
J. Sens. Actuator Netw. 2013, 2, 235-287; doi:10.3390/jsan2020235

Journal of Sensor
and Actuator Networks

ISSN 2224-2708
www.mdpi.com/journal/jsan/

Review

IETF Standardization in the Field of the
Internet of Things (IoT): A Survey

Isam Ishaq *, David Carels, Girum K. Teklemariam, Jeroen Hoebeke, Floris Van den Abeele,
Eli De Poorter, Ingrid Moerman and Piet Demeester

Department of Information Technology (INTEC), Ghent University - iMinds,
Gaston Crommenlaan 8 Bus 201, Ghent 9050, Belgium; E-Mails: david.carels@intec.ugent.be (D.C.);
girum.ketema@intec.ugent.be (G.K.T.); jeroen.hoebeke@intec.ugent.be (J.H.);
floris.vandenabeele@intec.ugent.be (F.V.A.); eli.depoorter@intec.ugent.be (E.D.P.);
ingrid.moerman@intec.ugent.be (I.M.); piet.demeester@intec.ugent.be (P.D.)

* Author to whom correspondence should be addressed; E-Mail: isam.ishaq@intec.ugent.be;
Tel.: +32-933-14-900; Fax: +32-933-14-899.

Received: 15 February 2013; in revised form: 2 April 2013 / Accepted: 9 April 2013 /
Published: 25 April 2013

Abstract: Smart embedded objects will become an important part of what is called the
Internet of Things. However, the integration of embedded devices into the Internet
introduces several challenges, since many of the existing Internet technologies and
protocols were not designed for this class of devices. In the past few years, there have been
many efforts to enable the extension of Internet technologies to constrained devices.
Initially, this resulted in proprietary protocols and architectures. Later, the integration of
constrained devices into the Internet was embraced by IETF, moving towards standardized
IP-based protocols. In this paper, we will briefly review the history of integrating
constrained devices into the Internet, followed by an extensive overview of IETF
standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is
complemented with a broad overview of related research results that illustrate how this
work can be extended or used to tackle other problems and with a discussion on open
issues and challenges. As such the aim of this paper is twofold: apart from giving readers
solid insights in IETF standardization work on the Internet of Things, it also aims to
encourage readers to further explore the world of Internet-connected objects, pointing to
future research opportunities.

OPEN ACCESS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Al-Quds University Digital Repository

https://core.ac.uk/display/287332898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J. Sens. Actuator Netw. 2013, 2 236

Keywords: Internet of Things; standardization; survey; constrained devices; IETF ROLL;
IETF CoRE; IETF 6LoWPAN; RPL; CoAP; Web of Things

1. Introduction

Internet protocol technology is rapidly spreading to new domains where constrained embedded
devices such as sensors and actuators play a prominent role. This expansion of the Internet is
comparable in scale to the spread of the Internet in the ’90s and the resulting Internet is now
commonly referred to as the Internet of Things (IoT). The integration of embedded devices into the
Internet introduces several new challenges, since many of the existing Internet technologies and
protocols were not designed for this class of devices. These embedded devices are typically designed
for low cost and power consumption and thus have very limited power, memory and processing
resources and are often disabled for long-times (sleep periods) to save energy. The networks formed by
these embedded devices also have different characteristics than those typical in today’s Internet. These
constrained networks have different traffic patterns, high packet loss, low throughput, frequent
topology changes and small useful payload sizes.

In the past few years, several innovations were developed to enable the extension of Internet
technologies to constrained devices, moving away from proprietary architectures and protocols.
Most of these efforts focused on the networking layer: IPv6 over Low-Power Wireless Personal
Area Networks (RFC 4919) [1], Transmission of IPv6 Packets over IEEE 802.15.4 Networks (RFC
4944) [2], IETF routing over low-power and lossy networks [3] or the ZigBee adoption of Internet
Protocol Version 6 (IPv6) [4]. These new standards enable the realization of an Internet of Things,
where end-to-end IP-based network connectivity with tiny objects such as sensors and actuators
becomes possible.

However, it was not global connectivity that was at the basis of the great success of the current
Internet, but the World Wide Web and the resulting web service technologies. Today, an embedded
counterpart of web service technology is needed in order to exploit all great opportunities offered by
the Internet of Things and turn it into a Web of Things. Recently, standardization work has started
within the IETF Constrained RESTful Environments (CoRE) working group [5] to allow the
integration of constrained devices with the Internet at the service level.

With these technologies, it has now become possible to deploy a self-organizing sensor network, to
interconnect it with IPv6 Internet and to build applications that interact with these networks using
embedded web service technology. Application developers using high-level programming languages
can count on these standardized technologies in the realization of a Semantic Web of Things or Sensor
Web, which enables data producers and users to publish and access sensor information via web- and
standards based interfaces. In this paper, we will briefly review the history of integrating constrained
devices into the Internet, with a prime focus on the IETF standardization work. The key realizations of
the related IETF working groups will be discussed, complemented with an extensive overview of
related research results that illustrate how these novel technologies can be extended or used to tackle
other problems and with a discussion on open issues and challenges.

J. Sens. Actuator Netw. 2013, 2 237

The remainder of this paper is organized as follows. In Section 2, we discuss the evolution from
proprietary solutions towards IP-based integration of constrained devices using standardized protocols,
introducing the most relevant standardization bodies and groups. In the following sections we will
extensively discuss these standardization efforts, related work and open issues and challenges. Section
3 introduces IEEE 802.15.4 as it is the most widely used physical layer and MAC layer in constrained
networks, providing the foundations for the networking protocols at the higher layers. From that point
on, the focus is shifted to the IETF standardization, discussing IETF 6LoWPAN, IETF RoLL and
IETF CoRE extensively in Sections 4, 5 and 6 respectively. Section 7 glues everything together,
illustrating how all these standardization efforts contribute to the realization of the Internet or Web of
Things. Finally, section 8 concludes this paper.

2. Integration of Constrained Devices into the Internet

In the absence of widely accepted standard protocols for resource-constrained devices, out-of-necessity
many vendors developed proprietary protocols to run inside their sensor networks. Connectivity between
the Internet and the sensor networks was achieved through the use of vendor-specific gateways or proxies.
These gateways have to translate between protocols used in the Internet and proprietary protocols used
in the sensor networks. Figure 1 displays two different sensor networks that are connected to the
Internet by gateways. Users on the Internet have to connect to the gateways in order to obtain data
from the corresponding sensor network. There are several ways how a gateway can handle such user
requests. For example, the gateway from vendor 1 translates standard Internet protocols into
proprietary sensor protocols and relays the requests to the sensors in its network. The gateway then
receives the answers from the relevant sensors by means of the proprietary sensor protocols and sends
back the appropriate reply to the user using standard Internet protocols. The gateway offers an API that
applications should use in order to create requests that can be understood by the gateway. This
approach has the benefit that direct (real-time) interaction with sensor nodes is possible, but only by
using a vendor-specific interface. Alternatively, the gateway of vendor 2 contains a database with
pre-collected sensor data. When it gets a request from a user on the Internet, it replies directly to the
requester using the data in the database. In some cases, the gateway is simply running a web server that
makes the data available to the outside world. In this case, existing database technologies can be
reused, but the user does not know whether the returned data is coming in real-time from the sensors or
whether it is coming from a value that has been previously stored in a database.

The use of standardized solutions is mostly limited to the use of a standard for the physical layer
and MAC layer, although tailored MAC protocols could be used as well. It is clear that such an
approach hinders the integration of sensors into the Internet. Little flexibility is offered since users can
query the sensors only in the way that is allowed by the gateway. Another disadvantage is the vendor
lock-in: gateways and sensors often have to be from the same vendor in order to be compatible. In
addition, creating and maintaining the gateway requires significant development effort: often even
adding new sensor resources requires making (administrative) changes to the gateway. Finally, due to
the lack of real end-to-end connectivity, no real-time interaction with the resource-constrained
devices is supported.

J. Sens. Actuator Netw. 2013, 2 238

Figure 1. Gateways and proprietary protocols are often used to interconnect sensor
networks to the Internet.

These limitations in combination with the general understanding that constrained devices will take
up a prominent role in the future Internet, raised the need for standardized, open solutions for network
communication with constrained devices. To ensure wide adoption, these new solutions have to be
interoperable with the most widely used protocols in the Internet, initially IP and, in a later stage,
HTTP. To address these needs, the IETF—responsible for the development of high-quality Internet
standards—has formed several working groups: IPv6 over Low Power WPAN (6LoWPAN) [6],
Routing Over Low Power and Lossy Networks (ROLL) [3] and Constrained Restful Environments
(CORE) [7]. The 6LoWPAN group tackles the transmission of IPv6 packets over IEEE 802.15.4
networks, the ROLL group develops IPv6 routing solutions for Low Power and Lossy Networks
(LLNs) and the CoRE group aims at providing a framework for resource-oriented applications
intended to run on constrained IP networks. Together, these protocols allow the IP-based integration of
constrained devices into the Internet in a standardized way, as shown in Figure 2. Due to the popularity
of IEEE 802.15.4, this standard is used at the physical layer and the medium access control layer.

Figure 2. Internet protocols are extended to the sensor networks. The Gateway translates
between the two standardized protocol stacks.

J. Sens. Actuator Netw. 2013, 2 239

Similar to the previous approaches, gateways are still used to translate between the protocols used
in the Internet and protocols used in the sensor networks, e.g., IPv6 to 6LoWPAN and vice versa.
However, due to the use of standardized protocols, many of the disadvantages from the previous
approaches are now solved. For example it is now possible to combine sensor devices from different
vendors in the same network, or to use a gateway from a different vendor than the vendor of the sensor
devices. Flexibility is also improved by this approach as users are not confined to the API offered by
the gateway: users can directly query the sensors without the need for the gateway that understands the
query or needs to interpret the data. The application payload can now travel directly from the client to
the sensor, where it is processed and acted upon. The gateway takes care of the translation between
standardized protocols. This end-to-end approach makes adding and removing sensor resources
transparent to the gateway and improves interoperability of devices.

3. IEEE 802.15.4

To create a standardized protocol stack for constrained networks and devices, the IETF builds
further upon the IEEE 802.15.4 standard. The IEEE 802.15.4 standard is maintained by the IEEE
802.15 working group [8] and defines low-data-rate, low-power, and short-range radio frequency
transmissions for wireless personal area networks (WPANs). The working group aims to keep the
complexity of the standard and the cost of the necessary hardware low, making it suitable for wireless
communication among constrained devices such as sensors and actuators. The standard describes a
Physical (PHY) layer and a Medium Access Control (MAC) sublayer. These will be discussed in the
following two subsections. Furthermore, 802.15.4 has proven to be a popular technology for wireless
communication in WPANs and a number of examples that have adopted 802.15.4 are listed in the
last subsection.

3.1. Physical Layer

The IEEE 802.15.4 physical layer is responsible for (de)activating the radio transceiver, data
reception and transmission, channel frequency selection, energy detection within a channel and
determining whether or not the communication channel is occupied by a transmission (i.e., Clear
Channel Assessment, CCA). IEEE Std 802.15.4–2011 [9] defines a total of 15 different PHY modes.
The PHY mode specifies which frequency band and modulation are used for data transmission.

An 802.15.4 compliant radio typically operates at one of the following license-free frequency
bands: 868–868.6 MHz (e.g., Europe), 902–928 MHz (e.g., North America) or 2,400–2,483.5 MHz
(worldwide, i.e., ISM band). O-QPSK and BPSK are the most commonly used constellations for
(de)modulating the signal. Almost all of the defined PHY modes apply a spreading technique that
allows spreading out the signal so that it occupies a larger bandwidth. By using these simple
constellations and the spreading technique, the communication is more robust and has an increased
resistance to interference and (narrow-band) noise even when using a low transmission power.

Depending on the environment and the PHY mode, the communication range varies between 10 and
100 meters. In 802.15.4–2011 the maximum PHY data rate for the ISM band is limited to 250 kbps
when using Direct-Sequence Spread Spectrum (DSSS) or 1,000 kbps when using Chirp Spread

J. Sens. Actuator Netw. 2013, 2 240

Spectrum (CSS) respectively as a spreading technique. CSS is, however, an optional feature of the
standard and in most applications 250 kbps is the maximum PHY data rate.

3.2. MAC Sublayer

Because devices that are in each other’s proximity share the same communication medium, the
access to the medium has to be controlled. When a device wants to send a packet, the MAC sublayer
asks the PHY layer’s CCA to check whether the medium is occupied. If the CCA indicates that another
transmission is currently taking place, the MAC sublayer defers its transmission and waits for a set
amount of time before it retries sending the packet. If, on the other hand, the CCA determines the
medium to be free then the MAC sublayer transmits the packet immediately.

Apart from medium access control the MAC sublayer also provides acknowledgement of frame
reception and validation of incoming frames. The standard defines three different network structures:
star topology, mesh topology and cluster tree topology. However, these 802.15.4 topologies are hardly
ever used in practice and protocols that run on top of 802.15.4 build their own networks instead. To
limit energy consumption, duty cycles are often used by MAC protocols. As a result, transceivers can
be in sleeping mode up to 99% of the time, which drastically reduces power consumption and
increases operational lifespan.

The Physical Protocol Data Unit (PPDU) and MAC Protocol Data Unit (MPDU) formats as
defined in IEEE Std 802.15.4–2011 are shown in Figure 3. The PPDU for O-QPSK consists of a
SYNC header (for receiver clock synchronization), a PHY header (which contains the length of the
PSDU) and a PHY payload referred to as the Physical Service Data Unit (PSDU). To limit packet
error rates, the PSDU is limited in size to 127 bytes. An 802.15.4 MPDU or MAC frame is transported
as the PSDU of the PPDU and consists of three parts: (i) the MAC header (MHR), (ii) the MAC
payload and (iii) the MAC footer (MFR). The MHR comprises frame control (indicating the type of
frame), sequence number (for referring to frames, e.g., in acknowledgements), addressing information
(for source and destination identification) and security-related information, and is of variable length.
The frame payload also has a variable length and contains information specific to the frame type.
Finally, the MFR is 2 bytes long and contains a frame check sequence (FCS) that is calculated by the
sender and that is used for frame validation by the receiver.

Figure 3. IEEE 802.15.4 The Physical Protocol Data Unit (PPDU) and MAC Protocol
Data Unit (MPDU) formats.

J. Sens. Actuator Netw. 2013, 2 241

Depending on the frame type the length of the addressing fields varies. An acknowledgement
control frame for instance will not contain any addressing information. For data frames the length
depends on which addressing format is being used and whether or not (optional) PAN identifiers of
2 bytes are included. The standard specifies two addressing formats: long 64-bit addresses that are
globally unique and short 16-bit addresses that are unique within a PAN. When using the long
addressing format, the MHR’s length is 19 bytes and the maximum size of the payload is limited to
106 bytes. For the short addressing format the MHR is 7 bytes long and the maximum payload size is
limited to 118 bytes. Using link-layer security can further reduce the size available for the payload size
by as much as 14 bytes.

3.3. IEEE 802.15.4 Based Solutions

Several higher layer protocols have been defined directly on top of the IEEE 802.15.4 MAC
sublayer. For completeness, a very brief overview of the most commonly used non-IETF solutions that
have been built on top of IEEE 802.15.4 is given below.

 ZigBee [10] builds upon the physical layer and medium access control defined in IEEE
standard 802.15.4 for low-rate WPAN with additional network, security and application
software layers. Predefined application services specify which actions a device can take, the
main example being ”turn the lights on“ and ”turn the lights off”.

• Wireless HART [11] focuses on automation and industrial applications that require real time
guarantees. To realize these goals, a time synchronized, self-organizing, and self-healing
mesh architecture is used. The standard was initiated in early 2004 and developed by
37 HART Communications Foundation (HCF) companies. In April 2010, WirelessHart was
approved by the International Electrotechnical Commission (IEC) unanimously, making it a
wireless international standard as IEC 62591.

• The MiWi protocol stacks [12] are small foot-print alternatives to ZigBee (40K–100K),
which makes them useful for cost-sensitive applications with limited memory. Although the
MiWi software is free, there exists a unique restriction and obligation to use it only with
Microchip microcontrollers.

• ISA100 [13] addresses wireless manufacturing and control systems (developed by the
Systems and Automation Society (ISA)). They defined ISA100.11a, a wireless networking
standard that builds upon IEEE 802.15.4.

Contrary to most of the above solutions, the IETF standards are fully open (no contributor fees are
required). To ensure that each device is IP-addressable, an IPv6 layer (6LoWPAN layer) is defined
above the IEEE 802.15.4 MAC sublayer. This adaptation layer is discussed in the next section.

4. IETF 6LoWPAN Working Group (IPv6)

The IPv6 protocol has a high overhead and restrictions that make it unsuitable for LLNs such as
IEEE 802.15.4 networks. For instance, considering the limited space available for the MAC payload in
an 802.15.4 MPDU, the use of a 40-byte IPv6 header would be too excessive. Therefore, the IETF
6LoWPAN (IPv6 for Low-power Wireless Personal Area Network) Working Group was formed to

J. Sens. Actuator Netw. 2013, 2 242

work on the IPv6 protocol extensions required for such networks where the nodes are interconnected
by IEEE 802.15.4 radios [14]. Meanwhile the working group has produced several proposed standards
and informational documents regarding these required extensions.

Starting from a well-defined set of assumptions and a problem statement, as defined in the
informational RFC 4919 [1], a solution for transmitting IPv6 packets over IEEE 802.15.4 networks
was defined, resulting in RFC 4944 [15]: Transmission of IPv6 Packets over IEEE 802.15.4 Networks.
This document describes the frame format, the methods of link-local address formation and
autoconfigured addresses, simple header compression and mesh-under routing for multi-hop IEEE
802.15.4 networks. Subsequent RFCs of the 6LoWPAN working group, Compression Format for IPv6
Datagrams over IEEE 802.15.4-Based Networks (RFC 6282) [16] and Neighbor Discovery
Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) (RFC
6775) [17], which respectively cover advanced header compression and Neighbor Discovery
optimization, have updated RFC 4944. In addition to this, the working group has produced 2 other
informational RFCs addressing use case descriptions (RFC 6568) [18] and routing requirements (RFC
6606) [19] and is in the process of finalizing an internet draft on the transmission of IPv6 packets over
Bluetooth (draft-ietf-6lowpan-btle-11) [20].

Further, the working group is also expected to collaborate with other organizations (such as IEEE
and ISA SP100) and other IETF working groups (such as ROLL) on common interest issues and is
mandated with providing implementation and interoperability guides [21].

4.1. Key Protocols

As mentioned in Section 4.1, the main objective of the 6LoWPAN working group is coming up
with extensions to IPv6 protocols so that IPv6 packets can be transferred in constrained networks such
as IEEE 802.15.4. IPv6 forwarding routers, unlike IPv4 routers, do not support fragmenting outgoing
packets. This means that the communicating hosts have to send packets with the right size (MTU)
supported by the communication links of the router. To meet this requirement hosts may use Path
MTU Discovery to find a suitable MTU along the path or just send packets that meet the minimum
MTU requirement for all links, which is 1,280 bytes. However, this minimum value is still too big for
IEEE 802.15.4 links that have an MTU of 127 bytes for the entire MPDU. To use IPv6 on top of IEEE
802.15.4 networks, a mechanism that allows transmitting IPv6 packets that are larger than the MTU of
127 bytes is required. The solution presented by the 6LoWPAN working group is to use a layer
between the network and the data link layers that supports packet fragmentation and reassembly. In
addition, the 40 byte IPv6 fixed header takes a significant portion of the already small protocol data
unit of the LLNs, leaving little room for IPv6 data payload. To solve this problem different sorts of
header compression are proposed by the working group. Further, these fragments have to be routed
between the LLN nodes. Layer 2 multi-hop data transmissions should also be addressed in relation to
IPv6 adaptation. Accordingly, the 6LoWPAN working group has introduced an IPv6 adaptation layer,
named 6LoWPAN Adaptation Layer that lies between the data link layer and the network layer of the
protocol stack. The adaptation layer delivers three basic services: packet fragmentation and
reassembly, header compression, and data link layer routing (for multi-hop connections).

J

4

h
f
H
u
d

e
o
p

J. Sens. Actu

4.1.1. 6LoW

RFC 494
header stack
fields. The L
Header com
used in 6Lo
data MPDU

Similar t
encapsulatio
of the dispa
purposes dep

First 3 Bits
00x

010

011

10x

11x

uator Netw.

WPAN Fram

44 states th
k where eac
LoWPAN h

mpression he
oWPAN. T
.

F

to IPv6, t
on header, th
atch byte in
pending on

 Hea

Uncom
Co

IPv6 Add
IPHC Com

Me

Fragme

 2013, 2

mes

hat all LoW
ch header in
header may
eader, in th

These frame

Figure 4. 6L

the 6LoWP
he dispatch
ndicate the
the header

Tabl

ader Type
NLAP

mpressed/HC
ompressed
dressing Hea
mpressed He

esh Header

entation Head

WPAN enca
n the heade
contain the

hat order. F
es are tran

LoWPAN en

PAN heade
byte, identi
next head

type. Table

le 1. Summa

This
to co

C1

ader

The a
E.g.:
 0

eader The
head
The n
purpo

der The
deter
indic
fragm
used

apsulated d
er stack con
e mesh addr
Figure 4 sho
sported ins

ncapsulation

ers are add
ifies the nex
er type wh

e 1 summari

ary of Dispa

is not a 6Lo
o-exist with o
address type
 00001 =
00010 = HC
remaining 5

der to optimiz
next header i
oses related
next header

rmined by t
cates first
ments. The l
for other pu

atagrams ar
ntains a hea
essing head
ows examp
side the fra

n header sta

ded when
xt header. M

hile the rem
izes the diff

atch Byte v

D
oWPAN fram
other protoco

is determine
= uncompres
1 Compresse

5 bits are add
ze IPv6 head
is the mesh h
to mesh-und
r is a fragm
the remainin

fragment w
last three bit

urposes. The

re prefixed
ader type an
der, fragmen
les of head

ame payloa

ack example

required.
More specifi
maining bits
ferent value

alues.

escription
me. This is
ols. The rema
ed depending
ssed IPv6 Ad
ed Header
ded to the re

der compressi
header. The l
der routing.
ment header
ng 6 bits. T
while 100x
ts in both ty
other bit seq

d with an e
nd zero or
ntation head
der stacks th
ad field of

es.

The first
fically, the fi
s are used
s for the dis

important fo
aining 6 bits
g on the rema
ddress

est of IPHC
ion
last bits are u

r. The fragm
The bit sequ
xxx indicat
ypes of fragm
quences are re

24

encapsulatio
more heade

der, and IPv
hat might b
an 802.15

byte of th
first three bi

for differen
spatch byte.

or 6LoWPAN
are ignored.
aining 5 bits

compressio

used for othe

ment type i
uence 000xx
es Non-firs
ments will b
eserved.

43

on
er
v6
be
.4

he
its
nt
.

N

.

n

er

is
xx
st

be

J. Sens. Actuator Netw. 2013, 2 244

4.1.2. Header Compression

One of the services provided by the 6LoWPAN adaptation layer is header compression. RFC 4944
defines header compression techniques that can be used to compress IPv6 headers and to allow more
data from layers on top of IPv6 to be included in a single 802.15.4 frame.

The LOWPAN_HC1, the main compression technique specified in RFC 4944, is optimized for
compressing IPv6 packets that contain link-local IPv6 addresses. The technique attempts to reduce the
size of the packet by removing common fields (Version, TC, Flow label), inferring the IPv6 addresses
from the link-layer addresses in the 802.15.4 header and the static IPv6 link-local prefix (fe80::/64),
inferring the IP packet length from the layer 2 frame length (or the fragmentation header) and limiting
the values of the next header field to TCP, UDP and ICMP. [22]. The RFC also defines HC2
compression for transport layer compression, which allows compressing UDP, TCP and ICMP. Other
transport layer protocols cannot be compressed by HC2. HC1 compression has very low compression
factors for global and multicast addresses, which are needed for direct host-to-host interactions
between constrained devices and clients as envisioned by the Internet of Things, therefore its use is
limited and not further detailed here.

RFC 6282 specifies two new compression mechanisms named LOWPAN_IPHC and LOWPAN_NHC.
According to the RFC, LOWPAN_IPHC, uses 13 bits for compression (the last 5 bits of the dispatch byte
and an additional byte) and an extra 8 bits to store context information, when necessary. Figure 5 shows
the IPHC header format and Table 2 summarizes the address compression fields.

Figure 5. IPHC Compression.

IPHC is based on a number of basic assumptions about common 6LoWPAN communication cases.
The first assumption regards commonly used fields. It is assumed that IPv6 header fields such as
Version, Traffic Class and Flow Label have fixed values and do not have to be transmitted. Therefore,
IPHC totally ignores the 4 bit version and attempts to compress the Traffic Class and Flow Label into
the TF bits (2 bits). By assuming hop limits will be set to well-known values such as 1, 64 and 255 by
the host, IPHC compresses the hop limit from 8 bits to 2 bits.

J. Sens. Actuator Netw. 2013, 2 245

Table 2. Summary of Dispatch Byte values.

Field Description
Context ID Extension (CID) (1bit) 0 = No Additional Context Identifier Extension is used.

1 = An additional 8-bit field follows the DAM field
Source Address Compression (SAC)
(1 bit)
Dest. Address Compression (DAC)
(1 bit)

0 = Stateless source/destination address compression
1 = Stateful, context based source/destination address
compression

Source Address Mode (SAM)
If SAC = 0

00 = The full 128 bits address is sent inline
01 = The last 64 bits are sent inline
10 = The last 16 bits are sent inline.
11 = The entire source address is elided

If SAC = 1 00 = The unspecified address, :: . Nothing is sent inline
01 = 64 bits are carried inline
10 = 16 bits are carried inline
11 = The address is fully elided

Multicast Compression (M) 0 = Destination address is not a multicast address
1 = Destination address is a multicast address

Destination Address Mode (DAM)
If M = 0 and DAC=0

Same as SAM with SAC = 0

If M = 0 and DAC = 1 Same as SAM with SAC = 1
If M = 1 and DAC = 0 00 = The full address is sent inline

01 = Only 48 bits are sent inline
10 = Only 32 bits are sent inline
11 = Only 8bits are sent inline

If M = 1 and DAC = 1 00 = Only 48 bit s are sent inline.
01,10,11 = Reserved

Assuming that addresses could be generated from link-layer addresses and that mostly link local
addresses are used inside LLNs, IPHC attempts to compress the IPv6 address fields. To further
improve the efficiency of compression of global and multicast addresses, IPHC uses context
information. The Context ID Extension bit (CID) bit indicates whether an additional 8-bit Context
Identifier Extension field is added or not. IPHC supports stateless and stateful methods of addresses
compression. The Source Address Compression (SAC) and Destination Address Compression (DAC)
bits indicate which of these two compression methods is used for the source and destination address,
respectively. The Source Address Mode (SAM) bits in combination with the SAC bit determine how
many of the source address bits are actually elided and how many bits are sent in-line. The number of
bits sent inline can be 128, 64, 16 or 0 bits for stateless compression and 64, 16, or 0 bits for stateful
compression. In all cases, the bits that are elided are assumed to be calculated from the link-local
prefix, link layer address and stored context. The destination address compression varies based on the
address type. Multicast destination addresses are indicated by the M bit in the compression header.
Unicast destination addresses are compressed in the same way as unicast source addresses. However,
multicast addresses follow a different rule based on the DAC bit. Accordingly, 128, 48, 32, or 8 bits
has to be sent inline when multicast destination addresses are compressed. The 8 bit context identifier

J. Sens. Actuator Netw. 2013, 2 246

is added only if the SAC and/or DAC bits indicate its presence. If it exists, the first 4 bits indicate
store context for the source address while the remaining bits store destination address context.
The RFC does not specify what is stored in these fields nor how communicating parties exchange
this information.

The IPv6 Payload Length field can be inferred from the fragment header or from the link layer
header and has to be fully elided.

As was already mentioned HC2 can only compress UDP, TCP and ICMPv6 headers. To alleviate
this issue LOWPAN_NHC introduces a variable length next header identifier which could be used for
future next header compressions.

Figure 6 illustrates the IPHC header compression when link-local, global and multicast IPv6
addresses are used for communication.

Figure 6. Internet Protocol Version 6 (IPv6) Header Compression Example.

In case I, since both source and destination IP addresses are link-local unicast addresses, the prefix
is fixed (i.e., fe80::/64) and the suffix can be inferred from the IEEE 802.15.4 source and destination
addresses. As shown in the figure, the entire IPv6/UDP header can be compressed from 48 bytes to just
6 bytes. The second case illustrates IPHC compression when the destination IP address is a multicast
address. Here the IPv6/UDP header is compressed to 7 bytes by sending only the multicast group
inline and deriving all other information from the IEEE 802.15.4 header. Cases III and IV are typical
to IoT interactions where both source and destination IP addresses are global unicast addresses. In case
III, the source suffix can be derived from the IEEE 802.15.4 source address and, hence, does not have
to be sent in-line. The destination suffix however cannot be derived from the IEEE 802.15.4
destination address and has to be sent uncompressed. In case IV, the suffixes of both source and
destination addresses cannot be derived and have to be sent inline. In cases III and IV, the IPv6 address
prefixes and other information is derived based on the shared context information that is stored in the

J. Sens. Actuator Netw. 2013, 2 247

Context Identifier Extension (CIE) byte. In case 3 and case 4, the IPv6/UDP headers are compressed
from 48 bytes to 10 and 12 bytes respectively.

4.1.3. Fragmentation

The other service provided by the 6LoWPAN adaptation layer is fragmentation and reassembly.
Fragmentation is only required when the entire IPv6 packet cannot fit in a single IEEE 802.15.4 frame,
i.e., when it is larger than the available space for the MPDU payload (typically 106 bytes, see
Section 3.2). According to RFC 4944, fragmentation breaks a single IPv6 packet into smaller pieces
and a fragmentation header is included in every fragment. The document further specifies using two
different types of fragmentation headers. The fragment header of the first fragment contains only the
datagram size (11 bits) and datagram-tag (16 bits) fields, while subsequent fragments of the same IPv6
packet also include the datagram-offset (8 bits) field. Datagram size is the length of the entire
unfragmented IPv6 packet, datagram-tag identifies to which datagram (i.e., packet) a particular
fragment belongs. Therefore, these values have to remain the same for all fragments of a single IPv6
packet. The datagram-offset indicates the offset of the fragment from the first fragment. Figure 7
shows the 6LoWPAN fragmentation header.

Figure 7. 6LoWPAN Fragmentation Header. (a) 6LowPAN encapsulation header stack for
the first fragment, containing the Fragmentation header (FRAG1) and IPv6 Header
Compression header (b) 6LowPAN encapsulation header stack for subsequent fragments,
containing the Fragmentation header (FRAGN).

4.1.4. Mesh-Under Routing Support

Routing involves calculating best paths (according to some metric) to a destination in a multi-hop
network. If a single link layer technology (such as IEEE 802.15.4) is used at layer 2, the path

J. Sens. Actuator Netw. 2013, 2 248

calculation could be done at either layer 3 or layer 2. Layer 3 routing is usually referred to as
route-over routing while forwarding at layer 2 is called mesh-under routing.

Layer 3 routers build and maintain a routing-table which contains the next-hop to all known
destination networks based on their network prefixes. This means that when a packet arrives at a
router, the link-layer encapsulation is removed and the destination address in the IPv6 header is used to
do a longest prefix match in the routing table to determine the next hop. Once the next hop router is
known, the router re-encapsulates the packet with layer 2 headers and trailers. The layer 2 addresses
indicate the current router as a source and the next hop router as the destination while the source and
destination IP addresses remain unchanged. This is done at every forwarding router along the path of
the packet.

Mesh-under routing on the other hand, uses link layer addresses to make forwarding decisions.
Every forwarding layer 2 router along the path of a packet is expected to maintain its own forwarding-
table based on link layer addresses in order to make forwarding decisions based on these addresses.
Just as in route-over routing, four addresses are required to forward the packet at an intermediate
node—the originator address, the final destination address, the current forwarding router address and
the next hop router address. The IEEE 802.15.4 source and destination MAC addresses of the frame
indicates the current forwarding router and the next-hop router, respectively. A way of transmitting the
originator and final destination addresses is required to fully support mesh-under routing.

RFC 4944 introduces the Mesh Address Header (Figure 8) for this purpose. The mesh address
header contains the dispatch byte and the originator and final destination link layer addresses. The OA
and FD bits in the header indicate which of the two 802.15.4 addressing formats are used for the
Originator and Final Destination address fields: short 16-bit or long 64-bit addresses. The hop count
takes up an additional 4 bits, supporting up to 14 hops. The value 0xF is reserved to indicate that one
more byte follows to support more than 14 hops.

Figure 8. 6LoWPAN Mesh Addressing Header.

As an example of mesh-under routing, assume that node A sends a packet to node B which is
located some hops away from node A in an IEEE 802.15.4 network. First, node A, construct a mesh
addressing header with its own link-layer address as Originator address and the link-layer address of
node B as Final Destination address. Based on its layer 2 “routing-table”, node A identifies its next hop

J. Sens. Actuator Netw. 2013, 2 249

router (node C). Accordingly, it puts node C’s link layer address as the destination address and its own
link-layer address as the source address in the 802.15.4 Mac Header. The resulting frame contains the
following addresses in the 6LoWPAN mesh addressing header: Originator address (node A), final
destination address (node B) and in the IEEE 802.15.4 MHR: Source address (node A) and destination
address (node C). Once the router, node C, receives the frame, it checks the Mesh Addressing Header
to check whether it is the final destination. Since node B is the final destination, node C will also
forward the packet to its next hop. After determining the next hop, node C re-encapsulates the frame
with its own link layer address as the source and the next hop’s link layer address as the destination
address in the MHR. This process continues until the packet reaches node B. The addresses in the
6LoWPAN Mesh Addressing Header remain the same along the path of the packet.

4.2. Implementation and Evaluation

4.2.1. Implementation

Many organizations and companies are incorporating the 6LoWPAN adaptation layer in their
protocol stacks. Additionally, there are also a couple of network simulators that support 6LoWPAN.
Table 3 summarizes the features of six different implementations of 6LoWPAN.

Table 3. 6LoWPAN implementations.

Implementation Operating System
/Simulator

License RFC
4944

RFC
6282

RFC
6775

SICSLOWPAN ContikiOS/Cooja
Simulator

Open Source X x x

BLIP (Berkley
Low-power IP)

TinyOS Open Source X

Arch Rock 6LoWPAN TinyOS Open Source X
NanoStack 6lowpan FreeRTOS Open Source X x x
Hitachi - Commercial X
NS-3 Simulator Open Source X

4.2.2. Evaluation

Very few performance evaluations of the 6LoWPAN adaptation layer have been published thus far.
The most notable performance evaluation of the 6LoWPAN protocol was made by [23] in which the
author qualitatively and quantitatively explains the advantages of 6LoWPAN as compared to different
industry standards. According to [23], in terms of memory footprint, ease of deployment, scalability,
energy efficiency and other features, 6LoWPAN has significant advantage over other standards, such
as Zigbee.

When analyzing 6LoWPAN in detail, it can be seen that the adaptation layer solves many of the
issue relating to supporting IPv6 on constrained devices and LLNs. One of the functions of the
adaptation layer is fragmentation and reassembly. In order to fit large IPv6 packets into the small MTU
of IEEE 802.15.4 networks and improve efficiency of communication, packets must be fragmented at
the adaptation layer before it is passed on to the 802.15.4’s MAC sublayer. Similarly, during reception,

J. Sens. Actuator Netw. 2013, 2 250

these fragments should be reassembled at the same layer before passing them onto upper layer
protocols. This approach has enabled smart objects to participate in any IPv6 based communication
with some extra processing overhead. In [24], the authors attempted to test performance of 6LoWPAN
on TelosB and MikaZ motes. The authors tried to measure the impact of packet size on RTT and
packet loss by increasing the packet size. As expected, the RTT increased for larger packets due to
fragmentation and reassembly of packets.

Both route-over and mesh-under routing mechanisms can be used in 6LoWPAN networks. Due to
fragmentation and header compression at the 6LoWPAN adaptation layer, packets in a network that
uses route-over routing have to be reassembled at every intermediate node to get the destination IP
address for determining the next hop. These fragments have to go through compression and
fragmentation processes before they are forwarded to the next hop router. This approach requires extra
buffer space to store all fragments of a particular packet at each intermediate node. As memory is one
of the constrained resources, this may not be an optimal solution for Internet of Things nodes. On the
other hand, mesh-under routing may solve the issue of reassembly and fragmentation by routing the
fragments independently. To the best of our knowledge, there is no performance comparison of the two
routing approaches in literature. Also, no standardized solution for mesh-under routing has been
proposed; as opposed to the RPL route-over routing protocol that is being defined in the IETF ROLL
working group. However, examples of mesh-under routing can be found in literature, e.g., in [25].

IPv6 headers have a minimal length of 40 bytes. This is a too large overhead for the 127 byte MTU
of IEEE 802.15.4 networks. 6LoWPAN uses different mechanisms to compress IPv6 headers by
removing redundant information from the headers and inferring values from the link layer information.
The original compression mechanism proposed in RFC 4944, called HC1, compresses source and
destination addresses by assuming that they are link local addresses. If addresses are global, they have
to be sent uncompressed. This makes HC1 compression less efficient for IoT solutions which mostly
involve global IPv6 addresses. In addition to this, the transport layer protocol compression mechanism,
HC2, compresses only limited numbers of protocols. New compression mechanisms, called IPHC and
NHC, were introduced in RFC 6282. These mechanisms are significant improvements to the HC1 and
HC2 compression mechanisms and new implementations are urged to use the new compression
techniques instead of HC1 and HC2. To our knowledge, no detailed evaluations regarding the footprint
and performance of these compression mechanisms have been published in the literature to date.

4.3. Leveraging upon 6LoWPAN to Realize the IoT

As described in the previous sections, the core specifications of 6LoWPAN are RFC 4944, RFC
6282 and RFC 6775. As 6LoWPAN is part of a full protocol stack, it is used in combination with
different protocols, from the physical to the application layer. Further standardization work and
research efforts are therefore focusing on, amongst others, improvements to the core specifications,
extensions for non-IEEE 802.15.4 networks and the adoption of 6LoWPAN in practical use cases.

4.3.1. Improvements to Core Specifications

In addition to the core specifications, other sub-protocols are being discussed in the working group.
As was already mentioned, the improved compression mechanism specified in RFC 6282 introduces a

J. Sens. Actuator Netw. 2013, 2 251

next header identifier to enable any arbitrary next header compression. The Generic Compression of
Headers and Header-like payloads (draft-bormann-6lowpan-ghc-05) [26] is one of the internet drafts
that utilizes the identifier to perform compression of arbitrary headers.

Adaptation Layer Fragmentation Indication is another area that is under discussion. The draft,
(draft-bormann-intarea-alfi), proposes a mechanism to indicate the presence of fragmentation at the
adaptation layer and to indicate preferred MTU for the communication. This draft aims at improving
application performance by limiting packet sizes to the smallest possible size to avoid fragmentation
on link layers with small MTU values.

4.3.2. 6LoWPAN over Non IEEE 802.15.4 Technologies

The working group also adopted internet draft-ietf-6lowpan-btle, which applies 6LoWPAN
technology to Bluetooth Low Energy. This draft is expected to be a companion of RFC 4944 by
removing unnecessary features such as Mesh header and Fragmentation. This extension is the first draft
that extends 6LoWPAN to non-IEEE 802.15.4 networks. Draft-mariager-6lowpan-v6over-dect-ule, is
another draft proposed to extend 6LoWPAN to another non-IEEE 802.15.4 technologies. The draft
proposes 6LoWPAN technology for DECT ULE (Digital Enhanced Cordless Technology Ultra Low
Energy). The last two drafts indicate that the working group is considering link-layer technologies
other than 802.15.4 to use with 6LoWPAN. As such, it is explored how 6LoWPAN can operate over
heterogeneous low-power technologies, in a similar way as how IP can operate over different
underlying technologies.

4.3.3. Adoption of 6LoWPAN in Real Life Use Cases

As 6LoWPAN is a key component in order to realize the IP-based integration of constrained
devices, it is used in a multitude of projects, exploring a wide range of use cases such as smart
infrastructures, smart buildings, smart environments, smart cities, ... In all cases, constrained devices,
forming 6LoWPAN networks, are used to collect information from the real world and this information
is used to generate intelligence and make the world around us smarter. Enumerating them all would be
impossible, but in order to illustrate some application domains a limited number of specific
examples is listed.

The Smart Energy and Home Automation: Restful Architecture (Sahara) project aims at using
web-services for smart energy and home automation. The project uses 6LoWPAN on IEEE802.15.4,
CoAP and other IETF standardized protocols [27]. Similarly, the European Union FP7 HOBNET
project deploys an IPv6/6LoWPAN infrastructure to be used for the automation and energy
management of smart and green building [28]. Another example is the FP7 Outsmart project [29],
where 6LoWPAN networks are used for instance to optimize waste management [30]. CALIPSO is
another FP7 project that aims at building IP-connected networks of smart object in the area of smart
infrastructure, smart cities and smart toys by utilizing IETF standards (including 6LoWPAN) and other
start-ups [31]. Finally, in [32] 6LoWPAN networks are being used for livestock monitoring
applications and other similar use cases.

J. Sens. Actuator Netw. 2013, 2 252

4.3.4. Other Efforts

Management of (6LoWPAN) networks is another important aspect of 6LoWPAN that is being
investigated. In line with this, 6LoWPAN MIB (draft-schoenw-6lowpan-mib) [33] is being proposed.
The draft demonstrates a JSON format using a version of the Management Information Base database
for management purposes along with the normal SMIv2 format.

From the previous discussion, it has become clear that addressing is also a key aspect when
extending IPv6 to the constrained world through the use of 6LoWPAN. In this area, other IETF
working groups are also conducting research activities in the area. The IETF Working group
AUTOCONF (Ad hoc Network Autoconfiguration) is also working on Neighbor Discovery and
stateless address autoconfiguration. Finally, as 6LoWPAN is meant as an enabler to bring IPv6
functionality to constrained networks, many higher layer protocols, such as routing, will run on top of
6LoWPAN networks. During the design of these solutions, the relation and interaction with
6LoWPAN is considered. For example, the routing protocols and mechanisms being developed by
ROLL working group can also be seen as other 6LoWPAN related efforts [22]. The ROLL working
group is discussed in the next section.

4.4. Research Challenges

One of the key issues in connecting constrained networks with the Internet is fragmentation, caused
by the 127 byte MTU of IEEE 802.15.4 versus the minimum MTU of 1280 bytes of links in IPv6
networks. Avoiding low-level fragmentation is important and requires knowledge about the MTU (i.e.,
via discovery), knowledge about other protocols (type of routing) and interaction with the applications
(and the potential use of fragmentation at this layer, such as block transfers in CoAP as will be
discussed later). A good understanding and evaluation of the impact of fragmentation and solutions to
avoid it is needed. For example, when using route-over solutions, additional buffer space is needed for
packet reassembly and fragmentation at each intermediate node, since the information needed for
routing can only be found in the first fragment [34]. The need of this additional buffer space can be
avoided, by providing a small buffer to store the first few bytes of each packet. As the delivery of the
first fragment could be handled by looking at the destination address, subsequent fragments may be
routed based on the datagram-tag which is stored in the small buffer we set aside. Different
mechanisms may be considered for first fragments of a packet arriving late.

Regarding compression, advanced compression techniques have been proposed, including the
compression of next headers. Until now, a thorough evaluation of the performance of these
mechanisms for various communication patterns, address sizes and setups is missing. Transport layer
compression methods are currently defined for UDP only. The 6LoWPAN working group is discussing
generic next header protocol compression. Nevertheless, no compression mechanism is defined for
TCP and ICMPv6 yet. Such a mechanism for TCP could be considered irrelevant for the majority of
constrained devices, since they typically use UDP with an application-layer protocol such as CoAP
that provides some of the missing features of TCP. However the use of CoAP on top of TCP has
been explored [35].

J. Sens. Actuator Netw. 2013, 2 253

There are still a number of other issues to be investigated. Layer 3 route-over and layer 2
mesh-under routing protocols are supported on 6LoWPAN networks. Mixing these protocols in a
given 6LoWPAN network might be a path worth exploring [23].

Finally, the 6LoWPAN working group has already published a proposed standard document
relating to Neighbor Discovery. Yet, Secure Neighbor Discovery is still unexplored territory. IPv6-like
security up to level of constrained devices is being researched. Despite several efforts, key distribution
to constrained devices remains one of the biggest challenges so far.

5. IETF ROLL Working Group

5.1. Group Description and Key Protocols

5.1.1. Description

The specific properties of LLNs imply specific routing requirements for these networks. The ROLL
working group [36] focuses on building routing solutions for LLNs because evaluation of existing
routing protocols like OSPF, IS-IS, AODV, and OLSR indicate that they do not satisfy all of the
specific routing requirements. More specific, the working group focuses on industrial (RFC
5673) [37], connected home (RFC 5826) [38], building (RFC 5867) [39] and urban sensor networks
(RFC 5548) [40] for which different routing requirements were specified.

The working group focuses only on an IPv6 routing architectural framework while also taking into
account high reliability in presence of time varying loss characteristics and connectivity with
low-power operated devices with limited memory and CPU in large scale networks. The main
realization of this working group is the design of the IPv6 route-over Routing Protocol for LLNs, also
called RPL, which covers the routing requirements of all the application domains.

5.1.2. IPv6 Routing Protocol for Low Power and Lossy Networks

With the specification of RPL in RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks
(RFC 6550) [41], the IETF has specified a proactive “route-over” architecture where routing and
forwarding is implemented at the network layer, according to the IP architecture. The protocol
provides a mechanism whereby multipoint-to-point, point-to-multipoint and point-to-point traffic are
supported. Although RPL was specified according to the routing requirements for LLNs, its use is not
limited to these applications. RPL routes are optimized for traffic to or from a root that acts as a
sink/root for the topology.

The functioning of the RPL routing protocol is based on the construction of a Directed Acyclic
Graph (DAG), which consist of one or more DODAGs (Destination Oriented DAGs), for each
sink/root a DODAG. The position of an individual node in a DODAG is determined by the rank of the
node. This rank is calculated based on the Objective Function (OF), which defines how to translate one
or more metrics and constraints, defined in Routing metrics used for path calculation in low power and
lossy networks (RFC 6551) [42], into a rank. The OF also specifies how a node has to select his parent.
Different DODAGs based on a same OF are represented by a RPLInstanceID. More details concerning
OFs can be found in Objective Function Zero for the Routing Protocol for Low-Power and

J. Sens. Actuator Netw. 2013, 2 254

Lossy Networks (RPL) (RFC 6552) [43], The Minimum Rank with Hysteresis Objective Function (RFC
6719) [44] and RFC 6551.

When a new node joins a RPL network, it first listens to receive DODAG Information Object (DIO)
messages, which are broadcasted periodically when the trickle timer [45] of neighboring nodes fires.
When no DIO message is received, the node will broadcast a DODAG Information Solicitation (DIS)
message, which will force the neighboring nodes to send a DIO message. Based on the information of
the DIO message from the neighboring nodes, the Objective Function (OF) will select the preferred
parent. When every node in the network has selected a preferred parent, the DODAG (for a specific
OF and for each sink) has been constructed. Routing from a node towards the sink is established by
forwarding each message, for collection by the sink, to each nodes parent, until packets reach the sink.

Downward routes (root to leaf) are constructed using Destination Advertisement Object (DAO)
messages. When a node has selected a preferred parent it will send a DAO message to his preferred
parent, which will be forwarded, via the parent’s parent, towards the root. Two modes of operation are
supported: Storing (fully stateful) or Non-Storing (fully source routed) mode.

The mode of operation, for construction of downward routes will also influence the operation for
point-to-point routes (Figure 9). In the Non-Storing case, the packet will travel all the way to a DODAG
root before traveling down. In the Storing case, the packet may be directed down towards the destination
by a common ancestor of the source and the destination prior to reaching a DODAG root. If the
destination is on the route towards the root, the destination node of course will not forward the message.

Figure 9. Packet flow for point-to-point traffic between two nodes in an RPL network.

RPL messages are encapsulated into a new ICMPv6 message, defined in Internet Control Message
Protocol (ICMPv6) for IPv6 Specification (RFC 4443) [46]. For RPL control messages this results in a
message structure illustrated by Figure 10, consisting of an ICMPv6 header followed by the actual
message body (base) and some (optional) options.

J. Sens. Actuator Netw. 2013, 2 255

Figure 10. ICMPv6 header for RPL control messages.

The code field identifies the type of the RPL control messages. Table 4 gives an overview of the
different codes and their corresponding RPL message type.

Table 4. Code fields in RPL ICMPv6 messages.

Code Field RPL Message Type
0x00 DODAG Information Solicitation (DIS)
0x01 DODAG Information Object (DIO)
0x02 Destination Advertisement Object (DAO)
0x03 Destination Advertisement Object Acknowledgment
0x80 Secure DODAG Information Solicitation
0x81 Secure DODAG Information Object (DIO)
0x82 Secure Destination Advertisement Object (DAO)
0x83 Secure Destination Advertisement Object Acknowledgment

When the high order bit (0 × 80) in the code field is set, it indicates that security is enabled. In this
case between the header and the base field a security field will be added.

In a DODAG Information Solicitation message the base field will consist of a reserved 1 byte flag
field, a 1 byte reserved field. Together, with the flag and reserved field, unassigned bits must be set to
zero on transmission and must be ignored on reception.

The DODAG Information Object (Figure 11) contains information that allows receiving nodes to
learn and configure for joining a DODAG. The message can indicate if the DODAG is grounded (1 bit
G-field), which mode of operation (MOP) is followed and how preferable the root of this DODAG is
compared to other DODAG roots (Prf-field). The message also contains the version number, the
RPLInstanceID, DODAGID (128-bit IPv6 address that uniquely identifies a DODAG), a number of
flags and the rank of the sending node.

Figure 11. The DODAG Information Object (DIO) Base Object.

The Destination Advertisement Object (DAO) message is illustrated in Figure 12. The
RPLInstanceID, learned from the DIO, is copied into the DAO message. When the sender expect the
receiver to send a DAO-ACK the K-flag is set. To indicate the presence of the DODAGID field, the

J. Sens. Actuator Netw. 2013, 2 256

D-flag is used. The DAOSequence indicates the incremented sequence number incremented every time
a node sends out a unique DAO message.

Figure 12. The DAO Base Object.

5.2. Implementation and Evaluation

5.2.1. Implementation

Already during the standardization process of the RPL protocol, the draft of the protocol was
implemented in several platforms and simulators. An overview of the different implementations is
presented in Table 5.

Table 5. Implementations incorporating RPL.

Name OS Protocol Version Notes (Extensions, ..)
TinyRPL [47] TinyOS draft-ietf-roll-rpl-17 - uses BLIP 2.0

- only storing mode
- only single RPLInstanceID
- security options not supported
- only telosb and epic platform support

ContikiRPL [48] Contiki RFC 6550 by default enabled on Tmote sky platform
OpenWSN [49] OpenWSN RFC 6550
Nano-RK [50] Nano-RK draft-ietf-roll-rpl-07
NanoQplus [51] NanoQplus draft-ietf-roll-rpl-13

In Table 6 an overview is given of the network simulators that implement the RPL protocol. In the
table the TOSSIM simulator, standard for TinyOS, is not mentioned because TOSSIM requires micaz
support, which is not available for TinyRPL. Several research papers such as [52] and [53] also
implemented the RPL protocol into the WSNet simulator. In [53] this implementation is based on
draft-ietf-roll-rpl-05.

Table 6. Simulators incorporating RPL.

Name Language Protocol version Notes (extensions,..)
Cooja [54] C with limited libs RFC 6550 MSPsim (TinyOS + Contiki)
NS-3 [55] C++ and Python draft-ietf-roll-rpl-19
OMNET++/Castalia
[56]

C++ (wrapped
together with NED)

draft-ietf-roll-rpl-19

J-SIM [57] Tcl/Java draft-ietf-roll-rpl-19 EU-funded FP7 ICT-257245
VITRO project

J. Sens. Actuator Netw. 2013, 2 257

5.2.2. Using the Protocol

RPL is designed to be widely applicable; therefore many configuration options are available. Based
on experience, Recommendations for Efficient Implementation of RPL (draft-gnawali-roll-rpl-
recommendations-04) [58] presents different design choices and configuration parameters
that envision an efficient RPL implementation and operation. In Performance Evaluation of the
Routing Protocol for Low-Power and Lossy Networks (RPL) (RFC 6687) [59], an overview and
evaluation is given of how the protocol can handle two different use cases (a small outdoor
deployment of sensor nodes for building automation and a large-scale smart meter network) to meet
the desired requirements.

It is worth noting that a difference in design choices and configuration parameters can lead to
interoperability problems. In [60] the interoperability between ContikiRPL and TinyRPL is
investigated. The paper shows that, despite having two good performing independent implementations,
a combination can lead to large scale differences in behavior when combining them in a mixed set up.
It is also illustrated that subtle difference in lower layers can affect the system performance in
unexpected ways.

5.2.3. Sensor-to-Sensor Traffic

The routing for sensor-to-sensor communication is based on the communication paths between the
root and the sensors. These paths are initiated by the communication of DAO-messages to their
preferred parent. According to [61] this path setup can lead to congestion on the nodes around the root.
In addition, the limitations on packet sizes for constrained devices for non-storing mode introduce the
risk of fragmentation for paths with multiple hops. In contrast, for operation in storing mode, the
limited memory influences the number of paths a node close to the root can store.

The authors of [62] state that the importance of point-to-point traffic flows in low-power and lossy
networks is underestimated. In the paper it is demonstrated for a network consisting of about 1,000
nodes that the shortest cost peer-to-peer (P2P) routes performs significantly better than the current
RPL standard (using up and down P2P routes). This illustrates the need of additional point-to-point
routing mechanisms. This conclusion is also confirmed by [63]. In this paper a solution is provided,
called P2P-RPL, which extents RPL and performs better in a network of 27 fixed nodes running
Contiki that has an average node degree of 4.39. While data packets in standard RPL traverse
approximately 5 links on average, the links that are traversed when using P2P-RPL are halved for the
same network. For even deeper nested DODAG trees, even higher gains are expected. P2P-RPL also
decrease the traffic load around the sink: in storing mode with standard RPL 74,53% of the routes
traverse the root, while for P2P-RPL this is only 16,03%.

5.2.4. Multipoint-to-Point Traffic

In many IoT use cases, different sensors send their sensed data to a central sink. For this type of
traffic RPL requires very limited control overhead. This overhead is further reduced by the use of the
Trickle timer [45], which decreases the frequency of the sending of DIO messages when the network is

J. Sens. Actuator Netw. 2013, 2 258

stable. Also the responsibility of maintaining routes from leafs to the sink is delegated to each node by
only selecting a parent which is closer (according to the OF) to the sink.

5.2.5. Multicast

Possibilities for the usage of RPL routing of multicast messages are stated in Multicast Protocol for
Low power and Lossy Networks (MPL) (draft-ietf-roll-trickle-mcast-02) [64]. According to [65] the
proposed draft solution has the advantage that it will work without modifications and reliability is
increased by the per datagram state information maintenance, but it also has a number of drawbacks. A
first drawback is that, instead of storing only destination information, for each packet a state has to be
stored, which can result in scalability issues. The use of caching of messages, to avoid duplicates, can
possibly improve the performance. Other drawbacks are an increase in complexity, susceptibility for
out-of-order datagram arrival and energy and bandwidth inefficiencies due to the forwarding of
messages to all parts of the network instead of only to parts with interested nodes (lack of group
registration). To solve these issues, [65] introduces an alternative protocol, called SMRF.

5.2.6. Anycast

Currently, no support for anycast is provided in RPL. The use of anycast could be very efficient,
especially when multiple sinks are available.

5.2.7. Link Estimation

The estimation of the link quality with neighboring nodes is done by datapath validation via
Expected Transmission Count (ETX) link cost estimation. The ETX equals the average number of
transmissions for a packet to be successfully delivered to its next hop. The current selection
mechanism prefers parents with the lowest rank. When there is more than one parent with the lowest
rank, the first node is chosen as preferred parent, this has the advantage that no energy is consumed for
evaluating the link quality to other neighboring nodes. As a downside, it only evaluates the currently
used link; no alternative paths via newly discovered links are investigated. After some time this can
lead to a sub-optimal routing topology. In [66] the solution of passive probing is introduced. Hereby
the quality of a newly discovered link is initialized with the best value. This will force nodes to
investigate all neighboring nodes as possible parent. At startup this solution will require more energy,
but this energy is used to investigate the most optimal path, which can lead to a better overall
energy efficiency.

However, in dense networks, the limited node memory results in constant re-evaluation of
neighboring nodes, because neighbors in the neighbor table are continuously replaced by more recently
used or heard neighbors. The authors of [66] suggest to use cache management to solve rediscovery
and re-evaluation.

End-to-end link quality for a point-to-point route is currently not monitored in the RPL framework.
A point-to-point link and its quality are currently determined by the individual links between the
intermediate nodes. The nodes decide when to switch to a different parent based on the objective
function. In A Mechanism to Measure the Routing Metrics along a Point-to-point Route in a Low

J. Sens. Actuator Netw. 2013, 2 259

Power and Lossy Network (draft-ietf-roll-p2p-measurement-07) [67] a mechanism is described to
analyze the quality of the current route and to allow the router to initiate the discovery of a better route.

Similar to the previous draft, an on demand discovery mechanism for routes with specified metric
constraints is presented in Reactive Discovery of Point-to-Point Routes in Low Power and Lossy
Networks (draft-ietf-roll-p2p-rpl-15) [68].

5.2.8. General Performance

For the implementation of RPL in Contiki, according to [48], 3224 bytes of the ROM are used and
800 bytes of the RAM. For a Tmote Sky mote this implies 6.5% of the ROM- and 8% of the
RAM-resources.

The usage of the Trickle timer helps to minimize the amount of routing overhead. In a stable
network the Trickle timer allows the beacon intervals to exponentially increase and when noticeable
changes in the network conditions are detected the beacon interval quickly decreases to the minimum
interval. Still, for scenarios with bidirectional traffic, the RPL protocol generates a larger traffic
overhead (albeit with comparable delivery ratios) when compared to a protocol like LOAD [69]. It also
has to be noted that LOAD is a reactive protocol, which has the additional advantage that the overhead
is dependent of the traffic load, while RPL is proactive and has a constant overhead. When comparing
TinyRPL with CTP [70], the well-known point-to-sink routing protocol for TinyOS, simulations
indicate that the performance of both protocols has a comparable packet reception ratio and overhead.
The benefit of RPL, compared to CTP, is the support for various types of traffic patterns (i.e.,
multipoint-to-point, point-to-multipoint and point-to-point traffic) and the ability to directly connect to
Internet nodes.

Finally, [71] analyzes the performance of RPL based on different simulations and concludes that
RPL can ensure a fast network setup, which makes it a candidate protocol for monitoring applications
in critical conditions. However they conclude that optimizations are required concerning the signaling
in order to decrease protocol overhead.

5.3. Leveraging upon RPL to Realize the IoT

5.3.1. Real Life Use Cases

The RPL framework is currently used in different research projects. However in most cases the
protocol is adapted to the specific requirements of the network. Most often, the RPL framework is used
as a basis for the development of a specific protocol. Examples of such adaptations can be found in the
previous evaluation section.

Additional examples include the following: in [72] the implementation of a smart monitoring
system over a wireless sensor network is presented. The implementation focuses on the use of RPL to
create an efficient and reliable routing structure. The paper also shows how, by changing some key
parameters, the performance of RPL routing in a smart grid scenario can be influenced. In [73] a case
study for the usage of RPL in an agricultural context is presented. Further, in [74] an example of the
usage of RPL in transport logistics can be found.

J. Sens. Actuator Netw. 2013, 2 260

5.3.2. Loop-free Repair Mechanisms

When link quality decreases and/or failure of a parent occurs, the repair mechanism of RPL, can
introduce DODAG loops. In Loop Free DODAG Local Repair (draft-guo-roll-loop-free-dodag-repair-
00) [75] an adaptation to the repair mechanism is proposed. In Loop Free RPL (draft-guo-roll-loop-
free-rpl-01) [76] adaptation to the rank mechanism and objective function are presented. These drafts
envision a loop free repair mechanism.

5.3.3. Heterogeneity

RPL specifications recommend forcing nodes with more constrained characteristics to operate only
as a leaf node in a RPL network. A solution to force storing mode nodes to act as a non-storing mode
in the presence of non-storing modes is presented in RPL Routing Pathology In a Network With a Mix
of Nodes Operating in Storing and Non-Storing Modes (draft-ko-roll-mix-network-pathology-01) [77].

Most often, a simple objective function for a RPL based network is used. Objective functions
however can also include device information to enforce specific routes. In The Node Ability of
Participation (NAP) (draft-baryun-roll-nap-00) [78] the incorporation of node ability information is
proposed to enable heterogeneity in terms of device capabilities.

5.3.4. DIS Handling

In DIS Modifications (draft-goyal-roll-dis-modifications-01) [79] DIS options are presented to
influence the control of responses to the solicitation for DIOs. A first option is the adding of a metric
container field, which contains routing constraints a router must satisfy in order to respond, in a DIS
message. A second option is the response spreading for preventing collisions with responses on a DIS
multicast message. In this draft two cases (leaf node joining a DAG and identification of defunct
DAGs) which make use of the DIS mechanism are described and compared.

5.4. Research Challenges

Despite the standardization of RPL, some questions and gaps remain unsolved.

5.4.1. Interaction with MAC Protocols

First of all, the RPL interaction with different MAC protocols and duty cycles is not yet determined.
Especially the behavior at startup, when lots of configuration traffic is sent out, hasn’t been researched
yet. Since most IoT devices are, by definition, energy constrained, this aspect requires significant
additional research.

5.4.2. Asymmetric Links

The current RPL standard assumes the use of symmetrical links. For the selection of an optimal
parent, the current RPL standard uses an approach based on the receipt of DIO messages from
neighboring nodes. The node will select a parent based on the information in this message. However a
node will use this link in the opposite direction of the receival of the DIO message. In case of

J. Sens. Actuator Netw. 2013, 2 261

asymmetric links or unidirectional links the node will not be able to reach his preferred parent, which
results in the reselection of another parent after some time. As such, this mechanism can be extended
to also cope with asymmetric links.

5.4.3. Mobility

Currently RPL does not support node mobility. By supporting mobile nodes, the protocol can also
be used for other application domains such as monitoring and safety systems for diverse traffic
situations. In the field of mobile nodes in an RPL network, research activities are just starting. This
means that lots of problems still have to be solved.

In [80] a multipath routing protocol for mobile sensor networks is presented. The protocol, called
DMR, is based on the RPL framework. The performance of the protocol was compared against AODV
and AOMDV by simulations in the NS-2.34 simulator. An improvement of energy efficiency with
25% and 20%, compared to AODV and AOMDV is achieved, while maintaining a delivery ratio of
more than 97%.

Because a vehicular environment incorporates design elements of RPL, [81] provides a simulation
performance study of adaptations of RPL for VANETs, by tuning different parameters of RPL. The
test setup consists of nodes traversing in a line with an interdistance equal to the transmission range.
The sink is positioned in the middle of the line. Information is transferred by multi-hopping with
neighboring moving nodes.

In [82] adaptations are presented to enable data collection of a mobile node traversing, in a random
pattern, in an environment of fixed nodes, running standard RPL. This is achieved mainly by having
the mobile node continuously monitor his parents and neighborhood.

The selection and evaluation of the preferred parent, for mobile nodes, is still an open issue. For
mobile nodes the link quality and neighboring nodes will vary due to the movement of the node.
Therefore constant discovery of new neighbors and constant link analysis will be necessary. Because
estimations are based on measurements, they also include an estimation of the past link quality. For
fixed networks this estimation will be strongly correlated with the current link quality. For mobile
nodes this estimation is typically outdated. An adaptive configuration for link estimation could help
solve this problem, for instance by taking into account the movement (direction, speed,…) of the node,
by reasoning on the succession of estimations (increasing values can indicate a node is approaching a
parent or decrease of values a the opposite) or by adapting monitoring and/or discovery of neighbors.

Choosing a parent is important for reliably sending and receiving information. For fixed networks
the parent with the best (stable) link quality is indeed the best choice. For mobile nodes, switching too
frequently to a different parent also influences the reliability and energy consumption (extra control
traffic for downward traffic). Therefore a selection of a parent which will be a good parent for a longer
time can be a better choice.

5.4.4. Multi-Sink Support

In the standard, the possibilities for multi-sinks are briefly mentioned. However, currently no
complete implementations are publicly available to our knowledge.

J. Sens. Actuator Netw. 2013, 2 262

5.4.5. Scalability of the Non-Storing RPL Approach

As already mentioned the non-storing mode is a good mechanism to limit the usage of memory for
nodes in dense networks, but it also has a negative effect on the depth of routing tree. In non-storing
mode, the addresses of all the intermediate nodes are added to the packet. This includes the danger that
these messages will get fragmented and limits the available payload [62]. This is definitely a challenge
that has not been investigated thoroughly.

6. IETF CoRE Working Group

More recent, in 2010, an IETF working group, called Constrained RESTful Environments (CoRE),
was founded specifically to work on the standardization of a framework for resource-oriented
applications, allowing realization of RESTful embedded web services in a similar way as traditional
web services, but suitable for the most constrained nodes and networks. Their work resulted in the
Constrained Application Protocol (CoAP), a specialized RESTful web transfer protocol for use with
constrained networks and nodes.

6.1. Key Protocols

CoAP is defined in draft-ietf-core-coap [83] in conjunction with a number of additional
specifications. At the time of writing this article, there were three CoRE Internet-Drafts that are
currently nearing completion and one completed RFC. In addition there were one more group Draft
and 35 other individual Internet-Drafts listed on the CoRE website [5]. In this subsection we will
describe briefly the (almost) completed CoRE Internet-Drafts and the published RFC. In the next
section we will provide a brief summary of the topics covered by the individual Internet-Drafts in the
CoRE working group.

6.1.1. Base CoAP

CoAP uses the same RESTful principles as HTTP, but it is much lighter so that it can be run on
constrained devices [84,85]. To achieve this, CoAP has a much lower header overhead and parsing
complexity than HTTP. It uses a 4-bytes base binary header that may be followed by compact binary
options and payload. Figure 13 shows the CoAP message format as specified in version 13 of the draft.
This version introduced a breaking change in the message format. However, it is expected that this will
be the final change of the format.

Figure 13. CoAP Message Format consisting of a 4-bytes base binary header followed by
optional extensions.

J. Sens. Actuator Netw. 2013, 2 263

The CoAP interaction model is similar to the client/server model of HTTP. A client can send a
CoAP request, requesting an action specified by a method code (GET, PUT, POST or DELETE) on a
resource (identified by a URI) on a server. The CoAP server processes the request and sends back a
response containing a response code and payload. Unlike HTTP, CoAP deals with these interchanges
asynchronously over a datagram-oriented transport such as UDP and thus it also supports multicast
CoAP requests. This allows CoAP to be used for point-to-multipoint interactions which are commonly
required in automation. Optional reliability is supported within CoAP itself by using a simple
stop-and-wait reliability mechanism upon request. Secure communication is also supported through the
optional use of Datagram Transport Layer Security (DTLS).

As can be seen in Figure 13 all CoAP messages start with a 4-bytes base binary header that consists
of the following fields:

• Version (V): A 2-bit unsigned integer indicating the CoAP version number. Current version
is 1. Other values are reserved for future versions.

• Type (T): A 2-bit unsigned integer indicating if this message is of type Confirmable (0),
Non-Confirmable (1), Acknowledgement (2) or Reset (3).

• Token Length (TKL): A 4-bit unsigned integer indicating the length of the variable-length
Token field (0-8 bytes). Lengths 9-15 are reserved.

• Code: An 8-bit unsigned integer indicating if the message carries a request (1–31) or a
response (64–191), or is empty (0). (All other code values are reserved.) In case of a request,
the Code field indicates the Request Method (1: GET; 2: POST; 3: PUT; 4: DELETE); in
case of a response a Response Code. Possible values are maintained in the CoAP Code
Registry (see section 12 of the draft).

• Message ID: A 16-bit unsigned integer in network byte order used for the detection of
message duplication, and to match messages of type Acknowledgement/Reset to messages
of type Confirmable/ Non-confirmable.

The base 4-bytes header may be followed by one or more of the following optional fields:

• Token: 0 to 8 bytes, as given by the Token Length field. The Token value is used to
correlate requests and responses. The rules for generating a Token and correlating requests
and responses are defined in Section 5 of the draft.

• Options: An Option can be followed by the end of the message, by another Option, or by
the Payload Marker and the payload. The format of the Options field is shown in Figure 14
and is described in more detail in the next paragraph.

• Payload: If present and of non-zero length, it is prefixed by a fixed, one-byte Payload
Marker (0xFF) which indicates the end of options and the start of the payload. The payload
data extends from after the marker to the end of the UDP datagram, i.e., the Payload Length
is calculated from the datagram size. The absence of the Payload Marker denotes a
zero-length payload.

J. Sens. Actuator Netw. 2013, 2 264

Figure 14. CoAP Option Format.

To be able to offer communication needs that cannot be satisfied by the base binary header alone,
CoAP defines a number of options which can be included in a message. Each option instance in a
message specifies the Option Number of the defined CoAP option. Instead of specifying the Option
Number directly, the instances must appear in order of their Option Numbers and a delta encoding is
used between them (The Option Number for each instance is calculated as the sum of its delta and the
Option Number of the preceding instance in the message. For the first instance in a message, a
preceding option instance with Option Number zero is assumed. Multiple instances of the same option
can be included by using a delta of zero). The fields in an option are:

• Option Delta: 4-bit unsigned integer. A value between 0 and 12 indicates the Option Delta.
A value of 13 indicates that an 8-bit unsigned integer follows the initial byte and indicates
the Option Delta minus 13. A value of 14 indicates that a 16-bit unsigned integer in network
byte order follows the initial byte and indicates the Option Delta minus 269. The value 15 is
reserved for the Payload Marker and cannot be used here. The resulting Option Delta is used
as the difference between the Option Number of this option and that of the previous option
(or zero for the first option).

• Option Length: 4-bit unsigned integer. A value between 0 and 12 indicates the length of the
Option Value, in bytes. A value of 13 indicates that an 8-bit unsigned integer precedes the
Option Value and indicates the Option Length minus 13. A value of 14 indicates that a
16-bit unsigned integer in network byte order precedes the Option Value and indicates the
Option Length minus 269. The value 15 is reserved for future use.

• Value: A sequence of exactly Option Length bytes. The length and format of the Option
Value depend on the respective option, which may define variable length values.

As an example of a simple CoAP option consider the Content-Format option. This option indicates
the representation format of the message payload. This option has the Option Number 12 and its
Option Length is between zero and two bytes. The Option Value itself is an unsigned integer that is
defined in the CoAP Content Format registry (Section 12 of the draft).

The IETF CoRE working group considers the constrained restful environments as an extension of
the current web architecture. The group envisions that CoAP will complement HTTP and that CoAP
will be used not only between constrained devices and between servers and devices in the constrained
environment, but also between servers and devices across the Internet [86]. An important requirement
of the CoRE working group is to ensure a simple mapping between HTTP and CoAP so that the
protocols can be proxied transparently. Thus proxies and/or gateways play a central role in the
constrained environments architecture. These proxies have to be able to communicate between the
Internet protocol stack and the constrained environments protocol stack and to translate between them
as needed.

J. Sens. Actuator Netw. 2013, 2 265

6.1.2. CoRE Link Format

Resource discovery is important for machine-to-machine (M2M) interactions, and is supported in
CoAP using the CoRE Link Format as described in RFC 6690 [87]. A well-known relative URI
“/.well-known/core” is defined as a default entry-point for requesting the list of links about resources
hosted by a server. Once the list of available resources is obtained from the server, the client can send
further requests to obtain the value of a certain resource. The example in Figure 15 shows a client
requesting the list of the available resources on the server (GET/.well-known/core). The returned list
shows that the server has, amongst others, a resource called/s/t that would return back the temperature
in degrees Celsius. The client then requests the value of this resource (GET/s/t) and gets a reply back
from the server (23.5C).

Figure 15. An example of Constrained RESTful Environments (CoRE) resource discovery
and Constrained Application Protocol (CoAP) request.

6.1.3. Block Transfer

In many cases the payloads that CoAP needs to carry is very small (e.g., just a few bytes for
temperature sensor, door lock status or toggling a light switch). In these cases the basic CoAP message
provides very efficient means of communication and work very well. However in some cases CoAP
needs to handle larger payloads (e.g., firmware update). Since CoAP is based on datagram transports
such as UDP or DTLS, data fragmentation and reassembly is not offered by these transport protocols.
Relying on IP fragmentation is also not very helpful, because fragmentation and reassembly does not
perform well in LLN due to memory requirements imposed by route-over routing as described in
Section 4. Additionally, IP fragmentation can handle only payloads up to 64 KiB. Thus, providing a
mechanism at the application layer that is able of transferring large amounts of data in smaller pieces
becomes a necessity. This will not just help avoid the 64KiB UDP datagram limit, but also will help
avoid both IP fragmentation (MTU of 1280 for IPv6) and also adaptation layer fragmentation in LLNs
(60–80 bytes for 6LoWPAN).

J. Sens. Actuator Netw. 2013, 2 266

To overcome the payload size limitation, draft-ietf-core-block defines two CoAP options: Block1
and Block2 [88]. By using this pair of options CoAP becomes capable of transferring a large payload
in multiple smaller CoAP messages. Both Block1 and Block2 options can be present both in request
and response messages. In either case, the Block1 Option pertains to the request payload, and the
Block2 Option pertains to the response payload. An important aspect of this mechanism is that often
the server can handle block transfers in a stateless fashion—it does not require connection setup and
the server does not need to track each transfer separately and thus conserve memory.

6.1.4. Observation of Resource

The state of a CoAP resource can change over time. In draft-ietf-core-observe [89] a simple CoAP
extension is defined that enables a server to inform interested clients about the state change. A client
interested in observing a resource includes the observe option in its GET request to the server.
Whenever there is a change of the resource state, the server sends a notification to the client. Also, in
case the state of the resource does not change, but the time since the last notification exceeds the
max-age value of the resource, a notification is sent. As such, observe offers the possibility for a client
to have an up-to-date representation of the resource without the client having to constantly poll for
changes. New resource states are transmitted from the server to the clients according to a best-effort
approach. The observe protocol foresees mechanisms to ensure consistency between the state observed
by each client and the actual resource state.

6.2. Implementation and Evaluation

6.2.1. CoAP Implementations

At the time of writing this article, the CoAP protocol still is not yet finalized. However it is
considered in its final stages before being finalized. Nevertheless several implementations of the CoAP
protocol for various platforms and programing languages already exist. Some of these implementations
are open source and others have commercial licenses. Interoperability between many of these
implementations has been formally tested by the European Telecommunications Standards Institute
(ETSI), a non-profit standards organization. ETSI organizes a series of events called ETSI Plugtests to
test interoperability of telecommunication technologies in a multi-vendor, multi-network or
multi-service environment. ETSI Plugtests, the IPSO Alliance and the FP7 Probe-it project have
organized two IoT CoAP Plugtests. In addition to assessing the interoperability of participating
products, these Plugtests events aimed to validate the CORE base standards. The first Plugtests event
(March 2012) was attended by 18 companies testing the world’s first CoAP client and server
implementations. The features tested at this event included the base CoAP specification, CoAP Block
Transfer, CoAP Observation and the CoRE Link Format. More than 90% of 3,000 tests executed in
this event were successful. According to ETSI Plugtests this result is classified as a high level of
interoperability [90].

At the second IoT CoAP Plugtests event (November 2012), some additional tests were added to
cover previously untested aspects of CoAP in addition to introducing new optional tests for proxy
functionality and M2M communication. In this event 1,775 test cases were performed, in 60 pairing test

J. Sens. Actuator Netw. 2013, 2 267

sessions, with a success rate of 97.8% [91]. The improvement in interoperability compared to the first IoT
CoAP Plugtests event indicates that the base CoAP protocol and its main options are getting more robust.

With insights of the first IoT Plugtests a survey on the current state of the art of lightweight REST
implementations was presented in [92]. In Table 7 we present an adapted version of the survey results.
In this adapted version we concentrate on publicly available implementations and servers and
commercial implementations that are publicly announced (See [92] for other implementations). This
table uses device classes as defined in [34]. Class 1 devices have ~10 KiB of RAM, and ~100 KiB of
ROM. Class 2 devices have ~50 KiB of RAM, and ~250 KiB of ROM.

Table 7. CoAP implementations. Please note that these implementations are work in
progress since CoAP itself is work in progress.

Name/ Company License Language Platform Notes
Consorzio Ferrara
Ricerche [93]

 NesC/C TinyOS Own “SiGLoWPAN” IPv6/6LoWPAN
stack for Class 1 devices

Californium [94]/ETH
Zurich

3-clause BSD Java JVM Framework for unconstrained devices;
provides client, server, and proxy stubs

Copper [95]/ETH Zurich 3-clause BSD JavaScript Firefox Management and testing tool as a browser
extension; focus on user interaction

Erbium [96]/ETH Zurich 3-clause BSD C Contiki For class 1 devices such as sensor nodes
CoAP++ [97]/iMinds C++ Click Modular

Router
Framework for unconstrained devices;
provides client, server, proxy and gateway

Evcoap [98]/KoanLogic 2-clause BSD C Linux General purpose protocol implementation
Patavina Technologies
[93]

Commercial C++ proprietary
OS

Wired and wireless embedded devices and
sensor nodes; working on a port to uC/OS
by Micrium

NanoService Device
Library [99]/Sensinode

Commercial C OS-independent C library for Class 1 and 2
devices. Also available a JAVA SDK for
unconstrained devices

libcoap[100]/Universität
Bremen TZI

GPLv2,
2-clause BSD

C POSIX and
Contiki

General purpose library for Class 1 and 2
devices and up

CoapBlip
[101]/Universität Bremen
TZI

BSD-style C TinyOS TinyOS-port of “libcoap”; runs on Class 1
devices.

coap.me [102]/Universität
Bremen TZI

 Ruby http://coap.me provides an HTTP front-end
to crawl CoAP servers, and a CoAP server
for interoperability testing

jCoAP [103]/Universität
Rostock

Apache 2.0 Java JVM For unconstrained devices; also targets
mobile and embedded platforms

Scuola Superiore
Sant'Anna [104]

 Erika API Erika OS A middleware for building an
infrastructure of wireless sensor nodes.

CoAPy [105]/People
Power

BSD Python Last updated on July 2010

CoAP in wiselib
[106]/wisebed project

GNU Lesser
GPL v3

c++ Wiselib algorithm classes can be compiled
for several sensor platforms such as iSense
or Contiki, or the simulator Shawn.

J. Sens. Actuator Netw. 2013, 2 268

The existence of such a wide range of implementations across a broad range of programing
languages and most importantly platforms (constrained and not) demonstrates the feasibility of the
protocol implementation.

6.2.2. CoAP Performance Evaluation

Going beyond mere compatibility tests and the ability to implement the protocol on constrained
devices, a few studies have been made in order to evaluate the protocol’s behavior and suitability for
certain IoT use cases. In particular the comparison between CoAP and HTTP has been studied a few
times. The results of such comparisons are considered preliminary since the CoAP protocol itself is not
fully standardized yet, and because the studies used the protocol at different stages of its development.
However these results still provide a good indication of what to expect when the protocol is fully
standardized and the used implementations are further optimized.

For example, the work described in [107] provides an evaluation of CoAP compared to HTTP in
terms of mote’s energy consumption and response time in wireless sensor networks. The results for
energy consumption, obtained by simulations for a fixed 10 second client request interval, show that
while receiving and processing packets, the energy consumed when using CoAP is approximately half
compared to the one consumed when using HTTP. While transmitting packets, the energy required by
CoAP is 4 times lower than the energy required by HTTP. On the other hand, while being in idle
mode, CoAP and HTTP result in similar values of energy consumption. When testing the response
time on real sensor motes, the results show that CoAP/UDP introduces 9 to 10 fold lower response
times than HTTP/TCP.

Similarly [108] evaluates the performance of HTTP/TCP and CoAP/UDP over a duty cycled radio
layer. With a small modification to the duty cycling layer the authors achieved great improvement in
performance at retained low power consumption. Furthermore they introduced an in-network caching
mechanism that significantly improves the performance of software updates in incrementally deployed
sensor networks.

In a third evaluation [109] the author finds that CoAP/UDP perform better than HTTP/TCP for the
intelligent cargo container use case he evaluated. In particular the author reports a 6 times lower
message size and a 4 times lower Round Trip Time (RTT). This is mainly due to CoAPs compressed
header and the avoidance of the TCP handshaking mechanisms. A further study of the same use
case [110] compares using CoAP/UDP to HTTP/UDP in addition to the typical HTTP/TCP. The study
shows that generally UDP based protocols perform better for constrained networks due to using lower
number of messages when retrieving resources. When comparing both protocols (CoAP and HTTP)
when run over UDP, the study shows that CoAP performs better than HTTP. CoAP also has the added
value of optional reliability since it has its own simple retransmission capability.

6.3. Leveraging Upon CoAP to Realize the IoT

The base CoAP protocol along with the three main complementary extensions (block, observe and
Core Link Format) provide a basic set of protocols to solve a wide range of communication needs in
constrained environment. However, since the protocol tries to be minimalistic and yet extendable at the
same time, a couple of needs remain unaddressed in these base protocols. To try to address the

J. Sens. Actuator Netw. 2013, 2 269

unsolved issues, a few individual Internet-Drafts were proposed in the CoRE working group. These
drafts are in various states of development, with various levels of CoRE review and interest.
A thorough overview of all these individual Internet-Drafts is given in draft-bormann-core-
roadmap [111]. In this subsection we highlight some of these individual Internet-Drafts and
complement them with additional literature that tries to leverage upon CoAP to realize the IoT.

6.3.1. Discovery and Naming

Resource Directory (RD) servers provide a way to collect resource descriptions from multiple
servers into one central location. To facilitate setting up such a RD, draft-shelby-core-resource-
directory identifies needed protocol elements [112].

In [97], CoAP is used to facilitate discovery and deployment of constrained devices. The proposed
approach makes use of CoAP and combines it with DNS in order to enable the use of user-friendly
fully qualified domain names (FQDN) for addressing sensor nodes. It also includes the translation of
HTTP to CoAP, thus making the sensor resources globally discoverable and accessible from any
Internet-connected client using either IPv6 addresses or DNS names both via HTTP or CoAP. This
approach can be enhanced by publishing the discovered resource to one or more RDs.

Another example of how DNS can be used in a hierarchical fashion to enable easier access to
resources is described in draft-ietf-core-groupcomm [113]. Here access to groups of resources can be
provided via the use of Group FQDN that are uniquely mapped to a site-local or global multicast IP
address via DNS resolution. For example the Group FQDN all.bldg6.example.com would refer to all
nodes in building 6 and the Group FQDN all.west.bldg6.example.com would refer to all nodes in the
west wing of building 6.

6.3.2. Congestion Control

The base CoAP draft only defines a very basic congestion control when using reliable message
transmissions and does not provide any congestion control when using the non-reliable transmissions
mode, that is likely to carry the majority of traffic. To overcome this shortcoming a few proposals try
to provide more advanced congestion control schemes. These proposals can generally provide more
optimized performance in exchange for more implementation complexity and/or a narrower field of
application. For example, draft-bormann-core-cocoa [114] defines some more advanced CoRE
congestion control mechanisms. The main idea here is to provide a way to better estimate the RTT
than that implied by the default initial timeout of 2 to 3 seconds. Further suggestions for the
enhancements to this estimation of the RTT are presented in [115].

Another mechanism for congestion control is proposed in [116] by adding an option that allows a
server to indicate its desire for some pacing of the requests sent to it by one client; enabling a form of
server load control.

6.3.3. Advanced Interaction Patterns

The base CoAP provides good support for the simple interaction patterns between clients and
servers. However more advanced interaction patterns such as the communication between a group of

J. Sens. Actuator Netw. 2013, 2 270

devices requires extensions to the base protocol. In fact, it is anticipated that constrained devices will
often naturally operate in groups (e.g., all window shutters on a given side of building may need to be
lowered or raised as a group). Draft-ietf-core-groupcomm [113] discusses fundamentals and use cases
for group communication patterns with CoAP. Building upon IPv6 multicast capabilities, the draft
describes how CoAP should be used in both constrained and unconstrained networks and provides
guidance for deployment in various network topologies. Although this draft has been adapted as a
working group draft, it is still (at least in certain parts) in an explorative mode and will require
additional investigation before conclusive results become available.

The CoAP observe option allows clients to register with servers to be notified whenever the state of a
resource changes [89], much like the publish/subscribe paradigm in conventional web services.
In [117] a new CoAP option “Condition” was proposed to extend the observe option. This option can be
used by a CoAP client to specify the conditions the client is interested in. Several condition types, i.e.,
filtering options, have been identified based on realistic use cases. Using conditional observations, the
CoAP server will send a notification response with the latest state change only when the criterion is met.
Using this mechanism a client can for example indicate that it is only interested in temperature values
above 25 °C and not in all state changes. The feasibility of implementing this conditional observe on a
constrained device is evaluated and proven in [118]. The correct operation for a simple scenario showed
that the use of conditional observations can result in a reduced number of packets and power
consumption compared to that which is normally observed in combination with client-side filtering.

6.3.4. Communication with Sleepy Nodes

Sleepy Nodes are network nodes that sleep most of the time in order to save energy and thus
achieve longer battery life times. The base CoAP standard assumes that the communication layers
below the application provide support functions for sleeping nodes. Adding better support for sleepy
nodes at the application layer might be able to further reduce the power requirements of these nodes.
This support is currently a very active subject of discussion in the CoRE working group; this is
apparent from the relatively high number (at least seven) of individual Internet Drafts in the group that
try to address this issue in one way or another.

The base CoAP provides minimal support for sleepy nodes by supporting caching in intermediaries.
Resources from a sleepy node may be available from a caching proxy (if previously retrieved) even
though the node is asleep. This support is enhanced by using the observe option and thus allowing
sleepy nodes to update caching intermediaries according to their own schedule.

Most of these proposals try to achieve better support for sleepy nodes either by extending the
functionality of the intermediaries or by extending the CoAP observe option or by a combination of
both. For example, [119] proposes to store the actual resource representations in a special type of RD
called the Mirror Server. Clients can then fetch the resource from the Mirror Server regardless of the
state of the sleepy server. One the other hand, by using the conditional observe option as proposed
in [120], the nodes may be allowed to sleep even longer. Similarly the approach of [121] is to
introduce storing of sleep characteristics in the RD. Clients can then query the RD to learn the sleep
status of the sleepy node before attempting communications. Both [120] and [121] include
using/extending the observe option as part of their overall approaches.

J. Sens. Actuator Netw. 2013, 2 271

A related patent [122], describes inserting sleep information into a header option or into a
payload of an application layer message. Whereas the application layer message may be conveyed in
HTTP or CoAP.

6.3.5. Security

Security is another hot topic on the CoRE working group with many drafts trying to tackle various
security aspects of the Things and the Information they reveal about the physical world. It is
anticipated that most real deployments of the IoT will require security services (e.g., confidentiality,
authentication, authorization). However it is also argued that there is no single security architecture for
the IoT [123]. A good description of the Thing Lifecycle is provided in [124] along with resulting
architectural considerations.

The authors of [125] present a three-phase protocol to bootstrap constrained devices in a wireless
sensor network based on IPv6 and CoAP. The protocol phases include service discovery, distribution
of security credentials, and application-specific node configuration.

CoAP proposes to use DTLS to provide end-to-end security to protect the IoT. However DTLS is a
heavyweight protocol and its headers are too long to fit in a single IEEE802.15.4 MTU. The works
presented in [126–129] look specifically into the use of DTLS in constrained networks from different
angles. As an example, while [128] shows how to build minimal implementations of TLS,
the approach used in [129] relies on providing 6LoWPAN header compression mechanisms to
reduce the size of the DTLS security headers. The authors report as an example that the number of
additional security bits needed for the DTLS Record header that is added in every DTLS packet, can
be reduced by 62%.

Another relevant security protocol is the Internet Key Exchange version 2 (IKEv2) which is a used
for setting up IPsec security associations. IKEv2 includes several optional features, which are not
needed in minimal implementations. The Minimal IKEv2 draft [130] shows how to build minimal
implementations of the security protocols IKEv2 for constrained environments.

6.3.6. Intermediaries

The base CoAP draft defines basic mapping between CoAP and HTTP. However it is expected that
Intermediaries will continue to play a big role in the IoT and that the basic mapping needs to be
enhanced to support advance features. Some ideas about these enhancements are presented in [131].
Additional useful examples for more advanced forms of mapping and usages are described in [132].

6.3.7. CoAP in Cellular Networks

The Short Message Service (SMS) of mobile cellular networks is frequently used in M2M
communications. The service offers small packet sizes and high delays just as other typical types of
LLNs. Since the design of CoAP takes the limitations of LLNs into account, it is expected that CoAP
can be nicely used with SMS. The adaptation of CoAP to the SMS transport mechanisms and the
combination with IP transported over cellular networks is described in [133].

J. Sens. Actuator Netw. 2013, 2 272

6.3.8. Real Life Use Cases of CoAP in the IoT

Some recent publications show that CoAP is being considered as a good candidate to solve current
issues in real life application of the IoT. For example, [110] presents an IP based solution to integrate
sensor networks used in a cargo container with existing logistic processes, highlighting the use of
CoAP for the retrieval of sensor data during land or sea transportation.

Kovatsch et al. [134] propose an IoT architecture where the infrastructure is agnostic of
applications and application development is fully decoupled from the embedded domain. This is
achieved by creating a common application layer that fosters the development of novel applications.
The application logic of devices is running on application servers, while thin servers embedded into
devices export only their elementary functionality using CoAP resources.

GlobalPlatform is a cross industry not-for-profit association which publishes specifications
facilitating the secure and interoperable deployment and management of multiple embedded
applications on secure chip technology. According to a recent presentation [135], GlobalPlatform is
considering the use of CoAP for the management of secure environments and other aspects covered by
GlobalPlatform standards.

Castro et al. [136] present how the IoT is integrated for improving terrestrial logistics offering a
comprehensive and flexible architecture, with high scalability, according to the specific needs for
reaching an item-level continuous monitoring solution. CoAP is used here to provide tracking and
monitoring services at any time during the transportation of goods. The solution makes use of observe
and blockwise transfer options to optimize data transfers.

Optimizing energy policies requires monitoring, analyzing, and controlling of power consumption.
Smart metering is an emerging topic for realizing such modern energy policies. In this field a large
number of proprietary and open standards for communication (with low or no interoperability to each
other) exist today. Therefore, it is very difficult to integrate multi-vendor solutions using one
sustainable holistic approach. To this end the authors of [35] propose to use Web Service technology
as an open widespread Internet standard for the creation of a heterogeneous network for smart
metering devices. This work uses CoAP over TCP transport instead of using it over UDP, which is still
not specified in the current CoAP drafts. Nevertheless, traffic overhead was reduced by over 90% by
using CoAP instead of HTTP and EXI for XML binary encoding.

Using CoAP and REsource LOcation And Discovery (RELOAD), [137] proposes a new architecture
for wide area sensor and actuator networking. RELOAD is a P2P signaling protocol for use on the
Internet that is currently being standardized by the IETF. The architecture provides a decentralized
peer-to-peer rendezvous service for CoAP nodes in WSNs and enables a P2P federation of
geographically distributed WSNs. This is achieved by the use of proxy nodes that are part of the WSN
but also connect to a RELOAD overlay network via cellular Internet access. The authors conclude that
such architecture is most beneficial for large-scale networks having from moderate to high levels of
interdevice communication.

Rahman et al. [138] present a smart object gateway architecture that allows for efficient service
delivery between the Smart Object and an endpoint on the Internet such as an application server. A
survey of some other examples of how CoAP is been used to realize the IoT can be found in [139].

J. Sens. Actuator Netw. 2013, 2 273

6.4. Research Challenges

Since CoAP is not fully standardized yet, many related aspects remain to be examined before
definite conclusions can be drawn. Some of these aspects are currently being researched and have been
documented in Section 6.3. Some other aspects have been identified but no solutions were proposed
yet. In this section we summarize the main aspects of the CoAP protocol where we think that extensive
research is still needed.

Although a few suggestions for congestion control were already proposed (see Section 6.3.2.), we
think that this area requires more research attention. The primary reason being that UDP is the main
transport mechanism for CoAP. Unlike TCP, UDP does not provide any reliability mechanism or
congestion control. CoAP has its own optional light weight reliability mechanism, but virtually no
congestion control. Simple mechanisms for congestion control, that are optimized for LLNs and that
take into account the limited amount of resources available on constrained devices are still lacking.

Another research aspect is related to the MTU size. The IPv6 minimum MTU is 1,280 bytes, whilst
the maximum MTU for IEEE 802.15.4 networks is 127 bytes. The 6LoWPAN adaptation layer
provides an efficient fragmentation method to allow the transmission of larger packets. However large
packet sizes still sometimes impose a big problem to the receiving party. If the received message does
not fit in the input buffer it could cause unpredictable effects on the receiving side, e.g., operating
system restarting because of buffer overflow. For this reason, it can be useful to specify during the
resource discovery sequence the maximum accepted length of the response message with the resource
description [140]. If both parties support the block option, agreeing on the optimal block transfer size
in a way that avoids fragmentation and assembly of the packet at the lower layers will possibly have a
high positive impact on the overall performance. This is something that needs further research and
experimentation.

Security of the IoT remains a challenge despite the fact that several proposals have already been
made to cover certain aspects of security. Issues such as secure distribution of encryption keys in LLNs
still need to be explored.

A basic mapping between HTTP and CoAP is well defined in the core CoAP draft. However since
CoAP is by design highly extendable and new options are being regularly added, such extensions
might impose new challenges to the HTTP/CoAP mapping. The same consideration also applies in
general to all intermediaries, that need to be updated if they wish to understand new options as well
(some basic information for intermediaries is contained in an option’s option number, which allows
intermediaries to correctly handle unknown options). Caching intermediaries have an even bigger
challenge to find out and implement optimal caching strategies.

Group communication in a LLN context still needs more attention as well. The use of multicast
satisfies many group communication needs, but not all of them. Multicasts are transported unreliable
and since LLNs are lossy by nature, many applications will opt not to use multicast if they want to
make sure that their messages are indeed delivered. For example, if multicast is used to turn on all the
lights in a room, it wouldn’t be acceptable if one light stays off because it did not receive the multicast
message. Alternatives to the use of multicasts might be needed for such use cases. Maybe status
synchronization of resources can also be used in certain use cases to make sure that the message did
indeed get through. The efficiency of such and other approaches need to be examined.

J. Sens. Actuator Netw. 2013, 2 274

Finally, some challenges are related to the fact that resources on constrained devices often need to
be accessed by other machines as well as by humans. These two types of “clients” have somewhat
contradictory requirements. Humans for example prefer easy to remember (and a bit lengthy) resource
names, while M2M communication is better served by providing concise names. Some more research
is needed in order to satisfy the needs of both types of “clients” without adding many requirements on
the constrained devices. The same considerations also apply to the use of extended semantics, e.g., a
Web Service Definition Language (WSDL). WSDL provides a machine-readable description of how a
web service can be used, what parameters it expects, and what data structures it returns. However
WSDL tends to become relatively verbose and long for constrained nodes to handle, thus alternatives
need to be researched.

7. Using IETF Standards to Realize the Internet of Things

7.1. Overview of the IETF LLN Protocol Stack

The previous sections provided an overview of different standards, their current status and open
research topics. Combined, these individual standards form an IETF LLN protocol stack to support the
realization of an interoperable Internet-of-things. In Figure 16 a representation is given of how the
different LLN standards fit together. Currently the entire IETF LLN protocol stack is available in the
Contiki OS, which is used in, for example, the CALIPSO FP7 project [31]. For simulating the IETF
LLN protocol stack OpenWSN [49] can also be used.

Figure 16. IETF LLN protocol stack.

The LLN protocol stack provides end-to-end access to embedded web services, thus enabling new
functionalities or building novel services involving IoT objects. This section focuses on the next
steps: which additional (new or existing) research, protocols and/or standards are needed to realize a
fully-automated, all-encompassing Internet of Things.

7.2. Realizing the Web of Things

To allow the integration of an increasingly large number of IoT devices, self-configuration
protocols will be required. Solutions for self-configuration such as [97] allow newly deployed
constrained devices to be automatically discovered, automatically assign DNS hostnames and
transparently make the IoT resources directly accessible and browsable over IPv6 via HTTP or CoAP.

J. Sens. Actuator Netw. 2013, 2 275

Alternatively, devices can add their resources to a publicly accessible directory service. This sort of
solution forms an important building block that facilitates the actual usage of embedded web services
(without human intervention) as is required for realizing the Web of Things (WoT). For instance, a
client can automatically be notified about new resources and continuously observe the state of a
resource using the CoAP observe extension [89], leading to a consistent representation of all
resources of interest. Using conditional observations [117], interested parties can be notified about
resource states that satisfy specific conditions, thereby acting as an enabler to build applications such
as sensor—actuator interactions. These extensions enrich the capabilities of the basic CoAP protocol
and contribute to the realization of the WoT.

Another important research domain focuses on web service composition whereby different IoT
services are combined to realize complex goals. For instance, embedded web services can
automatically be combined to create complex interaction scenarios where knowledge about the real
world is used, linked with other services and processed to act again upon the physical world. Existing
composition and orchestration frameworks such as described in [141], need to be extended in order to
realize the WoT. The main challenge is the adaptation of existing web service composition models to
take into account the limitations of constrained devices. Also, when time varying data from
constrained objects is incorporated or web services act upon the real world, issues such as consistency,
failures, correct execution of all transactions as described in [142] need to be explored in view of a
constrained environment.

The link between the IoT and state-of-the-art cloud technology solutions is made clear in [143].
Cloud technology can be used for collecting, storing and processing the enormous amount of sensor
data. Tiny objects can also be introduced as part of grid computing e.g., for the collection and
processing of environmental information. In [144] an extensive overview of the introduction of mobile
devices into Grid systems is given and an extension to the constrained world seems feasible with the
advent of embedded web service technology.

It is clear that the step from Internet of Things towards a Web of Things will be taken sooner rather
than later. The IoT can facilitate the realization of the WoT, opening up access to sensor data and
stimulating their widespread usage, while at the same time avoiding vertically integrated and closed
systems. As such, it presents great opportunities to researchers active as well in the field of web service
technology as in the field of embedded distributed systems.

7.3. Interoperability

One of the key factors to ensure the widespread use of IoT devices is to support end-to-end
interoperability between different devices. Currently interoperability between embedded devices is
enforced by use of a standardized IETF LLN protocol stack. Despite the efforts of the IETF working
groups, different interpretations of the standards remain a threat that causes interoperability problems
between implementations from different parties. Solving these issues requires identification of the
possible problems and clarification of the implementation details where necessary to prevent possible
ambiguities in the standards itself. Extensive interoperability testing events, like the ETSI Plugtests for
CoAP and in the future possibility for 6LoWPAN, significantly help to improve the quality of the
standards and the implementations.

J. Sens. Actuator Netw. 2013, 2 276

Another more fundamental issue to consider is that of low-power interoperability, i.e.,
interoperability when communicating parties employ (possibly different) MAC radio duty cycling
techniques. The authors of [145] identify two open issues, namely that existing protocols for LLNs
typically have not been designed for MAC duty cycling and that existing MAC duty cycling
mechanisms have not been designed for interoperability. While most of the IETF work is situated
above the MAC sublayer, it is important that these concerns are addressed in the future so that end-to-
end IPv6 connectivity with embedded devices, that employ heavy MAC duty cycling, is possible.

7.4. Bringing Semantics to the Web of Things

Semantics define a globally interpretable significance to data. Adding semantics to the IoT allows
data that originates from different sources to be unambiguously accessible and processable across
different domains and by different users. This allows describing data that is collected from the real
world which helps automated processing and integration of said data into applications. Semantic
descriptions are particularly useful in M2M environments where a high level of autonomy is assumed.
Said descriptions can also help to facilitate discovery and management of IoT devices and their
resources. In [146], the authors mention that the dynamicity and pervasiveness of the IoT domain
poses additional challenges for semantic description when compared to conventional web service
environments. More specifically, the volatility of the sensor data and the large scale of the IoT are new
challenges when defining semantics when compared to traditional web services.

When looking at the resources on the devices themselves (e.g., a temperature) several resource
representations can be explored: ranging from plain text formats, through formats defined by the IPSO
alliance [147] to complex semantic representations using ontologies that are adapted to the specific
applications and domains as described for instance in [148]. Furthermore, the SPITFIRE project [149]
has defined vocabularies to describe sensors and to integrate them with W3C’s Linked Open Data
cloud [150]. This allows linking sensor data with other data that is already available on the World
Wide Web (WWW). This brings the potential of semantic web technology (e.g., searching and
reasoning) to constrained devices, realizing a Semantic Web of Things.

Similar to search engines in the WWW, sensors and their resources could be indexed just like
regular web pages and made available to Internet users and other IoT devices. Of course, issues such as
time dependent aspects should be taken into consideration (e.g., indexing a temperature sensor)
introducing novel challenges and opportunities. Platforms like Cosm [151] already allow to make
sensor data publicly available, browsable and searchable but lack the ability to actively crawl and
index sensors.

7.5. Security and Privacy in the Web of Things

Applications running on embedded devices and LLNs often require confidentiality and integrity
protection. These security mechanisms can be provided at the application, transport, network, and/or at
the link layer. In all these cases, prevailing constraints will influence the choice of a particular
protocol. Some of the more relevant constraints are small code size, low power operation, low
complexity, and small bandwidth requirements.

J. Sens. Actuator Netw. 2013, 2 277

When securing embedded environments by using DTLS (as assumed within CoAP) at the transport
layer, IPSec at the network layer, or reusing IEEE 802.15.4 security primitives within the 6LoWPAN
adaptation layer; the problem of key distribution remains mostly untackled. It is often assumed that
each device has an appropriate asymmetric public and/or symmetric key installed. How these keys
actually are distributed and installed in a safe way, is often left open and is not part of current IETF
standards. To help solve this issue, work is executed within IETF’s Smart Object Lifecycle
Architecture for Constrained Environments (SOLACE) [152].

Apart from enabling secure communications between parties, privacy of WoT users is also an
important concern. As embedded devices measure and control the physical environment that surrounds
a WoT user, they can be (ab)used to gain insight into a user’s habits and whereabouts. Therefore it is
vital to enforce adequate access control to this sensitive information, in order to protect the user’s
privacy. As more and more internet-enabled things will gain an online presence, transparent and
easy-to-use management of what information devices may expose to the outside world will be needed.
For instance, you might want to give your AC vendor access to the temperature sensors in your house
without allowing them to turn on and off your lighting. While you might want to allow a different
vendor to only control your lighting. One approach as discussed in [153] is to group embedded devices
into virtual networks and only expose certain resources within each virtual network, thus achieving
access control at the network layer. Another option is to provide access control at the application layer,
where access to resources on embedded devices is granted/revoked on a per-vendor basis and the
application itself enforces the access control.

7.6. Reprogrammability

Finally, many IoT devices will have a long lifetime and will be deployed at locations that are
difficult to reach. As such, it is clear that some mechanism will be required to (wirelessly) update IoT
devices with new or updated firmware, software, protocols and/or security keys. As an example, the
DisSeNT project [154] already provides solutions to wirelessly add new application level components
at run-time to embedded devices.

Providing wireless updates to IoT devices is at the moment quite difficult because it requires
additional overhead in terms of the memory footprint of the software. In addition, (multi-hop)
transmitting a firmware image to multiple embedded devices quickly depletes the batteries of involved
devices. At the moment, very few embedded operating systems have the capability to execute these
kinds of updates: additional research and standards will be needed before future-proof IoT networks
can be deployed.

8. Conclusions

The popularity of sensor networks (and in a broader sense Internet of Things) has increased
significantly over the last ten years. Integration of these embedded devices into the Internet is
challenging, since they have characteristics that differ strongly from traditional internet devices,
such as very limited energy, memory and processing capabilities. Initially, research focused on
developing proprietary solutions that were typically vendor-specific and did not allow end-to-end
connectivity between client devices and sensor devices. However, the use of standardized protocols

J. Sens. Actuator Netw. 2013, 2 278

enables the integration of constrained devices in the IPv6 Internet, both at the network level and at the
service level.

In this paper, a high-level overview was given of the ongoing IETF standardization work that
focuses on enabling direct connectivity between clients and sensor devices. To this end, different IETF
groups are currently active. The IETF groups 6LoWPAN and ROLL focus on the IPv6 addressability
and routing, whereas the IETF CoRE group focuses on realizing an embedded counterpart for RESTful
web services. By combining these protocols, an embedded protocol stack can be created that has
similar characteristics to traditional internet protocol stacks. In fact, the IETF protocols are designed to
enable easy translation from internet protocols to sensor protocols and vice-versa.

The paper describes how the combination of IETF protocols enables flexible, direct interaction
between internet clients and embedded Internet of Things devices. However, the paper also shows that
the advent of standardized protocols is not an end point, but only a starting point for exploring
additional open issues that should be solved to realize an all-encompassing Internet of Things. Several
open challenges remain such as resource representation, security, dealing with sleeping nodes, energy
efficiency, integration with existing web service technologies and tools, linking with Cloud services,
use of semantics, easy creation of applications, scalability, interoperability with other wireless
standards, maintainability, etc.

Anyone involved in Internet of Things research (whether dealing with network layer aspects or
service layer aspects) will, sooner or later, be confronted with the IETF protocols. This paper merely
touches the surface of this broad domain and tries to encourage others to further explore the world of
Internet-connected objects and tackle the mentioned remaining open issues and challenges.

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 258885 (SPITFIRE project), from
the iMinds ICON projects GreenWeCan and O’CareCloudS, a FWO postdoc grant for Eli De Poorter
and a VLIR PhD scholarship to Isam Ishaq.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Kushalnagar, N.; Montenegro, G.; Schumacher, C.P.P. IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs): Overview, assumptions, problem statement, and goals. IETF RFC
4919. 2007; pp. 1–2.

2. Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. Transmission of IPv6 Packets over IEEE
802.15.4 Networks. IETF RFC 4944. 2007; pp. 1–30.

3. Routing Over Low power and Lossy networks (roll). Available online: http://datatracker.ietf.org/
wg/roll/ (accessed on 3 October 2012).

J. Sens. Actuator Netw. 2013, 2 279

4. ZigBee Alliance Plans Further Integration of Internet Protocol Standards. Available online:
https://docs.zigbee.org/zigbee-docs/dcn/09-5003.pdf (accessed on 3 October 2012).

5. Constrained RESTful Environments (core). Available online: http://datatracker.ietf.org/wg/core/
(accessed on 28 December 2012).

6. IPv6 over Low power WPAN (6lowpan). Available online: http://datatracker.ietf.org/
wg/6lowpan/ (accessed on 28 December 2012).

7. Constrained RESTful Environments (core). Available online: http://datatracker.ietf.org/wg/core/
(accessed on 28 December 2012).

8. IEEE 802.15.4. Available online: http://www.ieee802.org/15/pub/TG4.html (accessed on 28
December 2012).

9. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless
Personal Area Networks (LR-WPANs). 5 September 2011; pp. 1–314.

10. ZigBee Alliance. Available online: http://www.zigbee.org/ (accessed on 28 December 2012).
11. HART Communication Protocol and Foundation. Available online: http://www.hartcomm.org/

(accessed on 28 December 2012).
12. MiWi Development Environment. Available online: http://www.microchip.com/miwi (accessed

on 28 December 2012).
13. ISA100 Wireless Systems for Automation. Available online: http://www.isa.org/isa100 (accessed

on 28 December 2012).
14. Vasseur, J.-P.; Dunkels, A. Interconnecting Smart Objects with IP: The Next Internet; Morgan

Kaufmann: Amsterdam, Holand, 2010.
15. Montenegro, G.; Kushalnagar, N.; Hui, J.W.; Culler, D.E. Transmission of IPv6 Packets over

IEEE 802.15.4 Networks. IETF RFC 4944. 2007.
16. Hui, J.; Thubert, P. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based

Networks. IETF RFC 6282. 2011; pp. 1–24.
17. Chakrabarti, S.; Nordmark, E.; Bormann, C. Neighbor Discovery Optimization for IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPANs); Shelby, Z., Ed.; IETF RFC 6775.
2012; pp. 1–55.

18. Kim, E.; Kaspar, D. Design and Application Spaces for IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs). IETF RFC 6568. 2012; pp. 1–28.

19. Gomez, C.; Kim, E.; Kaspar, D.; Bormann, C. Problem Statement and Requirements for IPv6
over Low-Power Wireless Personal Area Network (6LoWPAN) Routing. IETF RFC 6606. 2007.

20. Nieminen, J.; Savolainen, T.; Isomaki, M.; Shelby, Z.; Gomez, C. Transmission of IPv6 Packets
over BLUETOOTH Low Energy. draft-ietf-6lowpan-btle-11. 2012.

21. IPv6 Over Low power WPAN (6LoWPAN) Charter. Available online:
http://datatracker.ietf.org/wg/6lowpan/charter/ (accessed on 13 December 2012).

22. Hui, J.; Culler, D.; Chakrabarti, S. 6LoWPAN: Incorporating IEEE 802.15.4 into the IP
architecture 2009, p. 17.

23. Mulligan, G. The 6LoWPAN Architecture. In Proceedings of the 4th Workshop on Embedded
Networked Sensors; Cork, Ireland, 25–26 June 2007; ACM: New York, NY, USA, 2007;
pp. 78–82.

J. Sens. Actuator Netw. 2013, 2 280

24. Cody-Kenny, B.; Guerin, D.; Ennis, D.; Carbajo, R.S.; Huggard, M.; McGoldrick, C.
Performance Evaluation of the 6LoWPAN Protocol on MICAz and TelosB Motes. In
Proceedings of 4th ACM Workshop on Performance Monitoring and Measurement of
Heterogeneous Wireless and Wired Networks; Tenerife, Canary Islands, Spain, 26 October 2009;
ACM: New York, NY, USA, 2009; pp. 25–30.

25. Sulthana, M.R.; Bhuvaneswari, P.T.V.; Rama, N. Routing Protocols in 6LoWPAN: A Survey.
Eur. J. Sci. Res. 2012, 85, 248–261.

26. Borman, C. 6LoWPAN Generic Compression of Headers and Header-like Payloads.
draft-bormann-6lowpan-ghc-05. 2012.

27. Sahara Project. Available online: http://sahara.tzi.org/ (accessed on 10 December 2012).
28. HOBNET project. Available online: http://www.hobnet-project.eu/ (accessed on 10 December

2012).
29. Outsmart: FP7 Framework Project. Available online: http://www.fi-ppp-outsmart.eu/en-

uk/Pages/default.aspx (accessed on 10 December 2012).
30. Cassaniti, D. A Multihop 6LoWPAN Wireless Sensor Network for Waste Management

Optimization, M.Sc. thesis, University of Padova, Padova, Italy, 2012, p. 154.
31. Calipso Project. Available online: http://www.ict-calipso.eu/ (accessed on 10 December 2012).
32. Khoshdelniat, R. 6LoWPAN Applications and Internet of Things. Available online:

http://www.apan.net/meetings/Hanoi2010/Session/SensNet.php (accessed on 10 December
2012).

33. Schoenwaelder, J.; Sehgal, A.; Tsou, T.; Zhou, C. Definition of Managed Objects for IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs). draft-schoenw-6lowpan-mib-01.
2012.

34. Bormann, C. Guidance for Light-Weight Implementations of the Internet Protocol Suite. draft-
ietf-lwig-guidance-02. 2012.

35. Altmann, V.; Skodzik, J.; Golatowski, F.; Timmermann, D. Investigation of the Use of
Embedded Web Services in Smart Metering Applications. In Proceedigns of the 38th Annual
Conference of the IEEE Industrial Electronics Society (IECON2012), Montréal, PQ, Canada,
25–28 October 2012.

36. Routing over Low power and Lossy networks (roll)—Charter. Available online:
http://datatracker.ietf.org/wg/roll/charter/ (accessed on 27 December 2012).

37. Pister, K.; Thubert, P.; Phinney, T. Industrial Routing Requirements in Low-Power and Lossy
Networks. IETF RFC 5673. 2009; pp. 1–27.

38. Buron, J.; Brandt, A.; Porcu, G. Home Automation Routing Requirements in Low-Power and
Lossy Networks. IETF RFC 5826. 2010; pp. 1–17.

39. Martocci, J.; Mil, P. De; Riou, N.; Vermeylen, W. Building Automation Routing Requirements
in Low-Power and Lossy Networks. IETF RFC 5867. 2010, pp. 1–26.

40. Watteyne, T.; Berkeley, U.C.; Winter, T.; Barthel, D. Routing Requirements for Urban Low-
Power and Lossy Networks. IETF RFC 5548. 2009, pp. 1–21.

41. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.;
Vasseur, J.P.; Alexander, R. RPL: IPv6 routing protocol for low-power and lossy networks. IETF
RFC 6550. 2013; pp. 1–157.

J. Sens. Actuator Netw. 2013, 2 281

42. Vasseur, J.; Kim, M.; Pister, K.; Dejean, N.; Barthel, D. Routing metrics used for path
calculation in low power and lossy networks. IETF RFC 6551. 2011; pp. 1–30.

43. Thubert, P. Objective Function Zero for the Routing Protocol for Low-Power and Lossy
Networks (RPL). IETF RFC 6552. 2012; pp. 1–14.

44. Gnawali, O.; Levis, P. The Minimum Rank with Hysteresis Objective Function. IETF RFC 6719.
2012, 1–13.

45. Clausen, T.; Gnawali, O.; Ko, J.; Hui, J. The Trickle Algorithm. IETF RFC 6206. 2011; pp. 1–
13.

46. Conta, A.; Gupta, M. Internet control message protocol (icmpv6) for the internet protocol version
6 (ipv6) specification. IETF RFC 4443. 2006; pp. 1–24.

47. TinyRPL—TinyOS Documentation Wiki. Available online: http://docs.tinyos.net/tinywiki/
index.php/TinyRPL (accessed on 27 December 2012).

48. Tsiftes, N.; Eriksson, J.; Dunkels, A. Low-power Wireless IPv6 Routing with ContikiRPL. In
Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN ’10, Stockholm, Sweden, 12–16 April 2010, ACM Press: New York, NY, USA,
2010; p. 406.

49. Berkeley’s OpenWSN Project. Available online: http://openwsn.berkeley.edu/ (accessed on 28
December 2012).

50. Nano-RK. Available online: http://www.nanork.org/projects/nanork (accessed on 28 December
2012).

51. Jeong, J. Design and Implementation of Low Power Wireless IPv6 Routing for NanoQplus. In
Proceedings of the 13th International Conference on Advanced Communication Technology
(ICACT), Daejeon, South Korea, 13–16 February 2011; pp. 966–971.

52. Pavković, B.; Theoleyre, F.; Duda, A. Multipath Opportunistic RPL Routing over IEEE
802.15.4. In Proceedings of the 14th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, MSWiM ’11, Miami Beach, FL, USA, 31 October
2011; ACM Press: New York, NY, USA, 2011; p. 179.

53. Saad, L.; Chauvenet, C.; Tourancheau, B. Simulation of the RPL Routing Protocol for IPv6
Sensor Networks: Two Cases Studies. In Proceedings of the International Conference on Sensor
Technologies and Applications, Nice, France, 21–27 August 2011; Volume 2011.

54. Contiki: The Open Source Operating System for the Internet of Things. Available online:
http://www.contiki-os.org/ (accessed on 20 December 2012).

55. Bartolozzi, L.; Pecorella, T.; Fantacci, R. ns-3 RPL module: IPv6 routing protocol for low power
and lossy networks. In Proceedings of the 5th International ICST Conference on Simulation
Tools and Techniques (SIMUTOOLS), Desenzano, Italy, 19–23 March 2012; pp. 359–366.

56. Hammerseth, S.K. Implementing RPL in a Mobile and Fixed Wireless Sensor Network with
OMNeT++. M.Sc. Thesis, University of Oslo, Oslo, Norway, 29 November 2012, pp. 1–101.

57. rpl-jsim-platform—Implementation of RPL functionality in JSim platform—Google Project
Hosting. Available online: http://code.google.com/p/rpl-jsim-platform/ (accessed on on 20
December 2012).

58. Gnawali, O.; Levis, P. Recommendations for Efficient Implementation of RPL. draft-gnawali-
roll-rpl-recommendations-04. 2012.

J. Sens. Actuator Netw. 2013, 2 282

59. Tripathi, J.; Oliveira, J.; Vasseur, J.-P. Performance Evaluation of the Routing Protocol for Low-
Power and Lossy Networks (RPL). IETF RFC 6687. 2012; pp. 1–26.

60. Ko, J.; Eriksson, J.; Tsiftes, N.; Dawson-haggerty, S.; Terzis, A.; Dunkels, A.; Culler, D.
ContikiRPL and TinyRPL: Happy Together. In Proceedings of the workshop on Extending the
Internet to Low power and Lossy Networks (IP+SN), Chicago, IL, USA, 11 April 2011.

61. Clausen, T. H.; Herberg, U.; Philipp, M. A Critical Evaluation of the IPv6 Routing Protocol for
Low Power and Lossy Networks(RPL). In Proceedings of the 2011 IEEE 7th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
Wuhan, China, 23–25 September 2011; pp. 365–372.

62. Xie, W.; Goyal, M.; Hosseini, H.; Martocci, J.; Bashir, Y.; Baccelli, E.; Durresi, A. A
Performance Analysis of Point-to-Point Routing along a Directed Acyclic Graph in Low Power
and Lossy Networks. In Proceedings of the 13th International Conference on Network-Based
Information Systems (NBiS), Takayama, Japan, 14–16 September 2010; pp. 111–116.

63. Baccelli, E.; Philipp, M.; Goyal, M. The P2P-RPL Routing Protocol for IPv6 Sensor Networks:
Testbed Experiments. In Proceedings of the 19th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 15–17 September
2011; pp. 1–6.

64. Hui, J.; Kelsey, R. Multicast Protocol for Low power and Lossy Networks (MPL). draft-ietf-roll-
trickle-mcast-02. 2012; pp. 1–24.

65. Oikonomou, G.; Phillips, I. Stateless Multicast Forwarding with RPL in 6LowPAN Sensor
Networks. In Proceedings of the 2012 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom), City, Country, 19–23 March 2012; pp. 272–277.

66. Dawans, S.; Duquennoy, S.; Bonaventure, O. On Link Estimation in Dense RPL Deployments. In
Proceedings of the International Workshop on Practical Issues in Building Sensor Network
Applications (IEEE SenseApp 2012), Clearwater, FL, USA, 22–25 October 2012; pp. 956–959.

67. Goyal, M.; Baccelli, E.; Brandt, A.; Martocci, J. A Mechanism to Measure the Routing Metrics
along a Point-to-point Route in a Low Power and Lossy Network. draft-ietf-roll-p2p-
measurement-07. 2013; pp. 1–26.

68. Goyal, M.; Baccelli, E.; Philipp, M.; Brandt, A.; Martocci, J. Reactive Discovery of Point-to-
Point Routes in Low Power and Lossy Networks. draft-ietf-roll-p2p-rpl-15. 2012; pp. 1–36.

69. Herberg, U.; Clausen, T. A Comparative Performance Study of the Routing Protocols LOAD and
RPL with Bi-directional Traffic in Low-power and Lossy Networks (LLN). In Proceedings of the
8th ACM Symposium on Performance Evaluation of Wireless ad Hoc, Sensor, and Ubiquitous
Networks (PE-WASUN), Miami Beach, FL, USA, 31 October–4 November 2011; ACM Press:
New York, NY, USA, 2011; pp. 73–80.

70. Ko, J.; Gnawali, O.; Culler, D.; Terzis, A. Evaluating the Performance of RPL and 6LoWPAN in
TinyOS. In Proceedings of the Workshop on Extending the Internet to Low power and Lossy
Networks (IP+SN), Chicago, IL, USA, 11 April 2011.

71. Accettura, N.; Grieco, L.A.; Boggia, G.; Camarda, P. Performance analysis of the RPL Routing
Protocol. In Proceedings of IEEE International Conference on Mechatronics, Istanbul, Turkey,
13–15 April 2011; pp. 767–772.

J. Sens. Actuator Netw. 2013, 2 283

72. Bressan, N.; Bazzaco, L.; Bui, N.; Casari, P.; Vangelista, L.; Zorzi, M. The Deployment of a
Smart Monitoring System Using Wireless Sensor and Actuator Networks. In Proceedings of the
First IEEE International Conference on Smart Grid Communications (SMARTGRIDCOMM),
Gaithersburg, Maryland, USA, 4–6 October 2010; pp. 49–54.

73. Chen, Y.; Chanet, J.P.; Hou, K.M. RPL Routing Protocol a case study: Precision agriculture.
In Proceedings of the First China-France Workshop on Future Computing Technology
(CF-WoFUCT 2012), Harbin, China, 16–17 February 2012.

74. Becker, M.; Pötsch, T.; Kuladinithi, K.; Görg, C. Deployment of CoAP in Transport Logistics. In
Proceedings of 36th IEEE Conference on Local Computer Networks (LCN), Bonn, Germany,
4–7 October 2011; pp. 1–3.

75. Guo, J.; Orlik, P.; Bhatti, G. Loop Free DODAG Local Repair. draft-guo-roll-loop-free-dodag-
repair-00. 2012; pp. 1–17.

76. Guo, J.; Orlik, P.; Bhatti, G. Loop Free RPL. draft-guo-roll-loop-free-rpl-01. 2013; pp. 1–20.
77. Ko, J.; Jeong, J.; Park, J.; Jun, J.; Kim, N. RPL Routing Pathology In a Network With a Mix of

Nodes Operating in Storing and Non-Storing Modes. draft-ko-roll-mix-network-pathology-01.
2012, 1–9.

78. Baryun, A. The Node Ability of Participation (NAP). draft-baryun-roll-nap-00. 2013; pp. 1–9.
79. Goyal, M.; Barthel, D.; Baccelli, E. DIS Modifications. draft-goyal-roll-dis-modifications-01.

2013; pp. 1–11.
80. Hong, K.-S.; Choi, L. DAG-based multipath routing for mobile sensor networks. In Proceedings

of the International Conference on ICT Convergence (ICTC), Seoul, Korea (South), 28–30
September 2011; pp. 261–266.

81. Lee, K.C.; Sudhaakar, R.; Ning, J.; Dai, L.; Addepalli, S.; Vasseur, J.P.; Gerla, M.A
Comprehensive Evaluation of RPL under Mobility. Int. J. Veh. Technol. 2012, 2012, 1–10.

82. Carels, D.; Poorter, E.De; Moerman, I.; Demeester, P. Extending the IETF RPL routing protocol
with mobility support. 2013. In press.

83. Shelby, Z.; Hartke, K.; Bormann, C.; Frank, B. Constrained Application Protocol (CoAP). draft-
ietf-core-coap-13. 2012.

84. Colitti, W.; Steenhaut, K.; Caro, N. De Integrating Wireless Sensor Networks with the Web. In
Proceedings of Workshop on Extending the Internet to Low power and Lossy Networks, Chicago,
IL, USA, 11 April 2011.

85. Yazar, D.; Dunkels, A. Efficient Application Integration in IP-based Sensor Networks. In
Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency
in Buildings, BuildSys ’09, Berkeley, USA, 4–6 November 2009; ACM Press: New York, NY,
USA, 2009; p. 43.

86. Shelby, Z. Embedded web services. IEEE Wirel. Commun. 2010, 291, 76–81.
87. Shelby, Z. Constrained RESTful Environments (CoRE) Link Format. IETF RFC 6690. 2012.
88. Bormann, C.; Shelby, Z. Blockwise transfers in CoAP. draft-ietf-core-block-10. 2012.
89. Hartke, K. Observing Resources in CoAP. draft-ietf-core-observe-07. 2012.
90. 1st CoAP Plugtest; Technical Report CTI Plugtest Report 1.1.1; 2012.

J. Sens. Actuator Netw. 2013, 2 284

91. Velez, L. IoT COAP#2 Interop Event Preliminary Report. Available online:
http://svn.tools.ietf.org/svn/wg/core/Preliminary-Results-CoAP%232.pdf (accessed on 28
December 2012).

92. Lerche, C.; Hartke, K.; Kovatsch, M. Industry Adoption of the Internet of Things: A Constrained
Application Protocol Survey. In Proceedings of the 7th International Workshop on Service
Oriented Architectures in Converging Networked Environments (SOCNE 2012); Kraków,
Poland, 17–21 September 2012.

93. Castellani, A.P.; Gheda, M.; Bui, N.; Rossi, M.; Zorzi, M. Web Services for the Internet of
Things through CoAP and EXI. In Proceedings of IEEE International Conference on
Communications Workshops (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–6.

94. Californium (Cf) CoAP framework in Java. Available online: http://people.inf.ethz.ch/
mkovatsc/californium.php (accessed on 28 December 2012).

95. Copper (Cu) Add-ons for Firefox. Available online: https://addons.mozilla.org/en-
us/firefox/addon/copper-270430/ (accessed on 28 December 2012).

96. Erbium (Er) REST Engine and CoAP Implementation for Contiki. Available online:
http://people.inf.ethz.ch/mkovatsc/erbium.php (accessed on 28 December 2012).

97. Ishaq, I.; Hoebeke, J.; Rossey, J.; De Poorter, E.; Moerman, I.; Demeester, P. Facilitating Sensor
Deployment, Discovery and Resource Access Using Embedded Web Services. In Proceedings of
the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, Palermo, Italy, 4–6 July 2012; pp. 717–724.

98. evcoap. Available online: https://github.com/koanlogic/webthings/tree/master/bridge/sw/lib/
evcoap (accessed on 29 December 2012).

99. NanoService. Sensinode Ltd. Available online: http://www.sensinode.com/EN/products/
nanoservice.html (accessed on 22 December 2012).

100. libcoap: C-Implementation of CoAP. Available online: http://libcoap.sourceforge.net/ (accessed
on 22 December 2012).

101. CoAP. TinyOS Documentation Wiki. Available online: http://docs.tinyos.net/tinywiki/index.php/
CoAP (accessed on 22 December 2012).

102. coap.me. Available online: http://coap.me/ (accessed on 22 December 2012).
103. jcoap is a Java Library implementing the Constrained Application Protocol (CoAP)—Google

Project Hosting. Available online: http://code.google.com/p/jcoap/ (accessed on 22 December
2012).

104. Constraint Application Protocol (CoAP) for ERIKA embedded OS. Available online:
http://rtn.sssup.it/index.php/research-activities/middleware-of-things/middleware-of-things/11-
research-activities/35-coaperika (accessed on 22 December 2012).

105. CoAPy: Constrained Application Protocol in Python—CoAPy v0.0.2 documentation. Available
online: http://coapy.sourceforge.net/ (accessed on 29 December 2012).

106. ibr-alg/wiselib. GitHub. Available online: https://github.com/ibr-alg/wiselib (accessed on 22
December 2012).

J. Sens. Actuator Netw. 2013, 2 285

107. Colitti, W.; Steenhaut, K.; De Caro, N.; Buta, B.; Dobrota, V. Evaluation of Constrained
Application Protocol for Wireless Sensor Networks. In Proceedings of the 18th IEEE Workshop
on Local & Metropolitan Area Networks (LANMAN), Chapel Hill, NC, USA, 13–14 October
2011; pp. 1–6.

108. Duquennoy, S.; Wirström, N.; Tsiftes, N.; Dunkels, A. Leveraging IP for Sensor Network
Deployment. In Proceedings of the workshop on Extending the Internet to Low power and Lossy
Networks (IP+SN 2011), Chicago, IL, USA, 11 April 2011.

109. Pötsch, T. Performance of the Constrained Application Protocol for Wireless Sensor Networks.
Available online: http://www.comnets.uni-bremen.de/itg/itgfg521/aktuelles/fg-workshop-
29092011/ITG_HH_thomas_poetsch.pdf (accessed on 29 December 2012).

110. Kuladinithi, K.; Bergmann, O.; Pötsch, T.; Becker, M.; Görg, C. Implementation of CoAP and its
Application in Transport Logistics. In Extending the Internet to Low power and Lossy Networks’
(IP+SN 2011), Chicago, IL, USA, 11 April 2011.

111. Bormann, C. CoRE Roadmap and Implementation Guide. draft-bormann-core-roadmap-03.
2012.

112. Shelby, Z.; Krco, S.; Bormann, C. CoRE Resource Directory. draft-shelby-core-resource-
directory-04. 2012.

113. Rahman, A.; Dijk, E. Group Communication for CoAP. draft-ietf-core-groupcomm-04. 2012.
114. Bormann, C. CoAP Simple Congestion Control/Advanced. draft-bormann-core-cocoa-00. 2012.
115. Gurtov, A.; Dashkova, E. Computing the Retransmission Timeout in COAP. Available online:

http://www.etsi.org/plugtests/COAP2/Presentations/08_Computing_Retransmission_Timeout.pdf
(accessed on 20 December 2012).

116. Greevenbosch, B. CoAP Minimum Request Interval. draft-greevenbosch-core-minimum-request-
interval-00. 2012.

117. Li, S.; Hoebeke, J.; Jara, A.J. Conditional observe in CoAP. draft-li-core-conditional-observe-02.
2012.

118. Ketema, G.; Hoebeke, J.; Moerman, I.; Demeester, P. Efficiently observing Internet of Things
Resources. In Proceedings of The IEEE International Conference on Cyber, Physical and Social
Computing, Besançon, France, 20–23 November 2012.

119. Vial, M. CoRE Mirror Server. draft-vial-core-mirror-server-00. 2012.
120. Hoebeke, J.; Carles, D.; Ishaq, I.; Ketema, G.; Rossey, J.; De Poorter, E.; Moerman, I.;

Demeester, P. Leveraging upon Standards to Build the Internet of Things. In Proceedings of the
19th IEEE Symposium on Communications and Vehicular Technology in the Benelux;
Eindhoven, The Netherlands, 16 November 2012.

121. Rahman, A. Enhanced Sleepy Node Support for CoAP. draft-rahman-core-sleepy-01. 2012.
122. Application Layer Protocol Support for Sleeping Nodes in Constrained Networks. US Patent

20120151028. Available online: http://www.google.com/patents/US20120151028 (accessed on
23 December 2012).

123. Tschofenig, H. Report from the Smart Object Security Workshop. Available online:
http://www.ietf.org/proceedings/83/slides/slides-83-saag-3.pdf (accessed on 18 December 2012).

124. Garcia-Morchon, O.; Keoh, S.; Kumar, S.; Hummen, R.; Struik, R. Security Considerations in
the IP-based Internet of Things. draft-garcia-core-security-04. 2012.

J. Sens. Actuator Netw. 2013, 2 286

125. Bergmann, O.; Gerdes, S.; Schafer, S.; Junge, F.; Bormann, C. Secure Bootstrapping of Nodes in
a CoAP Network. In Proceedings of the IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), Paris, France, 1 April 2012; pp. 220–225.

126. Hartke, K.; Bergmann, O. Datagram Transport Layer Security in Constrained Environments.
draft-hartke-core-codtls-02. 2012.

127. Raza, S.; Trabalza, D.; Voigt, T. 6LoWPAN Compressed DTLS for CoAP. In IEEE 8th
International Conference on Distributed Computing in Sensor Systems, Hangzhou, China, 16–18
May 2012; pp. 287–289.

128. Tschofenig, H.; Gilger, J. A Minimal (Datagram) Transport Layer Security Implementation.
draft-tschofenig-lwig-tls-minimal-01. 2012.

129. Brachmann, M.; Garcia-Morchon, O.; Kirsche, M. Security for Practical CoAP Applications:
Issues and Solution Approaches. In Proceedings of the 10th GI/ITG KuVS Fachgespraech
Sensornetze (FGSN11), Paderborn, Germany, 15–16 September 2011.

130. Kivinen, T. Minimal IKEv2. draft-kivinen-ipsecme-ikev2-minimal-01. 2012.
131. Castellani, A.; Loreto, S.; Rahman, A.; Fossati, T.; Dijk, E. Best Practices for HTTP-CoAP

Mapping Implementation. draft-castellani-core-httSp-mapping-05. 2012.
132. Castellani, A.; Loreto, S.; Rahman, A.; Fossati, T.; Dijk, E. Best Practices for HTTP-CoAP

Mapping Implementation. draft-castellani-core-advanced-http-mapping-00. 2012.
133. Becker, M.; Li, K.; Kuladinithi, K.; Poetsch, T. Transport of CoAP over SMS, USSD and GPRS.

draft-becker-core-coap-sms-gprs-02. 2012.
134. Kovatsch, M.; Mayer, S.; Ostermaier, B. Moving Application Logic from the Firmware to the

Cloud: Towards the Thin Server Architecture for the Internet of Things. In Proceedings of the
Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, Palermo, Italy, 4–6 July 2012; pp. 751–756.

135. Hans, S. Secure Environment management based on CoAP. In Proceedings of the ETSI CoAP
Workshop; Sophia Antipolis, France, 27–30 November 2012.

136. Castro, M.; Jara, A.J.; Skarmeta, A. Architecture for improving terrestrial logistics based on the
Web of Things. Sensors 2012, 12, 6538–6575.

137. Mäenpää, J.; Bolonio, J.; Loreto, S. Using RELOAD and CoAP for wide area sensor and actuator
networking. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 121.

138. Rahman, A.; Gellert, D.; Seed, D.N. A Gateway Architecture for Interconnecting Smart Objects
to the Internet. In Proceedings of the Workshop Interconnecting Smart Objects with the Internet,
Prague, Czech Republic, 25 March 2011.

139. Villaverde, B.C.; Pesch, D.; De Paz Alberola, R.; Fedor, S.; Boubekeur, M. Constrained
Application Protocol for Low Power Embedded Networks: A Survey. In Proceedings of the Sixth
International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
Palermo, Italy, 4–6 July 2012; pp. 702–707.

140. Barbieri, D. CoAP Improvements to Meet Embedded Device Hardware Constraints. In
Proceedings of the Workshop Interconnecting Smart Objects with the Internet, Prague, Czech
Republic, March 2011.

141. Yahyaoui, H.; Maamar, Z.; Boukadi, K. A framework to coordinate web services in composition
scenarios. Int. J. Web Grid Serv. 2010, 6, 95–123.

J. Sens. Actuator Netw. 2013, 2 287

142. Gao, L.; Urban, S.D.; Ramachandran, J. A survey of transactional issues for Web Service
composition and recovery. Int. J. Web Grid Serv. 2011, 7, 331.

143. Kim, W. Cloud computing adoption. Int. J. Web Grid Serv. 2011, 7, 225–245.
144. Rodriguez, J.M.; Zunino, A.; Campo, M. Introducing mobile devices into Grid systems: A survey

Int. J. Web Grid Serv. 2011, 7, 1–40.
145. Dunkels, A.; Eriksson, J.; Tsiftes, N. Low-power Interoperability for the IPv6-Based Internet of

Things. In Proceedings of the 10th Scandinavian Workshop on Wireless Ad-Hoc Networks
(ADHOC’11), Stockholm, Sweden, 10–11 May 2011.

146. Barnaghi, P.; Wang, W.; Henson, C.; Taylor, K. Semantics for the Internet of Things. Int. J.
Semant. Web Inf. Syst. 2012, 8, 1–21.

147. Shelby, Z.; Chauvenet, C. The IPSO Application Framework. draft-ipso-app-framework-04.
2012.

148. Abdulrazak, B.; Chikhaoui, B.; Vallerand, C.G.; Fraikin, B. A standard ontology for smart
spaces. Int. J. Web Grid Serv. 2010, 6, 244.

149. Pfisterer, D.; Romer, K.; Bimschas, D.; Kleine, O.; Mietz, R.; Truong, C.; Hasemann, H.;
Kröller, A.; Pagel, M.; Hauswirth, M.; et al. SPITFIRE: Toward a semantic web of things. IEEE
Commun. Mag. 2011, 49, 40–48.

150. SweoIG/TaskForces/CommunityProjects/LinkingOpenData. W3C Wiki. Available online:
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData (accessed
on 21 December 2012).

151. Cosm. Internet of Things Platform Connecting Devices and Apps for Real-Time Control and
Data Storage. Available online: https://cosm.com/ (accessed on 21 December 2012).

152. solace Info Page. Available online: https://www.ietf.org/mailman/listinfo/solace (accessed on 27
December 2012).

153. Ishaq, I.; Hoebeke, J.; Moerman, I.; Demeester, P. Internet of Things Virtual Networks: Bringing
Network Virtualization to Constrained Devices. In Proceedings of the IEEE International
Conference on Cyber, Physical and Social Computing, Besançon, France, 20–23 November
2012.

154. The DisSeNT project. Available online: http://distrinet.cs.kuleuven.be/software/dissent/
(accessed on 10 December 2012).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

