
sensors

Article

Secure Service Proxy: A CoAP(s) Intermediary for
a Securer and Smarter Web of Things

Floris Van den Abeele *, Ingrid Moerman, Piet Demeester and Jeroen Hoebeke

Ghent University—imec, IDLab, Department of Information Technology, Technologiepark Zwijnaarde 15,
B-9052 Ghent, Belgium; ingrid.moerman@ugent.be (I.M.); piet.demeester@ugent.be (P.D.);
jeroen.hoebeke@ugent.be (J.H.)
* Correspondence: floris.vandenabeele@ugent.be; Tel.: +32-933-14-900; Fax: +32-933-14-899

Received: 21 May 2017; Accepted: 6 July 2017; Published: 11 July 2017

Abstract: As the IoT continues to grow over the coming years, resource-constrained devices
and networks will see an increase in traffic as everything is connected in an open Web of Things.
The performance- and function-enhancing features are difficult to provide in resource-constrained
environments, but will gain importance if the WoT is to be scaled up successfully. For example,
scalable open standards-based authentication and authorization will be important to manage access
to the limited resources of constrained devices and networks. Additionally, features such as caching
and virtualization may help further reduce the load on these constrained systems. This work presents
the Secure Service Proxy (SSP): a constrained-network edge proxy with the goal of improving the
performance and functionality of constrained RESTful environments. Our evaluations show that the
proposed design reaches its goal by reducing the load on constrained devices while implementing
a wide range of features as different adapters. Specifically, the results show that the SSP leads to
significant savings in processing, network traffic, network delay and packet loss rates for constrained
devices. As a result, the SSP helps to guarantee the proper operation of constrained networks as these
networks form an ever-expanding Web of Things.
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1. Introduction

In recent years, the Internet of Things (IoT) has increasingly become a hot topic in industry,
academia, the do-it-yourself community and also consumers. Businesses are attracted by the new
product opportunities and new sources of revenue that the IoT promises to bring. For example, a 2013
market report on IoT by Cisco Inc. (San Jose, CA, USA) predicts 14.4 trillion USD in created value for
the “Internet of Everything” from 2013 to 2022 [1]. Academia is interested in the many new problems
and issues that arise when deploying billions of devices on the Internet. These issues include big
data analytics, energy efficient communications, large-scale deployments, management of devices,
communication protocols, security models, data privacy and many more. An introduction to the
research aspect of the IoT is presented in [2]. Finally, consumers are drawn to the IoT because IoT
products promise to bring improvements and novel services to their daily lives. Examples of IoT
domains include smart home, smart health, smart transportation, smart factory, smart grid and many
more [3].

As the Internet of Things continues to grow in scope and in size, the number of available
technologies and platforms that promise to enable the IoT keeps increasing. As a family of such
technologies, a complete protocol stack was standardized at the Internet Engineering Task Force (IETF)
for use with constrained IoT devices in Low-power and Lossy Networks (LLNs) [4]. This suite
of protocols defines the communication stack from the network layer up to the application layer.
In contrast to the popular alternative ZigBee [5], the IETF protocol stack gives the developer more
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flexibility to model the network and the application to a specific use-case. For instance, with the IPv6
Routing Protocol for Low-power and Lossy Networks (RPL) [6] the routing can be tuned by employing
different objective functions that optimize routes according to the metrics that are relevant to the use
case (e.g., minimize hop count, maximize battery lifetime, etc.). Another example of flexibility is found
at the application layer, where the REST architecture followed by the CoAP protocol allows developers
to design their own RESTful resources and to model their behavior. In terms of security, the IETF
elected to standardize an End-to-End (E2E) architecture as it is a popular choice on the unconstrained
Web today. Therefore, the CoAP standard defines DTLS (i.e., Datagram TLS) as its recommended
security method.

Secure Sockets Layer (SSL) and, later, Transport Layer Security (TLS) have been around since
the end of the past century and have become very popular protocols for their roles in securing the
WWW. Today, (D)TLS has become a flexible protocol where endpoints can negotiate the type of security
and where a built-in extension mechanism allows one to add new features to the protocol without
touching the base specification. A comprehensive overview of the (D)TLS protocol is presented in
the Background Section 2. Widespread adoption, a wide range of implementations, an open protocol
specification and a high level of interoperability are just a few of the benefits of the TLS protocol.
Nevertheless, one should be careful when deploying end-to-end security with DTLS in constrained
environments. This issue has been recognized by the IETF, which has formulated guidance for
implementing and deploying DTLS in constrained environments in Request for Comments (RFC)
7925 [7].

Despite the advantages offered by DTLS, E2E security has a number of disadvantages when
deployed as-is in LLNs. One issue with E2E security is that it completely blocks out any third
party (e.g., intermediate middleboxes) from taking part in the communication. In most traditional
Internet deployments, this is a wanted property of E2E security, but in LLNs, it stops intermediary
systems from providing services that can improve resource usage and the performance of constrained
devices and networks. For example, caching of CoAP responses is not possible when E2E security
is applied between the CoAP client and the constrained CoAP server. A second disadvantage
of E2E security is that application-layer enhancements cannot be applied by middleboxes, as all
communication is enciphered. Thus, access control, admittance control and other similar features
cannot be provided at the edge of the LLN. Another known problem with DTLS is its performance
in duty-cycled networks, which is common in multi-hop LLNs. Research [8] has shown that the
latency introduced by the DTLS handshake can become excessively large in multi-hop duty-cycled
networks (up to 50 s for four hops). Vuc̆inć et al. also show that constrained nodes can only store
a limited number of DTLS sessions in their memory (e.g., max. three DTLS sessions for a WiSMote
node). As a result, nodes have to start dropping active DTLS sessions from memory, which can
deteriorate battery lifetime and DTLS performance. Finally, end-to-end network addressing reduces
the effectiveness of 6LoWPAN compression. This is due to the fact that the IPv6 prefixes for nodes
situated on the Internet and the used UDP ports are difficult or impossible to compress on 6LoWPAN.
All of these issues are covered in greater depth in the problem statement, cf. Section 3.

The goal of this work is to overcome the issues identified with E2E security without losing the
benefits offered by such a widely-used protocol as DTLS. To this end, we propose the “Secure Service
Proxy” (SSP). It is a reverse DTLS and CoAP proxy that provides a secure bridge between clients on the
Internet and constrained IoT devices in a low-power and lossy network. By employing DTLS on both
legs of the communication path, the resulting system can still enjoy most of the benefits offered by the
popularity of DTLS without suffering from the disadvantages of E2E security specific to constrained
environments (as identified in the previous paragraph). As the SSP operates as a trusted entity in the
network, it can also offer network services such as caching, as well as application-layer enhancements.
For the latter, this paper employs the concept of node virtualization where a constrained node has
a virtual counterpart that resides on the proxy and that offers additional functionality on behalf of the
node. This virtualization concept is effective because the SSP is deployed on hardware more powerful
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than the constrained nodes themselves. As a result, node virtualization can offer new and complex
functionality that is unfeasible to offer on the constrained node itself. Examples include support for
more complex modes of DTLS (e.g., public key infrastructure and certificate-based suites), translating
responses between content formats, offering verbose semantic descriptions for the constrained node,
storing large binary blobs (e.g., a picture of the deployment area), keeping historical data, etc.

Our contributions in this paper are as follows. First, we identify and discuss a number of
issues with end-to-end security in constrained RESTful environments. We argue that these issues
can be overcome by a reverse proxy approach that splits the end-to-end security at the proxy.
Secondly, we design and implement such a reverse proxy. Apart from solving the E2E security
issues, our developed proxy can also offer additional functionality and services on behalf of the
constrained network and the constrained nodes. To our knowledge, this work is the first to study,
design, implement and evaluate a reverse proxy for use with end-to-end security in constrained
RESTful environments. Finally, by means of a real-world evaluation, we show that our work can
significantly improve the operation of constrained networks by reducing power consumption, network
latency and network traffic.

The rest of this paper is structured as follows. First, a brief overview of CoAP and DTLS is
presented in the next section. Using this overview, a number of issues with deploying CoAP and
DTLS in low-power and lossy networks is presented in Section 3. This section also lists the research
goals of this work. In Section 4, our approach to tackling these issues is presented together with the
design of the secure service proxy and an overview of the security risks related to breaking end-to-end
security. The secure service proxy is aligned to similar work in the literature and the commercial world
in Section 5. An extensive evaluation of our approach based on both simulations and a real-world
wireless sensor network testbed is presented in Section 6. Section 7 presents the conclusions that are
drawn from this work.

2. Overview of CoAP and DTLS

2.1. The Constrained Application Protocol

RFC 7252 [9] states that the Constrained Application Protocol (CoAP) is a specialized Web
transfer protocol for use with constrained nodes and constrained networks in the Internet of Things.
The protocol is designed for Machine-to-Machine (M2M) applications such as smart energy and
building automation. The main design considerations for CoAP include simplicity, very low overhead,
easy translation to and from HTTP and support for multicast.

In CoAP, constrained devices that host applications structure their data and actions as RESTful
Web services, also called CoAP resources. CoAP clients send requests to resources in order to retrieve
and store data or trigger actions. CoAP defines the same request methods as HTTP: GET, PUT,
POST and DELETE. They are used respectively for retrieving data, storing data, toggling an action
and removing data. CoAP chose UDP as its transport protocol due to the lightweight nature of
UDP (TCP was deemed too verbose due to its connections and too complex to implement in constrained
devices). Therefore, CoAP includes a simple reliability layer and deduplication mechanism in order to
compensate for the minimalistic nature of UDP. In order to minimize overhead, CoAP uses a binary
format for encoding message options in the headers of CoAP requests and responses. As a result, the
CoAP message size is significantly reduced when compared to a non-binary encoded protocol, such as
HTTP [10], which is important in LLNs where message sizes are typically small and communication is
expensive for battery-powered devices.

An illustration of a typical CoAP request/response exchange is shown in Figure 1, where a client
(a ventilation unit) retrieves a temperature resource on a CoAP server. The first elements of the CoAP
header are the two-bit protocol version (RFC 7252 standardizes Version 1) and the two-bit message
type. By sending a confirmable message, a sender can ask a receiver to acknowledge the reception of
a message. This is reflected in the message type of the response, which is an acknowledgment. In most
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cases (like here), the response message is actually piggy-backed on the acknowledgment message
in order to reduce the number of messages. The four-bit token length comes after the message type
in the CoAP header, and it represents the length of the optional message token in bytes. The next
element of the CoAP header is the eight-bit message code, which consists of a three-bit class and a
five-bit subfield. Requests codes are Class 0 codes (e.g., GET is code 0.01), and successful response
codes are Class 2 codes (e.g., Content is code 2.05). The final part of the fixed four-byte CoAP header is
the two-byte message ID. It is used for deduplication and for confirmable (CON) messages, where
acknowledgments echo the message ID of the CON message.

The token is used to match a response with a request and can vary in length between zero and
eight bytes. After the token come the header options and the payload (if any). In CoAP, header
options are assigned unique numbers by the Internet Assigned Numbers Authority (IANA) and are
delta encoded in CoAP messages in order to reduce their encoding size. Every option encoding
contains the delta of the option number (relative to the preceding option), the size of the value of the
option (in bytes) and the value of the option. Finally, the options and the payload are separated by an
end-of-options marker (0xff).

CoAP request (8 bytes):
42 01 72 56 ff 12 b1 74

Version: 1 (0x42)
Type: Confirmable (0x42)
Token length: 2 (0x42)
Request code: GET (0x01)
Message ID: 0x72 56
Token: 0xff 12
Uri‐Path option: t (0xb1 74)

CoAP response (12 bytes):
62 45 72 56 ff 12 c0 ff 31 37 2e 30

Version: 1 (0x62)
Type: Acknowledgement (0x62)
Token length: 2 (0x62)
Response code: 2.05 (0x45)
Message ID: 0x72 56
Token: 0xff 12
Content‐Format: plain‐text (0xc0)
End‐of‐options marker: 0xff
Payload: 17.0 (0x31 37 2e 30)

GET /t

2.05 Content: 17.0

2 b
2 b
4 b
8 b

16 b
2 B

1+1 B

2 b
2 b
4 b
8 b

16 b
2 B
1 B
1 B
4 B

4 B

Figure 1. Anatomy of a typical CoAP request and response.

The CoAP Observe option [11] is a CoAP protocol extension that is important for this work. When
a client is observing a REST resource on a CoAP server, the server will notify the client of state changes
for that resource. This frees the client from polling the resource on the server, which can save resources
in LLNs when changes in resource state occur rarely. RFC 7641 [11] also states that intermediaries
must aggregate observation registrations: “If two or more clients have registered their interest in a
resource with an intermediary, the intermediary MUST register itself only once with the next hop and
fan out the notifications it receives to all registered clients. This relieves the next hop from sending
the same notifications multiple times and thus enables scalability”. Apart from enabling scalability,
aggregation also saves resources.

2.2. Datagram Transport Layer Security

For security, CoAP standardized end-to-end security and DTLS as its default security mechanism
and protocol respectively. The primary motivation for preferring transport-layer security over
alternatives such as object security and network layer security is the popularity of TLS on the
conventional Web. Datagram TLS is by design very similar to the TLS protocol, and the specification of
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DTLS is largely written as a set of changes to the TLS specification [12]. However, there are some key
differences as DTLS runs over an unreliable datagram transport while TLS runs over a reliable TCP
transport. Therefore, DTLS must cope with the reliable and ordered delivery of packets as available in
TLS. To this end, DTLS introduces a simple timeout and retransmission scheme and adds an explicit
sequence number to the Record Protocol (versus an implicit number as available via TCP in TLS).
Another difference is that stream ciphers must not be used with DTLS. DTLS also enhanced the
handshake protocol with a stateless cookie exchange for denial of service resistance. By forcing DTLS
clients to echo the cookie in their second handshake message, malicious clients (e.g., those spoofing IP
addresses) can be rooted out, and a DTLS server can avoid wasting resources on bogus handshakes.

DTLS is a session-based protocol in that DTLS endpoints have to set up a session when they want
to communicate securely. Negotiation of the security parameters for the session and peer authentication
are both performed during the handshake phase of the protocol. After the handshake phase, both
endpoints can exchange data with guarantees for confidentiality, endpoint authentication and integrity
of the data. To this end, DTLS employs symmetric cryptography for data encryption according to
an encryption algorithm and encryption keys that are agreed upon during the handshake. DTLS
also guarantees message integrity by means of Hash-based Message Authentication Codes (HMAC).
Sessions are typically negotiated on an ad hoc basis, although long-term sessions and resumption of
established sessions are possible in DTLS.

TLS introduces the concept of cipher suites; these are named combinations of the authentication
and key exchange algorithm, the cipher and key length, the cipher mode of operation, the hash
algorithm for integrity protection and the hash algorithm for use with pseudorandom functions.

The DTLS handshake is shown in Figure 2. In order to reduce the number of network
packets, multiple DTLS messages can be grouped into a single flight of messages. In the figure,
the horizontal arrows correspond to the different message flights. The DTLS client initiates the
handshake with the ClientHello message, to which the server replies with a HelloVerifyRequest
message. The HelloVerifyRequest message contains the stateless cookie for DoS mitigation and
must be echoed by the client in its second ClientHello message. After the server has verified the
cookie, it responds with the ServerHello message. The hello messages are used to establish security
enhancement capabilities between the client and server [13]. They establish the following attributes:
protocol version, session ID (used in session resumption), cipher suite and compression method.
Additionally, two random values are generated and exchanged: one for the client and one for the server.

DTLS 
client

DTLS 
server

ClientHello

ClientHello
with Cookie

HelloVerifyRequest

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
Finished ChangeCipherSpec

Finished

Figure 2. The full DTLS handshake.
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The messages of the remainder of the handshake depend on the negotiated security enhancement
capabilities. In the figure, messages marked with an asterisk (*) are optional or situation-dependent
messages. The figure shows the message flow for a certificate-based cipher suite where the server
replies with Certificate, ServerKeyExchange, CertificateRequest and ServerHelloDone messages. If the
cipher suite requires the server to authenticate itself, then the server sends its X.509 certificate in
a Certificate message. In cases where the key exchange does not use the server certificate, the server
may send a ServerKeyExchange message. For example, in Pre-Shared Key cipher suites (PSK suites
are discussed later), the server may send a hint in the ServerKeyExchange message to help the client
in selecting which PSK identity to use. Additionally, the server may also send a CertificateRequest
message to request a certificate from the client. Finally, a ServerHelloDone message is sent by the
server to indicate that the hello-message phase of the handshake is complete.

If the server requested a certificate, the client must provide one in its Certificate message. Next,
the client sends a ClientKeyExchange message, the contents of which depend on the chosen key
exchange algorithm. In the case of RSA for example, the client chooses a secret and encrypts it with the
public key from the certificate of the server and sends the result in the ClientKeyExchange message.
Together with the Certificate and ServerKeyExchange messages of the server, the client’s Certificate
and ClientKeyExchange messages are used for the key exchange. The CertificateVerify message allows
the client to prove the possession of the private key in the certificate. In the case of pre-shared key
cipher suites, the key exchange of the client consists of a ClientKeyExchange message, which contains
the identity of the chosen PSK.

Next, the client sends a ChangeCipherSpec message, which signals that the client has switched to
the negotiated cipher spec. The client then immediately sends the Finished message, which contains
a hash of the shared secret and all handshake messages. The server must verify the contents of
the Finished message in order to detect any tampering of the handshake messages. The Finished
message also proves that the client knows the correct shared secret (i.e., the pre-master secret), and
any subsequent keying material (master secret, encryption keys and MAC keys) is generated from
this pre-master secret. After the server has sent its own ChangeCipherSpec and Finished messages
and the client has successfully verified the Finished message, the handshake is completed, and secure
communication of application data can start.

2.3. DTLS in Constrained Environments

There are a number of additional protocol features that are applicable to DTLS in constrained
environments, and these are discussed in this subsection. RFC 5116 [14] introduced Authenticated
Encryption with Associated Data (AEAD) to TLS, which enables the use of cipher suites that use
the same cipher for confidentiality, authenticity and integrity protection. Particularly in constrained
environments, AEAD provides the benefit of more compact implementations as only one cipher has to
be implemented.

RFC 6655 [15] defines multiple such compact cipher suites that use the widespread AES cipher in
the Counter with Cipher Block Chaining-Message Authentication Code (CBC-MAC) Mode (CCM).
AES is a popular choice in constrained environments, as it is often accelerated in hardware in modern
IoT systems (e.g., the TI CC2538 SoC has an AES accelerator on the same die as the ARM-M3 CPU).
Note that the AEAD construct is only supported from Version 1.2 of the DTLS protocol.

RFC 4279 [16] introduces the Pre-Shared Key (PSK) cipher suites for TLS. These cipher suites
are interesting for constrained devices, as the size of the key exchange is minimal: typically only a
PSK identifier in the client key exchange is exchanged. Of course, key management is an important
issue in this case, as common cryptography practice dictates that a unique PSK should be allocated for
every peer. The ‘TLS_PSK_WITH_AES_128_CCM_8’ cipher suite combines the benefits of PSKs and
AES-CCM in that only one cipher is needed (AES), and the key exchange is minimal. This cipher suite
is also the mandatory-to-implement PSK cipher suite for DTLS in the CoAP RFC [9]. Furthermore, this
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suite uses just an eight-byte authentication tag (as opposed to a 16-byte tag), which is more suitable in
networks where bandwidth is constrained and messages sizes may be small.

RFC 7250 [17] introduces a new certificate type and two TLS extensions for exchanging Raw
Public Keys (RPKs) in DTLS. In this case, a peer has an asymmetric key pair, but it does not have an
X.509 certificate; this asymmetric key pair is the RPK. This extension allows the raw public key to be
used for authentication, which is beneficial in constrained environments as RPKs are smaller in size
than X.509 certificates. Additionally the resulting key exchange is therefore smaller, as well. Of course,
the scalability benefits of a Public Key Infrastructure (PKI) are lost when using RPKs.

Finally, RFC 7251 [18] describes the use of AES-CMM elliptic curve cryptography (ECC) cipher
suites in DTLS. This type of cipher suites uses the AEAD mechanism to provide confidentiality,
authenticity and integrity of application data with just AES, while using Ephemeral Elliptic Curve
Diffie–Hellman (ECDHE) as their key exchange and peer authentication mechanisms. ECC is
attractive for constrained environments as its smaller key sizes result in savings for power, memory,
bandwidth and computational cost [19]. For example, a 256 to 383-bit ECC key is considered
comparable in strength to a 3072-bit RSA key by NIST [20]. CoAP mandates the use of the
‘TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8’ cipher suite for X.509 certificates in constrained
environments. This cipher suite uses the secp256r1 or NIST P-256 elliptic curve.

3. Problem Statement and Research Goals

When securing communications in LLNs via end-to-end security with DTLS, one should be
mindful of a number of potential issues and pitfalls. Some of these issues arise due to the limitations
of the constrained devices that secure the communications. For example, in end-to-end security, there
is a considerable difference between constrained devices (and their protocols) and powerful Internet
hosts (and their protocols) in terms of available resources and design. A second potential issue stems
from the DTLS protocol itself, namely the large overhead of the DTLS handshake can be an issue of
concern in constrained networks. A third group of issues is related to securing the LLN itself and is
the result of deploying end-to-end security in LLNs. Apart from these issues related to end-to-end
security in LLNs, there is also the problem of the limited amount of application layer functionality
that can be provided by constrained IoT devices. In a world as heterogeneous as the IoT there exists
a need for protocol translation, data format mapping, semantic descriptions and many other features
that improve the interoperability with IoT devices. Similarly, network access to constrained nodes and
LLNs should be as efficient as possible by supporting caching of information, efficient discovery and
network edge filtering. These types of functionality are too complex and in some cases impossible for
implementation on a constrained device. Clearly, an approach that does not burden the constrained
device is needed in this case. The remainder of this section discusses these various issues and problems
in more detail.

3.1. End-To-End Security in LLNs

Constrained devices with a limited power source (e.g., battery powered or energy scavenging
devices) should take care to avoid excessive network communications in order not to preemptively
deplete the power source. Similarly, constrained networks where the available throughput is in the
order of a few kbps should minimize the amount of network communications to avoid congestion.
Therefore, chatty or verbose security protocols that communicate excessive amounts of information
should be avoided in these situations. As DTLS employs UDP instead of TCP as its transport protocol,
it avoids the TCP handshake, which reduces the number of messages exchanged between DTLS clients
and servers. However, some options supported by DTLS, as presented in the previous section, may
lead to large amounts of network communications. Specifically, certificate-based cipher suites involve
sending the certificate of the DTLS server (and peer, depending on the security needs) over the network.
These certificates are generally large (i.e., a thousand bytes or more), and therefore, their network
communication can be problematic when communication has a large impact on the power source
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or the network. As a result, these types of devices are unable to offer authentication based on PKI
certificates. While raw public keys are significantly more compact than X.509 certificates, they do not
offer the same benefits in terms of authentication and scalability.

For devices with limited computational power (e.g., low-cost embedded systems) certain
cryptographic primitives may prove too complex for computation by the low cost microcontroller.
While hardware acceleration may help to alleviate this issue, it can be an expensive option and might
only be available for certain primitives: e.g., AES is often accelerated in hardware, while others are not.
Specifically, public-key cryptography methods (e.g., based on large integer factorization or discrete
logarithm problems) and key agreement schemes (such as (EC)DH) may be too taxing for constrained
microcontrollers. Therefore, the set of cryptographic functions that can be offered by such low cost
embedded systems excludes a number of common cryptographic primitives and is typically limited to
what can be achieved by symmetric-key cryptography.

Another important limitation in constrained environments is the low amount of available
memory (i.e., both volatile and non-volatile memory). For example, according to IETF RFC 7228 [4],
Class 1 constrained devices have around 10 kibibyte (KiB) of RAM and 100 KiB of ROM memory.
Such a small amount of memory must accommodate an entire networking stack, adequate security
mechanisms, peripheral control, the application itself and various other subsystems. This forces
a device manufacturer to limit the amount of software that will ship with the device by carefully
selecting what is needed. One consequence is that it is impossible for these devices to support a wide
range of DTLS extensions and cipher suites (e.g., only one suite might be supported). This also means
that verbose operations such as checking certificate revocation lists or performing OCSP [21] checks
typically cannot be supported.

Powerful Internet hosts on the other hand may expect constrained devices to support security
features similar to those found on the conventional Internet (e.g., with strong authentication and key
agreement schemes). As constrained devices cannot support these features (see above), an alternative
is to consider third party systems (e.g., middleboxes or off-path systems) that offer such features on
behalf of constrained devices. However, in this case, a big issue with conventional end-to-end security
is that as the connection is secured end-to-end, a third party is excluded from the communication.
Thus, an important question addressed by this work is how third parties can take part in securing
(but also optimizing; see later) communications with constrained devices in order to bridge the gap
with powerful Internet hosts.

While DTLS can avoid the TCP handshake, it still has to perform its own handshaking mechanism
in order to negotiate key exchange and authentication methods. The overhead of this handshake in
terms of delay or amount of network traffic can be problematic for some types of constrained nodes and
networks. Specifically, previous research has shown that in duty-cycled multi-hop networks, the delay
introduced by the DTLS handshake can run up to fifty seconds [8] for four wireless hops. The authors
also correctly conclude that the memory for storing the DTLS session state on constrained nodes is
typically limited to a handful of nodes for Class 1 devices. Additionally, other research [22] has shown
that ephemeral DTLS sessions with constrained devices should be avoided as their energy expenditure
is up to 60% higher when compared to a single DTLS session with a long lifetime. Therefore, one goal
of this work is to limit the impact of the DTLS handshake on delay and energy expenditure, while
supporting more than just a handful of simultaneous DTLS sessions per constrained device.

The third group of issues stems from naively deploying end-to-end security in (multi-hop)
Low-power and Lossy Networks (LLNs) and from allowing unmonitored access to LLNs to malicious
users. In these networks, resources are sparse (see above), and care should be taken in order to
avoid unwanted depletion of these resources by Denial-of-Service (DoS) attacks. For example, by
repeatedly opening and closing DTLS sessions, a malicious user can significantly reduce the lifetime
of a battery-powered device. A malicious user could also send large datagrams to the LLN, which
will trigger fragmentation that can exhaust the allocated network buffers in the LLNs. Most of these
resource-depletion threats can be mitigated by monitoring and restricting access to the LLN at the edge
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of the network, where an unconstrained firewall or gateway system resides. However, end-to-end
security encumbers such systems from authenticating parties (as constrained devices cannot support
strong authentication) and therefore restricting access to authorized parties. Here, this work will study
how end-to-end security can be reconciled with the need for traffic filtering at the edge of the network
and the need for strong authentication.

3.2. Complex Application Features in LLNs

Apart from security issues, there is another important category of problems that relate to the
functionality at the application layer for constrained devices, which is targeted by this work. Firstly,
the same constraints that prohibit offering extensive security features also apply to implementing
application features on the constrained device. This is one of the reasons why the IETF has standardized
special purpose protocols and data formats for use in constrained environments (e.g., CoAP and CoRE
Link Format (CLF) [23]). However, traditional Internet hosts do not always implement these protocols
and data formats. In these cases, a protocol and data format translation should occur that enables the
Internet host to communicate with the constrained device (e.g., an HTTP/CoAP proxy and a JSON/CLF
mapper). Such a translation has to be performed by an unconstrained third party system (e.g., gateway).
Secondly, some types of functionality can be ineffective when they are offered on the constrained
device. An example is caching the responses of a constrained server on the device itself, which will
not save any network traffic. A second example is the aggregation of observation relationships by
intermediaries; clearly, this has to be offered on an intermediary and not on a constrained node in
order to have any effect. Note that conventional end-to-end security does not allow for response
caching or observation aggregation, as all traffic passing at an intermediary is encrypted. Thirdly, some
functionality can be inefficient when they are implemented on the constrained device. An example is
storing verbose semantic descriptions on a constrained device, which will lead to significant amounts
of network traffic every time these descriptions are requested. Another example of functionality that is
inefficient to offer on constrained devices is access control. Typically, the LLN will have already spent
a significant amount of resources delivering the request to its destination where it will end up being
discarded. Clearly, discarding this request before the network has wasted its resources is more efficient.
For these cases, this work will study how third party systems can support and optimize the operations
of constrained devices and LLNs.

3.3. Problem Statement: Illustration in a Smart Building Use Case

Figure 3 shows a smart building scenario that illustrates the problems targeted by this work.
In a smart building most of the building services can be monitored and controlled over the Internet.
Such services include for example the management of doors, lighting, climate control (e.g., AC),
elevators and the monitoring of presence in certain areas. Smart buildings, such as offices and public
buildings, typically have a large variety of users: visitors, cleaning staff, technicians, employees, etc.
Similarly, there are also a number of computer systems that interact with the smart building:
e.g., systems for HVAC, surveillance, facility management, etc. Each of these actors accesses the services
offered by the building according to specific access control rules that depend on the role and or identify
of the actor, e.g., the HVAC system can control the air conditioning units, but cannot control the doors.
However, the HVAC system might be allowed to monitor the status of a door adjacent to an AC unit
without being able to (un)lock it. Considering the limited resources of constrained devices (see above),
managing and enforcing which actions an actor is allowed to perform depending on their role or
identity quickly become too complex for the constrained devices. Furthermore, as most constrained
devices only support PSK-based authentication, such a system would require management of shared
secret keys between every two actors. Limitations on the LLN and the constrained devices also prohibit
these devices from offering protocols and data formats that are common to the unconstrained actors,
such as HTTP(S) and XML/JSON. The gray center of the figure already hints at our approach detailed
in the next section: a proxy offers many of the missing features on behalf of the constrained devices.
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Figure 3. In a smart building scenario, there is a wide variety of different users. Constrained devices
are unable to offer all necessary security and application features to cater to these users. In the approach
followed by this work, unconstrained systems (e.g., border routers (BRs)) assist by offering these
missing features. CBOR: Concise Binary Object Representation, ACL: Access Control List.

Finally, one might question why this work relies on end-to-end security via DTLS at all, when
there appear to be many problems in constrained environments according to the discussion above.
Our main motivations for doing so is that DTLS is a proven (and secure) standard, is widely available,
is commonly used on the Web and is standardized for use with CoAP. Alternatives to DTLS are either
proprietary, or still in the process of standardization (e.g., Object Security of CoAP (OSCOAP) [24]),
not applicable to constrained environments (e.g., network layer security), or cannot provide the
same level of security as DTLS (e.g., physical layer security). Object security specifically can be
considered complementary to transport layer security, and while it is not considered in this work, it
can be combined with the work presented here (if feasible given the constrained environments under
consideration). The Related Work section discusses object security in greater detail. While the literature
shows that lightweight network security is feasible in constrained environments (e.g., compressed
Internet Protocol Security (IPsec) [25]), it is not considered in this work because CoAP standardized
end-to-end security over DTLS as its security mechanism.

4. The Secure Service Proxy

The approach followed in this work allocates one reverse CoAP(s) proxy per constrained device.
The CoAP specification [9] defines a reverse proxy as “an endpoint that stands in for one or more
other server(s) and satisfies requests on behalf of these, doing any necessary translations”, and it also
states that “The client may not be aware that it is communicating with a reverse-proxy; a reverse-proxy
receives requests as if it were the origin server for the target resource.” The reverse proxy approach
enables splitting the end-to-end communication between a constrained device and its client at the proxy
with no need for any additional configuration on the client (as mentioned in the CoAP specification).
While the resulting communication is no longer end-to-end, indeed the proxy will share DTLS security
contexts with both parties and will translate CoAP messages, the resulting system has many benefits
and is able to overcome all of the issues that are discussed in the previous section. Additionally,
our reverse proxy approach implements a virtual device for every constrained device. This enables
the reverse proxy to extend a constrained device (beyond only proxying) by hosting functionality
on the corresponding virtual device. Finally, by enabling the reverse proxy to be deployed on any
system (see design), it is not restricted by the limitations common to constrained IoT devices. In the
next subsections, we argue that the benefits of this approach far outweigh the downsides of splitting
the end-to-end communication, and we present our design for such a reverse proxy.
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4.1. Motivation of Approach

Our motivation for following a reverse proxy approach consists of two facets: one for the
security-related aspects of constrained devices and LLNs and one for the application layer-related
aspects of constrained devices. In terms of security, the reverse proxy approach allows one to setup
two sorts of DTLS sessions: “lightweight” sessions between the constrained devices and their reverse
proxy and fully-featured sessions between the proxy and the clients of the devices. The lightweight
sessions employ security primitives that are known to the constrained devices (e.g., pre-shared keys
for authentication and key exchange), while the fully-featured sessions can use conventional security
methods that are known to the clients: e.g., certificates for strong authentication and Elliptic Curve
Diffie–Hellman (ECDH) for the key exchange (including ephemeral key exchanges if perfect forward
secrecy is required). Additionally, the reverse proxy can be configured to maintain one long-term
session with the constrained device while simultaneously keeping active sessions with multiple clients.
This allows one to overcome the small session pool at the constrained devices (due to its limited
memory, see above), as well as limit the total number of handshakes performed by the constrained
device during its lifetime. As a result, the impact of the DTLS handshake on the LLN and the
communication in terms of, e.g., traffic and communication latency is lowered. Finally, the reverse
proxy also protects the LLN from a number of resource depletion attacks from attackers on the Internet.
By design, a reverse proxy handles all messages for all constrained devices in an LLN from Internet
hosts. Thus, the reverse proxy becomes the main traffic entry point for the LLN, and therefore, it
can inspect, filter and drop traffic in order to root out traffic from malicious users. Combined with
the strong authentication of clients and an access control policy, this proxy can make more informed
decisions in regards to filtering traffic when compared to, e.g., a simple Internet firewall.

In terms of the application layer, a reverse proxy is free to process and transform the requests
it receives from clients as it chooses. A reverse proxy can improve network access by offering
features such as caching, network-edge access control and enforcing congestion control algorithms.
Interoperability with other systems can be increased by, e.g., translating between HTTP and CoAP,
which is fairly straightforward considering the design goals of CoAP. Translation between different
data types (e.g., CoRE link format [23] to JSON) can also boost interoperability. Such a proxy can also
implement additional application functionality on behalf of the constrained device. Examples of such
functionality include extending the constrained device with semantic descriptions for its resources,
a deployment location photo, the weather near the device, etc. Additionally, a proxy can choose to
facilitate adding, configuring and deploying such functionality via a plugin-like system. This greatly
eases the management of such functionality at run time by making adding, updating, enabling and
disabling such functionality easier.

It is important to reiterate that all of the above is possible without any additional configuration on
either the constrained device or the client; nor does the presented approach require any modifications
to the standards compliant protocol stacks (e.g., 6LoWPAN/DTLS/CoAP) running on the constrained
device and the client. Indeed, the client discovers the Internet endpoint of the constrained device
that is hosted on the proxy, and the proxy takes care of mapping every request to the corresponding
constrained device. In the scenario presented here, all configuration is limited to the proxy. These last
two benefits are an important differentiator from existing work, as will be discussed in the Related
Work section.

While the reverse proxy approach offers a number of benefits, it also entails some risks that if
ignored might undermine the presented system. One risk is that the reverse proxy presents a single
point of failure in terms of security and operation. Indeed, if the reverse proxy were to be compromised
then, e.g., all session keys and long-term keying material (pre-shared keys and private keys) could
be made public. As the proxy offers a RESTful interface for managing virtual hosts and their keying
material, this interface entails a security risk and should therefore be properly hardened against
malicious usage (see Section 4.3.1 for suggestions). Likewise, if the reverse proxy were to be the
target of a resource depletion attack, then the constrained devices hosted by that proxy would become
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unreachable. On the other hand, as the proxy is deployed on a more powerful system, the proxy
is more resilient to resource depletion attacks than constrained devices and networks. A second
issue is the introduction of a third party (i.e., the proxy itself) into the trust model by terminating the
end-to-end security that must be trusted by both the constrained device, as well as the clients. As
all collected data and issued commands pass via the proxy, this can raise privacy concerns when the
device or the client does not trust the owner of the proxy. One option to mitigate this privacy risk is to
let the owner of the constrained devices operate the reverse proxy on his or her own. To this end, our
evaluation shows that a low-cost single board computer (e.g., Raspberry Pi) is capable of hosting the
proxy, which enables on-premises deployments. To summarize, the proxy breaks end-to-end security
in order to provide additional features, which address operational and performance concerns of
resource constrained devices. This work argues that the benefits of terminating the end-to-end security
outweigh the security-related risks in the case of ‘Class 1’ resource constrained devices and networks.
For less constrained devices and networks, this balance might tip in favor of end-to-end security.

4.2. Secure Service Proxy: Design

In order to enable our proxy to extend constrained devices with a wide range of functionality,
the design adopts the concept of virtual devices. In our design, every virtual device is allocated
a dedicated IPv6 address from an IPv6 subnet that is either routed to the proxy or directly connected to
the proxy. Every virtual device has one or more endpoints associated with it. An endpoint corresponds
to a transport and application layer binding: e.g., UDP/CoAP, DTLS/CoAP, TCP/HTTP or TLS/HTTP.
For every virtual device, the proxy listens for traffic on each of its endpoints; this is shown in the
bottom left of Figure 4.
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Figure 4. Secure service proxy: design.

The transport layer security block is responsible for handling the (D)TLS protocol for secure
endpoints on behalf of virtual devices. As such, this block performs (D)TLS handshakes, thereby
authenticating the client and performing a key exchange. To this end, the block interfaces with the
virtual device configuration (top right in the figure) to retrieve the TLS parameters that are configured
for the virtual device. These parameters include a list of available cipher suites and keying material
for the secure endpoint of the virtual device, as well as whether the virtual device requires clients
to authenticate themselves. Apart from the handshake, this block is responsible for tracking active
sessions with virtual devices (via the sessions store). It also decrypts and verifies incoming (D)TLS
application data messages, which are passed on to the adapter execution block, as well as encrypts
outgoing application data that come from the adapter block. The keying material and the protocol
state used in the encryption and verification process naturally depend on the endpoint involved.
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Incoming messages contain (secured) requests, which are either HTTP or CoAP requests. While
our design supports adapters for both application layer protocols, we foresee that HTTP requests will
almost always be translated immediately to a CoAP request. As such, we do not expect virtual devices
to host only an HTTP endpoint (although the design does support this). When the application layer
adapter execution block receives a request, it will search through the tree of available adapter chains to
search for a chain that is the most specific match for the request. The current implementation supports
searching based on the address and endpoint of the virtual device, as well as the URI of the request.

Once a chain has been found, the execution block will pass the request along the chain. Every
element of the chain (i.e., an adapter) can either return (a modified) the request, which will be passed
to the next adapter in the chain, or stop the execution of the chain by returning a response. The current
implementation allows returning a response from an adapter in a non-blocking (i.e., asynchronous)
way, as retrieving a response might involve a lengthy IO operation. Once the response is available, it is
passed along the chain in reverse. This allows adapters to process and (if needed) modify the response
before it is stored in the virtual device and returned to the client.

Application layer adapters implement the functionality hosted by virtual devices. The idea
underlying adapters is to compartmentalize functionality into modules that can be reused by virtual
devices. When creating an adapter chain, an instance for every adapter in the chain is created, and
every instance is configured according to the parameters exposed by the adapter type (see further).
While instances of adapters reside in adapter chains, they can be shared by more than one adapter
chain (AC). For example, in Figure 4, the same Static adapter instance (colored orange) is shared by AC1

and AC3. This is mainly useful when the same functionality should be available for multiple endpoints
of the same virtual device (e.g., CoAP and CoAPs) or when an adapter implements functionality
that does not require configuration that differs per adapter chain (e.g., a logging adapter that logs all
incoming requests for auditing purposes).

The proxy also exposes a networked interface in the form of a REST API to manage virtual devices,
which is shown in the bottom right of Figure 4. The REST API allows creating and deleting virtual
devices and their endpoints, as well as instancing and deleting adapters and defining adapter chains.
When creating (D)TLS endpoints, the REST API also allows specifying the cipher suites supported by
the virtual device, as well as the keying material (e.g., X.509 certificate or private key). Apart from
the management interface, the proxy also hosts a resource directory that contains the hosted virtual
devices. Finally, a mirror server is also available to enable resource updates from constrained devices
that are asleep for continuous and long periods of time (i.e., sleepy devices). This mirror server can be
used by virtual devices to interface with resources from sleepy constrained devices.

Finally, the presented design allows one to deploy the proxy on different locations in the network
by varying the IPv6 subnet for the allocation of virtual device IPv6 addresses. We foresee two scenarios.
In the first scenario, the proxy resides close to the constrained devices by allocating addresses from
a neighboring LAN network to virtual devices. An example would be a home LAN network from
which the proxy assigns unused addresses to virtual devices. In the case of a 6LoWPAN network, the
proxy can be combined with the border router. This scenario also aligns nicely with the distributed
computing concept that is commonly found in fog computing and in in-network processing [26].
In a second scenario, the proxy resides further ‘upstream’ from the constrained devices (e.g., in a data
center, the cloud, etc.) and allocates addresses from a special-purpose IPv6 subnet that is dedicated to
virtual devices. In this scenario, the routing has to be configured to route this special-purpose IPv6
subnet via the proxy (which is not a problem in most data centers). Both scenarios are complementary
and will depend on the specific needs of the considered use-case: e.g., a proxy in the LAN network
means that data stay inside the home network, which may benefit privacy. Similar considerations were
previously discussed in the problem statement section.
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4.3. Secure Service Proxy: Implementation

For the implementation of our secure service proxy, we chose to build upon the previous work
in our CoAP++ framework (which in turn builds on top of the Click modular router software).
This choice provides a great amount of flexibility in how we process the network traffic for the
virtual (and constrained) devices, as all routing functions are part of Click and can therefore be
configured to our liking. In terms of the (D)TLS implementation, we chose to use the wolfSSL library
as this offers the easiest API for managing sessions and integrating into the Click router where most
processing happens on network packets.

4.3.1. Virtual Devices and Endpoints

Virtual device endpoints are created and deleted via the management interface. This is
a straightforward REST interface that is hosted on the secure service proxy over CoAPs. As this
interface handles sensitive information such as keying material, access is restricted to authorized users,
which are allowed to manage endpoints and adapter chains.

POST requests with an endpoint description are used to create a new endpoint for a virtual
device. The endpoint description contains both the virtual device to which the endpoint belongs,
as well as any configuration details describing the endpoint itself. This description is serialized as
a JSON object in the payload of the POST request. For a plain-text CoAP endpoint, the configuration
details are limited to the UDP transport port of the endpoint. For a DTLS CoAPs endpoint,
the configuration also includes information about the supported cipher suites and any parameters
for the cipher suites. In the current implementation, the “TLS_PSK_WITH_AES_128_CCM_8” and
“TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8” cipher suites are supported for CoAPs endpoints.
When creating an endpoint that supports the PSK cipher suite, the pre-shared-key and an (optional)
client identity hint have to be specified as parameters. For the elliptic curve DSA suite, the secp256r1
private key and signed certificate have to be provided as parameters. These are both encoded in base64
in the endpoint description. The following listing contains an example POST request that creates
a CoAP endpoint for a virtual device hosted under 2001:6a8:1d80:23::1 on port 5684 with an ECC
cipher suite.

POST /virtualDevices
Content-Format: application/json
{

"address": "2001:6a8:1d80:23::1",
"prefixLen": 128,
"port": 5684,
"dtls": {
"supportedCipherSuites": [

{
"cipherSuite": "TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8",
"parameters": {

"b64PrivateKey": "QVNO...==",
"b64Certificate": "LS0t...=="

}
}

]
}

}

2.01 Created /virtualDevices/2001:6a8:1d80:23::1~128~5684

The response of the secure service proxy links to a newly-created resource that can be used to
delete the endpoint at a later time. This resource is also used for managing the adapter chains that
belong to an endpoint, as explained in Section 4.3.3.

4.3.2. Implemented Application Layer Adapters

In terms of application layer adapters, our proxy currently implements the adapters listed in
Table 1. This section describes each of the adapter types in more detail.
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Table 1. The proxy offers a number of functionalities, called adapters, that are hosted on virtual devices.
The list of adapters that were implemented at the time of this work are shown in this table.

Adapter Functionality Configuration Parameters

Access control Restrict access to virtual devices depending on
client identify, request method and URI. ACL rules and default policy

Static resource Host RESTful resources on virtual devices that
can be read and modified. Payload and content type

Cache Cache and serve previous responses from
virtual devices to clients. Default cache entry lifetime

Congestion
control

Enforce congestion control on clients querying
virtual devices. Per-device and network-wide
rules are implemented.

Per user CC limits

.well-known/core
Manipulate discovery responses from virtual
devices to include functionality hosted
by the proxy.

None

Proxy
Proxies requests for the virtual device
to a CoAP(s) server (e.g., the constrained
device). Also aggregates observation registrations.

CoAP(s) server endpoint

Mirror server Proxies requests for a virtual device to
a mirror server.

Mirror server endpoint and
sleepy device anchor point

The access control adapter applies Access Control List (ACL) rules to the CoAP(s) requests it
processes. ACL rules are parsed as JSON objects that assign allow and deny rules to either a username
or a role of users. An allow and deny rule consists of a regular expression, which is applied to the
request URI, and a list of request methods. In case no matching ACL rule is found, then the default
policy of the adapter instance (either accept or deny) is applied. The following JSON serialization of
an example ACL rule gives user “bob” full access to the devicename resource, while access to the lock
resource is restricted to read only.

{"username": "bob",
"allow": [{"uri-regex":"devicename", "methods":["GET", "PUT", "POST", "DELETE"]},

{"uri-regex":"lock", "methods":["GET"]}],
"deny": []}

Hosting a virtual resource on a virtual device is the task of the static resource adapter. In order to
allow arbitrary content types of the payload, the value of the virtual resource is encoded in base 64 in
the configuration of the adapter. An example is shown in the next section.

The cache adapter serves and caches responses for requests to virtual devices. The cache adapter
calculates a cache key for every CoAP request it handles. When a fresh response matching the cache-key
is found, the adapter chain’s execution is halted, and the cached response traverses the adapter chain
in reverse. Responses processed by the cache adapter are handled in accordance with Section 5.9 of the
CoAP RFC [9]. This means that, e.g., a “2.05 Content” response will be cached, while a “2.04 Changed”
response will mark any stored response as not fresh. Cached responses are removed when they expire
after their Max-Age option. Note that the cache adapter does not implement the “Validation Model”
specified in Section 5.6.2 of the CoAP RFC [9]. When used in conjunction with access control, it is
important that all ACL rules are applied before hitting the cache, as the execution of the request leg
of the adapter chain will stop when a cache hit is found. The underlying implementation caches
responses in memory via a memcached instance.

The congestion control adapter in its current form applies traffic shaping on a per host basis.
Currently, it is possible to limit the number of open requests between a client and a specific virtual
device and between a client and a group of virtual devices. This group encompasses all virtual devices
with an adapter chain that shares the same congestion control adapter instance. Open requests are
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requests for which a response has not been sent yet. If a client reaches its limit, then the request is
dropped until either a response is received or one of the prior requests of that client is removed after a
time out period (can be configured). Finally, a client can either be identified by its endpoint address or
by its identity derived from the authentication credentials during the (D)TLS handshake.

The .well-known/core adapter is responsible for including the functionality that is hosted on
the virtual devices in the resource discovery responses of the real constrained device. In the current
implementation, the .well-known/core (wkc) adapter asks every adapter from all of the adapter chains
that are defined for the virtual device to modify the discovery response from the real device. This way,
the static resource adapter can add a link to its virtual resource, and the ACL adapter can remove
links for resources that the user is not authorized to access. To this end, every adapter type offers a
“processDiscoveryResponse” method that is used by the wkc adapter.

The proxy adapter takes a request for a virtual device and issues a new CoAP request to the
corresponding actual constrained device. Therefore, an instance of this adapter is configured with
the CoAP(s) endpoint of the constrained device. Only the transport layer addresses are changed;
the new CoAP request is copied from the output of the previous adapter in the adapter chain (with
the exception of the message ID and the token, of course). The proxy adapter will either retrieve
a response or generate a time-out; therefore, it always comes last in adapter chains. This adapter will
also combine observation registrations when it receives multiple registrations for the same resource on
a virtual device. Likewise, it also multiplexes responses from constrained devices to multiple clients in
case there is more than one ongoing observation registration.

Finally, the mirror server adapter is a special type of proxy adapter in that it issues CoAP(s)
requests to a mirror server instead of the constrained device itself. Apart from the end point of the
mirror server, also the handler of the constrained device is configured into the mirror server adapter
instance. For instance, a request to the coaps://vd1.iot.test/status resource on a virtual device would
be translated to coaps://ms.iot.test/ms/0/status.

4.3.3. Adapter Chain Management: Interface

Once an endpoint for a virtual host has been allocated on the proxy, adapter chains can be created
and hosted on that endpoint. Building on our previous example, the listing below contains a CoAP
request that instantiates an adapter chain, which contains the access control, well-known core rewriting,
caching and forward CoAPs proxy adapters. Again, the payload is a JSON object that describes the
chain and contains the parameters for the different adapter instances. The adapter chain is created
as the default chain via the wildcard character in the chain path. The default chain is executed for
requests where no other adapter chains with a matching URI path are found.

POST /virtualDevices/2001:6a8:1d80:23::1~128~5684
Content-Format: application/json
{

"path": "/*",
"pipeline": [
{

"type": "acl",
"default_access_control_policy": "deny",
"rules": [

{"username": "fvdabeele", "rules": [{"uri-regex":"regex1", "allowMethods":["*"]},
{"uri-regex":"regex2", "allowMethods":["GET"]}]},

{"username": "*", "rules": [{"uri-regex":"regex1", "denyMethods":["*"]},
{"uri-regex":"regex2", "allowMethods":["GET"]}]}

]
},
{

"type": "wkc"
},
{

"type": "cache",
"default_lifetime": 60

},
{

"type": "proxy",
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"scheme": "coaps",
"addr": "bbbb::1",
"port": 5684

}
]

}

2.01 Created /virtualDevices/2001:6a8:1d80:23::1~128~5684/*

The second example, shown in the listing below, details how a static resource is created on
the endpoint of our virtual host (in this case, it contains a semantic description of the virtual host
in the RDF format). The chain also illustrates the linked adapter, which refers to the ACL adapter
instance that was created in the previous listing. The link points to the management resource of the
adapter instance.

POST /virtualDevices/2001:6a8:1d80:23::1~128~5684
Content-Format: application/json
{

"path": "/rdf",
"pipeline": [
{

"type": "linkedAdapter",
"link": "/virtualDevices/2001:6a8:1d80:23::1~128~5684/*/0"

},
{

"type": "static",
"contentType": 41,
"value": "PGh0d...=="

}
]

}

2.01 Created /virtualDevices/2001:6a8:1d80:23::1~128~5684/rdf

Finally, note that the parameters of existing adapters can be updated via a PUT request to the
management resource of the adapter instance. In this case, the payload is a JSON object where the
keys are the parameter names. Likewise, adapters and chains can be deleted via their respective
management resources.

4.3.4. Authenticating (D)TLS Clients on the SSP

In order to facilitate the authentication of users and the authorization of user actions, the SSP
links client authentication information (e.g., TLS PSK or X.509 client certificate) with users and roles.
The current implementation is limited to using TLS primitives for supplying authentication credentials,
although in the future, alternatives might be considered (e.g., lightweight application-layer access
tokens). For example, a (D)TLS session that was setup with PSK1 as the pre-shared key can be linked
with userA. Likewise, attributes in a client X.509 certificate that is signed by a party trusted by the SSP
can be linked with a specific user, e.g., a certificate issued by CAA with the common name attribute set
to fvdabeele can be linked with userB. Finally, the proxy also exposes a RESTful interface for managing
which credentials belong to which user and the roles of users.

4.3.5. Key Management between SSP and Constrained Devices

The SSP contains an in-memory repository of pre-shared keys and corresponding identity hints in
order to setup DTLS sessions with resource-constrained CoAPs servers. As this repository contains all
of the keying material for the constrained devices known to the proxy, it contains sensitive information
and should be handled accordingly. In the current implementation, this repository is initialized when
the SSP process is started. A future extension could enable at run-time manipulation of this repository
by, for example, specifying keying material when instantiating coaps proxy adapters. Currently, this
has not yet been implemented, as in our use cases, this repository does not change frequently and
remains stable. In use cases where the repository is more volatile, such an extension could enable
better key management.
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5. Related Work

The concept of device virtualization in the IoT is widespread in the literature, though often times
under different names such as sensor, thing and object virtualization. Indeed, in [27], the authors
present a survey on object virtualization in the IoT stating that “the concept has become a major
component of current IoT platforms where it aids in improving object energy management efficiency
and addressing heterogeneity and scalability issues”. The authors classify existing architectures as
one or many real objects for one or many virtual objects. While the focus in this work has been on one
real object for one virtual object, the flexibility of the presented design enables the same adapter to
be shared by multiple virtual devices, as well as one virtual device to span multiple physical devices
(for example, a virtual device combining all lamps in a room).

There exist numerous works in the literature that study the benefits of using third parties or
intermediaries in constrained environments. In order to narrow the scope of this section, only works
that are relevant in the context of constrained RESTful environments are discussed here. In [28],
Kovatsch et al. discuss moving application logic from firmware to the cloud. According to the vision
of the authors, devices are thin servers exposing RESTful resources for data access and actuation,
and most of the application logic would reside in the application servers. While our approach also
advocates thin servers for devices, deploying the SSP in the cloud is optional. In use-cases where
local access is important, the SSP may reside closer to the devices (e.g., deployed in the LAN) in
order to meet requirements with respect to latency, privacy or availability. Additionally, the SSP
may support constrained nodes and applications servers by providing functionality such as caching
and more scalable authentication and authorization. The IPv6 addressing proxy presented in [29]
is an example of an intermediary system for mapping legacy technologies to the IPv6 Internet of
Things. By allocating IPv6 addresses to map to different legacy technologies, the approach is similar to
the virtual devices presented in our work. Note that the adapter concept provides the flexibility to
map virtual devices to different technologies similar to the work in [29]. While not presented in this
work, the SSP has been used to host LoRaWAN end devices as virtual IPv6 CoAP endpoints via an
Advanced Message Queuing Protocol (AMQP) publish/subscribe adapter that interfaced with the
LoRaWAN network server. The authors in [30] propose to interconnect Web applications based on
HTTP and Web sockets with CoAP-based wireless sensor networks via a CoAP proxy. The CoAP
proxy focuses on translating between different protocols and closely follows the guidelines outlined in
RFC 8075 [31]. The scope of the SSP is broader, as it includes transport security, access and congestion
control next to mapping HTTP to CoAP. Finally, note that the forward proxy approach of Ludovici
differs from the reverse proxy approach of the SSP. In [32], Mongozzi et al. introduce a framework for
CoAP proxy virtualization in order to address the scalability and heterogeneity challenges faced in
large-scale Web of Things deployments. The framework installs a reverse CoAP proxy on the sensor
network gateway and then applies virtualization so that the proxy can be customized and extended by
third parties without modifying the reverse proxy. All interactions of these virtual proxies with smart
objects pass via this reverse proxy, which acts as an arbiter for access to the limited resources of the
smart objects. The presented approach is interesting as the containerization of the virtual proxies into
virtual machines makes them more flexible than the adapter approach followed in the SSP. We have
experimented with providing some degree of extensibility by creating adapters from python scripts
in the SSP (these scripts could be uploaded via the adapter chain management interface). While this
python adapter type provided some degree of customization, the lack of proper process isolation
meant that (malicious) scripts could stall the SSP. As such, these python adapters did not make the
final SSP design. While the concept of the virtual proxies is interesting, the extent of the work is limited
as the focus lies on the virtualization technique, and interesting features such as scalable security and
efficient and authorized network access are not considered. Instead, the authors focus on providing
service differentiation between multiple virtual proxies. Also note that proxy virtualization is not the
same concept as device virtualization, though they can be used to solve similar problems. The same
authors of [32] look at the specific problem of proxying CoAP observation efficiently for different QoS
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requirements in [33]. While the scope of the work is quite different from this paper, the use of a reverse
proxy for bundling observation relationships is shared between the two works. Another example of
device virtualization in RESTful environment is [34], where the authors assign virtual coap servers to
RFID tags. The actual CoAP servers are not running on the tags though. Instead, they reside on RFID
readers, which are able to enhance tags with additional functionality (such as discovery). This work
has parallels with the SSP, which enhances constrained devices by means of application layer adapters.

A second category of relevant works in the literature studies the challenges faced by transport layer
security in constrained IoT environments. There are a number of works that study the DTLS handshake,
as it is a fairly complex and verbose process with significant resources requirements for constrained
devices. In [35], Hummen et al. propose a delegation architecture that offloads the expensive
DTLS connection establishment to a delegation server, thereby reducing the resource requirements of
constrained devices. The delegation architecture also enables more complex authorization schemes, as
it has more resources at its disposal. The authors report significant reductions on memory overhead,
computations and network transmissions on constrained devices. Our termination method can also
provide complex authorization schemes of the virtual device. In Section 6.1, we have also reported
significant savings in regards to CPU and network resource usage (and consequently, energy usage).
While our approach still requires an active DTLS session between the SSP and the constrained device,
the number of handshakes during the lifetime of a device is drastically reduced. While the memory
requirements are not as low as in [35], they are still lowered as the constrained device can limit
the number of simultaneous sessions to one. Finally, note that our approach does not require any
changes to the DTLS stack running on the device. The work in [36] focuses on various challenges
in deploying DTLS in resource-constrained environments. Similarly to [35], the approach revolves
around handshake delegation. The authors adopt the concept of secure virtual things in the cloud
where physical things delegate the session initiation to their corresponding virtual thing. As a result,
physical things can limit their DTLS implementation to only the record layer protocol, which leads
to drastic memory savings. One interesting aspect of the presented architecture is that the physical
thing can assume both roles of client and server. Unfortunately, the concept of virtual things is
not extended beyond the handshake delegation mechanism. It would be interesting to combine a
delegation mechanism with some of the findings presented in our work. A hybrid option would be
possible where the delegation mechanism is used for the most constrained devices (requiring a custom
lightweight DTLS stack) and where the termination mechanism can be used for devices with sufficient
memory (i.e., where a full DTLS stack is feasible) or where the DTLS stack cannot be customized to
implement the delegation method.

Object Security of CoAP (OSCOAP) [24] is an IETF Internet Draft standardizing end-to-end
security of CoAP options and payload at the application layer. While the specification focuses on the
forwarding case when using a forward proxy (which excludes caching), it does include an appendix
describing a mode of operation, Object Security of Content (OSCON), which is compatible with caching
responses at intermediaries. The draft notes that OSCOAP may be used in extremely-constrained
settings, where CoAP over DTLS may be prohibitive, e.g., due to large code size. Nevertheless,
the authors state that OSCOAP may be combined with DTLS, thereby benefiting from the additional
protection of the CoAP message layer present in DTLS-based security. Note that the standardization
efforts focus on the case of a forward proxy, whereas this work focuses on a reverse proxy approach.
As such, the trust models are different as the reverse proxy represents the end device from the point of
view of the client. Despite the difference in proxy models, the two approaches remain compatible and
could strengthen each other. For example, the SSP could implement OSCOAP for cases where clients
are employing a forward proxy, which is not trusted by the client. Additionally, it would be interesting
for the SSP to support OSCOAP as a lightweight alternative for DTLS to protect communications
with constrained devices with severe memory limitations. In such a case, clients would communicate
securely with the SSP over DTLS while the communications between the SSP and the constrained
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devices would be protected either via OSCOAP (e.g., for constrained devices with severely limited
memory) or via DTLS (e.g., for constrained devices with sufficient memory).

Finally, in high volume Web environments, transport layer security is often terminated at a proxy
deployed close to the Web server(s). The main motivation for terminating TLS is that it enables
load balancing, where terminated HTTPS requests are distributed over multiple Web servers. Load
balancing increases the availability of the Web deployment, as the outage of one Web server does not
affect the service availability in this case. Popular Web proxy software, like nginx and HAProxy,
supports different reverse proxy deployment options for terminating TLS. Similarly, the elastic
cloud computing platform of Amazon.com, Amazon Web Services, supports TLS termination and
load balancing by virtue of its HTTPS listener service. While the main motivation of the SSP for
session termination is not load balancing, the SSP does apply termination in order to be able to
move computationally-expensive and verbose operations from constrained devices to the proxy, which
improves performance. Similarly to high availability TLS proxies, the SSP may reduce key management
complexity, as all keying material for public communications is stored on one system.

6. Evaluation: Results and Discussion

This section presents two evaluation scenarios that show the gains attainable by our approach.
Such gains include: a decrease in load on constrained devices and the LLN, lower energy usage for
constrained devices, an increase in user handling capacity of LLNs, more responsive LLNs, more
scalable authentication and better authorization. The evaluation scenarios were chosen to evaluate
the impact of the proxy on two specific operational aspects of LLNs: setting up DTLS sessions with
constrained devices over multiple wireless hops and observing CoAPs resources on constrained
devices from multiple DTLS clients.

6.1. Terminating End-To-End-Security at the SSP

The first evaluation scenario is geared towards quantizing the impact of splitting end-to-end
security at the smart service proxy. More specifically, the goal is to study the impact of re-using a DTLS
session of a constrained CoAPs server on the operation of both the constrained node, as well as the
CoAPs client.

6.1.1. Simulation Setup

Extensive simulations were performed with a nine-node 6LoWPAN network arranged in a cross
topology as detailed in Figure 5. One node is at the center of the cross and is the RPL border router of
the 6LoWPAN network; four nodes are intermediate routers (each located in the middle of one of the
four legs of the cross); and the last four nodes are CoAP(s) servers that are located at the four ends of
the cross. The border router is connected to the smart service proxy, which is running on the same PC as
the Cooja simulator. Finally, an unconstrained CoAP(s) client interacts with the CoAP(s) servers. In the
evaluation scenario, the client sends the following sequence of CoAP(s) requests: a .well-known/core
discovery request, a sensor measurement request for the “/s” resource and an actuator request for
the “/a” resource. The constrained CoAPs servers are running er-coap and TinyDTLS (in Contiki)
configured to accept the “TLS_PSK_WITH_AES_128_CCM_8” cipher suite with a PSK hint of 15 bytes.

The same request sequence was sent to the CoAP(s) servers for one reference case and three
different SSP configurations: Plain Text (PLT), End-to-End (E2E), first Termination (TER1) and n-th
Termination (TER). In the PLT configuration, all requests are sent over plain text CoAP. This is
a reference cases for the other three cases. In the E2E case, all requests are sent over CoAPs without
any termination of DTLS sessions at the SSP. In the case of TER1 and TER, all requests are sent over
CoAPs, and the DTLS session is terminated at the SSP. For TER1, there does not exist an active DTLS
session between the proxy and the constrained node. Therefore, a new DTLS session must be setup
between the SSP and the constrained node. For TER, the active DTLS session in the LLN can be re-used,
and there is no need to setup a new DTLS session with the constrained node. For all DTLS cases,
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the DTLS client always sets up a new DTLS session at the start of a request sequence. It also tears
down the existing session at the end of every sequence. As such, this testing scenario represents a
large number of DTLS clients that would interact with the constrained CoAPs servers over the lifetime
of the constrained node. For each configuration, the request sequence was run four hundred times, i.e.,
one hundred times per DTLS server. All results were obtained using the default CSMA MAC protocol
and ContikiMAC RDC protocol as available in Contiki.

4

3

1

2

5

67

8 9

Figure 5. Cooja network topology: four CoAP(s) servers (6, 7, 8, 9) are located two hops away from the
IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) border router.

6.1.2. Results

Figure 6a shows the Total Transaction Time (TTT). This is the time between the start of the DTLS
session handshake (i.e., when the first ClientHello message is sent by the client) and the end of the
DTLS session (i.e., when the DTLS Finished message is received by the client). There is a significant
reduction in TTT between the E2E and the TER configurations: their medians are 4879 ms and 2060 ms,
respectively. This is due to the DTLS session re-use in the LLN, which saves, when comparing the
median cases, thirteen packets in the LLN, as the DTLS handshake in the LLN can be avoided in the
TER configuration. As a result, the TER configuration is able to closely match the reference plain-text
case in terms of TTT. The 233-ms difference in the median is caused primarily by the overhead of the
additional DTLS headers. More specifically, the overhead triggers 6LoWPAN fragmentation for the
large discovery response in the TER case, whereas this fragmentation is absent in the PLT case.

Figure 6b displays the energy usage for the different configurations. The stacked bar plot shows
the median energy usage per category on the constrained device, whereas the box plot shows the total
energy usage (to show the dispersion of the measurements). Again, there exist a significant difference
between the E2E and the TER configurations: 32,485 µJ vs. 13,133 µJ respectively (a reduction by
a factor of 2.4). Similarly to the TTT results, this reduction is primarily due to the absence of the DTLS
handshake in the LLN. This is confirmed by the bar plot where the energy usage for the RX and TX
categories are reduced the most. The energy consumption in the CPU category is also significantly
lower, as the CPU is in low-power mode more often and does not have to perform expensive hash
calculations when completing the handshake. All in all, the results allow us to conclude that our
approach increases the responsiveness of constrained devices (provided there is an active session in the
LLN) while reducing the energy consumption for traffic loads with many DTLS sessions (e.g., traffic
loads with many parties).
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(a)

(b)

Figure 6. Transaction times and energy usage of the CoAPs servers for the three gateway
configurations (End-to-End (E2E), first Termination (TER1), n-th Termination (TER)) and the Plain Text
CoAP reference case (PLT). (a) Total Transaction Times (TTT) for the request sequence; (b) median
energy usage per category (left axis) and total energy usage (right axis).

Finally, it is worth pointing out that our approach drastically limits the total number of handshakes
that a constrained node will perform during its lifetime. Apart from the savings discussed above,
this also has the additional benefit that, in lossy networks, the total number of failed handshakes will
be lower. Indeed, Garcia et al. [37] have shown that in lossy networks, the fraction of failed handshakes
can vary significantly based on the packet loss ratio: e.g., 30 to 40% of handshakes fail for a packet loss
ratio of ~20%. By limiting the total number of handshakes, our approach also limits the amount of
constrained device resources wasted on these failed handshakes. On the other hand, care should be
taken to periodically refresh keying material as needed by the underlying cryptographic primitives
in use.
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6.2. Aggregating Multiple CoAPs Clients at the SSP

The second evaluation scenario focuses on the impact of the SSP on constrained devices that serve
multiple CoAPs clients simultaneously via CoAPs observation. Unlike clear text CoAP observation,
notifications for one CoAPs client typically cannot be reused to serve another client due to the
confidentiality of the notification in DTLS. However, the SSP presented in this work can, as a reverse
CoAPs proxy, observe one CoAPs resource on a constrained device and use these notifications to serve
a multitude of CoAPs clients. The presented evaluation considers up to ten CoAPs clients that observe
a resource on a constrained device and compares the case of end-to-end observation versus observation
via the SSP. Note that one should keep in mind client authorization when using one CoAPs stream of
notifications for serving multiple CoAPs clients, e.g., a client that is not authorized to access a resource
on the constrained device must also be denied access to that resource via the SSP. To this end, this work
presents and implements an access control adapter, which enforces CoAPs resource-specific access
control policies.

6.2.1. Experiment Setup

To quantify the impact of aggregating CoAPs observations at the SSP, a number of experiments
were run on a WSN testbed. The experiments consisted of a 6LoWPAN network with ten sensor
nodes arranged on a line with six meters of spacing between adjacent nodes. An additional sensor
node (Node #152) is situated to the upper left of the line and is connected to a Raspberry Pi 2, where it
serves as the RPL border router. The smart service proxy software is running on the Raspberry Pi 2.
In order to cope with the changes in the RPL topology between experiments and over time in the
same experiment, Node #50 was selected for testing as it was always located two hops away from the
border-router. A representative network topology is shown in Figure 7. Note that depending on the
experiment, Node #50 might have a different parent than Node #47 (e.g., Node #43 was a common
alternative), but in all experiments, there was always an intermediary router between the border router
and Node #50.

48

152

49

50

47

51

45

52

4643

44

Figure 7. Representative RPL network topology: the node under study, Node #50, is situated two hops
from the border router, Node #152.

All wireless sensor nodes employ the msp430f5437 uC with 128 KB of RAM and 256 KB of ROM
and the TI CC2520 802.15.4 transceiver. As such, the platform is identical to the WiSMote platform in
Contiki in terms of the specifications that are relevant for the presented results. The sensor nodes run
a TinyDTLS CoAPs server, which is configured to support three simultaneous DTLS sessions and one
simultaneous DTLS handshake. While a binary for four simultaneous sessions could be built, it was
not running stably. Attempts to support more than four clients led to a RAM overflow during linking.
By default, er-coap in Contiki sends one confirmable notification for every twenty notifications. Finally,
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all sensor nodes in the network are running the default CSMA MAC protocol and ContikiMAC RDC
protocol available in Contiki.

For every sensor node, a corresponding virtual host was created on the SSP. The virtual
hosts were configured similar to the listing in Section 4.3.1, with support for the
“TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8” cipher suite. This cipher suite provides perfect
forward secrecy by means of an ephemeral Diffie–Hellman key exchange between the virtual hosts and
the DTLS clients. Additionally, DTLS clients authenticate virtual hosts by means of the x.509 certificates
of the hosts, which are signed by a Certificate Authority (CA) trusted by the clients. Similarly, the
DTLS clients also present an x.509 certificate during the DTLS handshake, which is signed by a CA
that is trusted by the proxy. As a result, the clients may be authenticated at the proxy-side (by mapping
attributes from the certificate to a user in the proxy; see Section 4.3.4), which is mandatory for the use of
the access control adapter in order to provide fine-grained authorization as presented in Section 4.3.2.
Each virtual host was allocated a global IPv6 address from the LAN network of the Raspberry Pi 2 and
has one default adapter chain with access control, caching and proxy adapters. The CoAPs clients ran
as part of the CoAP++ framework on a PC that was located three IPv6 hops away from the Raspberry
Pi 2. All IPv6 addresses in use (i.e., CoAPs clients, RPI, virtual hosts and WSN nodes) were working,
global IPv6 addresses. An overview of the evaluation setup is shown in Figure 8.

6LoWPAN
WSN

IPv6 routers CoAPs servers
One to ten

CoAPs clients

E2E

SSP
OBS

SSP with 
virtual hosts

AGGR

Figure 8. Evaluation setup: a variable number of CoAPs clients observes one of two resources on either
the virtual host (SSP) or the sensor node (E2E).

In all experiments, a number of CoAPs clients observes a resource on either the virtual host
or the sensor node. As such, the experiments considered two cases: end-to-end (E2E) CoAPs
observations and CoAPs observations via the SSP. In both cases, experiments were run for two CoAPs
resources: a resource with a one-second notification period and another resource with a five-second
notification period. In the E2E case, experiments were performed with one, two and three simultaneous
CoAPs clients. In the SSP case, experiments were performed with one, two, three, four, five and ten
simultaneous CoAPs clients. In total, eighteen experiments were performed. Each experiment was run
for at least twenty minutes, during which the energy outputs for all sensor nodes were captured every
five seconds, and the outputs from the CoAPs clients were stored, as well. This enabled us to quantity
the energy usage, as well as the application-layer performance, the results of which are presented in
the following section.

6.2.2. Results

When comparing the energy expenditure graphs for Node #50 in Figure 9, it becomes clear that
aggregating CoAPs observation relationships leads to energy savings. The savings are proportional to
the rate of notifications: they increase as the number of clients goes up and decrease as the notification
interval becomes longer. Note that the sensor node between Node #50 and the border router experiences
similar energy savings as every notification is received and retransmitted by this intermediary node.
For the case of three CoAPs observers, the median energy expenditures differ by 10.8 mJ for the
one-second interval and 2.5 mJ for the five-second interval.
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Figure 9. Total energy expenditure for Node #50 per five seconds interval for end-to-end (E2E)
CoAPs observation versus CoAPS observation through the Smart Service Proxy (SSP). (a) One-second
notification interval; (b) five-second notification interval.

For one CoAPs observer and the one second interval, there exists a small difference in energy
expenditure between the end-to-end and the SSP case even though the notification rate is the same for
both cases (i.e., one notification per second). This is primarily due to a difference in notification packet
size, as the 6LoWPAN compression for SSP notifications is more effective than for E2E notifications.
The compression is more effective because the IPv6 address of the SSP is part of the 6LoWPAN network,
whereas the CoAPs client’s IPv6 address is part of a different network. As such, the prefix of the SSP’s
IPv6 address can be elided (due to stateful 6LoWPAN compression), which leads to an eight-byte
savings in packet size per notification.
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The graphs in Figure 10 clearly illustrate the difference in notification rate between the end-to-end
and SSP experiments. Due to the aggregation of CoAPs observations at the SSP, there exists only
one CoAPs observation between the SSP and the sensor node. This is illustrated in the constant
notification rate for SSP as the number of CoAPs observers increases. For the end-to-end experiments,
the notification rate rises linearly with the number of observers, as the sensor node sends notifications
to each client separately. The slope of this linear relation is proportional to the notification frequency.
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Figure 10. Number of exchanged packets for Node #50 per five-second interval for E2E CoAPs
observation versus CoAPS observation through the SSP. (a) One-second notification interval;
(b) five-second notification interval.

Figure 11 plots the Notification Loss Ratios (NLR) for each of the eighteen experiments.
For example for the E2E, one-second interval and one observer case, 1845 notifications were sent, three
of which never arrived at the client. This leads to an NLR of 0.163%. Note that every vertical series
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of data contains as many points as there are observers; however, very similar and identical NLR’s
overlap too much to distinguish them as separate points in the plot. The graphs for the one second
interval show that the end-to-end case suffers from network congestion due to its higher notification
rate. Furthermore, the observed loss is heavily dependent on the CoAPs client in the E2E experiments:
i.e., the client that is last on the list of observers experiences the highest NLR (mostly apparent when
there are three observers). Finally, the SSP sends every notification as a confirmable message. While in
this setup, packet loss is mainly a problem in the constrained WSN, sending all notifications as CON
messages can help to improve the NLR in situations where the client is a part of a lossy network.
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Figure 11. Notification loss ratios as measured at the CoAPs clients for E2E CoAPs observation
versus CoAPS observation through the SSP. (a) One-second notification interval; (b) five-second
notification interval.
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To conclude, there are a number of limitations that are overcome by aggregating observations at
the SSP:

1. Memory and processing constraints on the sensor node, which limit the number of simultaneously
active DTLS sessions and active CoAP observation relationships.

2. Limited throughput in constrained (multi-hop) networks, which impacts the successful delivery
of notifications and limits the rate of notifications.

3. Limited lifetime for battery-operated sensors: by reducing the load on constrained devices, the
lifetime is lengthened.

Note that while only the results for Node #50 are shown, similar savings apply for other nodes.
Also note that applying observation aggregation at the SSP delays the point at which the WSN reaches
congestion, as the message rate in the WSN is reduced by the aggregation. Finally, note that this
experiment is only possible because the SSP terminates the end-to-end security; indeed, should this not
be the case, then the SSP would be unable to aggregate observation relationships, as all communications
would be encrypted end-to-end.

7. Conclusions

In this work, we have presented the Secure Service Proxy: a CoAP(s) intermediary for use in
resource-constrained RESTful environments. It has been designed to provide scalable end-to-end
security for constrained devices and to extend constrained devices with additional functionality.
The presented work follows a reverse proxy approach, where the SSP hosts virtual devices on behalf
of resource-constrained devices. This approach enables the SSP to extend the virtual devices with
security features that are hard to attain in constrained environments, such as authentication based
on public key infrastructure (which, inherently, scales better than using PSKs), perfect forward
secrecy and fine-grained authorization based on host identify and the nature of the request and
resource. Additionally, the SSP extends virtual devices with a variety of different functions by means
of an adapter chain system. Adapters are modular blocks of functionality that are hosted on the virtual
device. Examples include caching, static resource and congestion control adapters. The SSP hosts
a RESTful Web interface for managing virtual devices and adapter chains.

The SSP has been evaluated in two different setups. First, tests were performed in an LLN
simulator to measure the effect of terminating end-to-end security on the SSP. The results of the
simulator study demonstrate that session termination combined with long-term sessions in the
constrained network leads to significant savings in network traffic, communication delay and
processing and, consequently, leads to a longer battery life. The second study was run on a WSN
testbed and quantified the impact of aggregating multiple observation relations with a constrained
device over DTLS. The results confirm that the load on the constrained device and constrained network
is independent of the number of observers. As a result, the packet rate and energy expenditure remain
equal to those of the one observer case as the number of observers increases. Note that the session
termination is a necessary condition for observation aggregation in case of DTLS-based security.

In conclusion, the presented Secure Service Proxy breaks end-to-end security in order to offer
security primitives that are hard to attain on constrained systems while reducing the load on
resource-constrained devices and networks. Additionally, the proxy provides extra application-layer
features on behalf of constrained devices to services, which are built on top of these devices. Combined,
the proxy facilitates the integration of constrained RESTful environments in services, thereby furthering
the vision of an open, secure and scalable Web of Things.
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