) working group
at the Internet Engineering Task force (IETF). CoAP
provides a request/response interaction model similar to
HTTP while keeping in mind the specific requirements
of constrained device networks, such as support for
multicasting, asynchronous messaging and low packet
parsing overhead. CoAP uses a short fixed sized header
and compact options along with a small payload. It



runs on top of the unreliable User Datagram Transport
(UDP) protocol with optional reliability. Using a binary
base header, it supports two message types, request
and response. A request can be a confirmable or non-
confirmable depending on whether an acknowledgement
is required from the recipient. A CoAP request consists
of the Request Method for the resource being requested,
an identifier, a payload and an Internet media type (if
any) with optional meta-data about the request. The
basic Request Methods supported in CoAP are GET,
POST, PUT and DELETE. These methods can easily be
mapped to HTTP and have the same safe (retrieval only)
and idempotent (multiple invocations have same result)
properties as HTTP. A CoAP response is identified by
the Response Code in the CoAP header and is similar to
the Status Code field of the HTTP header. It indicates the
result of an attempt to execute the received request.

• Link Format: M2M and smart object networks are en-
visoined to work without human interaction. In such a
scenario, discovery of resources hosted by a constrained
server/smart object is important. Similar to Web Dis-
covery and Web Linking [30] defined for HTTP, the
CoRE working group is developing an equivalent CoRE
discovery and CoRE link format [31] for constrained
devices to support resource discovery and web linking.
The resource discovery mechanism provides a set of
Universal Resource Identifiers (URIs) or links that rep-
resent the resources hosted on the constrained server
along with any additional attributes and link relations
between the resources. The link format is carried as
payload data and is assigned its own internet media type
“application/link-format”. A well known URI “/.well-
known/core” is defined as the default entry point for
requesting a list of resources hosted by the constrained
server.

• Resource Directory: In many M2M networks, smart ob-
jects are often dispersed and have intermittent reach-
ability either because of network outages or because
they sleep during their operation cycle to save energy.
In such scenarios, direct discovery of resources hosted
on the constrained server might not be possible. To
overcome this barrier, the idea of a Resource Directory
(RD) [32] is being developed. A Resource Directory is
an entity that hosts the descriptions of resources which
are located on other dispersed constrained nodes. End
Points (EPs) or constrained servers proactively discover,
register and maintain their resources with the RD. The RD
provides interfaces for registering, updating and removing
resources to the EPs. It is also possible for the RD to
proactively discover resources from the EPs and add or
validate these entries.

• Mirror Proxy: A Mirror Proxy (MP) [33] is an entity
that allows sleeping nodes to participate in RESTful
architecture despite the fact that they do not behave as
traditional web servers and sleep for long periods during
their operation cycle. The MP is responsible for caching

and serving data on behalf of sleeping constrained devices
also referred to as Sleeping End Points (SEPs). The
Mirror Proxy is designed such that it would host the
resources of other SEP in its own resource tree on their
behalf. The MP is supposed to update its /.well-know/core
resource to add the resources of the registered SEP. The
MP also registers the resources of the SEP as separate
resources in the RD.

• JSON Web Singatures and Web Key: JavaScript Ob-
ject Notation (JSON) Web Signatures (JWS) [34] is a
representational format that uses JSON data structures
for depicting content that has been secured with Hash
based Message Authentication codes (HMACs) or digital
signature schemes such as ECDSA. The representation
format is independant of the content and can be used
with any arbitrary data. A JWS representation consists of
three parts: the JWS header, the JWS payload, and the
JWS signature. The JWS header describes the HMAC
or signature algorithm used. The payload consists of
the content that needs to be secured and the signature
is obtained by applying the cryptographic or HMAC
algorithm over the header and payload. Similar to JWS,
JSON Web Key (JWK) [35] is used to represent and
communicate public keys as JSON objects. The JWK
representation of a public key consists of JSON-object
members that describe the public key such as the asym-
metric cryptographic algorithm used.

IV. SECURITY ARCHITECTURE

While designing the architecture, one of the primary goals
at the outset was to ensure that smart objects can sleep for
long durations during the operational phase to save energy.
However we did not want this requirement to be a hindrance
for a client that wishes to obtain the most recent data update
sent from the smart object. Thus our intention was to satisfy
two contradicting goals where smart objects can serve updates
to requesting clients at any time despite the fact that they sleep
for long durations during their operational phase. In order to
achieve these contradicting goals, we use Mirror Proxies [33]
in our architecture to delegate the task of serving data from
smart objects to proxies as shown in Figure 2.

A Mirror Proxy is assumed to have sufficient computational
power and energy supply to remain online and serve data
collected from several SEPs or sleeping smart objects. The
SEPs no longer operate as servers that serve to client requests
for data and rather act as clients of the MP themselves.
The SEPs register their resources with the MP. When the
MP receives a registration request, it adds the resources of
the SEPs into its own resource tree as sub-resources and
updates its /.well-known/core resource to reflect the additional
resources. Once the registration is successfully acknowledged
by the MP, the SEPs can sleep and wake-up at pre-determined
intervals to update the cached content that is continuously
served by the MP. The communication network between the
SEPs and the MP runs on CoAP over UDP.



Fig. 2. Architecture

While SEPs can update the cached content with either
Confirmable or Non-Confirmable CoAP messages, it may
be desirable to use Non-Confirmable messages in certain
scenarios to allow the SEPs to sleep without waiting for ac-
knowledgements. This might be desirable when, for example,
the transmission medium is relatively reliable or when the MP
is interested in the mean or average value from a number of
reporting SEPs and an occasional loss of updates is tolerable.

In order ensure security, our architecture requires each
constrained device to have a public-private key pair. The
architecture is independent of the public-key algorithm chosen.
However, our results in Section II-C and results from previous
work [7] suggest that ECC is not only more efficient than RSA
but also results in smaller signatures, thereby reducing the net-
work traffic. The key pair can be pre-generated and configured
into the constrained device at the time of manufacture or can
be created on the fly during the operational phase.

As seen in Figure 2, when a smart object sends a registration
request to the MP, it also adds its public key to the registration
message. The MP is responsible for storing the public key of
each of the SEP that it serves. The SEPs wake-up at pre-
determined intervals and use the corresponding private key
to sign all subsequent updates sent to the MP. The public
keys and the signed content are sent in the standard JSON-
based JWK [35] and JWS [34] formats respectively. This
system essentially provides a SSH-like leap of faith where,
after an uncompromised initial connection, the data integrity
and authenticity is ensured. Such a system does not require any
pre-configuration and allows the integrity and authenticity of
updates to be verified by any node in the network at any point
of time even when the SEP is asleep. This allows incremental
deployment, where new SEPs can be added to the network
at any point of time and also allows SEPs and MPs from
different manufacturers to inter-operate. It also enables the
MP to maintain several administrative domains with different
access policies depending on the SEP or the client it is serving.

In some deployments, the network between the SEPs and
the MP can be assumed to be secure and sending messages

in plaintext along with signature is acceptable. However if
required, data confidentiality can be assured if the MP also
owns a public-private key pair and performs a Diffie-Hellman
exchange with the SEPs at the time of registration to establish
a shared secret. This shared secret would then be used to
encrypt and decrypt the signed updates. A Mirror Proxy also
needs to verify the updates sent from SEPs to prevent itself
from caching malicious data. Alternatively, it may also choose
to cache the data only for a limited maximum amount of time
or store only a maximum number of signed data updates to
prevent a compromised SEP from overwhelming it.

When a smart object registers with the MP, the MP registers
the new resources separately in the Resource Directory (RD).
In order to obtain data updates for a resource, a client contacts
the RD to obtain the location of the SEP hosting this resource.
On receiving a request from a client, the RD responds with
the location of the resource requested. Although the location
returned by the RD points to the MP, the client is unaware of
this fact and believes it to be the location of the SEP itself.
Thus, the MP serves data from the SEPs to the clients in a
transparent manner. A client can save the location returned
and bypass requesting the RD when it wants to obtain the
next data update for the resource.

A client first obtains the public key of the SEP (which
resides on the MP) and then retrieves the signed data updates
(transparently cached by the MP). It can now correctly verify
the authenticity and the integrity of data objects signed by the
SEP. This communication between a client and the MP, as
shown in Figure 2, occurs over HTTP or CoAP and should be
protected with SSL [17] or DTLS [36] respectively. Therefore,
this architecture securely communicates data-object integrity
and authenticity end to end from the SEP to the client over a
multi-hop network topology. Using SSL or DTLS ensures that
signed updates are protected from a malicious eavesdroppers
and man-in-the-middle modifications. Since the SEPs sleep
for long durations and are never directly contacted with client
requests for data, they are also inherently protected against
denial-of-sleep attacks [37].

It is also important to ensure message freshness to protect
the architecture against replay attacks. Including sequence
numbers in signed messages can provide an effective method
of replay protection. The MP should verify the sequence
number of each incoming message and accept it only if the
sequence number is greater than the highest previously seen
sequence number. The MP drops any packet with a sequence
number that has already been received or if the received
sequence number is greater than the highest previously seen
sequence number by an amount larger than the preset thresh-
old.

Sequence numbers can wrap-around at their maximum value
and, therefore, it is essential to ensure that sequence numbers
are sufficiently long. However, including long sequence num-
bers in packets can increase the network traffic originating
from the SEP and can thus decrease its energy efficiency. To
overcome the problem of long sequence numbers, we can use
a scheme similar to that of Huang [38], where the sender and



receiver maintain and sign long sequence numbers of equal
bit-lengths but they transmit only the least significant bits.

Although sequence numbers protect the system from replay
attacks, the MP has no mechanism to determine the time
at which updates were created by the SEP. Moreover, if
sequence numbers are the only freshness indicator used, a
malicious eavesdropper can induce inordinate delays to the
communication of signed updates by buffering messages.
Depending on the hardware used by the SEPs, they may have
access to accurate hardware clocks which can be used to
include timestamps in the signed updates. These timestamps
are included in addition to sequence numbers. The clock time
in the SEPs can be set by the manufacturer or the current time
can be communicated by the MP during the registration phase.
However, these approaches require the SEP to either rely on
the long-term accuracy of the clock set by the manufacturer or
to trust the MP, thereby increasing the potential vulnerability
of the system. The SEPs could obtain the current time from
NTP, but this may consume additional energy and give rise
to security issues discussed by Mills [39]. The SEPs could
also have access to a GSM network or the Global Positioning
System (GPS), and they can be used obtain the current time.

V. IMPLEMENTATION

To verify the feasibility of our architecture we developed a
proof-of-concept prototype. In our prototype, the SEP was im-
plemented using the Arduino Ethernet shield over an Arduino
Mega board as shown in Figure 3.

Fig. 3. Arduino SEP

Our implementation uses the standard C99 programming
language on the Arduino Mega board. In this prototype, the
Mirror Proxy (MP) and the Resource Directory (RD) reside
on the same physical host. A 64-bit x86 linux machine serves
as the MP and the RD, while a similar but physically different
64-bit x86 linux machine serves as the client that requests data
from the SEP. We chose the Relic library version 0.3.1 for our
sample prototype as it can be easily compiled for different
bit-length processors. Therefore, we were able to use it on the
8-bit processor of the Arduino Mega, as well as on the 64-bit
processor of the x86 client. We used ECDSA to sign and verify
data updates with the standard NIST-K163 curve parameters
(163-bit Kobltiz curve over binary field). While compiling
Relic for our prototype, we used the fast configuration without
any assembly optimizations.

We used the Ericsson Gateway [40] running on a x86 linux
machine to serve as the MP and the RD. The gateway imple-

ments the CoAP base specification in the Java programming
language and extends it to add support for Mirror Proxy and
Resource Directory REST interfaces. We also developed a
minimalistic CoAP C-library for the Arduino SEP and for
the client requesting data updates for a resource. The library
has small SRAM requirements and uses stack-based allocation
only. It is inter-operable with the Java implementation of CoAP
running on the gateway. The ECDSA signature generation and
signature verification functionality were used with this library.
The location of the MP was pre-configured into the SEP by
hardcoding the IP address. We used an IPv4 network with
public IP addresses obtained from a DHCP server.

Fig. 4. Registering and Caching Updates

In our prototype, the SEP registers with the MP by sending
a Confirmable CoAP POST message as shown in figure 4.
This registration message includes a temperature resource in
the CoRE link format along with the public key of the SEP in
the JWK format. The MP adds this resource as a sub-resource
in its own resource tree and also updates its ./well-known/core
resource. The MP then sends a piggybacked CoAP ACK to the
SEP to confirm the successful registration. The piggybacked
CoAP ACK contains the location that would be used by the
SEP to update the cache. The MP also stores the public key
of the SEP received in the registration message.

Once the ACK from the MP confirming the registration is
received by the SEP, it can go into the energy saving sleep
mode. However, if the registration message or the ACK is
lost, the SEP would re-transmit the registration message. The
MP is responsible for registering the new resources with the
RD and it sends a confirmable CoAP POST message to add
these new resources as shown in Figure 4. In our prototype, we
use hardcoded temperature values in the SenML [41] format
as sample data along with simple sequence numbers to ensure



freshness. This SenML data is signed with ECDSA algorithm
and sent to the MP in the JWS format with Non-Confirmable
CoAP PUT messages. This allows the SEPs to return to the
sleep mode without having to wait for any acknowledgements.
Although the Non-Confimable CoAP PUTs do not result in
an ACK from the MP, the MP still responds to the requested
operation indicating a success or failure as shown in Figure 4.
The SEP in this case remains in the sleep mode and is unaware
of any packets sent to it. There are no CoAP options currently
available for suppressing such responses.

Fig. 5. Retrieving Data Updates

A client (the x86 linux machine) that wishes to obtain
data updates from the SEP first contacts the RD as shown
in Figure 5. We assume that the location of the RD is known
to the client through DHCP or through pre-configuration. The
client uses a Confirmable CoAP GET message for the /.well-
known/core resource and specifies the resource type parameter
to determine the location of the temperature resource. The
RD responds with a CoAP ACK containing location of the
resource piggybacked in the message. Although this location
points to the MP, the client is not aware of this and believes
it to be the location of the SEP itself (transparent caching).

The client then sends a second CoAP GET message to
the location returned by the RD for the ./well-known/core re-
source. The MP returns a piggybacked CoAP ACK containing
the location where the data is being cached along with the
public key of the SEP from which the updates were received.
The client stores the public key for this SEP and sends a third
CoAP GET message as shown in Figure 5 to obtain the actual
signed content in the JWS format. The client can use the public
key received to verify all subsequent signed data updates. If
the signature verifies correctly, the client can be assured of
the integrity and authenticity of these data updates. We use an
unprotected CoAP communication channel between the client
and the MP. However if required, this communication could
be secured with DTLS or by using HTTP over SSL.

Some important statistics of this prototype are listed in
table II. Our straw man analysis of the performance of this
prototype is preliminary. Our intention was to demonstrate
the feasibility of the entire architecture with public-key cryp-
tography on an 8-bit microcontroller. The stated values can
be improved further by a considerable amount. For example,
the flash memory and SRAM consumption is relatively high
because some of the Arduino libraries were used out-of-the-
box and there are several functions which can be removed.
Similarly we used the fast version of the Relic library in the
prototype instead of the low memory version.

TABLE II
PROTOTYPE PERFORMANCE

Flash memory consumption (for the entire prototype
including Relic cryto + CoAP + Arduino UDP, Ethernet
and DHCP Libraries)

51 kB

SRAM consumption (for the entire prototype including
DHCP client + key generation + signing the hash of
message + COAP + UDP + Ethernet)

4678 bytes

Execution time for creating the key pair + sending
registration message + time spent waiting for acknowl-
edgement

2030 ms

Execution time for signing the hash of message + sending
update

987 ms

Signature overhead 42 bytes

To demonstrate the efficacy of this communication model
we compare it with a scenario where the smart objects do
not transition into the energy saving sleep mode and directly
serve temperature data to clients. As an example, we assume
that in our architecture, the smart objects wake up once every
minute to report the signed temperature data to the caching
MP. If we calculate the energy consumption using the formula
W = U ∗I∗t (where U is the operating voltage, I is the current
drawn and t is the execution time), and use the voltage and
current values from the datasheets of the ATmega2560 (20mA-
active mode and 5.4mA-sleep mode) and W5100 (183mA)
chips used in the architecture, then in a one minute period,
the Arduino SEP would consume 60.9 Joules of energy if
it directly serves data and does not sleep. On the other
hand, in our architecture it would only consume 2.6 Joules
if it wakes up once a minute to update the MP with signed
data. Therefore, a typical Li-ion battery that provides about
1800 milliamps per hour (mAh) at 5V would have a lifetime
of 9 hours in the unsecured always-on scenario, whereas
it would have a lifetime of about 8.5 days in the secured
sleepy architecture presented. These lifetimes appear to be low
because the Arduino SEP in the prototype uses Ethernet which
is not energy efficient. The values presented only provide an
estimate (ignoring the energy required to transition in and out
of the sleep mode) and would vary depending on the hardware
and MAC protocol used. Nonetheless, it is evident that our
architecture can increase the life of smart objects by allowing
them to sleep and can ensure security at the same time.

VI. CONCLUSION

In this work we demonstrate how public-key cryptography
can be implemented in software on small resource constrained



devices with publicly available cryptographic libraries. Al-
though performing a key exchange followed by the use of sym-
metric keys would be desirable in some cases, such a model
works well only for DTLS and other transport layer solutions
and works less well for data object security, particularly when
the number of communicating entities is not exactly two.

Using these publicly available libraries, we develop a func-
tional standards-compliant prototype of secure communication
and mirroring mechanism with CoAP for sleepy smart objects.
Our architecture and communication model not only allows
intermediaries to act as caches without impacting the security,
it also operates in the presence of traditional middleboxes such
as protocol translators or NATs although we do not recommend
their use in these environments. Our architecture is agnostic
to the application layer communication protocol used, and can
work seamlessly over HTTP instead of CoAP if desired. We
use a leap-of-faith provisioning system as a starting point and
it requires further investigation on how things can be paired
securely. We intend to research how multicasting can be used
in such networks, how to implement group communication
and what kind of congestion control, if any, would be needed
in such networks.
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