361 research outputs found

    Exploration of Deep Learning Applications on an Autonomous Embedded Platform (Bluebox 2.0)

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)An Autonomous vehicle depends on the combination of latest technology or the ADAS safety features such as Adaptive cruise control (ACC), Autonomous Emergency Braking (AEB), Automatic Parking, Blind Spot Monitor, Forward Collision Warning or Avoidance (FCW or FCA), Lane Departure Warning. The current trend follows incorporation of these technologies using the Artificial neural network or Deep neural network, as an imitation of the traditionally used algorithms. Recent research in the field of deep learning and development of competent processors for autonomous or self-driving car have shown amplitude of prospect, but there are many complexities for hardware deployment because of limited resources such as memory, computational power, and energy. Deployment of several mentioned ADAS safety feature using multiple sensors and individual processors, increases the integration complexity and also results in the distribution of the system, which is very pivotal for autonomous vehicles. This thesis attempts to tackle two important adas safety feature: Forward collision Warning, and Object Detection using the machine learning and Deep Neural Networks and there deployment in the autonomous embedded platform. 1. A machine learning based approach for the forward collision warning system in an autonomous vehicle. 2. 3-D object detection using Lidar and Camera which is primarily based on Lidar Point Clouds. The proposed forward collision warning model is based on the forward facing automotive radar providing the sensed input values such as acceleration, velocity and separation distance to a classifier algorithm which on the basis of supervised learning model, alerts the driver of possible collision. Decision Tress, Linear Regression, Support Vector Machine, Stochastic Gradient Descent, and a Fully Connected Neural Network is used for the prediction purpose. The second proposed methods uses object detection architecture, which combines the 2D object detectors and a contemporary 3D deep learning techniques. For this approach, the 2D object detectors is used first, which proposes a 2D bounding box on the images or video frames. Additionally a 3D object detection technique is used where the point clouds are instance segmented and based on raw point clouds density a 3D bounding box is predicted across the previously segmented objects

    Computer vision for advanced driver assistance systems

    Get PDF

    Computer vision for advanced driver assistance systems

    Get PDF

    Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions

    Full text link
    [EN] Advances in information and signal processing technologies have a significant impact on autonomous driving (AD), improving driving safety while minimizing the efforts of human drivers with the help of advanced artificial intelligence (AI) techniques. Recently, deep learning (DL) approaches have solved several real-world problems of complex nature. However, their strengths in terms of control processes for AD have not been deeply investigated and highlighted yet. This survey highlights the power of DL architectures in terms of reliability and efficient real-time performance and overviews state-of-the-art strategies for safe AD, with their major achievements and limitations. Furthermore, it covers major embodiments of DL along the AD pipeline including measurement, analysis, and execution, with a focus on road, lane, vehicle, pedestrian, drowsiness detection, collision avoidance, and traffic sign detection through sensing and vision-based DL methods. In addition, we discuss on the performance of several reviewed methods by using different evaluation metrics, with critics on their pros and cons. Finally, this survey highlights the current issues of safe DL-based AD with a prospect of recommendations for future research, rounding up a reference material for newcomers and researchers willing to join this vibrant area of Intelligent Transportation Systems.This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government (MSIT) (2019-0-00136, Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation); The work of Javier Del Ser was supported by the Basque Government through the EMAITEK and ELKARTEK Programs, as well as by the Department of Education of this institution (Consolidated Research Group MATHMODE, IT1294-19); VHCA received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6 and #430274/2018-1).Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; De Albuquerque, VHC. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems. 22(7):4316-4336. https://doi.org/10.1109/TITS.2020.30322274316433622

    The Right (Angled) Perspective: Improving the Understanding of Road Scenes Using Boosted Inverse Perspective Mapping

    Full text link
    Many tasks performed by autonomous vehicles such as road marking detection, object tracking, and path planning are simpler in bird's-eye view. Hence, Inverse Perspective Mapping (IPM) is often applied to remove the perspective effect from a vehicle's front-facing camera and to remap its images into a 2D domain, resulting in a top-down view. Unfortunately, however, this leads to unnatural blurring and stretching of objects at further distance, due to the resolution of the camera, limiting applicability. In this paper, we present an adversarial learning approach for generating a significantly improved IPM from a single camera image in real time. The generated bird's-eye-view images contain sharper features (e.g. road markings) and a more homogeneous illumination, while (dynamic) objects are automatically removed from the scene, thus revealing the underlying road layout in an improved fashion. We demonstrate our framework using real-world data from the Oxford RobotCar Dataset and show that scene understanding tasks directly benefit from our boosted IPM approach.Comment: equal contribution of first two authors, 8 full pages, 6 figures, accepted at IV 201

    Effective Vehicle-Based Kangaroo Detection for Collision Warning Systems Using Region-Based Convolutional Networks.

    Full text link
    Traffic collisions between kangaroos and motorists are on the rise on Australian roads. According to a recent report, it was estimated that there were more than 20,000 kangaroo vehicle collisions that occurred only during the year 2015 in Australia. In this work, we are proposing a vehicle-based framework for kangaroo detection in urban and highway traffic environment that could be used for collision warning systems. Our proposed framework is based on region-based convolutional neural networks (RCNN). Given the scarcity of labeled data of kangaroos in traffic environments, we utilized our state-of-the-art data generation pipeline to generate 17,000 synthetic depth images of traffic scenes with kangaroo instances annotated in them. We trained our proposed RCNN-based framework on a subset of the generated synthetic depth images dataset. The proposed framework achieved a higher average precision (AP) score of 92% over all the testing synthetic depth image datasets. We compared our proposed framework against other baseline approaches and we outperformed it with more than 37% in AP score over all the testing datasets. Additionally, we evaluated the generalization performance of the proposed framework on real live data and we achieved a resilient detection accuracy without any further fine-tuning of our proposed RCNN-based framework
    • …
    corecore