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Computer Vision for Advanced Driver Assistance Systems

Mobility of persons and transportation of goods involve multiple aspects and
play a central role in society. This is particularly important when facing impor-
tant challenges like infrastructure and safety, but also concerning environmental
issues and health-related mobility restrictions. Mobility and transportation fa-
cilitate human interaction, have a tremendous impact on economy and tend to
positively contribute to societal equality. Since both the world population and the
rate of urbanization are growing, mobility is an essential factor in envisioning the
future of society, cities and the environment. The demand for safe, comfortable,
accessible and sustainable urban mobility will thus remain a challenging topic
for the coming years, requiring advances in technology, policy making and both
entrepreneurial and societal innovations. This motivates the development of Ad-
vanced Driver Assistance Systems (ADAS), aiming at supporting or automating
driving tasks. This thesis contributes to this field, both by offering additional
functionality and by extending the operational domain. The focus is on affordable
systems without external communication or HD-maps and solely relies on stereo
camera vision, since it provides information on both appearance and geometry of
the vehicle’s surroundings in a cost-effective way. The reported research entails
three specific topics: freespace segmentation, geometric 3D scene modeling and
collision warning.

Freespace segmentation: The first part of the thesis concerns freespace segmen-
tation, which finds the available region within a traffic scene where the car can
drive. The first contribution in this topic forms a color-based extension of the
disparity Stixel World algorithm (Chapter 1). The algorithm relies on fusing an
efficient histogram-based color analysis into the optimization process of the orig-
inal disparity-only Stixel World algorithm. This reduces the detection of false
obstacles that originally occurred at erroneous disparity data, caused by difficult
imaging conditions such as bright sun or rainy weather. By updating the color
modeling with a self-supervised learning scheme while the car drives, the free-
space segmentation score improves from 0.86 to 0.97 on newly recorded public
data. As a second contribution, the system latency is improved by introducing the
color-based Stixel World algorithm (Chapter 2). Its online self-supervised color
modeling considers real-world surfaces, instead of pixel counts when building
the color histograms, thereby making the modeling distance-aware. This allows
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the freespace segmentation to operate without the most recent disparity signal, so
that the disparity estimation can be removed from the critical system path, while
preserving the quality of the results. This is achieved by using previous disparity
measurements to translate pixel colors into region class probabilities, which are
then employed in the cost-optimization function of the Stixel World algorithm.
On a new dataset with a focus on adverse, rainy conditions, the false obstacle
detection rate decreases from 17 % to 13 %, while doubling the throughput rate.
The third chapter on freespace segmentation presents an online self-supervised
convolutional neural network (Chapter 4). Experiments show that it is feasible
to train this neural network with automatically generated training masks, even
when they contain errors due to adverse imaging conditions. This reduces the
need for manual labeling, and facilitates updating the neural network during driv-
ing, so that the system can handle changing environments while using a small
efficient neural network only. More specifically, the proposed algorithms with
online training outperform the offline reference methods with 5 %, both for Fmax

and AP . More importantly, the original FCPN (without online training) that was
successful on KITTI data performs worse than the baseline on the new data set.
This indicates that the online training strategy is a good and efficient proposal to
enable the use of a small neural network under varying conditions. As an addi-
tional result, pretraining the network speeds up the proposed online training with
a factor of five. Overall, this strategy boosts performance with 4.2 % in adverse
imaging conditions compared to the Stixel World baseline, thereby increasing the
system robustness.

Geometric 3D scene modeling: The second topic that is addressed is efficient
geometric 3D scene modeling. The context is military surveillance capturing image
data from a surveillance vehicle, where live and historic images are registered for
scene analysis (Chapter 6 A. To this end, the disparity Stixel World representation
is extended by (1) rotating stixels along their vertical axes so that they are aligned
to the orientation of the modeled surface, (2) adding interpolated stixels that
cover vertical gaps, and (3) applying pixel masking within stixel rectangles to
remove potential small background areas. These additions allow generating a
textured 3D model of the scene, which is then used to render a synthetic view as
a registered image for change detection. The work was implemented in CUDA
for real-time execution on HD+ images in a prototype vehicle. The proposed
additions together increase the pixel-level registration accuracy with 6 % on new,
manually annotated data. When the lateral viewpoint offset between images is
low, 97 % of the registrations by the enhanced system are within 5 pixels, and
79 % of the pixels fall even within a 1-pixel margin. When the live recording is
from an offset more than a regular lane width, the system still achieves reasonable
accuracy of about 70 %.

Collision warning: The final topic of this thesis is collision warning, for which
two systems are presented. ASTEROIDS is a class-agnostic, probabilistic process-
ing pipeline, which generates warnings from disparity and optical pixel flow data
(Chapter 5). The method is not limited to specific classes or scenarios, and does
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not require external HD maps, vehicle communication or high-level semantic in-
formation. The system tracks stixels over time and samples so-called asteroid
particles based on an uncertainty analysis of the measurement process. This is
enclosed in a Bayesian histogram filter around a time-to-collision versus angle-of-
impact state space, which is analyzed further with a peak-alarm detector (CFAR).
The presented probabilistic approach is robust against low-quality input data for
disparity and optical flow. As a result, performance quality is not hampered by
employing disparity and flow methods that are less compute-intensive, reducing
resource requirements. The evaluation shows successful performance on three
different datasets. Namely, the ASTEROIDS approach does not generate any false
warnings on the well-known KITTI tracking data set, it detects all but one colli-
sions on newly simulated data, and performs reliably without errors on newly
recorded data with many near-collisions. The ASTEROID system generates warn-
ings typically around 1.2 seconds ahead of impact in nighttime and around 2
seconds upfront during the day. The second approach, SSCOD, fuses pixel-level
semantic segmentation from a neural network with disparity stixels, which are
then clustered using a customized DBSCAN process (Chapter 6 B). This is vali-
dated with a Forward Collision Warning module running in a prototype vehicle.
Typically, SSCOD detects vehicles in front of the car at least 40 meters ahead in
daytime and at least 35 meters ahead in nighttime conditions. This method has
been successfully demonstrated live at the ITS European Congress in 2019 using a
real vehicle with an integrated system.

In conclusion, this thesis contributes to freespace segmentation, 3D geometry
modeling and collision warning for ADAS. The contributions are characterized by
robustness under adverse imaging conditions, which are typically less considered
in datasets and published research work. This explains why the color-extended
stixel world algorithm and the associated online training schemes have drawn
clear interest in the research community. Furthermore, the real-time stixel imple-
mentation with orientation alignment, the elegant small neural network design
for scene analysis, and the hybrid collision warning approach where traditional
techniques enable a small neural network implementation are contributions of
interest for the industry, and the former was already integrated in an industrial
prototype for professional applications. The followed path in research leads to
systems of feasible complexity, employing realistic AI solutions, which readily
contribute to increasingly safe and automated driving.
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Computervisie voor geavanceerde ondersteuningssystemen
ten behoeve van voertuigbesturing

Mobiliteit van personen en goederentransport spelen een centrale rol in de maat-
schappij. Dit levert vooral relevante uitdagingen op voor infrastructuur en veilig-
heid en beı̈nvloedt ook milieuaspecten en gezondheidsgerelateerde beperkingen
in mobiliteit. Mobiliteit en transport faciliteren menselijke interactie hebben een
grote impact op de economie en aanwijsbare bijdrages aan sociale gelijkheid. Aan-
gezien de wereldbevolking en de verstedelijking beide toenemen, is mobiliteit
een essentiële factor in toekomstvisies op de maatschappij, steden en het milieu.
Hierbij blijft de vraag naar veilig, comfortabel, toegankelijk en duurzaam stede-
lijk vervoer een uitdagend onderwerp voor de komende tijd en vergt innovaties
in technologie en regelgeving en aanpassingen in zowel ondernemerschap als
maatschappij. Het bovenstaande motiveert de ontwikkeling van geavanceerde
systemen om voertuigbestuurders bij hun taken te ondersteunen of deze deels te
automatiseren (Advanced Driver Assistance Systems, ADAS). Dit proefschrift draagt
bij aan dit onderzoeksveld door middel van het uitbreiden van zowel de functio-
naliteit als de condities voor de operationele inzet van deze systemen. De focus ligt
op betaalbare systemen die onafhankelijk zijn van externe communicatie en/of
zeer gedetailleerde digitale kaarten, waarbij de systemen enkel gebruik maken
van stereocamera’s, omdat deze op efficiënte wijze visuele informatie geven over
de omgeving en zijn geometrie.

Het gepresenteerde onderzoek omvat drie onderwerpen: het detecteren van
vrije ruimte (freespace), het in 3D geometrisch modelleren van de omgeving en het
waarschuwen voor aanrijdingen (collision warning).

Detectie van vrije ruimte: Het detecteren van de vrije ruimte komt neer op het
bepalen van de beschikbare ruimte waar het voertuig kan rijden in de actuele
verkeerssituatie. De eerste bijdrage op dit onderwerp is een kleurgebaseerde uit-
breiding van het zogeheten Stixel World algoritme (Hoofdstuk 2). Deze uitbreiding
is gebaseerd op het integreren van een efficiënte histogramanalyse van de beeld-
kleuren, in het optimalisatieproces van het oorspronkelijke dispariteitsalgoritme.
Deze uitbreiding reduceert de detectie van valse obstakels die eerst voorkwa-
men bij verkeerde dispariteitschattingen door ongunstige opnamecondities zoals
fel zonlicht of regenachtig weer. Door de kleurenanalyse uit te breiden met een
zelflerend mechanisme voor gebruik tijdens de autorit, verbetert de freespace detec-
tiescore van 0.86 naar 0.97 met nieuwe opnames, die ook publiekelijk toegankelijk
zijn. De tweede bijdrage betreft het verminderen van de systeemvertraging van
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de detectie door het introduceren van een op kleuren gebaseerd Stixel World algo-
ritme (Hoofdstuk 3). De zelflerende kleurenanalyse maakt histogrammen van de
voorkomende oppervlaktes in plaats van beeldpixels te tellen, zodat het systeem
daarmee afstandsbewust wordt. Hierdoor heeft het systeem niet meer de meest
actuele dispariteitsmetingen nodig, zodat deze meting niet meer in het kritieke
systeempad uitgevoerd hoeft te worden met behoud van de kwaliteit. Dit wordt
bereikt door pixelkleuren aan de hand van oudere dispariteitsmetingen te vertalen
naar waarschijnlijkheden voor klasses, welke worden toegepast in de kostenop-
timalisatie van het kleurgebaseerde Stixel World algoritme. Het gebruik van een
nieuwe dataset met een ongunstige opnamecondities toont aan dat de detectie
van valse obstakels reduceert van 17 % naar 13 %, terwijl de systeemdoorvoer
wordt verdubbeld. Het derde hoofdstuk over freespace detectie presenteert een
methode die gebruik maakt van een zelflerend convolutioneel neuraal netwerk
(Hoofdstuk 4). De experimenten wijzen uit dat het haalbaar is om dit netwerk
te trainen met automatisch gegenereerde datalabels, zelfs als deze labels fouten
bevatten vanwege ongunstige opnamecondities. Dit reduceert de afhankelijkheid
van handmatig geannoteerde datasets en faciliteert bovendien dat het netwerk
kan worden geactualiseerd terwijl het voertuig in gebruik is. Hierdoor kan het
systeem omgaan met veranderingen in de omgeving terwijl het slechts van een
klein efficiënt neuraal netwerk gebruik maakt. Het nieuwe zelflerende systeem
scoort 5 % beter in Fmax en AP dan de standaardaanpak. Nog belangrijker is dat
de standaardaanpak (die niet wordt geactualiseerd tijdens het rijden) goed scoort
op de veelgebruikte publieke KITTI dataset, maar ondermaats presteert op nieuwe
data. Dit impliceert dat de zelflerende aanpak een goede en efficiënte manier is
om te kunnen vertrouwen op een klein neuraal netwerk onder variabele condities.
Een extra resultaat is dat het actualiseren van het netwerk tijdens gebruik vijf
keer sneller gaat als het vooraf al getraind is met relevante data. In zijn geheel
verbetert het algoritme de kwaliteit van de resultaten met 4.2 % vergeleken met
de dispariteitsmethode, waardoor de robuustheid van het systeem toeneemt.

Geometrische 3D scènemodellering: Het tweede onderzoek betreft efficiënte geo-
metrische 3D scènemodellering. De context van dit onderzoek is militaire inspectie
die gebruikt maakt van beeldmateriaal dat is opgenomen vanuit een patrouille-
voertuig, waarbij huidige en historische beelden over elkaar worden gelegd voor
automatische veranderingsdetectie (Hoofdstuk 6 A). Om dit te realiseren, wordt
de Stixel World representatie uitgebreid met: (1) rotatie om de verticale as om
stixels uit te lijnen langs het oppervlak dat ze modelleren, (2) geı̈nterpoleerde
stixels om verticale openingen in het model op te vullen en (3) het wegfilteren
van achtergrondpixels binnen stixelrechthoeken. Met deze toevoegingen kan de
stixelrepresentatie worden gebruikt om een 3D model met textuur te genereren,
en vervolgens een geregistreerd beeld te synthetiseren voor de veranderingsdetec-
tie. Het systeem is geı̈mplementeerd in CUDA om beelden van hoge resolutie in
real-time te kunnen analyseren in het prototypevoertuig. De toevoegingen aan het
model verbeteren de nauwkeurigheid van de beeldregistratie met 6 % op nieuwe,
manueel geannoteerde data. Bij een beperkte afstandsverschuiving tussen de hui-
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dige en de historische beelden valt na registratie 97 % van de geannoteerde punten
binnen 5 pixels, en 79 % zelfs binnen 1 pixel van de annotatie. Bij een laterale af-
stand van meer dan een reguliere rijbaanbreedte haalt het systeem nog steeds een
acceptabele registratiescore van ongeveer 70 %.

Collision warning: Het derde en laatste onderwerp is waarschuwen voor aan-
rijdingen, waarvoor twee systemen worden gepresenteerd. Het is eerste is AS-
TEROIDS, dat een klasse-agnostische, probabilistisch verwerkingsproces is, dat
gebruik maakt van dispariteit en beeldbewegingsdata (Hoofdstuk 5). De analyse
is niet beperkt tot specifieke obstakeltypes of scenarios en is onafhankelijk van
externe digitale kaarten, voertuigcommunicatie en semantische informatie. Het
systeem volgt stixels over tijd en genereert zogenoemde asteroid-deeltjes, waarbij
de onzekerheden in het meetproces worden meegenomen. Deze deeltjes worden
eerst bewerkt met een Bayesiaans histogramfilter op een toestandsruimte met
impacttijd en impacthoek als dimensies, waarna een analyse volgt met een pie-
kalarmdetector (CFAR). Deze probabilistische aanpak is robuust tegen invoerdata
van lage kwaliteit. Hierdoor blijft de waarschuwingsfunctie betrouwbaar wan-
neer minder complexe dispariteits- en bewegingsschatters worden gebruikt met
minder rekenkracht. De evaluatie op drie verschillende datasets toont goede pres-
taties. ASTEROIDS genereert geen valse waarschuwingen op de bekende KITTI
dataset, het detecteert alle aanrijdingen op één na in een nieuwe gesimuleerde da-
taset, en het toont betrouwbare kwalitatieve resultaten op een nieuwe dataset met
opzettelijke bijna-aanrijdingen. Het ASTEROID-systeem waarschuwt ’s nachts
ongeveer 1.2 s en overdag ongeveer 2 s vooraf aan een mogelijke aanrijding. Het
tweede waarschuwingssysteem, SSCOD, combineert semantische informatie op
pixelniveau verkregen met een neuraal netwerk, met dispariteitsstixels, welke
vervolgens worden gegroepeerd met een aangepast DBSCAN algoritme (Hoofd-
stuk 6 B). Dit systeem is gevalideerd in een module voor waarschuwingen bij
frontaal aanrijdingsgevaar. Over het algemeen detecteert SSCOD voertuigen die
de weg blokkeren overdag minstens 40 m van tevoren en ’s nachts op ongeveer
35 m. De module is succesvol gedemonstreerd als prototype in een echt voertuig
op het Europees ITS Congres in 2019.

Concluderend, dit proefschrift draagt bij aan de detectie van freespace, 3D ge-
ometrische scènemodellering en collision warning, waarbij alle aspecten ingezet
worden voor ADAS. De bijdrages worden gekenmerkt door hun robuustheid
tegen ongunstige openamecondities, wat weinig aandacht krijgt in wetenschappe-
lijk onderzoek en datasets, zodat de gepresenteerde zelflerende kleurenanalyses
goed zijn ontvangen. Bovendien zijn er drie relevante bijdrages gepresenteerd
voor de industrie: het real-time stixelsysteem met orientatiespecificatie, het elegante
ontwerp met kleine neurale netwerken voor scène-analyse en de inzet van traditio-
nele methodes om de vereiste rekenkracht van neurale netwerken te verminderen.
De eerstgenoemde is al gevalideerd in een industrieel prototypevoertuig voor
professionele toepassingen. Het onderzoek in dit proefschrift leidt tot systemen
met acceptabele complexiteit die gebruik maken van realistische AI oplossingen
die direct nuttig bijdragen aan veilig en geautomatiseerd rijden.
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1.1 Smart vehicles and the future of personal transport
Mobility of persons and transportation of goods involves multiple aspects and
plays a central role in society, particularly at the time of writing this thesis, when
society faces important challenges around environmental issues and health-related
mobility restrictions. According to the Global Agenda Council on the Future of
Automotive & Personal Transport, mobility has an influence on multiple societal
dimensions, like that it facilitates human interaction, it has a tremendous impact
on economy and it even tends to positively contribute to societal equality [1].
Since both the world population and the rate of urbanization are expected to
grow, mobility is an essential factor in envisioning the future of society, cities
and the environment. The demand for safe, comfortable, accessible and sustain-
able urban mobility will thus remain a challenging topic for the coming years,
requiring advances in technology, policy making and both entrepreneurial and
societal innovations. Considering the various nature of the previous aspects, these
challenges also bring interesting opportunities. If policy makers can be open to
mobility innovations and incorporate them into their long-term societal planning,
new mobility models are expected to bring economical and societal benefits [1].

On the aspects of accessible and comfortable mobility for personal transporta-
tion, most people travel for work on a daily basis, as a commuter or as part of their
job. In addition, in their spare time people travel for trips, holidays and visiting
friends and family. A large part of this need for mobility is currently being fulfilled
with the use of a personal car [1]–[3].

Considering road mobility from a safety perspective, the main challenge is
to resolve traffic accidents. These accidents are mainly caused by human factors.
USA-based research projects show that human errors play a critical role in 90%
of accidents or even more [4], [5]. Advances in vehicle automation and intelli-
gent transportation systems are expected to have a positive influence on these
numbers [6].

Therefore, both academic and industrial efforts have been made in the past
years to address the above-mentioned challenges on safe, comfortable and ac-
cessible mobility to safeguard its future. One primary objective is to increase
the automation of vehicle control. This reduces the load on the human driver
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by increasingly taking care of aspects for driving the vehicle. This is expected to
improve traffic safety and increase the comfort during traveling time, given the
aforementioned reasons on traffic accidents and involved risk factors [6].

Considering the foreseen improvements of automated driving on the longer
term, additional benefits can be realized. For instance, automated driving could
lead to an increase in access to mobility, for example, for people currently not
capable of driving such as physically handicapped or visually impaired people.
Additionally, fully automated driving could also contribute to a reduction of occu-
pied space that is currently reserved for cars in urban areas, either by optimized
parking or car sharing services. Unfortunately, the predictions on the effect of
automated driving on the environment are uncertain and may have positive or
negative impact on energy usage (the predictions vary either way up to a factor
two) [6].

A widely used system to categorize the development steps in the road map
towards automated driving is introduced by the international Society of Auto-
motive Engineers, the SAE. The scheme distinguishes six levels, numbered 0 to 5,
ranging from no automation towards full automation, anytime and anywhere [7]. The
levels are depicted and described in Figure 1.1. For example, the first steps consist
of developing Advanced Driver Assistance Systems (ADAS), which support the
human driver in certain driving tasks. This can be informative, such as measur-
ing the distance towards the preceding vehicle, or active, such as keeping a safe
distance at all times with an Adaptive Cruise Control (ACC) system.

These depicted SAE levels of automation in mobility will be used as a central
guideline for a further and more detailed discussion on the underlying techno-
logical requirements and system strategies. This detailing is addressed in the next
section.
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Figure 1.1 — Levels of automation, as distinguished by the SAE (adopted from [8]).

1.2 Strategic and technological landscape of future mobility
solutions

This section will sketch the landscape of seven core strategies in system archi-
tectures that are currently under debate in the mobility community. Different
routes are possible towards realizing full autonomous vehicles, where the overall
problem has not yet been solved, given the immense societal implications.

These seven aspects are all closely linked, but broadly speaking, two clusters
can be discerned. The first cluster is more related to societal questions and business
models, and concerns (1) different development strategies to increase automation,
(2) ownership models and (3) vehicle connectivity. The second cluster contains
the aspects that are more focused on the technical questions, namely (4) digital
maps, (5) sensor selection, (6) computational resources and (7) data and data
analysis. These aspects are discussed next in individual subsections, after which
we elaborate upon how the work in this thesis is positioned in relation to this
discussion.

1.2.1 Development strategies of automation
Increasing the extent of automated functionality in mobility typically appears
in a gradual fashion, since it requires both law adaptation and acceptation from
vehicle drivers in society.
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For an L0 automated car, two different potential trajectories of improvement
are generally recognized, based on either extending functionality first or extending
the operational domain first. This is often referred to as everything somewhere, with
gradual increase of the operational domain, versus something everywhere, with
gradual increase of functionality. As an example of the latter, companies such
as Tesla, Daimler and MobilEye first build lower SAE-level ADAS (FCW, ACC,
LKA, etc.)1, which are immediately released on the general market, after which
the makers then aim at gradually increasing the functionality [9]. An argument
against this approach is that drivers tend to have difficulties with adapting to
a partially automated car (L2 or L3) that requires monitoring by the human to
overcome potential imperfections in the system [10]. Humans constantly have
to assess the performance of the system and be ready at all times to take over
with manual control. In reality, humans are prone to be distracted by performing
secondary tasks such as reading or interacting with their phones or touch screens,
which hampers their readiness to take control [11], [12].

To avoid this transition stage while still ultimately providing an L5 automated
car offering full functionality under all circumstances, companies such as Waymo,
Uber, Delphi (via the acquisition of nuTonomy) and General Motors (via the acqui-
sition of Cruise) follow an alternative strategy. For instance, they aim at developing
a prototype car of at least L4, followed by medium-scale market penetration of
such cars that are made available within a certain geographical area and climate,
after which they then aim at alleviating those limitations for mass deployment [6],
[9]. The various difficulties with this approach are the high initial cost of develop-
ment, the large time-to-deployment, and the uncertainty in long-term acceptance
and legalization.

1.2.2 Private ownership versus shared services
Closely related to the development strategies for automation is the choice between
development for privately owned cars versus Mobility as a Service (MaaS) without
personal ownership.

Privately owned cars need to be affordable for mass adoption, impeding the
use of an expensive sensor suite [13], [14]. At the same time, the scope and the
business infrastructure (like maintenance outlets and, if required, digital maps)
should be available everywhere from the start. This topic has a societal aspect
as well, where some parties predict that future generations will not value car
ownership [1], while others are reluctant to lose the freedom and flexibility that
an own car offers and/or expect that shared cars will not meet high levels in
availability, maintenance and hygiene [6], [14].

In contrast, MaaS covers all concepts that offer mobility and transportation to
customers, for example, via shared cars or robotic taxis, instead of people owning a
private car [1]. The projected benefits of MaaS for developing autonomous cars are
both cost and feasibility. Proponents expect to amortize the costs of development,

1FCW: Forward Collision Warning; LKA: Lane-Keeping Assist(ance)
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deployment, and infrastructure for service and maintenance over a fleet of cars
that is owned by the MaaS provider[9], [15]. Additionally, MaaS allows a gradual,
self-paced increase of automated functionality and its operational domain [9],
[15]. However, a potential issue with MaaS is that it requires a high adoption
rate to be successful [6], while research indicates that not all available systems
currently perform well enough for user acceptance [16] and that designers should
particularly focus on providing easily accessible systems [17]. The aspect of a high
adoption rate is equally important in the aspect of the next subsection, which
concerns vehicle connectivity.

1.2.3 Connected versus stand-alone
The dependency on a high adoption rate of automated vehicles holds for an-
other fundamental architectural choice as well: developing vehicles that function
stand-alone versus vehicles that communicate with each other and/or with the
infrastructure for smart information and/or control.

Cars with vehicle-to-vehicle (V2V) communication exchange information on
velocities and trajectories (and potentially much more) with cars around them.
This communicated information is more accurate and available at a lower latency
than when it should be measured individually, which can make the difference
between a safe evasion maneuver and a fatal crash. However, cars can only safely
rely on this functionality if enough traffic participants are connected and sharing
information [6], and even then, fallback systems need to be in place for situations
where communication is not available. Ideally, this connectivity would not be
limited to vehicles, but also include vulnerable road users such as pedestrians
and cyclists. Another type of communication is vehicle-to-infrastructure (V2I)
communication, for example, when a centralized system sends out congestion
information and speed advise to improve traffic flow and density. The impact of
these systems is also larger when more vehicles participate, but this requires a
substantial initial investment in infrastructure for roadside equipment [1], [6].

1.2.4 Digital maps
The fourth key architectural choice concerns the integrated use and dependency on
digital maps. More specifically, the level of detail required in such a map is crucial
and addresses the fundamental question of balancing the intelligence between the
car and the digital map. Several real-world demonstrations of highly automated
driving, such as the tests of Waymo and Daimler’s Intelligent Drive, heavily relied
on high-definition digital maps (HD maps) that contain detailed information on
the layout of the infrastructure, such as centimeter-accurate annotations of road
markings and traffic signs [18]. In these approaches, the car effectively drives on
a digital track though the digital world. This reduces the amount of processing
that is required in the car, since it ’merely’ needs to recognize its location with
respect to the map and avoid collisions with dynamic traffic participants. However,
generating such a map requires advanced technology in sensing, registration and
automation, and is even deemed infeasible by several parties [19]. Crucial issues
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are continuous updating the map at the required level of detail in all relevant areas,
and having such data available in the car at all times in a timely cost-effective
manner. Additionally, the system should still function safely when the map data
contains errors or is unavailable.

Relying on digital maps requires a clear definition of what can be considered
static information to be available in the map and dynamic information of the sur-
roundings to be sensed and interpreted by the car itself. Some static information
content can change, requiring an update of the map (new speed limit, new round-
about), while some objects in the surroundings can change and need to be flagged
and repaired in the real world (road damage, worn markings, stolen traffic signs).
Additionally, some scenes change only temporarily (road works), whereas some
object changes are irrelevant (garbage bins, parked cars, blossoming trees). Several
parties propose to address these issues with a crowd-sourcing approach, where
each traffic participant uploads information to a cloud that updates HD maps
continuously where necessary and sends those updates back towards the users.
Especially as part of a MaaS application, this could be an interesting solution,
provided that it has sufficient participants and a proper V2I infrastructure at its
disposal.

However, many benefits of an HD map are lost if the vehicle cannot deter-
mine its own position accurately. This generally sets requirements on the sensor
equipment, which is discussed in the next subsection.

1.2.5 Sensors for environment perception and awareness
With a growing degree of automation in the vehicle and the associated decision
making, the vehicle should be increasingly aware of its dynamic surroundings,
which cannot be fully derived from digital maps. This implies that complementary
sensors are applied in the vehicle, which aim at providing information of the actual
situation. The related architectural design choice then concerns the selection of an
appropriate sensor suite for the vehicle, matching with the aforementioned trend.
As mentioned earlier, sensors can have a considerable impact on the cost of the
automation system[13], [14], while they simultaneously are key in environment
perception.

This section briefly presents the most important options in sensor selection in
the current status of developments. First of all, centimeter-accurate localization
to exploit the full potential of HD maps typically requires either an expensive
RTK-GPS (Real-Time Kinematic Global Positioning System) combined with an
IMU (Inertial Measurement Unit) module, or advanced vision-based localization
algorithms and the corresponding, accurate reference data in the map. Second,
there are generally three modalities for environment perception operational in
practice: cameras (for the visible light spectrum), Lidar (light detection and rang-
ing, using infrared light) and Radar (radio detection and ranging, using relatively
large wavelengths) [20]. Several ADAS or automated driving-related systems and
deployment experiments have been presented that leverage a combination of
multiple sensor modalities [18], [21], [22]. In contrast to the generally accepted
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benefits of camera and Radar sensors, the use and necessity of Lidar is currently
still under discussion for automated cars. Lidar provides highly accurate distance
measurements, but is currently by far the most expensive sensing modality [20].
Virtually all car manufacturers and suppliers rely on Lidar sensors and expect
them to become less costly in mass production and through the development
of solid-state Lidar [20], [23]. In contrast, an experimental autonomous driving
event along the Bertha Benz Memorial Route was successfully performed in 2013
without using a Lidar sensor [18]. Also specific state-of-the-art fully electric cars
offering partial self-driving functionality, are not equipped with Lidar and the
manufacturing company claims to never apply it in future versions. They moti-
vate this statement by observing that human drivers do not need laser light to
drive, so exploiting a visible-light camera as a supplementary sensor should be
sufficient. In the manufacturer’s opinion, Lidar for automated driving should
be considered a short-term solution that sets researchers on a costly detour and
hampers them in building a reliable camera-based system [19]. While the vehicles
in the previous examples combined camera sensing with Radar sensing, other
parties have even presented a camera-only demonstration of self-driving. Even
though the functionality has not yet been deployed commercially at a large scale, it
still showed successful and safe automated driving through a crowded city center
with complex traffic scenarios, while using only a single sensor modality [24].

In our research opinion, it is too early to draw a definitive conclusion on the
final application of Lidar in the context of automated driving. A motivation for this
lack of a final conclusion is that there has not yet been a large-scale deployment
of systems with either functionality, so that a fair comparison cannot be made.

1.2.6 Computing requirements for automated driving
One of the enabling factors of the developments in automation is the increasing
accessibility to compute resources. Especially the rapid expansion of the capa-
bilities of algorithms that exploit Artificial Intelligence (AI) is tightly coupled to
the increased mapping capacity of new silicon processor designs. These new de-
signs make compute resources widely available at a reasonable cost, most notably
via Graphical Processor Units (GPUs) for the personal computer market. These
GPUs originally offered processing power for more advanced computer games,
but were quickly additionally exploited for AI research, thereby facilitating par-
allel compute-intensive tasks on batches of data for demanding experiments on
both desktop PCs and also in larger clusters or server setups.

However, although examples of research on practical deployment exist [25],
[26], most of the above-mentioned capabilities serve at best as research platforms
or prototype configurations, and are not suited for real-world deployment in em-
bedded systems, requiring a high level of hardware robustness and having severe
constraints on power consumption and physical packaging dimensions. Moreover,
many state-of-the-art research efforts had a focus predominantly on task accuracy
instead of ease of deployment, often leveraging increasingly advanced and com-
plex AI models without regarding real-world feasibility constraints, especially in
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the case of deep learning (DL) and neural networks (NN). In contrast, deploying a
DL system on an embedded computed device requires also serious considerations
on latency, memory capacity, robustness in functionality, operational reliability
and overall system cost. In practice, this means redesigning NN architectures
or applying NN optimization techniques (compression, pruning, etc.) to fit the
advanced designs within the constraints of embedded devices. Simultaneously,
the hardware industry is developing new hardware compute nodes to extend
resources for more advanced on-chip AI models. In this regard, there is easily a
mismatch between common state-of-the-art research algorithms of a factor of 10
in both power and price.

Due to the increased awareness of DL inference cost, neural network designers
have come up with very interesting new proposals which tend to lead to much
more efficient designs than the existing state-of-the-art networks, while preserving
or even boosting performance. An example is in the newly emerging research
field of Neural Architecture Search (NAS). Recently, several first NAS examples
have been presented that are hardware-aware, in the sense that the algorithms
optimize the neural network architecture jointly for task accuracy and resource
efficiency [27]–[29]. This optimization is part of the neural network training, which
is the broader discussion topic of the next subsection.

1.2.7 Data and analysis for automation
Systems that rely on artificial intelligence require machine learning procedures
that extract relevant information from data. It is generally accepted in the machine
learning community that having more data leads to improved results, and even
that robust results cannot be achieved without it. The major benefit of having a
large and well-balanced dataset is that the system can learn beforehand about as
many as possible situations that it can encounter during deployment, limiting the
risk of incorrect behavior in unknown situations.

The data is utilized to train the algorithm to capture and extract the informa-
tion that is relevant to the application at hand, for which different broad categories
are distinguished. In general, the most widely adopted strategy of machine learn-
ing exploits supervised learning, which relies on training examples accompanied by
labels with desired corresponding responses of the system (for instance, a picture
of a car with a tag car and a bounding box of its location). This is in contrast
with unsupervised learning, which solely uses the training examples (pictures of
cars) without label information. Acquiring the proper labeling is costly, especially
considering the extensive amount of samples that is required, since labeling often
consists of labor-intensive manual annotations made by domain experts. There-
fore, when designing machine learning-based systems, important problems to
solve are the quality and acquisition of suitable data and its relevant labels. Many
different strategies are used, of which several are interesting for this application
field. One example is weak supervision, where the labels are of a lower level of
detail than the desired output. Examples of weak supervision are providing only an
object tag when a bounding box is desired, or providing only the bounding box
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when a pixel-wise segmentation mask is the final objective [30]. The rationale is
that lower-level annotations are easier to obtain in large quantities, and that the
training procedure should be able to exploit the large dataset for generalization of
the model behavior, so that the model is capable to extract the desired labels itself.

A related broad category of training for machine learning is natural or self-
supervision, which uses the natural structure of the data to generate labels for
training in an automated way [31]. Examples of data aspects that one can exploit
are temporal correlation within one signal and the mutual correlation between
multi-modal signals. For instance, information between frames within a video
sequence is temporally correlated. If the first frame is known to contain a car, then
it is likely that the next frame contains that car as well, so that this assumption
then could serve as a weak label. Similarly, when different sensors capture the
same scene in different modalities, those data streams are then correlated by their
contents. For instance, if an object location is known in a Radar measurement, and
that measurement can be registered to a video stream, then the location of the
car in the video can be calculated as well. This strategy exploits the transfer of
information from one sensor domain to another and builds upon the strength of
one sensor to interpret information from a complimentary sensor source [19].

Data sensing for mobility applications can also be implemented via crowd-
sourcing, so that individual automated actors can learn from the collective expe-
riences of their peers, which share knowledge of new, unseen scenarios with the
community, such as applied in the open-source RoboEarth project [32]. Similarly,
in a closed commercial example, car drivers in a fleet of vehicles sense their envi-
ronments and communicate this information to a central data server for analysis.
This allows to gather information at a large scale on new uncommon situations
for the system and to update the other members within the fleet with the analyzed
information [19]. A potential drawback of such a strategy is the privacy concern
of drivers and other traffic participants and the legal implications of systems that
can be updated after certification.

The next subsection draws conclusions from the strategic aspects from the
above discussions, which results in the objectives and research questions ad-
dressed in this thesis.

1.3 Scope and objectives of this thesis
Given the previous discussions on both societal and technical aspects of automated
driving systems, it can be concluded that all scenarios require the vehicle to have
proper perception of its surroundings. This perception is obtained by a suitable
sensor suite and by other means, such as advanced digital maps and connectivity.

Another aspect coming to the foreground is that the automated system has
to deal with many uncommon situations in which the decision making should
have a robust behavior. From a research point of view, contributing towards full
automation seems to be most feasible by expanding circumstances and increasing
functionality alternately. For instance, extending obstacle detection with obstacle-
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path prediction (functionality) versus improving robustness against weather con-
ditions or environment content (circumstances) as a next step. Both improvements
contain valuable considerations for the development towards full automation.

The focus of our research is on affordable and robust ADAS that can work in standalone
vehicles. With this approach, we avoid dependencies on large-scale deployment
or expensive sensory equipment and facilitate gradual growth of automation. For
instance, we avoid depending on V2I or V2V communication, HD maps, RTK-GPS
or Lidar equipment. Instead, we will focus on camera video processing alone. Ad-
ditionally, we will aim at lowering dependencies on large-scale human-made data
annotations. One strategy is using real-world or even physical-world modeling
where possible (such as using depth/distance), thereby avoiding training to a
large extent and alternatively relying on self-supervised training.

Note that these strategies do not prohibit the use of our work in vehicles with
connectivity, or as part of a MaaS solution, or can exploit an available HD map. In
fact, we aim at keeping our contributions generic and potentially offering either
new or strengthened environment perception for supplementary redundancy.

ADAS requirements and approach motivation
From the perspective of the application domain, we focus mainly on two core
driver-assistance tasks at the perception side, namely (1) static scene modeling and
interpretation, predominantly for freespace detection, and (2) collision warning
within the larger area of dynamic scene analysis. All research presented in this
thesis is constrained to several general system requirements:

• hardware system is utilizing an affordable, camera-based setup;
• computation efficiency is reasonable so that real-world applicability is feasi-

ble using resource-constrained platforms;
• algorithms can be deployed in standalone operation and facilitate integra-

tion into larger systems;
• robustness should be considered with respect to difficult and varying condi-

tions of everyday traffic;
• safety is optimized such that decision making prevents missing obstacles

and avoids detecting too many of them.

Underneath these topics and constraints, we have several technological objectives
that we aim to address, as follows. The general objective of this thesis is to in-
vestigate scene modeling for ADAS applications, such as freespace detection or
collision warning. This scene modeling can be developed along several directions,
e.g. scene geometry and dynamic scene analysis, which both support the previous
themes. Smart decision making will evidently rely on AI algorithms, for which
quality and quantity of input data is of paramount importance. This leads to the
following objectives.

Improving geometric scene modeling by increasing the representation accuracy
with extended analysis. Depending on the target application, geometric modeling
should have a certain richness in its representation. For freespace segmentation,
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modeling flat fronto-parallel surfaces of obstacles blocking a trajectory is sufficient.
However, this is insufficient for producing fully textured 3D models, which are
useful in a surveillance context with live change detection.

Improving dynamic scene modeling by offering collision warnings for any class of
obstacles. Current solutions are often limited to specific object classes or collision
scenarios, so that alleviating these constraints can greatly extend the application
domain.

Reducing data-annotation effort for training input to develop machine learning
strategies. For current and upcoming vehicle automation systems, the level of
annotation detail is at pixel level. For instance, panoptic segmentation requires
pixel-precise annotations of (parts of) actors, objects and scene areas. Therefore,
the human-expert annotation becomes intractably expensive. This readily implies
the development of alternative ways of labeling or learning.

Exploring hybrid architectures, which are combinations of traditional computer
vision and deep learning-based approaches. AI systems can only be successfully
deployed in situations for which large amounts of training data are available. This
inherently makes the application less robust for rare or unexpected situations. It is
known that such situations can be better handled by more conventional computer
vision models, not relying on heavy training, but leveraging world knowledge
instead. Therefore, a joint combination of those techniques seems attractive and
important for systems research towards robust and reliable operation.

1.4 Contributions
This section provides an overview of the scientific contributions presented in this
thesis.

1.4.1 Contributions to freespace segmentation
We have developed and evaluated three novel variations of freespace segmenta-
tion, namely the color-extended Stixel World algorithm (Chapter 2), the color-only
Stixel World algorithm (Chapter 3) and a color-only algorithm with a Fully Convo-
lutional Network (FCN, Chapter 4). All three methods rely on disparity analysis
for self-supervision with online training. Our first algorithm relies on strong data
fusion for artifact reduction and has served as a breakthrough enabling online
learning. The second algorithm is designed to reduce system latency by more so-
phisticated color modeling that omits strong fusion, while retaining the improved
accuracy. The third version provides a similarly reduced system latency and yields
improved performance due to more specialized color modeling. These methods
show that online self-supervised color modeling facilitates efficient algorithms
that can adapt to varying environment conditions. Specifically the latter of the
three algorithms, which embeds our self-supervised online learning framework
into neural-network based analysis, is well received by the scientific community.

Additionally, we contribute to the availability of public benchmarks for free-
space segmentation by releasing a dataset called EHV-road, which concerns free-
space segmentation. The dataset was released in three batches (2014, 2015 and
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2017). It is a relatively small dataset, but it is focused on relevant uncommon cases
with difficult imaging conditions or structures, making it relevant to test perfor-
mance on specific pitfalls. It consists of stereo color data and also contains the 10
or even 30 preceding frames for each annotation to facilitate online training.

1.4.2 Contributions to collision warning
For general collision mitigation, it is important to embed redundancy into an ap-
plication system. For this reason, we have explored stereo-based collision analysis
in this context, by attempting to extract relevant and reliable collision information,
starting from efficient disparity stixel processing. The evaluation of our framework
has shown that this is indeed possible. A key aspect of the proposed method is
that it avoids specific object detection or pretraining on certain scenarios. Instead,
it provides warnings on collisions with any obstacle, using simple but effective
newly introduced asteroids as a model for generic dynamic analysis for stereo
vision input. This novel concept allows to directly model obstacles and their tra-
jectories. Additionally, we incorporate the measurements into a newly designed
state space, containing time and direction of impact, to directly assess potential
collisions.

Next to developing and analyzing a collision warning system, we have also
created new datasets for the required evaluation process. The first one is a set with
simulated data, the PreScanStereoCollision Dataset, where the ego-vehicle drives
on collision trajectories with various kinds of other traffic participants in different
scenery. Using simulated data is unavoidable for quantitative experiments, since
real-world datasets have no true collisions. The color stereo data is generated
within the PreScan simulation environment. It contains ego-vehicle data and object
annotations in the same format as the widely used KITTI-tracking benchmark
for optimal usability. Additionally, real-world data from near-collisions was also
recorded in different environments. This data is not annotated, but it can provide
qualitative support of the concept.

1.4.3 Contributions to deep learning for ADAS
With respect to the field of convolutional neural networks, our contributions are
in self-supervised training, exploiting small neural network architectures, and
exploiting the combination of neural networks with traditional methods.

The first aspect contributes to reducing manual labeling effort of annotation
experts, in turn allowing to increase the amount of training data easily. The second
aspect, exploiting small neural networks, reduces the computational load of the
in-vehicle system to facilitate embedded deployment. The third aspect shows the
benefit of hybrid architectures, where traditional algorithms facilitate in reducing
the complexity of the employed AI system, which in turn strengthens the applica-
bility and benefits of AI in ADAS. All these aspects have been investigated within
the context of freespace detection and collision warning.
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1.4.4 Real-world system integration
We have explored two different cases of integrating our work in real-world proto-
types for extended validation testing. First, a prototype with an integration of our
modeling-extended Stixel World (slanting, interpolation, masking) for 3D scene
registration was successfully tested on a moving vehicle under difficult real-world
conditions in a military surveillance application. Second, stixel-based object detec-
tion was integrated in the VI-DAS system of the equally named European H2020
project, through fusion of stixels with a semantic scene segmentation calculated
by a deep neural network. The functionality of our module has been verified
via interfacing it with a newly developed forward-collision-warning module and
associated tracking modules. This has resulted in successful forward collision
warning during day and nighttime conditions within a context of partially auto-
mated driving.

1.4.5 Research Questions
The key problems addressed in this thesis are freespace segmentation and colli-
sion warning. The tools exploited for solving these problems are computer vision
techniques such as disparity estimation, machine learning and probabilistic mod-
eling. The following questions define the essential issues that are investigated in
the succeeding chapters. The final contributions of this thesis include validating a
selected set of algorithms in a real practical setting with moving prototype vehicles
and real-time constraints. This validation part is reflected in a separate research
question.

RQ1 Improvement of the performance of freespace segmentation systems under
adverse imaging conditions and their robustness towards changing conditions
and environments.

• RQ1a: What are the common artifacts in current freespace algorithms and what is
their root cause?

• RQ1b: In what way can different data modalities from a stereo camera be jointly
leveraged in this context?

• RQ1c: How can color models be extended for freespace segmentation, while retaining
a low complexity?

• RQ1d: What is the added value of self-supervised online learning for increasing
robustness?

RQ2 Leverage of computer vision to improve dynamic collision-warning func-
tionality.

• RQ2a: How can stereo disparity imaging be exploited for collision warnings?
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• RQ2b: Is it possible to prepare an ADAS module such that future sensor fusion can
be exploited beneficially?

• RQ2c: How should dynamic measurement data be represented efficiently for direct
support to collision warning?

RQ3 Exploration of real-time applications of AI and 3D geometry in traffic-scene
and road-scene analysis.

• RQ3a: What methods can reduce the computational requirements of neural networks
to facilitate deployment in real-world systems?

• RQ3b: How can 3D scene geometry be modeled efficiently and accurately, to make
it suitable for real-time synthetic view rendering?

1.5 Thesis outline
This section provides an overview of the contents of this thesis. It describes how
the different chapters are connected, which problems and approaches are ad-
dressed per chapter. Figure 1.2 portrays a graphical representation of the structure
of this thesis. Besides the indicated topics per chapter, the figure also highlights (in
yellow and red colored blocks) two research directions regarding the contributions
of this thesis across different chapters.

Chapter 2 presents the color-extended Stixel World algorithm as our first new
contribution. The original Stixel World algorithm provides a compact medium-
level geometric representation of traffic scenes, which is calculated efficiently for
real-world applicability. In order to reduce the number of false stixels, the ap-
proach in this chapter is to fuse color into the algorithm to improve the system
robustness. To preserve the efficiency of the method, the proposed extension is
based on efficient color modeling. Simultaneously, the system needs to operate
robustly under both normal and adverse imaging conditions. We propose to rely
on online modeling to comply with both goals, and evaluate this strategy on EHV-
road (2014), a newly recorded and annotated dataset. The contributions of this
chapter were presented at IEEE ITSC 2014 [33].

Chapter 3 introduces a self-supervised color-based Stixel World algorithm.
The objective of the research in this chapter is to reduce the latency of the free-
space segmentation system, while maintaining similar performance compared
to the color-extended Stixel World algorithm. The added value of the proposed
method, specifically under poor imaging conditions, is evaluated on a new subset
of EHV-road (2015), containing only dark and rainy frames. The contributions
of this chapter were presented at IEEE ITSC 2015 [34], IEEE/RSJ IROS-PPNIV
2015 [35] and NCCV 2015 [36].
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Chapter 1: Developments towards highly automated driving

Chapter 7: General conclusions and future outlook

Freespace
segmentation

Collision
warning

3D Static scene modeling

Combining conventional and DL techniques

Chapter 4: 
Self-supervised 

small FCPN

Chapter 5: 
ASTEROIDS for 

class-agnostic analysis

Real-world prototypes

Chapter 6A: 
Scene modeling for
change detection

Chapter 2: 
Strong fusion of color

and disparity

Chapter 3: 
distance-aware 
color analysis Chapter 6B: 

SSCOD for class-aware
analysis

Figure 1.2 — Schematic overview of the structure of this thesis.

Chapter 4 continues and completes the research on freespace segmentation
using stereo vision. An in-depth analysis of the evaluated color models and al-
gorithm setting used in the previous chapter shows that the performance of the
system can benefit from a more adaptive color modeling method. As a solution,
this chapter exploits the power of convolutional neural networks to increase the
adaptivity of the color modeling in the freespace segmentation framework. The
proposed method relies on the EHV-road 2014 and 2015 subsets for all training
activity, and is evaluated on a new subset of EHV-road (2017). The contributions
of this chapter were presented at IEEE IVS-DD [37], NCCV 2016 [38] and IS&T EI-
AVM 2017 [39].

Chapter 5 presents research on stereo-based collision analysis. Since traffic is
a highly dynamic environment, this chapter extends the analysis to include the
dynamic aspects of traffic, and discusses a generic collision warning system that
does not rely on pretraining on object classes or traffic scenarios. To this end, a
probabilistic framework is proposed that combines the efficient stixel representa-
tion with flow measurements from a neural network and then generates newly
introduced asteroid particles to model potential collisions in a specialized state
space. The contributions of this chapter were presented at IS&T EI-AVM 2019 [40]
(receiving a best-paper award) and were published in IEEE Trans.-IV [41].
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Chapter 6 discusses the integration of the work into two different real-world
prototypes (Change Detection 2.0 and the demonstrator of the EU H2020 project
VI-DAS), for which two different extended versions of the Stixel World algorithm
were developed. The first demonstrator consists of the change detection system
for the Netherlands Ministry of Defence, which is used in a military surveillance
context and requires pixel-accurate image registration with large viewpoint differ-
ences. The proposed solution extends the analysis of the scene content to include
obstacle regions. To this end, the Stixel World representation is enriched with
stixel slanting around the vertical axis, stixel interpolation and pixel masking,
to enhance image registration. This work was presented in a joint effort with
dr. D.W.J.M. van de Wouw at VISAPP 2018 [42]. The VI-DAS demonstrator con-
cerns regular, yet dynamic traffic scenarios in which specific types of traffic partic-
ipants need to be detected, classified, localized and tracked. This information can
then be used both in a high-level risk-assessment system and for new, light-weight
forward-collision warning. This pipeline uses disparity stixels for geometry assess-
ment, a neural network for semantic information and clustering for object-level
analysis.

Chapter 7 summarizes the main conclusions from all chapters, provides a dis-
cussion on the posed research questions and presents a future outlook.
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the Color-extended Stixel World
algorithm

2.1 Introduction
The technology overview in Chapter 1 discusses that ADAS are receiving an
increasing amount of attention in research and that several systems are being
employed in commercially available vehicles. ADAS offer situational awareness
in a wide range of sub-functionalities, such as lane-departure warning, lane-keep
assist, pedestrian detection, traffic-sign recognition and many others. The first part
of this thesis focuses solely on the fundamental issue of determining where the
car can or cannot drive, by splitting the scene into freespace/traversable regions
versus obstacle/non-traversable regions. This distinction can facilitate subsequent
processes, i.e., full semantic scene parsing, lane detection and short-term vehicle
routing. Moreover, this work concentrates on stereo vision-based systems for
freespace detection. Stereo cameras provide dense scene information in front
of the vehicle in a cost-effective way, concerning both appearance (by means
of color) and 3D scene geometry (by means of disparity). Both color [43]–[45],
disparity [46], [47] and their combination [48]–[50] have been employed in related
work on freespace segmentation. This active line of research has still several open
challenges, of which the most important ones are listed below.

• Issues with disparity signals: Disparity measurements generally suffer from
errors such as noise, strong outliers and holes due to occlusions, or due to
little texture information in large image regions. Although these issues can
be addressed to a certain extent by using high-quality cameras and more
advanced disparity estimation, they can never be fully resolved, since traffic
scenes will often contain image areas with, for instance, low illumination,
shadows, sunny reflections or motion blur.

• Signal fusion: It is evident that the fusion of the estimated disparity with
other modalities is advantageous for obtaining more reliable information in
case of difficult imaging conditions. Optical flow and texture analysis typi-
cally suffer from the same challenges as disparity estimation, as all require
well-textured image regions. More orthogonal and complementary image
modalities are therefore color, shape, and appearance.

The work in this chapter has been published at IEEE ITSC 2014 [33].
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As with all ADAS, freespace segmentation should be able to execute as a real-
time function in a vehicle. Making algorithmic contributions suited for a practical
application leads to several design constraints. For instance, the system should
be:

• of low complexity to allow for real-time execution on an embedded platform
with limited computation and memory budget;
• able to handle the varying imaging conditions mentioned above;
• safe in the sense that it neither misses obstacles nor detects too many.

An established and efficient work that provides freespace segmentation is the
so-called disparity Stixel World algorithm [51], which performs a stereo-based
scene-geometry analysis. It efficiently generates a compact 3D representation of a
scene and distinguishes ground from obstacles. Since the original method relies
on disparity alone, the output generally suffers from created artifacts on noisy
disparity data. However, an interesting property of the Stixel World method is
that it allows for strong fusion of different modalities in one probabilistic frame-
work. More specifically, instead of analyzing each modality separately and then
combining their results [48], [50] (i.e. weak fusion), the Stixel World method can
be extended to efficiently analyze multiple modalities simultaneously (i.e. strong
fusion). To our knowledge, this data fusion property of the Stixel World algorithm
has received little attention in literature, despite its apparent advantage. The work
presented in this chapter aims to address and contribute to these fusion properties.

More broadly, advantages of the combination of using depth information with
color information has been shown in other frameworks [48]–[50]. A particular
interesting strategy is to use the dense disparity-based depth information, to learn
a color-based road-versus-obstacle model online (while driving) and thus, in a self-
supervised manner [50], [52]. This model is used to classify image regions as either
road or obstacle, of which the result is then combined with the disparity-based
analysis. This combination is typically performed with rather straightforward
fusion methods, and can be as simple as using the depth analysis up to a distance
from the vehicle and the color-based analysis after this distance [53].

Considering this compact overview of challenges, constraints and alternative
methods, the work in this chapter will contribute to the field of freespace segmen-
tation in the following three ways.

• A novel Color-extended Stixel World algorithm is introduced, that allows to
exploit strong fusion of disparity and color modalities for freespace-versus-
obstacle image segmentation. The main objective of this strategy is reducing
the impact of disparity artifacts caused by difficult lighting conditions.

• A simple and efficient color model is proposed for fusion to enable a low-
complexity system. To ensure that the simple color model still provides
relevant information to the analysis, our system updates the class color
models online (while driving) in a self-supervised mode.
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• A new public dataset is released with a combination of aspects that did not
exist earlier: it has (1) stereo color-video sequences, (2) freespace annotations,
(3) both good and adverse imaging conditions.

The remainder of this chapter is structured as follows. First, a short description of
the disparity Stixel World algorithm is provided in Section 2.2, since it serves as a
basis of our work. The main contribution is put forward in Section 2.3, where the
strategy to fuse color information into an extended stixel framework is described.
Section 2.4 elaborates on the evaluation approach, including the publicly available
dataset and experiments, the results of which are provided in Section 2.5. Lastly,
conclusions are presented in Section 2.6.

2.2 Related work: the disparity Stixel World algorithm
This section gives a short overview of the Stixel World framework as presented
in [51], which is used as a basis of the research work in this chapter. The main ob-
jective of stixel segmentation is to find the optimal labelingL∗ of vertically stacked,
piecewise planar ground or obstacle segments for the input disparity data D. The
concept is illustrated in Figure 2.1. Formally, finding L∗ can be formulated as a
MAP estimation problem, as specified in Equation (2.1):

L∗ = arg max
L∈L

P (L|D), (2.1)

which can be solved efficiently using Dynamic Programming. Using Bayes’ theo-
rem and assuming that (a) columns are independent, (b) disparity measurements
du,v ∈ D at individual pixels (u, v) are statistically independent and (c) data within
disparity column Du is independent from the labeling in other columns, the pos-
terior probability can be written as in Equation (2.2):

P (L|D) ∼
w−1∏
u=0

P (Du|Lu) · P (Lu). (2.2)

Here, u is the column index andw the image width. The probability P (Lu) models
a-priori world knowledge to constrain the labeling to avoid dispensable segments
and physically unlikely situations. This world model offers a way to regularize
the results for semi-global optimality (namely, at the level of image columns).
Since this world model is unrelated to the way the data analysis within the Stixel
World method is handled, our environment model is based on the same conditions
as laid out in [51], which contains the full details concerning P (L). Finally, the
likelihood of the data given a certain labeling, can be written as

P (Du|Lu) ∼
Nu∏
n=1

vtn∏
v=vbn

P (dv|sn, v), (2.3)
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where n is the segment index,Nu the number of segments in Lu, and vbn and vtn the
bottom and top row-index of stixel segment sn that has a binary label ln ∈ {g, o},
representing the ground and obstacle classes, respectively.

The next step is accounting for invalid disparity measurements dv /∈ [dmin, dmax].
For example, these will occur if the estimator cannot find a match in the stereo
frames. To this end, a probability of encountering a non-valid measurement is
defined, pinvalid, as well as the probabilities that such a pixel will represent ei-
ther ground or obstacle, p(ln|inv.disp.). With this, the probability of invalid data
for each class can be calculated using Bayes’ rule: plninvalid = p(inv.disp.|ln) =

p(ln|inv.disp.) · pinvalid/p(ln). This then leads to

P (dv|sn, v) =

{
PD(dv|sn, v) · (1− plninvalid) for valid dv,
plninvalid otherwise.

(2.4)

Here, PD(dv|sn, v) represents the probability of a single valid disparity measure-
ment dv at a certain row v, assuming that it would belong to a potential segment
sn. The distribution PD(dv|sn, v) is modeled as a mixture model that consists of a
uniform distribution to handle outliers and a Gaussian distribution to model how
well the measurement fits the potential segment:

PD(dv|sn, v) =
pout

dmax − dmin
+

1− pout

Anorm
e
− 1

2

(
dv−fn(v)

σln (fn,v)

)2
. (2.5)

In Equation (2.5), pout is the fixed probability of encountering an outlier. The
normalization term Anorm and the modeled standard deviation σln are defined
in [51]. The remaining term, fn(v), models the expected disparity within a segment
for ground and object segments. For objects, fon(v) = µn is adopted, assuming a
fronto-parallel object surface at the mean disparity of the segment. For ground
segments, fgn(v) = α · (vhorizon− v) is used, assuming a linear groundplane surface
with a slope α.
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Figure 2.1 — Illustration of the stixel representation of a traffic scene. The left image is an example
of a cropped input image (of the left camera from a stereo pair) with a box indicating a stixel column
to be processed. The graph in the middle shows the corresponding measured disparity in blue dots
(being the input to the Stixel World algorithm), and the resulting stixel output plotted on top of that,
using a unique color per segment. The right figure visualizes the same result as an overlay on the
input image for clarification. The region marked black is correctly detected ground, obstacle stixels
are colored by distance from the ego-vehicle (red is closeby, green far away). These results show some
small inaccuracies (the car is divided into two segments and false disparity measurements in the sky
lead to small stixels at the top region of the image).

2.3 Method: the Color-extended Stixel World algorithm
This section describes the proposed method, called the Color-extended Stixel
World. The first sub-section addresses the general algorithmic design. Then, two
consecutive sub-sections describe the applied color representation and the online-
training strategy in more detail.

2.3.1 Extending the Stixel World with color analysis
As a key contribution, we incorporate a color signal C in the original Stixel World
model. To this end, the data term of Equations (2.1) and (2.4) should now reflect
both color and disparity information. Starting from P (L|D,C), a derivation can be
made analogous to the description in Section 2.2. With the additional assumption
that disparity and color modalities are independent, the data term of the likelihood
can be rewritten as:

P (Du, Cu|Lu) ∼
Nu∏
n=1

vtn∏
v=vbn

P (dv|sn, v) · P (cv|sn, v), (2.6)
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Proposed Method
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Self-supervised 

Online Color 
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Disparity Stixel
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Learning Window

Figure 2.2 — Original stixel framework (top), relying on disparity images alone, versus the
proposed extension (bottom), which exploits both disparity and color information.

where segment sn has a label ln ∈ {g, o}, as before. Note that the term P (dv|sn, v)

also incorporates the construction for invalid disparity measurements as in Equa-
tion (2.4) but is left out here for compactness. Furthermore, we do not alter the
definition of the world model P (L), but focus on defining a suitable color model
within P (cv|sn, v). This term should capture the probability of a certain color
measurement given a certain segment label. We define this to be independent
of the position v of the segment and merely consider the label of a segment, so
that P (cv|sn, v) = P (cv|ln). This is a reasonable simplification, since P (L) already
constrains physically unlikely segmentations and we can assume that the color of
the road surface is approximately constant within the image.

The Color-extended Stixel World optimization analyzes a log-likelihood cost
function based on P (L|D). In that cost function, we impose weighting factors
between the cost of the disparity term P (dv|sn, v) and that of the color term
P (cv|sn, v). These weighting factors are selected to set a balancing ratio of 1 : λ

between disparity-based cost and color-based cost. This balancing is required to
compensate for the oversimplification in the modeling of their theoretical joint
probability density in two disjoint terms, which use different probabilistic methods
(i.e. Gaussian distributions and histograms). The joint probability density function
of color and disparity cannot be computed in practice, and the ratio provides a
convenient means for tuning the normalization of the simplified model.

The main steps of our processing framework are conceptually depicted in
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Fig. 2.2 and Algorithm 1. It comprises of two main steps: learning color models for
freespace and obstacle areas (Algorithm 1: [Learn Color Models]) and segmenting
the current frame using the Color-extended Stixel World method (Algorithm 1:
[Process Current Frame]), both addressed in the following subsections.

Algorithm 1 Segmentation in the Color-extended Stixel World
Input: image Itn ; disparity D; learning window LW ;

[Learn Color Models]
for each t ∈ LW do
Ct ← TransformRGB2Color(It)
for l ∈ {ground, obstacle} do
TM l

t ← GenerateTrainingMask(L∗
t , TM

l
prior)

Xl
t ← ExtractSamples(Ct, TM l

t)

Hl
t0
← AddToHistogram(Hl

t0
, Xl

t)

end for
end for
P (C|l)← NormalizeHistogram(Hl

t0
)

[Process Current Frame]
C← TransformRGB2Color(It0 )
L∗ ← StixelSegmentation(D,C, P (C|l))

Output: Optimal Labeling L∗

2.3.2 Color representation with an adaptive palette
A common approach in color analysis is employing color histograms as dense area
descriptors. Color histograms can be defined with linear, non-linear or adaptive
binning strategies. We apply the adaptive binning strategy minimum-variance
quantization, also known as median-cut quantization, as described in [54], which is
referred to as an indexed color space. Indexing the color space with an adapted
color palette ensures that the borders of the histogram bins fit optimally to the
color signal of a certain traffic scene in an efficient way, see Figure 2.3. This strategy
will be compared to relying on unadapted, linearly spaced bins in our experiments.

Our analysis will mainly focus on the RGB color space, since it yields good
results in numerous color-based experiments on video analysis. This approach
will be compared to an HS-based approach in several tests as well (since we do
not use the intensity signal, the commonly known HSI space becomes HS in our
case). The function that transforms each RGB image frame It to its desired color
representation in Ct, is indicated with ‘TransformRGB2Color’ in Algorithm 1.

2.3.3 Self-supervised online learning of color models
Since the aim of this work is to develop a system that is highly adaptive to differ-
ent traffic environments, the color models P (c|l) are learned online, which means
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(a) 10 colors, fixed palette (b) 10 colors, adapted palette

Figure 2.3 — Conceptual illustration of the benefits of using an adaptive color palette. Since the
input image (top) contains many gray tones, quantizing the image with a fixed palette (a) hampers
discerning important different image regions (e.g. the car, buildings and sidewalk are merged, grass
and bushes are merged, etc.). By adapting the palette towards different gray and green tones (b),
relevant information is retained, while a similar color space reduction is achieved.

that they are updated while driving. This is an intuitive approach, since an offline
learning strategy would require a single color model that is both general enough
to be applicable to all potential ground appearances and simultaneously discrimi-
native enough to always separate the ground from its surroundings. Our online
learning approach is indicated in Algorithm 1 under the labeling text ’Learn Color
Models’. The training process contains two key selection strategies: first selecting
appropriate frames and within those, selecting appropriate pixels. These steps are
defined in the next paragraphs below.

A. Defining the learning window over frames
In our framework, a learning window LW is defined, containing one or more
frames that precede the current frame at t = tn with a maximum range of 60 frames
back in time, denoted by tn−60. These frames are transformed to the indexed
color space. From this signal, training samples are selected that are considered
to be representative of either the road or the obstacle class. These samples are
then used to fill and normalize a color histogram for each class, providing the
required P (cv|ln). Note that the color model P (c|l) is not yet learned at the start
of a sequence and hence, assumed to be a uniform distribution. As a consequence,
the first frames are effectively segmented using only their disparity signal.

B. Defining the training mask over pixels
Selecting ground and obstacle training samples from the preceding frames It
within learning window LW requires a training mask, denoted by TM l

t , for each
frame and each class l ∈ {g, o}. To this end, we exploit the fact that each previous
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2.3. Method: the Color-extended Stixel World algorithm

Figure 2.4 — Different training masks and ground-truth annotations. Top: example image (left)
and TMg

prior (right); middle: ground segmentation mask (left) and its intersection with the prior.
Bottom row: annotation of drivable surface (left) and road (right).

frame was already analyzed and segmented by our system at its corresponding
time t. This process results in an estimate of obstacle and ground areas in each
frame, which we refer to as segmentation masks (SegmMask).

We explore two strategies to create training masks, namely using the full mask
(SegmMask), or intersecting the mask with a prior mask (Intersect). For ground
samples, this is illustrated in Fig. 2.4 with an example image (top left) and the
corresponding estimation of the ground area, as provided by its disparity-based
segmentation result (Fig. 2.4, middle left). We define the prior mask (TMg

prior)
as a fixed trapezoid at the bottom center of the image mask (Fig. 2.4, top right).
Intersecting this prior mask with the disparity segmentation result, leads to a
mask that contains the road area directly in front of the car, excluding detected
obstacles (Fig. 2.4, middle right).

A comparable strategy is employed to generate a training mask to extract obsta-
cle training samples. The SegmMask is the inverted version of the mask for ground
(i.e., the black regions in Fig. 2.4 middle-left). For the Intersect, we apply a mask
containing the area below the horizon. This makes the color modeling of obstacles
more balanced towards obstacles that are on the road, which are more relevant to
distinguish than, for instance, tree leafs or rooftops.
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2.4 Evaluation approach
The objective of the evaluation is to measure the quality of the proposed freespace
segmentation algorithm and the impact of three crucial design choices. These
choices are: (a) the color-space specifications, (b) the strategy of selecting training
samples with training masks TMg

t and TMo
t , and (c) the position and range of the

learning window LW . All our results will be compared to results that are acquired
with the our implementation of the disparity Stixel World algorithm [51], which
was upgraded with several enhancements, as will be explained in Section 2.4.3.

2.4.1 Dataset
To evaluate the proposed system, a dataset was acquired in an urban environ-
ment, using a BumbleBee2 camera, mounted behind the windshield of a car, just
below the rear-view mirror. The camera has a baseline of 12 cm, a resolution of
1024×768 pixels and a frame rate of 20 fps. This EHV-road14 dataset is publicly
available online 1.

From the recorded data, 74 representative frames have been selected and man-
ually annotated with both road and drivable surface areas, as illustrated in the
bottom row of Fig. 2.4. The frames contain a large variety of relevant traffic situa-
tions, such as small, crowded streets with cyclists, road repair sites, large crossings
and highways. The set contains asphalt and paved roads of several colors (black,
gray, red), frames with low illumination due to heavily clouded skies or trees,
and frames with high illumination from clear sky with sunny reflections. Several
example frames are provided in Fig. 2.5.

Unfortunately, our algorithm cannot be executed on benchmarks such as the
KITTI dataset [55], since they do not contain the preceding frames of annotated
road images that are required for our online training strategy.

2.4.2 Disparity estimation
To obtain disparity measurements, a multi-threaded version of the OpenCV im-
plementation of the Semi Global Block Matching algorithm of [56] was applied.
Due to the many low-texture image regions in our dataset, we have empirically
found that a matching window size of 7 × 7 pixels and smoothing parameters
p1 = 16 · (7×7) and p2 = 8 ·p1 provide the most acceptable results. Additionally, a
winner margin measure was exploited, to force the algorithm to have a higher pre-
cision at the cost of recall. This is beneficiary for the baseline Stixel World method,
since it can handle missing values better than erroneous ones. This can be seen
as a simplification of the work presented in [57], in which disparity estimates are
accompanied by a confidence measure to adaptively set an outlier probability. In
our approach, this confidence is binary with a relatively strict threshold, so that
the winner margin is at least 20.

1The data can be found at http://tue-mps.org.
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2.4.3 Stixel World parameters
As described, our camera has a lower resolution and a smaller baseline than, for
example, the camera used for the KITTI benchmark dataset [58], potentially re-
sulting in a lower quality of the disparity estimates in our dataset. To compensate
for this deficiency and to obtain more favorable results for the baseline method,
we have made several improvements to the baseline framework. For instance, the
geometric groundplane model fgn(v) is updated while driving, instead of using a
single fixed model as done by the authors of the original work. To this end, we
exploit a v-disparity representation such as in [47], for several vertical slices of
each frame, making our system more robust against groundplane deviations over
time and non-horizontal groundplanes. Moreover, we have tuned the label-based
transition probabilities defined in P (L) to boost the performance of the baseline
method even further. Finally, we have added an artificial ground segment to the
bottom of each stixel column, denoted with Seg0. This segment represents the
area below the camera view, which can safely be assumed to be road in this con-
text, while it reduces false detections in the lower image regions, due to noisy
disparity estimates. To show the value of these additions, the performance is re-
ported of each of these three disparity baselines (original settings, tuned transition
probabilities and with the artificial Seg0 as ground).

The relevant Stixel World parameters, as described in Section 2.2, are set as
follows throughout all experiments: pout = 0.25; pinvalid = 0.25; pinvalid

g = 0.55;
pinvalid
o = 0.45; pg = po = 0.5; dmin = 1; dmax = 32. Furthermore, a stixel width

of 10 image columns is adopted, and the disparity and color signals are sub-
sampled vertically with a factor of 3, prior to segmentation. Note that since the
full-resolution image data are exploited to compute look-up tables and color
models, the subsampling strategy is comparable to the approach in [51]. The re-
search version of the Color-extended Stixel World method is a MATLAB-based
implementation. The additional complexity of the color processing is quite small,
compared to the complexity of the disparity-analysis baseline. Therefore, it is safe
to assume that the proposed extension can operate as a real-time system, similar
to the original system [51].

2.4.4 Metrics
The performance of the Color-extended Stixel World algorithm is measured in two
distinct aspects to provide a balanced view between data and application. These
aspects are based on raw pixel count and on the measured real-world drivable
corridor. Both aspects are discussed separately in the next subsections.

A. Pixel-level metric
Inspired by the work of Fritsch et al. on performance metrics for road detection
algorithms [55], our road detection algorithm is evaluated in a Bird’s Eye View
(BEV) representation of the scene. A BEV representation is corrected for geometric
distortion to avoid that pixels near the car outweigh pixels farther away in the
segmentation score. In this representation, we have employed several metrics to
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assess the performance of our algorithm. First of all, the recall and precision of
the road area are measured, with the road annotation as a reference. However,
pixels that are drivable but not belong to the road are ignored in the evaluation,
such as curbs and grass. The purpose of this strategy is to assess in which areas
improvements or deteriorations of the results appear. More specifically, we focus
our evaluation on increasing the recall of the road regions, since that is the most
relevant ground area for ADAS. As a side-effect, it is acceptable to reduce the
precision as long as that occurs mostly in drivable surfaces that are not road. In
this evaluation, an area up to 30 meters in front of the vehicle is considered.

Since the stixel representation approximates area contours with rectangular
shapes, it is not possible to achieve a pixel-accurate segmentation. Consequently,
achieving perfect recall and precision is also not realistic. To determine how close
the performance of the tested methods come to the maximum attainable perfor-
mance, we estimate realistic optimal recall and precision scores by eroding and
dilating the ground-truth segmentation masks with a square kernel with dimen-
sions similar to the stixel width.

B. Drivable corridor metric
Next to the pixel-level metric which is vision-inspired, the added value of our
method is assessed bearing a practical application in mind, namely actually mea-
suring where the ego-vehicle can drive. This can also be measured in the BEV
representation of our road-segmentation results. In that representation, we derive
how far a vehicle can drive by calculating where the first object is that a vehi-
cle of average width would drive into. Using the ground-truth annotations, it is
possible to define recall and precision scores, which incorporate a 5-meter safety
margin around obstacles. Recall indicates how much of the ground-truth drivable
distance is detected correctly. The recall will be lower than unity when a false
obstacle is detected in front of the first real obstacle. The precision represents how
much of the detected drivable distance is correct. If the real obstacle is missed, the
precision will be lower than unity. Consequently, for each frame, either the recall
or precision of the drivable distance is always equal to unity. Namely, since the
metric on the binary segmentation mask starts from the detected freespace in front
of the vehicle and evaluates an uninterrupted distance towards the first detected
obstacle, it can only result in a distance that is (1) a certain amount too short,
(2) perfect or (3) a certain amount too large. The drivable-corridor evaluation is
performed over a range of up to 50 meters. For these metrics, the resulting F-score
is provided as well, which is defined as the harmonic mean of recall and precision.

2.4.5 Experiment design
This section provides a brief overview of the experiments that were performed to
assess the critical design choices of our system. The three choices of interest are
(1) selection of the color representation, (2) selection of the training mask strategy,
and (3) specification of the learning window.
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A. Evaluating color representations
Several different color spaces and settings were evaluated. Specifically, we vary
the number of clusters k that is used to approximate the colors in the current
learning window and the color-data weighing factor λ, for both indexed RGB and
linearly binned HS representations. For linear binning, this is translated into k
bins per dimension, resulting in k2 bins for HS.

B. Evaluating training masks
To evaluate our choice of training mask (TM l

t ) for the selection of training samples,
the two approaches described in Section 2.3.3 are compared. This involves using
the segmentation mask alone, or intersecting it with a fixed, a-priori defined trape-
zoid in front of the vehicle (for ground samples), or the area below the horizon
(for obstacle samples).

C. Evaluating learning windows
The most relevant settings of the learning window are its range and position with
respect to the new frame. First, the time-length of the learning window is varied
by extending it further into the past with a maximum of 60 frames earlier than the
current frame (equivalent to 3 seconds in the past). This sub-experiment validates
if the added complexity of taking more frames into account translates into more
robustness. Next, it is analyzed whether it is possible to leave a gap between
the frames in the learning window and the frame currently analyzed. This is an
important sub-experiment, since if there is more time available to analyze the
frames of the learning window, either the constraints on execution time can be
relaxed, or more complex algorithms can be employed. As a third sub-experiment
on the learning window parameters, the duration of the LW is limited to a single
frame and then its position is varied. Effectively, this combines the extreme cases of
the first experiment (varying the time-length) with the idea of the second (leaving
a gap between LW and the current frame). In the most extreme case of this third
experiment, a color model is learned on a single frame, 60 frames earlier in time
(corresponding to 3 seconds).

2.5 Results
The upcoming sections contain the results of the evaluation of our Color-extended
Stixel World method. Fig. 2.5 shows four representative positive qualitative results
and illustrates the pixel-level road-segmentation scoring metric.

A. Performance of color representations
The most relevant results of the experiments comparing different color spaces and
settings are provided in Fig. 2.6 and Table 2.1. Based on the results illustrated
in Fig. 2.6, the HS color representation (bright green pluses) performs better at
increasing the recall, while RGB (cyan pluses) tends to improve the precision of
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Figure 2.5 — Qualitative results illustrated with eight images per frame. Top row: left camera
image (rectified and cropped) and corresponding disparity image. Other rows: baseline result (left)
and ours (right), in three different visualizations. First, the Stixel overlay (color depicts distance: red
(close) to blue (far)). Second, an overlay of the ground mask (in green) with the road ground-truth
outlined in red, and ignored pixels that are drivable but not road in orange. Third, the same masks
in their BEV representation with white lines at 10, 20, 30, 40 and 50 meters.
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the road segmentation. The experiments with a high λ and a low k generally result
in deterioration of the (tuned) baseline results. This is plausible, since the color
representation cannot contain much discriminating information, due to the low
k, while the confidence is over-increased due to the high λ, leading to erroneous
results. We have obtained the best results with an indexed RGB color model,
using k = 64 and λ = 4 (yielding an F1-score of 0.968). The closest HS-based
score (with an F1-score of 0.967) is obtained using k = 16 and λ = 2, where we
ignored experiments with worse precision than the baseline, since the precision in
road regions is critical for safe ADAS. Although these pixel-based scores are very
similar, the RGB experiment outperforms the HS experiment with 0.919 to 0.861

in the recall of the drivable distance (see Table 2.1). This means that more false
obstacles are detected with the HS color space, even though the HS model uses
16 × 16 bins and the RGB only 64. In the top graph of Fig. 2.7, two experiments
with λ = 1 are shown. The results of these are similar or worse than the (tuned)
baseline method, illustrating the importance of correct normalization when fusing
different signal modalities.

B. Performance of training masks
To evaluate our choice of training mask (TM l

t ) for the selection of training samples,
we compare the two approaches described in Section 2.3.3. This involves using the
segmentation mask alone, or intersecting it with a fixed, a-priori defined trapezoid
in front of the vehicle (for ground samples) or the area below the horizon (for
obstacle samples). In the bottom-left graph of Fig. 2.7, the results of these strategies
are shown, using the best settings for RGB and HS, as found in Section 2.3.2. For
the recall of the drivable distance alone, the selection of the training mask has
little influence, since all blue and green graphs nearly overlap. However, in the
two-dimensional recall-precision plot of Fig. 2.6, the influence of the training
mask selection is clearly visible, as the the dotted green (HS) and blue (RGB)
markers separate from each other in the two-dimensional field (mostly in terms
of range). The central markers in the blue and green series are the experiments
with one full segmentation mask and one intersection, of which the scores are
similar for both color spaces. The scores with high recall are obtained using the
segmentation masks for both ground and obstacles, while the scores with high
precision are obtained using the intersection masks for both classes. Hence, the
system becomes more conservative (higher precision) when the color models are
focused on relevant areas (the trapezoid in front of the car for road class and the
area below the horizon for the obstacle class). The subsequent experiments below
rely on the use of the full segmentation mask for ground samples and the intersect
method for obstacle samples, since it results in the highest F1 score and forms a
natural, good compromise.

C. Performance of learning windows
The most relevant settings of the learning window are its size in frames and its
position with respect to the new frame. We have found that the effects of the LW
settings are low for both metrics. In other words, our algorithm performs similarly
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under different LW settings. In Fig. 2.6, the results are marked with magenta
circles. They mostly overlap, even though the tests included several extreme cases.
In the bottom-right graph of Fig. 2.7, the experiments with the 3-sec.-old frame are
marked explicitly. They perform slightly worse, but still outperform the baseline
with more than 25%. This signifies that the system is flexible in the selection of
LW frames, since a single frame, selected within the last 3 seconds, can provide
sufficient information to learn a reliable color model to improve the segmenta-
tion of the road area. Evidently, this is based on the assumption that the scene
appearance does not change drastically in this time interval.

D. Discussion on the drivable-corridor metric
As discussed, our evaluation relied on both a pixel-level and a drivable-corridor
metric. Comparing the qualitative results of the baseline and our method in Fig-
ure 2.5, clearly shows the reason why these metrics are different and are relevant.
The disparity-only baseline method tends to generate false stixels at the bottom of
the image, i.e. close to the car. These stixels are often small, so that the pixel-level
metric over the entire area will not be much affected. However, the drivable corri-
dor is cut off immediately at these false obstacles, leading to a very low recall. In a
practical application, this would have the undesired effect of unnecessarily brak-
ing by the ego-vehicle. Our proposed color-extended version resolves these false
detections to a great extent, thereby improving the recall of the drivable corridor
(and hence, the applicability of the system). On top of this, the average precision
scores of our method on the corridor metric lie between 0.993 and 1.0 over all
frames, experiments and ranges. This means that our method, hardly influenced
by the used settings, very rarely misses a true obstacle within 50 meters over the
entire width of the corridor. Although not quantified in the current experiments,
we deem it infeasible that our system would ever not brake for a true obstacle,
since the missed detections are still at a safe distance, so that objects can and will
still be detected at a later moment.
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Figure 2.6 — ROC plot of the pixel-level metric of road, ignoring other pixels that are drivable,
such as grass and pavement (zoomed in, best viewed in color). In the legend: LW [start:end]: Learning
Window with range [t0−tstart, t0−tend]; TM: training mask, which can be SegmMask or Intersect.
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or Intersect; k: the number of bins (for HS: k bins per dimension).
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2.6 Conclusions
In this chapter, we have presented a color extension to the disparity-based Stixel
World algorithm, in order to more robustly segment available freespace versus
occurring obstacles in traffic scenes, using online learned color models in a self-
supervised way. This extension particularly improves the robustness of the seg-
mentation against erroneous disparity estimates, which inevitably occur during
challenging low-texture imaging situations, regardless of the quality of the stereo
camera being used. An improved, safe and reliable segmentation of freespace
and obstacles is obtained by fusing the disparity information with other (image)
modalities, so that joint exploitation of the information is facilitated in the overall
system.

The proposed method contains the following novel aspects:
• strong data fusion by extending the original optimization criterion with a

color-based cost term;
• color analysis for incorporating the most suitable color feature in the cost

function;
• self-supervised online training stage for using a simple color model which is

kept representative during operational driving through different scenes;
• sample-selection analysis to optimally select training frames and training sam-

ples for the online training stage.
It can be concluded that the method is enhanced by adding color data with an
informative and efficient representation and the self-supervised online learning of
the color models. Besides these algorithmic additions, we have contributed in two
other aspects. First, we present a newly recorded dataset to evaluate this disparity
and color-based freespace segmentation systems with online learning. Second,
a new evaluation metric is employed that measures improvements in drivable-
corridor estimation, which is directly useful for practical deployment.

Experiments and evaluation of the Color-extended Stixel World method have
shown the following key results.

A. Color representation: The indexed RGB color model (k = 64 and λ = 4; F1 =

0.968) slightly outperforms the best HS-based method (k = 16 and λ = 2; F1 =

0.967) in the pixel-based metric. Interestingly, the RGB experiment outperforms
the HS-experiment with 0.919 to 0.861 in the recall of the drivable distance.

B. Balancing the fusion: Experiments with λ = 1, or high λ combined with a low k,
typically perform worse than the (tuned) baseline method, illustrating the impor-
tance of appropriate normalization when fusing different signal modalities.

C. Learning window selection: A single frame, selected within the last 3 seconds,
can still provide sufficient information to improve the segmentation performance
with 25% compared to the disparity baseline.

D. Training mask design: The influence of the used training mask is small on the
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drivable-corridor metric. However, the pixel-based metric shows that the system
typically becomes more conservative (higher precision) when the color models
are focused on relevant image areas using the intersected masks.

The combination of these aspects results in an increased pixel-based F1 score
on road segmentation from 0.96 to 0.97, compared to a heavily optimized baseline
method. Without our additional optimization efforts, the baseline method scored
0.91. More importantly, in detecting drivable distance (the novel application-
inspired metric), the proposed method increases the F1 score from 0.86 to 0.97.
These results clearly indicate that the Color-extended Stixel World method, based
on strong fusion of disparity and color modalities, is an accurate and robust
method for road versus obstacle segmentation.

The discussed aspects in this chapter are only elements within a larger design
framework for ADAS. This chapter has dominantly addressed robustness and
performance quality as indicators for system improvement. For example, another
crucial aspect is processing speed, since the results should become available by
real-time processing in the car. However, the use of strong fusion in the work
of this chapter implies that both the color and the disparity signal have to be
available prior to initializing further processing. In turn, this implies a bound on
the minimal latency that the system as a whole can achieve. The next two chapters
aim at redesigning the data flow of our system pipeline to reduce the system
latency without degrading the quality of its performance.
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for freespace segmentation

3.1 Introduction
This chapter continues further with the use of color and disparity for freespace
segmentation, but without relying on a strong fusion strategy. Whereas the previ-
ous chapter has introduced the use of color into the Stixel World modeling, this
chapter concentrates on optimizing the involved computational effort with the
aim of reducing the latency of the complete freespace segmentation task.

Similar as in Chapter 2, the research scope is limited to stereo camera-based
systems. Thereby, other issues are still a point of interest, most notably difficult but
realistic imaging conditions that degrade the stereo-disparity signal (such as low
light, bad weather, or a low-quality sensing system). These artifacts typically lead
to the detection of false obstacles, which lower the systems applicability under real-
world conditions. The previous chapter has introduced the Color-extended Stixel
World algorithm to address this issue. This solution resolves many erroneous
results of the disparity analysis at a low additional computational cost, in contrast
to alternative solutions, such as high-quality cameras or more advanced disparity
estimation techniques. However, another key property of ADAS is the system
latency, i.e. the time delay between the moment of data acquisition and the moment
of the output response. Since ADAS preferably function at high vehicle speeds,
the latency of such systems should be as small as possible. Hence, any delay that
can be removed from the critical path of the analysis is beneficial to the value
and applicability of the system, provided that this removal does not degrade the
acuracy of the results.

Naturally, there are different potential strategies to reduce the freespace seg-
mentation latency, such as reducing the algorithmic complexity, increasing com-
putational capacity with improved hardware, or subsampling the input data to
reduce the computational load. Another option is to redesign the data flow, so that
the processing time of the critical path is reduced. For example, the Stixel World
pipeline that our research builds upon, consists of two main components: the
disparity estimation and the Stixel World computation. Although fast disparity

The work in this chapter has been presented at IEEE ITSC 2015 [34] and IEEE/RSJ IROS-PPNIV
2015 [35].
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estimation methods exist [59], [60], this typically requires either relying on sub-
optimal algorithms, or processing at a low resolution, or employing customized
hardware that is not commonly available. Even in the state-of-the-art system pre-
sented in [51], the disparity estimation takes 40 ms per frame on a dedicated FPGA
platform, whereas the stixel analysis of the data takes 30 ms, when executed on a
high-quality multi-core CPU. This is a demanding requirement when considering
that the overall latency of the practical system should not exceed 100-150 ms as an
order of magnitude.

Theoretically, executing these steps in parallel could reduce the system latency
close to a factor of two. However, the Color-extended Stixel World algorithm
relies on strong fusion, which requires the disparity of the input color frame to be
available at the same time for the analysis. This results in the following challenges:

• ADAS with a large system latency can limit the speed that the equipped
vehicle can be safely controlled at well below an order of magnitude of
100 km/h;
• disparity estimation roughly takes up half of the computation time within

the critical path of the reference system, while the system latency is upper-
bounded as discussed above;
• strong fusion of disparity and color improves the systems performance, but

imposes a bottleneck in reducing the system latency, since the current color
modeling is not informative enough to rely on without exploiting strong
fusion.

Therefore, the problem statement in this chapter concerns developing a more
advanced color modeling with the aim of removing the disparity analysis from the
critical system path to reduce the system latency. Besides this problem statement,
the solution should satisfy the generic system constraint on robustness, safety and
complexity, as described in Chapter 1.

The remainder of this chapter is structured as follows. Section 3.2 starts with
motivating the solution architecture and presenting the framework, after which
our main contributions on new color modeling strategies are established, building
upon the previous chapter. Section 3.3 elaborates on the evaluation approach,
including the new publicly available dataset and the design of the experiments.
The results of this are presented in Section 3.4. Lastly, conclusions are provided in
Section 3.5.

3.2 Method: the Color-based Stixel World algorithm
3.2.1 Background motivation
The system in the previous chapter relied on simple color models that were kept
up-to-date in an automated, self-supervised way, while the car was driving. This
online updating required disparity estimation for the self-supervising process. An
alternative strategy to online color modeling is offline modeling [44], which would
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completely remove the need for online disparity estimation in the vehicle. How-
ever, since the online strategy functions successfully to address the challenging
nature of traffic environments, the work in this chapter continues with the same
principle of online learning. Traffic-scene appearance varies highly with weather
conditions, geographical location, time of the day and the complexity of the scene.
For instance, urban traffic scenes tend to predominantly contain gray-tones in
low-light situations, in contrast to bright and open rural or highway scenes. We
consider it more feasible to build a robust, yet discriminating color model which
is adapted to that specific time and place, rather than designing a generic color
model that holds for every environment and weather condition and is still of low
complexity. On top of this, having the disparity data available online facilitates
distance-aware color modeling. As a result, the disparity estimation cannot be
completely removed from the system, but the key aspect is that it is no longer
required to be executed at the same frame rate, and hence, it does not anymore
negatively impact the latency of the critical path of the system.

Based on the above considerations, we now refine the solution direction for
the problem statement of this chapter, which leads to the following aspects:

• the Stixel World concept is now re-defined to a Color-based Stixel World
algorithm that does not require disparity estimation in its critical path, in
contrast to the previous versions;

• the new color modeling and processing is made distance-aware (which is
the key contribution of this chapter), still utilizing disparity but at a reduced
frame rate;

• a novel annotated dataset is provided to validate the effect of our contribu-
tions under adverse imaging conditions.

3.2.2 Framework architecture
The research in this chapter addresses two subproblems: (a) defining an efficient
and robust color-based cost term for within the stixel framework, and (b) find-
ing a color representation that is informative enough to separate freespace from
obstacles and yet is sufficiently suited for online processing.

Figure 3.1 shows an overview of the designed framework. The basis of our ap-
proach is the online self-supervised learning method as described in Section 2.3.3.
This method processes preceding stereo frames and generates a (noisy) freespace-
versus-obstacle labeling based on disparity. Consecutively, this labeling is ex-
ploited as self-supervised training masks for the color representation for these
two classes.

These previously mentioned sub-problems are addressed in four following
subsections, describing the Color-based Stixel World objective, the distance-aware
processing, choices on color representation and color-space selection.
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Previous critical path including disparity estimation

Disparity 

Estimation

Stixel

World

Proposed critical path
without disparity estimation

Color-based

Stixel World

Current Frame tn

Freespace result tn

Color Model tn-k

Background process lagging in time or at a low frame rate

Disparity 

Estimation

Online Disparity-

Supervised 

Color Learning

Learning Window

tn-10 …     tn-1 Disparity tn-k

Figure 3.1 — Comparing the critical paths of previous methods [33], [51] and the proposed Color-
based Stixel World segmentation system. The latter one has no direct dependency on disparity,
since the disparity-supervised color modeling in the lower part of the scheme can operate on selected
intervals or executed at a lower frame rate than the freespace segmentation, by varying the range of
the learning window (the possible time delay is indicated with the offset k).

3.2.3 Color-based cost function
This subsection describes the structure of the Color-based Stixel World for which
the distance-aware color processing is presented in the next subsection.

At its core, the stixel optimization process relies on probability distributions,
as described in Section 2.2. Therefore, the Color-based Stixel World algorithm
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requires a color-based likelihood function, specified by

P (Cu|Lu) ∼
Nu∏
n=1

vtn∏
v=vbn

P (cv|sn, v), (3.1)

which is analogous to the specifications of Equations (2.3) and (2.6). As discussed
in Section 2.2, parameter n is the segment index, Nu the number of segments in
Lu, and vbn and vtn the bottom- and top-row index of segment sn. Each segment
contains a certain color at every row (cv), and has a label ln ∈ {g, o}, representing
the ground and obstacle classes, respectively.

The term P (cv|sn, v) should capture the probability of a certain color measure-
ment given a potential freespace or obstacle segment. In the strong fusion ap-
proach of the previous chapter, this color-based term is simplified to P (cv|sn, v) =

P (cv|ln), under the assumption that the probability only depends on the label
of the segment under evaluation, and not on its position v. In the new model of
this chapter, this simplifying assumption is refined to facilitate the distance-aware
modeling. Therefore, the result is a mixture model with a uniform distribution
with probability pout to model outliers and a normalized histogram-based distri-
bution per class over all colors with probability PDA(c|l), formally written as:

Pmix(cv|sn, v) = pout + (1− pout) · PDA(cv|ln, v), (3.2)

where the subscript of PDA indicates that this distribution will be distance-aware.
The following subsection describes our strategy to compute the corresponding
distribution.

3.2.4 Distance-aware color analysis
Including the distance-awareness into the histogram-based color modeling is
motivated by the basic phenomenon that camera images naturally suffer from
geometric, perspective distortion. Effectively, pixels representing areas close to
the camera contain a smaller real-world surface than pixels representing areas
at a large distance. Therefore, surfaces that are close to the camera are dominant
in regular histograms, which contain only basic pixel counts. This imbalance can
result in inaccurate color modeling of far-away obstacles.

To address this issue, our distance-aware color modeling consists of three el-
ements: a weighted and an unweighted version of the color histogram and a
leveraging function. The first element is the weighted color histogram Pwh(c|l).
This is generated by weighting each pixel with its corresponding real-world sur-
face during computation. As a result, this histogram is more balanced towards
obstacles at a large distance. However, stereo-based distance measurements are
less certain at large distances, potentially leading to false obstacle detections close
to the camera. Therefore, as a second element, the algorithm also builds the regular,
unweighted histogram Ph(c|l). Both histograms are integrated into the distance-

43



C
hapter3

3 . D . A . C O L O R M O D E L I N G F O R F R E E S PA C E S E G M E N TAT I O N

aware posterior distribution PDA using a balancing factor as follows:

PDA(ln|cv, d, v) = (1− αw(v, d)) · Ph(ln|cv) + αw(v, d) · Pwh(ln|cv). (3.3)

Here, αw(v, d) is a factor in the unity interval [0, 1] to linearly balance the reg-
ular and the distance-weighted color posteriors, which are calculated from the
corresponding histograms using Bayes’ rule. We define the factor αw(v, d) empiri-
cally after having discovered that a linear relation is useful for incorporating the
perspective nature of our images with earth at the bottom, and a surface-based
component to exploit that nearby objects cover a larger image area. The former
aspect is covered with αlinear(v) and the latter with αsurface(v). These factors for
a pixel on row v and having disparity d are specified by the following set of
equations:

αw(v) = (αlinear(v) + αsurface(v))/2, (3.4)

αlinear(v) =

{
v/vhorizon, if v ≤ vhorizon

1, otherwise
, (3.5)

αsurface(d) = (1/ζ) ·
√
|Asurface|(d). (3.6)

In these equations, vhorizon is the row-index of the horizon, and ζ is the maxi-
mal pixel size that is present in the current disparity data, which ensures that
αsurface ≤ 1. In our stereo-camera framework, the real-world surface area |Asurface|
that is represented by a pixel with disparity value d, can be determined from the
disparity signal and the camera parameters C. More specifically, using the camera
focal length in pixels (Cfoc,pix) and in millimeters (Cfoc,mm), the size of a pixel in the
sensor in millimeters (Cpix,mm) and the stereo baseline (Cb), the real-world surface
can be computed from the following geometric relation:

|Asurface|(d) =

(Cfoc,pix · Cb

d
·
Cpix,mm

Cfoc,mm

)2

. (3.7)

Since we have removed the disparity estimation from the critical path of the color-
based freespace segmentation, the system has to rely on a disparity signal from at
least one frame earlier. Fortunately, the differences between consecutive frames
are small and, on top of that, they are smoothed by the probabilistic nature of our
processing. The algorithm relies on a fixed linear groundplane model to fill any
holes in the disparity map, prior to determining pixel surfaces. Fig. 3.2 illustrates
these steps and their effect on the posterior distribution.

Note that the strategy of making the processing distance-aware cannot be
achieved by simply computing histograms using a Birds Eye View (BEV) repre-
sentation of the image. A BEV representation can work for the groundplane, but
it heavily distorts the area of obstacles, since it projects all image pixels onto the
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Figure 3.2 — Illustration of the proposed depth-aware processing (DA). Top row: the brightened
camera image (left) with its disparity signal (right). Middle row, left: the distance image, where holes
are filled in using a static, linear, groundplane assumption and distance saturates at 35 m. Middle
row, right: real-world surface of each pixel where colorization illustrates quadratic course of pixel
surfaces. Bottom row: the posterior for the obstacle class without (left) and with DA (right).

same flat plane. In contrast, our approach models each pixel surface individually,
leading to a more accurate representation of obstacles in the histograms.

The steps of our online learning strategy, which builds the color models from
the stereo images in the learning window, are more formally presented in Algo-
rithm 2. As discussed before, this process runs in parallel and potentially on a
lower frame rate than the freespace segmentation process. The steps of the seg-
mentation, which is executed on every new frame, are presented in Algorithm 3.
Since the aim of the work in this chapter is to create a separation between the
core functionality of determining the freespace and the background process of
updating the color models, we explicitly present the core process of segmentation
as a separate element in Algorithm 3 and keep the background color modeling
process in Algorithm 2. The next two subsections complete the description of our
method by discussing our use of color spaces and color representations.
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Algorithm 2 Distance-Aware Online Color Modeling
Input: stereo images IL,t and IR,t of the learning window LW

for each {IL,t, IR,t} ∈ LW do
Dt ← EstimateDisparity(IL,t, IR,t)

L∗
t ← EstimateDisparityStixels(Dt)

Ct ← TransformRGB2Color(ILt )

Wt ← CalculateDistanceAwareWeights(Dt)

for l ∈ {ground, obstacle} do
TM l

t ← GenerateTrainingMask(L∗
t , TM

l
prior)

Xl
t ← ExtractSamples(Ct, TM l

t)

Hl ← AddToRegularHistogram(Hl, Xl
t)

Hl
w ← AddToWeightedHistogram(Hl

w, X
l
t,Wt)

end for
end for

for l ∈ {ground, obstacle} do
Ph(C|l)← NormalizeHistogram(Hl

h)

Pwh(C|l)← NormalizeHistogram(Hl
wh)

end for
Output: regular and weighted color models Ph(C|l) and Pwh(C|l) for l ∈ {ground, obstacle}

Algorithm 3 Segmentation with the Color-based Stixel World
Input: image It, color models Ph, Pwh and disparity Dt−n

αw ← CalculateBalancingFactors(Dt−n)

C ← TransformRGB2Color(It)
L∗ ← ColorStixelSegmentation(Ct, αt, Ph, Pwh)

Output: Optimal Labeling L∗

3.2.5 Color-space selection
Since the input of the proposed processing pipeline contains color images, a key
preprocessing step is the selection of the color space. Various color spaces exist,
to accommodate for different purposes in color processing. In this chapter, we
restrict ourselves to the most potentially beneficial alternatives, selected by either
a broad acceptance and availability, or a potential complexity reduction.

Besides the color spaces, the involved preprocessing step is indicated as well.
In our case, the applied preprocessing is histogram equalization (HEQ), which is
helpful, especially since the work is aimed at handling dark, low-light frames. It
is performed on the raw RGB images (individually on each color plane) prior to
converting it to a different color space. Our experiments will test and compare the
selection of color representations listed below.

RGB RGB is employed as the main full-color reference color space.

HS Derived from the HSV color space, the Hue and Saturation component
are explored to increase the robustness against varying lighting condi-
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tions. The V component is not used. HSV can be derived from the RGB
color space by a fixed transformation [61].

IllumInv The Illuminant Invariant color space, presented in [62], is a more elab-
orate method for robust handling of changing lighting conditions and
even shadows. It requires an automated offline camera-calibration
method to find a parameter θ, which can then be used to transform each
new image into an illuminant-invariant single-component image. We
have adopted the proposed robust entropy-based calibration method
and found that θ = 90± 0.5◦ for our camera. We refer explicitly to [62]
for more details on this color space and calibration method.

Gray Executing the segmentation on a grayscale image representation serves
as a baseline for extreme cases of monochrome lighting conditions. This
model is investigated for complexity reasons, since it would signifi-
cantly reduce the constraints on the camera hardware and the corre-
sponding data bandwidth when the grayscale analysis is successful.

3.2.6 Relative color representation
In contrast to the color-space selection described in the subsection above, several
aspects of the color representation are kept constant throughout this chapter, in line
with the findings presented in Chapter 2. First of all, the proposed system always
employs the median-cut algorithm on the frames in the learning window [54], as
discussed in Section 2.3.2. This ensures an adaptive color representation that has
both a sufficiently low complexity for fast processing and is still suitable for the
current traffic scene, as the color reduction is performed online. Second, the data is
further reduced by employing stixels that span 11 image columns. This increases
the robustness and decreases the computational load at the cost of horizontal
resolution in the labeling.

Since a stixel data column spans several input data columns (11 in our experi-
ments), these input columns need to be condensed into a single column vector for
each stixel. The work in this chapter presents and evaluates the following three
methods for doing this.

Method 1 (take the mode): The first method is taking the mode (the most occur-
ring value in the set) over indexed RGB values for each image row in a [wstix ×
wstix] window, located at the central image column of each stixel. Since colors
are represented with indexes, that have no direct mathematical or functional re-
lationship to each other, taking the mode is the most straightforward method of
obtaining a robust, representative value.

Method 2 (mode and edge strength): The second method is to add color variation
to the modeling, instead of only considering absolute color. The reason is that
relative information may also be descriptive in this case, since freespace areas
tend to be more homogeneous than obstacles such as cars, pedestrians and houses.
Therefore, the color mode is combined with local edge strength, to assess both
absolute and relative color information. The local edge strength is calculated using
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Sobel filter responses, averaged over a [wstix × wstix] window, which is shifted
vertically along the individual stixel columns.

Method 3 (first and second mode): As a third alternative, the relative color repre-
sentation is extended with explicitly modeling color pairs, instead of measuring
color variation. Specifically, this consists of both the first and the second mode in
a [wstix × wstix] window (in homogeneous areas, the first and second modes are
taken equal). This makes the relative color modeling more informative and more
discriminative, since it considers both local color homogeneity and specific color
pairs. The latter aspect is not accounted for when using local edge strengths.

Together with the other settings, all three color representations will be tested
and compared in experiments, as described in Section 3.3.5.

3.3 Evaluation approach
This section presents the approach to evaluate the performance of the proposed
color-based freespace scene segmentation, including the dataset and executed
experiments.

3.3.1 Dataset
Two datasets, called EHV-road14 [33] and EHV-road15 [34], are employed to eval-
uate the different configurations of the proposed system. Both datasets are ac-
quired in an urban environment, using a BumbleBee2 camera, mounted behind
the windshield of a car just below the rear-view mirror. The camera has a baseline
of 12 cm, a resolution of 1024×768 pixels and a frame rate of 20 Hz. Both datasets
are publicly available1.

Whereas EHV-road14 contains both frames with bright and frames with dim-
light conditions, EHV-road15 is solely focused on dark, clouded, low-light and
rainy frames. The first dataset was already described in the previous chapter.
The second, EHV-road15, consists of 114 frames that have a road and a freespace
annotation (road including pavement, grass, etc.). For each annotated frame, the
10 preceding frames are also available to facilitate the online color modeling.
The sequences are selected in such a way that they neither contain windshield
wipers nor obstacles directly in front of the ego-vehicle (e.g. within 1-2 m), since
those would hamper appropriate disparity estimation. The two datasets combined
contain a large variety of relevant traffic situations, such as crowded streets, road
repair sites, large crossings and highways. They contain asphalt as well as paved
roads of several colors (black, gray, red).

Unfortunately, our algorithm cannot be executed on benchmarks such as the
KITTI dataset [55], since such sets do not contain the preceding frames of anno-
tated road images, which are required for our online training strategy.

1The data can be found via http://tue-mps.org.
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3.3.2 Configuration of disparity estimation
Our system employs a multi-threaded version of the OpenCV implementation of
the Semi Global Block Matching algorithm of [56] to obtain disparity measure-
ments, with similar settings as in [33] (see Section 2.4.2). The pixel range of the
disparity estimator is set to dmin = 1 and dmax = 48. Additionally, we exploit the
winner margin measure to force the algorithm to provide only measurements with
a high confidence at the cost of a reduced density in the disparity signal. This
is beneficial for the baseline disparity Stixel World method, since it can handle
missing values better than erroneous ones. This can be seen as a simplification of
the work from [57], in which disparity estimates are accompanied by a confidence
measure to adaptively set an outlier probability. In our approach, this confidence
is binary with a relatively strict threshold, so that the winner margin is at least 20.

3.3.3 Configuration of Stixel World parameters
As described, our camera has lower resolution and a smaller stereo baseline than
e.g. the camera used for the original Stixel World algorithm [51], resulting in
lower quality disparity estimates. To compensate for this deficiency and to obtain
more favorable results for the baseline method, we have made improvements to
the baseline framework, as presented in [33] and discussed in Section 2.4.3. For
example, our implementation estimates the groundplane model online, instead of
using a single fixed model, and exploits tuned label-based transition probabilities
defined in P (L) to boost the performance of the baseline method even further.

Our experiments adopt a stixel width of 11 image columns and subsample the
disparity and color signals vertically with a factor of 3, prior to segmentation. Note
that the full-image data is exploited to compute look-up tables and color models,
which is comparable to the approach in [51]. The stixel width and subsampling
settings have been selected empirically and provide a decent tradeoff between
execution time and freespace modeling accuracy in the range of interest with
the employed camera (visible in the results presented in Fig. 3.5). At present, the
version of the proposed Color-based Stixel World method is a MATLAB-based im-
plementation. Core parts of the added functionality have also been implemented
in C++ for analysis, showing a reasonable complexity and promising execution
times. For instance, generating the look-up table with color modes takes 11 ms
on a consumer-grade notebook [63], so that real-time executions are facilitated as
in [51].

3.3.4 Evaluation metric: freespace per stixel column
As a key quantitative analysis method, the detected freespace per stixel column is
evaluated. This main metric is denoted with Fstxcol, i.e., the percentage of stixel
columns for which the freespace is correctly determined. As a ground-truth refer-
ence, the true freespace is calculated from the manual drivable-surface annotation
for each stixel column. The image-mask annotations are translated into real-world
distances using a static linear model of a flat groundplane surface, which effec-
tively translates a stereo-image row index into a distance.
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Returning to the evaluation of the metric, we calculate the quality of the detec-
tion masks by measuring the deviation between detected and annotated freespace,
which is expressed as a percentage for each column. Furthermore, for the metric
calculation we define certain margins around this ground truth, because objects
are detected with the quantized stixel resolution, and the reference masks can be
inaccurate at pixel level. Therefore, freespace detections are counted as correct
when they are within the range of 30% too short or 15% too long. This asym-
metrical range reflects the fact that missing an obstacle is more dangerous than
detecting one too close. For the same reason, we distinguish the incorrect stixels
into obstacle misses (freespace too long) and false obstacle detections (freespace
too short). Note that, although a deviation of 30% may seem large, it corresponds
to only a couple of pixels after several meters and only to a few centimeters in
regions close to the ego-vehicle.

Metric discussion: In essence, this metric is conceptually comparable to our
corridor-level drivable-distance metric in Chapter 2, but is computed at a higher
horizontal resolution, since it uses the width of a stixel instead of the width of a
car. The latter resolution is too coarse for in-depth analysis of the freespace seg-
mentation performance. It should be noted that evaluating at a corridor level has
two pitfalls. Namely, a single false nearby obstacle heavily degrades the achieved
recall, and additionally, detecting a large obstacle only in a single stixel column
already results in a high precision of the drivable distance. In contrast, our new
stixel-resolution metric provides a more detailed insight about the best settings
for obtaining reliable results. Moreover, our current evaluation analysis considers
the complete freespace region (road and non-road), while the evaluation in the
previous chapter disregards potential errors in the non-road freespace. Therefore,
the new metric is still designed with our specific ADAS application in mind, while
offering more detailed insights and being more strict.

3.3.5 Experiment design
This section briefly presents the experiments assessing the color representation,
the distance-aware processing and the online-learning aspect of our Color-based
Stixel World framework. The evaluation consists of three categories.

The first category discusses the most important comparison of adding our
RGB analysis and comparing that with the reference baseline methods. The sec-
ond category involves evaluation of the influence of the most critical parameters
like the distance-aware color modeling, adding histogram equalization and con-
figuring the learning window. The third category presents two tests at a higher
level. More specifically, these experiments look at different datasets and perform
an oracle-analysis of optimal settings per frame, to identify potential bottlenecks
of the current system design.

All our results are compared to our implementation of the disparity-only base-
line (reference) approach of [51], as well as to the color-extended method presented
in Chapter 2.
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3.4 Results
This section commences with illustrating the added value of our distance-aware
Color-based Stixel World framework with a first qualitative result. Fig. 3.3 shows
qualitative results of our best method in comparison with the results of the dis-
parity baseline. It can be observed that our Color-based Stixel World algorithm
typically provides similar as or even better freespace results than the disparity
method. The bottom-right case presents a problematic case, since the artifacts in
the disparity segmentation are consistent throughout the full learning window
for this sample. This causes the image areas with light reflections to be modeled
as obstacles in the color model, leading to false obstacle detections in the color
analysis.

The next subsections address the aforementioned three categories of more
detailed experiments. The first category involves comparison to the baseline.

3.4.1 Quantitative results with RGB compared with baseline methods
The quantitative results of our first set of experiments, using the RGB color space
only, are shown in Fig. 3.4. First the experiments were conducted with the com-
bined dataset, plotted at the left. For a refined view, the datasets are also evaluated
individually, plotted in the middle and right graphs. In the graphs, each green-
orange-red bar triplet represents the quantitative results of one execution with a
fixed, defined configuration. In the following discussion, this is referred to as a
run. Each run uses a specific configuration, of which the most influential aspects
are indicated in the tag line. For example, run j, the fourth triplet from the bottom,
uses histogram equalization (HEQ), with color representation Method 2 (Mode 1
& Edge), and distance-aware color modeling (DistAw).

With respect to the presented results, it is noteworthy that the Color-extended
Stixel World of the previous chapter (run b; Fstxcol = 66.3%), obtains a lower score
than the baseline system (run a; Fstxcol = 77.3%). This is the effect of our new
metric, which is more strict due to its higher horizontal resolution and considers a
larger range towards the horizon. Our earlier algorithm of Chapter 2 was mainly
tuned to reduce the number of false nearby detections. This is confirmed by the
graph in Fig. 3.4, which shows that the percentage of stixels with false obstacle
detections is reduced (from 8.9% to 3.2%). However, the number of stixel columns
with missed obstacles increases (from 13.8% to 30.5%), resulting in a lower number
of correct stixel columns. This can be explained by the fact that the first algorithm
did not consider distance-aware color modeling, whereas the new metric has an
extended range, so that the distance-awareness becomes more important. With our
new method, which considers color pairs and is distance-aware (run k), the amount
of correct stixels increases to 77.6%, which is 11.3% better in comparison with the
strong-fusion method (run b). It is also an improvement over the disparity baseline
(run a), although to a much smaller extent of only 0.3%. The main accuracy gain
of the new algorithm compared to the disparity baseline, is the reduction of stixel
columns in which the freespace is overestimated (obstacles are missed) from 13.8%
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to 11.8%. In general, it is worth noticing that our method achieves the highest
results on the most difficult subset of the data with very low-light conditions
(right graph in Fig. 3.4). This shows that color is a relevant signal modality that
can be exploited in situations that are difficult to handle with disparity alone.
A more detailed discussion on the different configurations follows in the next
subsections.

The second category of experiments evaluates the most important configura-
tion aspects of our contribution, i.e. distance awareness (Subsection 3.4.2), color
spaces with histogram equalization (Subsection 3.4.3) and learning windows (Sub-
section 3.4.4).

3.4.2 Evaluation of distance-aware color processing
Fig. 3.5 provides a detailed comparison between the results of the Color-extended
Stixel World that uses strong fusion of disparity and color and our new color-
based method. It presents color-based results without and with distance-aware
processing. The figure clearly shows that the strong fusion method tends to miss
parts of obstacles, specifically at large distances, where the uncertainty in the
disparity signal is high and the color contrast is typically low. The proposed
algorithm reduces these errors to a large extent with the more informative color
modeling. On top of this, the distance-aware processing (DA) gives a further
improvement and makes the results more consistent. The added value of DA is
also quantitatively visible in Fig. 3.4, by comparing runs i, j and k to f, g and h,
respectively, within the left and right graphs, by the larger green bars.

3.4.3 Grouped analysis of histogram equalization and color space
The previous subsection addressed the evaluation of the relative color representa-
tion and the distance-aware processing. The other settings of the system concern
the selection of the color space, the use of histogram equalization and the choice of
the learning window for the online color modeling. The quantitative results of the
previous subsections are reused to derive the overall influence of these individual
settings, for example, all runs with histogram equalization (HEQ) versus all runs
without.

All combinations of the selected color and learning window settings have been
tested, resulting in 24 different configurations (runs). The effect of the individual
color and learning window settings is illustrated in Fig. 3.6. It presents box plot
analyses on Fstxcol (the percentage of stixel columns for which the detected free-
space is correct), over all data, and over runs grouped by the specific settings of
interest.

Using a paired t-test, applying HEQ provides a significant improvement over
not using equalization (p = 3.04× 10−8), and it increases the median Fstxcol from
67.4% to 74.1%. Likewise, the RGB color space, scoring a median of Fstxcol = 76.4%,
outperforms the hue saturation HS (68.5%), IllumInv (69.7%) and Gray (65.2%)
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representations (with p-values of p = 1.12 × 10−18, p = 1.93 × 10−4 and p =

1.85 × 10−29, respectively). In conclusion, histogram equalization and the RGB
color space are clearly attractive settings for the system configuration.

The third graph in this figure considers the configuration of the learning win-
dow, which will be discussed in the next subsection.

3.4.4 Performance of learning windows with all color settings
This subsection first continues with the results of the learning window exper-
iments, as presented in the right graph of Figure 3.6. The paired t-tests of the
statistical analysis shows that a full learning window (LW10:1:1) is better than a
shorter, lagging one (LW10:1:3) with p = 3.25 × 10−3. No significant difference
was found between the results of using the full or low frame-rate learning win-
dow (LW9:3:3) (p = 8.33× 10−1). However, note that the actual scores are rather
similar: the full, lagging and low frame-rate learning windows are achieving a
median Fstxcol of 71.9%, 70.8% and 69.7%, respectively. In conclusion, the system
performance is virtually not hampered by relying on a shorter learning window
or one that executes at a lower frame rate.

More quantitative results of experiments with the configuration of the learning
window are provided in Fig. 3.4. The best freespace segmentation results using the
RGB color space are achieved by using a combination of histogram equalization,
color pairs, and distance-aware color processing (run k). For this combination,
several learning window parameters have been evaluated. Two exemplary results
are provided in Fig. 3.4, using only frames t−10 to t−3 (disregarding the two most
recent frames, run l), or using the full range (t−10 to t−1), but at a lower frame rate
by skipping two of every three frames (run m). Both achieve very similar results
to run k (Fstxcol = 77.6%): l scores Fstxcol = 76.1 and m scores Fstxcol = 77.5%.
This illustrates the robustness of our method with respect to the online training
strategy. Our algorithm does not require all preceding frames and also does not
require the adjacent preceding frame or frames for the current evaluation. This is
an important result, since it shows that we can remove the disparity estimation
from the critical processing path to lower the computational requirements for
real-time execution of the freespace segmentation function.

The last category of experiments involves the higher-level tests, namely the
influence of the dataset (Subsection 3.4.5) and the oracle analysis (Subsection 3.4.6).

3.4.5 Comparing performance on different data subsets
This and the following subsection describe more general tests at a somewhat
higher level. This subsection discusses the influence of the dataset, since the value
of our contribution can be more pronounced for certain datasets.

To this end, additional quantitative results are provided in Fig. 3.8. In this
figure, all stixel columns over all frames are evaluated together for each individual
run. The results are shown on the combined data as well as on the individual
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datasets. The rightmost graph in Fig. 3.8 clearly shows that the added value
of color processing is more pronounced for the EHV-road15 data. This can be
explained by the fact that the EHV-road14 contains frames with bright as well as
frames with dim lighting conditions, whereas EHV-road15 is solely focused on
dark, clouded, low-light and rainy frames. These situations are specifically difficult
for disparity-based methods, rendering our use of color data more valuable. Of
all color settings, run f results in the highest percentage of correctly detected
freespace (77.6%, averaged over all data), which is similar to the disparity-only
(reference) method (77.3%). For the EHV-road15 data, the improvement is higher:
78.0% compared to 74.4%, respectively. When specifically focusing on reducing
the number of missed obstacles in difficult imaging conditions, run h reduces the
percentage of erroneous stixels from 17.2% to 12.9%, compared to the disparity-
only method. On the combined data, the stixel-error fraction reduces from 13.8%
to 11.5%.

3.4.6 Oracle analysis on optimal settings per frame
The second higher-level test involves a different way of testing, concerning an
oracle test to identify possible performance bottlenecks for potential improvement.

To this end, the five theoretical experiments at the bottom of Fig. 3.8 provide a
relevant analysis at meta-level. These scores are generated by selecting the optimal
setting for each frame out of a (subset of) the available runs, to assess the added
value of the processing choices and to provide insights in where the most gain is
to be expected in future research. First of all, it is noteworthy that for every setting,
there are frames in the dataset on which it performs best. When the optimal
score is selected from all possible runs (including the baseline that relies solely on
disparity), the highest theoretical score can be achieved (86% correct), as could be
expected. However, also with the color data alone there is room for improvement,
compared to using the same color space and preprocessing step for every frame.
This means that even with our adaptive median-cut color indexing, the system
can extract more information from different color representations in different
situations (fourth bar from below in Fig. 3.8; 83.3% correct). Also, it should be
noted that even with the simplest learning window (LW9:3:3), the color-based
Stixel World can outperform the disparity-only version with a more sophisticated
color representation (the bottom bar in Fig. 3.8; 80.2% correct), although using
more frames is still better (third bar from below in Fig. 3.8; 81.9% correct).

The aforementioned observations are illustrated with the qualitative visual re-
sults in Fig. 3.7, where the disparity-only results are compared to three of our color-
based strategies. The figure shows (1) the setting performing the best (RGB+HEQ,
LW10:1:1), (2) one of the experiments relying on the color space that was specifi-
cally designed for this context (IllumInv+HEQ, LW10:1:1), and (3) the experiment
with the lowest computational complexity, since it uses grayscale images and only
three LW frames (GRAY+HEQ, LW9:3:3). The top-two examples show that our
methods are all capable of delivering similar or better results compared to the
disparity-only framework in several situations. The bottom-two subfigures of
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Fig. 3.7 illustrate that any variation of settings can always be coupled to a set of
frames, where they perform best. Therefore, the system performance is expected
to increase by adapting the color modeling in more ways than what has been
explored in this chapter. For example, color spaces may be combined or selected
online, or the most informative frames within the learning window could be se-
lected adaptively. This fuels the insight that our system could benefit from more
adaptivity than what is achieved so far. The results suggest that the flexibility of
our model based on the online changes appears to be too restricted for optimal
performance.
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Figure 3.3 — Qualitative results of our proposed method (HEQ; Mode1&2; DistAw). Each
subfigure shows the left camera image (top left) and its disparity (top right); result of the disparity
baseline result (bottom left) and our new improved result (bottom right). Green line: border of
the ground-truth annotation of the drivable surface. In the disparity-based result, the stixels are
colored by their depth (red (close) to blue (far)). In the color-based results, a homogeneous overlay
of the detected obstacle region is visualized. The bottom-right example illustrates a case were our
color-modeling cannot resolve all artifacts in the disparity-based learning window.
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Figure 3.6 — Box plots comparing the different settings for histogram equalization, color space
and learning windows combined over all experiments (runs). For each frame in each experiment,
the percentage of stixels with a correct freespace estimate is calculated, which is visualized as a box
plot per setting. Hence, each box contains 188 data points per run. The number of runs per box is
denoted in brackets in each label.
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Figure 3.7 — Qualitative results of the baseline versus three of our runs; each subfigure contains
two input and four result images. Top row: left camera (left), its disparity image (middle), and the
disparity baseline result (right, stixels colored by distance: red (close) to blue (far)). Our result
at the bottom row: RGB+HEQ with LW10:1:1 (left), IllumInv+HEQ with LW10:1:1 (middle)
and Gray+HEQ with LW9:3:3 (right). Our results show detected obstacle region (orange) and
hand-annotated reference (green). Similar or better color-based results in the top two subfigures;
the bottom two subfigures show examples of scenes where not all color settings provide equally
acceptable results.
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3.5 Conclusions
This chapter has introduced a stixel-based probabilistic framework for color-based
freespace and obstacle segmentation as complementary masks. Our system learns
color appearance models for freespace and obstacle classes in an online and self-
supervised fashion. To this end, it applies a disparity-based segmentation, which
can execute in the background of the critical processing system path and at a
lower frame rate than the color-based algorithm. This approach enables operation
without requiring a real-time disparity estimate. Consequently, the current road
scene can be analyzed without the extra latency of disparity estimation. This
feature results into a reduced response time from data acquisition to data analysis,
which is a critical property for high-speed ADAS.

Our proposed Distance-aware Color-based Stixel World algorithm contains
the following novel aspects:
• color-based cost function for the Stixel World optimization process;
• color processing that generates the corresponding color representation with a

balance between complexity and informativeness;
• distance awareness in the color modeling and cost function to address per-

spective camera distortion.

Besides these novel algorithmic aspects, we have contributed with our evalua-
tion strategy as follows:
• online-learning settings have been again included in the exploration to analyze

bottlenecks for system latency and potential future improvements;
• new public dataset with road annotations in scenes that emphasize difficult

imaging conditions such as low-light and rainy scenes;
• new evaluation metric that measures improvements in drivable-corridor esti-

mation, which is more detailed and more strict than the metric of Chapter 2.

The evaluation of the design of our Color-based Stixel World leads to several
key results, which are summarized below.

A. Distance-aware processing: Our incorporation of distance-awareness in the
color modeling improves the results with all color representations, for example,
from 73.8 % to 77.6 % (+3.8 %) with the RGB-HEQ-Mode1&2 representation; and
even from 66.2 % to 72.9 % (+6.7 %) for the RGB-HEQ-Mode1 representation on
the combined datasets.

B. Color-space selection: When using RGB for the input, our framework outper-
forms the specifically designed Illuminant Invariant color space (median Fstxcol of
76.4 % versus 69.7 %).

C. Learning window design: The aggregated results over learning window set-
tings show that using a learning window that is more favorable to latency reduc-
tion (namely, lagging and at lower frame rate) does not lead to a large drop in
performance (median Fstxcol of 76.5 % versus 77.6 %), which illustrates the power
of the online-learning scheme.

62



C
ha

pt
er

3

3.5. Conclusions

D. Dataset subset analysis: The new data shows that the added value of our
algorithmic contributions is most pronounced in the data recorded under adverse
conditions, where the disparity alone is not reliable enough for robust processing.

Summarizing, our algorithm is based on two key contributions: (i) an informa-
tive color-pair representation using the first and second mode of an online-adapted
indexed color space, and (ii) distance-aware color-histogram processing, based on
real-world metric pixel surfaces.

The evaluation on new, publicly available data shows that the color-based
analysis can achieve similar or even better results in difficult imaging conditions,
compared to the state-of-the-art disparity-only method. As an illustrative example,
our color processing detects the correct freespace for 77.6 % of all stixels, compared
to the disparity-only score of 77.3 %. Furthermore, the color-based method overes-
timates the freespace in only 13.5 % of the stixel columns in the most challenging
dataset, thereby outperforming the disparity baseline (17.2 %) and the strong-
fusion method (36.8 %) using the new, more strict evaluation process. This shows
that the proposed system improves the quality of the freespace analysis, while si-
multaneously facilitating lowering the latency (compared to both disparity-based
methods) and the computational load of the freespace segmentation algorithm
(compared to the strong-fusion approach).

With respect to latency, the elegant strategy to reposition a dominant process-
ing block outside the critical execution path, clearly contributes to reduction of
the latency and makes the system independent of immediate, online disparity
estimation. Although we did not quantify the latency reduction on our machine,
literature on an industrial, state-of-the-art pipeline reports an execution time of
30 ms for the Stixel World algorithm on CPU and 40 ms for the disparity estima-
tion on a dedicated FPGA. With these numbers, the latency could be reduced with
more than 50 % of the initial latency value.

Besides the previous system aspects, the provided meta-analysis of the re-
sults shows that the proposed approach of online color modeling is beneficial
and can be extended for further improvements, with potential scores of up to
82 % within the currently assessed parameter-setting space. The next chapter will
further look into this strategy by exploiting convolutional neural nets (CNNs).
Neural networks, and the broader field of deep learning, represent an interesting
family of algorithms that recently became popular within the field of computer
vision. In recent years, research has shown that CNNs are powerful in encoding
color-appearance information and can be successfully deployed in a wide variety
of image analysis tasks.
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an online-tuned FCPN

4.1 Introduction
The previous chapter has explored the combination of distance-aware processing
with color-based histogram analysis for freespace segmentation. This chapter
extends this strategy by introducing and exploiting a neural network within the
segmentation process. The research work presented in the previous chapter shows
that (1) decoupling disparity and color (in other words, not longer relying on
strong fusion) facilitates a reduction of the critical paths’ latency by design; (2)
the distance-aware color-based Stixel World algorithm can still provide good
freespace segmentation; (3) our search space does not entail a single optimal color
representation, and hence, a more adaptive color modeling can further improve
the freespace segmentation.

A potential method for more advanced color modeling is using neural network-
based approaches. Neural networks, the building blocks within the field of deep
learning, are becoming increasingly successful and popular for image analysis. In
the field of intelligent vehicles, many of the recent state-of-the-art algorithms rely
on neural networks, mostly on Convolutional Neural Networks (CNNs). They
excel in a wide variety of ADAS applications, such as stereo disparity estima-
tion [64], object detection for cars and pedestrians [65] and road estimation [66],
[67]. However, for an effective deployment of CNNs, supervised training typi-
cally requires thousands of manually annotated ground-truth labels. Even though
this stage is performed offline, the manual labeling effort does not scale well to
including all possible situations under all possible conditions. Moreover, to deal
with a large number of classes and situations, neural networks typically contain
millions of parameters, leading to substantial memory, power and bandwidth
requirements. Considering the desired ADAS application, such a network should
still fit within the hardware and timing constraints of the platform. Therefore,
ADAS could potentially benefit from a small neural network, since it would (1)
offer fast inference execution and hence a low-latency system, (2) yield a small
memory footprint, and (3) lead to a reduced power consumption, all to comply

The work in this chapter has been presented at IEEE IVS-DD 2016 [37], NCCV 2016 [38] and
IS&T EI-AVM 2017 [39].
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with generic constraints for embedded computing.
In summary, the above system aspects on deploying neural networks in ADAS

lead to several challenges for this chapter:
• encoding all required information for freespace segmentation in a wide

variety of possible scenes into a network with low inference time and low
memory footprint;
• further reducing the dependency on disparity for the freespace segmentation

path (preferably completely);
• decreasing the dependency on manual labeling for any training stages.

The approach presented in this chapter addresses these challenges in a com-
bined way. Following the approach of the previous chapter, the proposed system
adopts the decoupled data flow and adheres to the online self-supervised training
strategy, while employing more advanced color modeling by means of a small
CNN. To realize this, we first show the possibility of training a CNN for freespace
segmentation without the use of manual annotations, so in a self-supervised fash-
ion. By employing the CNN, the freespace segmentation becomes independent
from the disparity signal, so that it does not require disparity estimation in its
critical path.

The remainder of this chapter is structured as follows. A compact discussion
about related work is provided in Section 4.2. Our freespace segmentation method
with self-supervised and online training strategies are described in more detail in
Section 4.3. The accompanying validation procedures are provided in Section 4.4,
with the corresponding results in Section 4.5. Finally, Section 4.6 summarizes the
research findings.

4.2 Related Work
This section provides a short overview of several aspects of deep learning that are
relevant to the research carried out in this chapter: semantic scene parsing, super-
vision strategies and transfer learning. Additionally, it provides a comparison of
the current work with two specific closely related approaches. The position of our
work within the current field is summarized in the last subsection.

4.2.1 Deep learning for semantic scene parsing
Freespace segmentation is a pixel-level classification problem in which the algo-
rithm should decide whether a pixel represents freespace for every pixel in the
input image.

The breakthrough successes of neural networks started with image-level clas-
sification [68]. Consecutively, several strategies were developed to go from global
classification to fine-grained detection or full-scene segmentation, such as clas-
sification of sliding windows [69], or image region proposals [70]. Later, Fully
Convolutional Networks (FCNs) have been introduced for pixel-level segmenta-
tion [71].

66



C
ha

pt
er

4

4.2. Related Work

An FCN is a Convolutional Neural Network, where all fully connected lay-
ers are replaced by their (mathematically equivalent) convolutional counterparts.
This adaptation transforms the network into a deep filter that preserves spatial
information, since it only consists of filtering layers that are invariant to transla-
tion. A challenge with this approach for pixel-level segmentation is that FCNs
also typically contain several subsampling layers. These increase the effective
receptive field of the filters, which improves the quality of the results. However, it
simultaneously reduces the size or resolution of the generated output, compared
to the input image. To address this issue and generate true pixel-level labeling, the
authors of [71] have introduced skip layers that exploit early processing layers,
which have a higher resolution, to refine the spatially coarse information in the
final layer. In this way, the output resolution matches that of the input.

FCNs have several attractive properties in comparison to the earlier methods
for scene parsing. For example, FCNs have no constraints on the size of their
input data and execute inference in a single pass efficiently per image, instead
of a single pass per superpixel, window or region. Consequently, they do not
require concepts like superpixel, region, sliding window or multi-scale pre- or
post-processing [71]. Due to these attractive properties, the system in this chapter
is based on an FCN.

4.2.2 Supervision strategies for deep learning
In literature, training a neural network typically requires many data samples for
successful convergence of the large amount of parameters and proper general-
ization of the classifier. To facilitate this, different supervision strategies for this
training process are adopted throughout the field.

Most commonly, training is performed in a supervised manner, which relies on
the availability of corresponding target labels for each training sample [68]. Since
acquiring the required labeling is cumbersome for the amount of data samples
that is needed, alternative strategies are semi-supervised training, e.g. where an
object-segmentation mask is provided only for the first frame of a video [72],
and unsupervised training[73], which does not rely on any labeling at all. In the
field of image segmentation, an additional interesting approach of training is
weak supervision, where a limited set of related annotations are exploited for
training. For example, the authors of [74] train CNNs for pixel-level segmentation
on image-level labels, since labels for the latter are more abundant than for the
former.

Even though weakly- or unsupervised training methods of CNNs are improv-
ing, they are currently still outperformed by fully supervised methods [73], [74].
Therefore, the work in this chapter relies upon an intermediate method: self-
supervised training, which exploits automatically generated training labels. If
training labels can be generated automatically, the amount of supervised training
data becomes practically unlimited. However, this leads to a paradox, since it re-
quires an algorithm that can generate the labeling, which is exactly the issue that
needs to be solved. To this end, we propose to rely on an algorithm based on tra-
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ditional (non-deep learning) computer vision methods. This algorithm needs not
to be perfect, but at least sufficiently good to generate reasonable training labels.
The goal is then that the FCN, trained with these imperfect labels, outperforms
the conventional segmentation algorithm.

4.2.3 Transfer learning: adapting to new environments
The supervision strategies described in the previous subsection address the source
of the labels of the training data, if indeed labels are required. Another aspect is
the source of the data samples themselves. If properly labeled data samples exist
in a different domain, one can try to transfer that knowledge to the domain of
interest, instead of starting the training procedure from scratch. This is known as
transfer learning or domain adaptation.

In image recognition and object detection problems in natural environments,
a common method is to start with a network that is trained on a large and generic
dataset [68], [73], [75], [76]. To apply this network to a new task, one can remove
the last layer of the network, which provides class confidences, and train a new
one for the problem at hand. This exploits the observation that these pre-trained
networks are a compact and yet rich representation of the images in general, since
they are trained extensively on a broad visual dataset [77]–[79]. An extension
of this concept is not just retraining the last classification layer of a pre-trained
network, but to also fine-tune a larger part or even the complete network with
task-specific data [70], [76], [80], [81].

The work presented in this chapter also exploits domain adaptation. The gen-
eral layout of a traffic scene does not change, so that base knowledge should be
useful to transfer. In contrast, locations, times of day, imaging conditions and ob-
ject constellations or viewing angles can differ highly, which requires adaptation.
When this adaptation is performed during operation of the system, this adap-
tation strategy is called online training, which is slowly being adopted for video
segmentation tasks successfully [72].

4.2.4 Online self-supervised adaptive road segmentation
Considering the overall approach in the context of freespace segmentation, our
work is also related to both [43] and [82]. This section shortly highlights the
similarities and differences.

The system presented in [43], automatically generates labels that are exploited
to train a CNN for road detection, which is applied as a sliding-window classifier.
The method also has an online component, which analyzes a small rectangular
area at the bottom of the image (assumed road) and calculates a color transform
to boost the uniformity of road appearance. The results of offline and online
classifications are combined with Bayesian fusion. Our proposed work differs in
several aspects. First, we do not need to assume that the bottom part of an image is
road in the online training step, which is often an invalid assumption in stop-and-
go traffic, since we exploit the stereo disparity as an additional signal. Second, the
offline supervision masks used in [43] are generated using a surface classification
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algorithm [83] that is (re-)trained on manually labeled data, so that the method
is not completely self-supervised. Third, the applied offline and online method
in [43] is a hybrid combination of supervised and handcrafted features, whereas
our freespace segmentation network can be trained and tuned independently,
using a single FCN, while avoiding an additional fusion step. Lastly, we do not
require a sliding window in our inference step by using an FCN and not a CNN.

The system presented in [82] also segments drivable regions in images, and
adapts its modeling during driving. It relies on stereo disparity data for short-
range analysis, and uses the generated labels of that process to extend the range
of the algorithm. The authors call the real-time training ’dramatically’ sensitive
to small changes or imperfections in the labeling, so that the online supervision
system must be error-free. The authors conclude that the method is a complicated
process involving multiple ground-plane estimations, heuristics, etc., in order to
generate training labels with little noise [82]. In contrast, our supervision process
consists of a holistic, probabilistic model. Moreover, our training process can han-
dle the noise in the labeling that results from adverse imaging conditions. The
domain-adaptation strategy presented in [82] is limited to retraining the last layer
of their neural network, whereas our system can perform a full retraining in real
time, making it more flexible in handling different scenes. Besides, the system
of [82] was validated in forest and grass scenes, using a small robot car with a
low point of view towards the scene. These scenes typically contain large regions
with a low intraclass variance (e.g., ground is all green grass or all brown leafs).
In contrast, our dataset contains a wide variety of everyday traffic scenes.

4.2.5 Conclusions on the related work
From the glossary of related work in the above subsections, the following consid-
erations can be distilled. Building upon latest successes in similar computer vision
problems, we will utilize the power of FCNs for pixel-level scene segmentation
with fast inference.

In addition, we continue with the Stixel World approach of the previous chap-
ters, since it is an efficient method and inherently suitable for generating (imper-
fect/noisy) training masks, while making only generic non-limiting assumptions
in its prior world model. These labels facilitate our self-supervised training strat-
egy with the FCN. Furthermore, we make use of transfer learning in our online
training approach to speed up our adaptation process.

The distinctive element of this chapter is that the system can rely on a small,
efficient FCN, which is embedded in the design of a self-supervised online learning
framework. Our online training is designed in such a way that it (1) offers more
adaptive power than previous work, so that the system can handle more variation
in the appearance of traffic scenes, and (2) is simultaneously able to handle more
noise and imperfections in the automatically generated labels. This approach
optimizes the trade-off between efficient execution and information capacity to
handle uncommon but realistic, difficult cases. The next section presents our
strategy to realize these points.
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4.3 Method
This section describes the applied methodology for improved stereo-based free-
space segmentation. Figure 4.1 provides a schematic overview of the proposed
framework, which will be described in detail in the following subsections. First,
the baseline FCN algorithm for image segmentation is described. After this, the
self-supervised and the corresponding online training strategies of the FCN are
explained in more detail.

SELF-SUPERVISED  
ONLINE TRAINING 

Disparity 
Estimation 

& Stixel 
World 

FREESPACE SEGMENTATION 

FCPN 
Inference 

Preceding frames Current Frame Freespace result 

FCPN 
Training 

OFFLINE TRAINING 

Weak labels 

FCPN initialization: 
(1) Random 
(2) Offline, manual 
(3) Offline, self-sup. 

Figure 4.1 — Schematic overview of our freespace segmentation method with online self-supervised
training.

4.3.1 Fully Convolutional Patch Network
The color-based segmentation algorithm used as a basis of our work is a Convolu-
tional Patch Network (CPN) [67]. A Convolutional Patch Network can have the
network structure of any CNN, as it differs only in the training strategy. Typically,
CNNs are trained on full images, which means that the gradients of the back-
propagation process are combined over all images in a batch. However, training
on image patches instead of full images, was shown to both speed up the training
process and lead to better results in this research context [67].

Provided that the context (road detection) and data (images captured from
within a vehicle [55]) are comparable to our research, we adopt the FCPN architec-
ture and the recommendations about the optimal training strategy, as presented
in [67]. The network consists of several convolutional, max pooling and non-linear
layers, as defined in Table 4.1.
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Table 4.1 — Specification of the layers within the FCPN architecture.

Layer Layer type Size(*) Output area
No. [pixels] [data points]

Input image patch 28× 28× 3 28× 28

1 Convolutional 7× 7× 12 22× 22

+ maximum pooling + ReLU 2× 2 | 2 11× 11

2 Convolutional + ReLU 5× 5× 6 7× 7

3 Convolutional(+) + ReLU 4× 4× 48 1× 1

4 Convolutional(+) 1× 1× 194 1× 1

+ spatial prior(#) + ReLU
5 Convolutional(+) + tanh 1× 1× 1 1× 1

(*) Definition of sizes:
- input image patch width and height with 3 color channels;
- conv. layer size is denoted as w × h× n, representing filter width, filter height and
the number of filters;
- max. pooling layer size indicates kernel width, kernel height and stride.

(#) The spatial prior adds two 1×1 filters that contain the normalized absolute position
of the current patch within the input image.

(+) These are transformed fully connected layers.

The special feature of this network is the spatial prior, which is trained in the
learning process as an integral part of the network, using the normalized positions
of the training patches. This spatial prior exploits the spatial bias that is naturally
present in road or freespace segmentation in traffic scenes.

As described in Section 4.2.1, CNNs can be transformed into FCNs [71] that
are mathematically equivalent, but can be evaluated more efficiently during their
inference stage. Since a patch network has a regular CNN architecture, the same
holds for the network employed in this chapter, as described in [84]. Therefore,
our system will rely on this Fully Convolutional Patch Network (FCPN) for color-
based freespace segmentation. The freespace segmentation will rely on RGB data
only, and not on RGB-D data (color combined with disparity). Section 4.3.3 pro-
vides the argumentation for taking this approach.

Hyperparameter selection
This subsection briefly presents the hyperparameters that are used in the training
of the FCPN. Note that our current work is neither meant to offer an exhaustive
test on optimizing the network architecture nor to optimize the hyperparameters
of the training process. We acknowledge the fact that the results may be improved
by investigating these aspects more properly, but the focus of this work is to show
the feasibility of self-supervised training and the additional benefits of the pro-
posed online tuning in the context of freespace segmentation. For completeness,
the training parameters are included in Table 4.2. These parameters have been
optimized with a tenfold cross-validation on the KITTI dataset for road detection
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Table 4.2 — Specification of the FCPN hyperparameters used during training.

Data & loss Regularization Learning rate Other
Patches 28× 28 L1 0.001 λ0 0.004 Momentum 0.9
Batch size 48 L2 0.0005 γ 0.0005 Dropout 0
Loss Quadratic β 0.75

by Brust et al. [67]. Amongst others, the table presents the values for the learning
rate scheduling, of which the curve is specified by

λ(n) = λ0 · (1 + γ · n)−β , (4.1)

where n is the value of the current training iteration count. Additionally, the
training stage exploits momentum. This means that in each iteration, a certain
fraction of the numerical gradient values in the previous iterations are added to the
gradient values of the current iteration. This typically leads to faster convergence
in the training stage.

4.3.2 Self-Supervised Training
The objective of employing a self-supervised training strategy for the FCPN is
twofold: (1) alleviating the burden of manually labeling data samples, which
is especially cumbersome for pixel-level segmentation tasks, and (2) facilitating
online training to adapt the system while driving, in which case manual labeling
is not possible.

Self-supervised training can be realized by using an algorithm that generates
imperfect, yet reasonable training labels for the RGB images. The algorithm that
generates these labels is chosen to be independent of the freespace segmentation
process, exploiting an additional signal modality, namely stereo disparity. This
disparity-based algorithm generates masks that indicate flat, drivable surface.
Since these masks are estimates themselves and are not perfect, we consider them
to represent noisy training labels.

Stereo disparity is an attractive modality, since it is computationally inexpen-
sive and yet provides relevant information in the context of freespace detection.
We propose to analyze the disparity signal with the disparity Stixel World algo-
rithm. This algorithm is described in Section 2.2, and summarized briefly here for
completeness.

The Stixel World algorithm is a probabilistic framework, which segments traffic
scenes into vertically stacked, rectangular patches that are labeled as either ground
or obstacle. The regularization within the Stixel World algorithm is mostly a-priori
designed, exploiting the fact that disparity measurements facilitate metric/real-
world reasoning, such as metric margins and gravity-model assumptions. By
simplifying the representation of a scene into piecewise planar segments (flat for
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Figure 4.2 — Illustrative challenges in our self-supervised training: RGB images (taken under
adverse but realistic circumstances), their disparity estimates and the stixel-based ground masks (all
with ground-truth reference). Errors in the disparity lead to imperfect masks, so that these should
be considered as noisy labeling. The preview of our results (rightmost column) shows that we can
adequately cope with the errors to a high degree.

ground and fronto-parallel for obstacles), the segmentation can be formulated as
a MAP estimation problem and can be solved efficiently using dynamic program-
ming over columns with disparity measurements. The algorithm is highly parallel
and can be executed in real time [51]. Our system adopts the improvements to
the disparity Stixel World algorithm from [33] (namely: tuned transition probabil-
ities, dynamic ground-plane expectation modeling and assuming a ground region
below the field of view of the image). The disparity-based ground and obstacle
masks subsequently serve as the noisy labels for the corresponding color image
in our self-supervised training process.

Since this process can operate automatically, it can generate (noisy) labels for
many frames. This facilitates training on images for which manual annotations are
not available, so that the training set can be enlarged without much effort. This is
an attractive property, since many related deep learning experiments have shown
that training on more data can be beneficial (as briefly discussed in Chapter 1
and Section 4.2.2). The challenge is that the generated noisy labels will contain
errors, as illustrated in Figure 4.2, potentially hampering the training process.
Our system relies on the generalization power of the FCPN training process to
adequately handle these inconsistencies in the labeling, which can be validated by
comparing the results of our self-supervised training with the results of training on
manually annotated frames. The latter annotations may have small imperfections
on obstacle boundaries, but are overall significantly less noisy.

4.3.3 Strong versus weak versus indirect fusion
This subsection presents the considerations on the fusion strategy applied in this
work. Similar to the previous two chapters, the work presented here concerns data
fusion, namely fusion of color and disparity data streams. The method of Chap-
ter 2 relied on strong fusion, using an algorithm that simultaneously analyzed
color and disparity. The framework presented in Chapter 3 used weak fusion,
where color models were learned from disparity-based masks and also balanced
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using disparity-based distance-aware processing. The work in this chapter relies
on an FCPN that can be specifically designed to handle any kind of input. For
instance, this facilitates strong fusion by simply feeding the network with RGB+D
data, instead of RGB only. However, instead of relying on strong fusion, there
are multiple reasons to generate the noisy training labeling on a different data
modality than the signal modality that is analyzed by the FCPN for the freespace
segmentation. These reasons are explained below.

First of all, strong fusion would re-introduce latency to the system in the in-
ference step, since the FCPN would need to wait for the disparity signal to be
estimated prior to analyzing the current image. This should be avoided to comply
with the goals of this research, as stated in the introduction of this chapter. Al-
though the inference time is not crucial during offline training stages, it is critical
for ADAS operating in the real world.

Secondly, the current strategy increases the likelihood that the trained algo-
rithm can deal with the unavoidable errors in the noisy labels, instead of inad-
vertently making the same faults in difficult situations. If the disparity data has
artifacts that are labeled erroneously as obstacles, and that same disparity data
is fed into the FCPN, then the FCPN would be at risk of replicating the false
detections instead of repairing them. The reason is that typically the evidence
in color images is less pronounced. In the worst case, we suspect that the FCPN
would be able to mimic the noisy labels based on disparity and ignore color al-
together, since they have conflicting information and the erroneous labels will
match the disparity better than the color signal. However, this hypothesis has not
been experimentally verified.

Thirdly, our current approach is more generic, since it could use different
sources of self-supervised labeling instead of stereo disparity (like Lidar or monoc-
ular cues) without redesigning the network.

In conclusion, we opt for neither strong nor weak fusion. Instead, our framework
uses loose or indirect fusion, since the data modalities are only linked indirectly via
the generated training masks.

4.3.4 Online Training
This section briefly explains how our algorithm exploits the self-supervised learn-
ing strategy for online learning and its relation to transfer learning, as discussed
in Section 4.2.3.

Since traffic scenes occur in a wide variety (urban versus rural, highway versus
city-center), and with varying imaging conditions (good versus poor weather, day
versus night), ADAS have to be both flexible and robust. A potential strategy is
to train many different classifiers and to select the one that is most relevant at
the moment (for instance, based on time and geographical location), or to train a
complex single classifier to handle all cases. In contrast, the work in this chapter
shows that it is feasible to fine-tune a relatively simple, single classifier in an
online fashion. This is obtained by using the same self-supervised strategy as for
offline learning, namely, based on generally correct segmentation by the disparity
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Stixel World algorithm. This results in automatically improved robustness of the
freespace detection, because the algorithm is adapted while driving.

The current framework adopts the same training strategy as presented in
Chapter 3: the disparity signal is analyzed for several frames in a learning window
(LW ), and the resulting segmentation labels are exploited as training masks to
train or fine-tune the FCPN.

A schematic overview of our experimental framework for freespace detection
is shown in Figure 4.1. To show the effect of (within-context) transfer learning, an
FCPN is trained from scratch (with random initialization), or the process starts
with one of the offline trained models and tune the entire model with online data.
Comparing these online strategies with results from solely offline training, shows
the importance and added value of adapting the classifier online to the changing
environment. Since this adaptation can be realized in a reliable and realistic way,
the freespace segmentation system improves without putting extra effort and
computational power into training and executing a larger, more advanced FCN.

Algorithm 4 summarizes and presents the steps of our online-training process
for freespace segmentation, which can operate in the background of the segmen-
tation process. The segmentation step itself consists solely of executing one for-
ward/inference pass of the FCPN on the most recent image. In comparison to
the Algorithms 1, 2 and 3 presented in the previous chapters, the current solution
(1) does not depend on prior masks for the training step, (2) involves less concep-
tual steps such as distance-based weighting, (3) requires less preprocessing such as
color-space transformations, and (4) has a more strictly decoupled dataflow, since
the freespace segmentation uses color only, and hence, does not require disparity
anymore.

Algorithm 4 Online Training of the FCPN
Input: Stereo images IL,t and IR,t of the learning window LW , initialized FCPNinit

for each {IL,t, IR,t} ∈ LW do
Dt ← EstimateDisparity(IL,t, IR,t)

L∗
t ← EstimateDisparityStixels(Dt)

TM f
t ← GenerateFreespaceTrainingMask(L∗

t )

end for

FPCNt ← FPCNinit

for n : 1 . . . Niterations do
Xpatch ← SelectLabeledImagePatch(LW,TM)

FPCNt ← PerformTrainingStep(FPCNt, Xpatch)

end for
Output: Fine-tuned network FPCNt

Although our system does not yet operate in a real-time prototype, we deem
this to be feasible in the near future, as (1) the Stixel World system can execute in
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Table 4.3 — Comparison of sizes of commonly used neural networks

name layers parameters(*)

AlexNet [68] 5 60M
VGG-19 [85] 19 138M
Inception v1 [86] 22 5M
ResNet-50 [87] 50 25M
FCPN [67] 5 27k
(*) M represents millions, k indicates thousands.

real time, (2) our FCPN is small, which allows for fast inference and fast training,
and (3) relies on patch-based training, thereby facilitating fast training as well. A
compact overview of commonly used neural network architectures is provided in
Table 4.3, indicating their size in the number of parameters. The used FCPN is three
orders of magnitude smaller than these commonly used examples, supporting
our expectation that real-time execution is feasible.

4.4 Evaluation strategy
This section presents the data and strategy for evaluating the proposed algorithm.

4.4.1 Datasets
The publicly available data EHV-road14 [33] and EHV-road15 [34] are utilized as
the training set for our offline training of the FCPN. When combined, the total
training data consists of 188 frames with manual annotations of freespace. Ad-
ditionally, the 10 preceding frames of each annotated frame are available, albeit
without annotations. The current work comes with a newly annotated dataset
that is employed as (unseen) test set. It was captured in the same configuration
and context as in [33], [34] (different parts of the same data-gathering drive), and
is publicly available online1. This test data consists of 265 manually annotated
frames of urban and highway traffic scenes, both under good and adverse imag-
ing conditions. There is a large variety in scenes, covering crowded city centers,
small streets, large road crossings, road-repair sites, parking lots, roundabouts,
highway ramps/exits, and overpasses. To facilitate the online learning process,
the 10 preceding frames of each annotated frame are provided as well (without
manual labeling). The RGB frames were captured with a Bumblebee2 stereo cam-
era mounted behind the windshield of a car. Both raw and rectified frames are
available, accompanied with our disparity images. These were estimated using
OpenCV’s Semi-Global Block-Matcher algorithm with the same settings as used in
Chapter 3. To the best of our knowledge at the time of writing, these publicly avail-

1The test data can be found at http://www.tue-mps.org
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able and annotated datasets are unique in the aspects that they (1) readily provide
preceding frames that are required to perform and evaluate online learning, (2)
consist of color stereo frames which facilitate our self-supervised training methods,
and (3) contain example scenes which are captured under adverse and/or under
favorable imaging conditions.

4.4.2 FCPN implementation setup
All our experiments regarding the FCPN are executed using the software library
CN24 [67]. The library has been made available by the Computer Vision Group
at Jena University, and can be found online2. It comes with example scripts that
were used for the reported KITTI and LabelMe-Facade experiments. Internally,
the CN24 library transforms any fully connected layer within a CNN architecture
into its convolutional equivalent counterpart [84]. The library applies a similar
upsampling strategy as the skip layers of [71] to produce full-resolution pixel-level
confidence or segmentation masks.

4.4.3 Scoring metrics
The quality of the freespace segmentation is assessed using the pixel metrics as em-
ployed for the KITTI dataset [55], since this benchmark and its metrics are widely
used in the community and are briefly described here for completeness. The seg-
mentation performance is measured by calculating the recall, precision and F1

score (the harmonic mean of recall and precision) in a Birds-Eye-View projection
(BEV) of the image. Additionally, since our FCPNs provide confidence maps, the
maps need to be thresholded prior to comparing them to the binary ground-truth
annotations. This is resolved by selecting the threshold that maximizes the F1

score, giving Fmax. The metric Fmax indicates the optimal performance setting of
the algorithm. Additionally, the average precision AP is calculated, which cap-
tures the precision score over the full range of recall. The combination of AP and
Fmax provides a balanced view on the algorithm performance.

4.4.4 Experiments
This section presents our experiments conducted for measuring specific aspects.
Firstly, the key experiment involves comparing supervised and self-supervised
learning of the FCPN and secondly, the comparison of online versus offline train-
ing. The experiments additionally provide a reference with general 3D modeling
methods that do not rely on deep learning. To this end, the results are compared
against both the disparity Stixel World algorithm as presented in [51] (including
the improvements mentioned in [33]), and the distance-aware color Stixel World
algorithm as presented in the previous chapter. The latter also applies online
color modeling, but relies on traditional computer vision methods instead of deep
learning.

2The CN24 code is available at https://github.com/cvjena/cn24
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A. Experiment 1: supervised versus self-supervised training
To validate the feasibility of the self-supervised FCPN training method, three
FCPNs are compared, which have an equal architecture but are trained with
different data and/or labels. The first model FCPNoff,man is trained offline on man-
ually annotated labels, as a reference result for offline, supervised training. This
model replicates the approach of Brust et al. [67]. They successfully validated their
road-segmentation algorithm on the KITTI-road dataset [55], so it is interesting
to evaluate if its performance on the EHV-road dataset is of similar quality. The
second model FCPNoff,self is trained offline on the same frames as FCPNoff,man, but
now using automatically generated noisy labels instead of the clean, error-free
manual versions. This model serves as a demonstration of offline, self-supervised
training. Thirdly, an FCPN model is trained in a self-supervised fashion on all
available frames in the training set, including the earlier mentioned preceding
frames for which no manual labels are available (FCPNoff,self-all). This experiment
tests the added value of training on additional data in our framework, which is
realized efficiently because of the initial choice of fully self-supervised training.

B. Experiment 2: offline versus online training
Two key experiments are performed to test the benefits of online training for the
FCPN-based freespace segmentation and are compared to the offline experiments
of the above subsection. Similar to Experiment 1, FCPNs are trained on differ-
ent data, while their architectures are kept identical. Firstly, an FCPN is trained
from scratch (with random initialization) on the noisy labeled preceding frames
of each test frame, resulting in an FCPNonl,scr for each test sequence. Additional
experiments validate the benefits of online tuning. To this end, the network is ini-
tialized for each training sequence with one of the offline trained models (trained
on either manual or self-supervised labels), resulting in an FCPNonl,tun-man and an
FCPNonl,tun-self for each test sequence. Note that the labels for the online training
itself are always self-supervised, since the preceding frames of each sequence are
not manually annotated. This constraint follows naturally from the fact that the
system is designed to operate during driving.

Moreover, an experiment is performed to further analyze our online training
method. Specifically, the power and benefit of ’over-tuning’ our framework is il-
lustrated. To this end, the online trained FCPNs are evaluated on test frames of
different, unseen sequences. These experiments investigate the extent to which
the online trained FCPNs are tuned to their specific sequence. If the FCPNs are
over-tuned, they are expected to perform well if the training sequence and the
test frame are aligned, but simultaneously they are expected to perform poorly
when they are misaligned. To validate this, three different misalignment experi-
ments are conducted: (1) shift one training sequence ahead, (2) shift one training
sequence back, and (3) carry out a random permutation of all training sequences.
Note that our data sequences are ordered in time, therefore, there can still be cor-
relation between training sequences and test frames when shifting backward or
forward with a single training sequence. Moreover, the shifting experiment will
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affect some frames more than others, since the intervals between the different
sequences are different. These correlations are reduced as much as possible by the
full permutation experiment.

In total, the evaluation contains eight different methods and the miss-alignment
experiment on the challenging, real-world data set, that has been described in Sec-
tion 4.4.1.

4.5 Results
This section describes and discusses the results of the experiments described
above. The main findings are first presented qualitatively, which is followed by
several subsections providing more detail on specific aspects.

4.5.1 Qualitative results
Figure 4.3 shows qualitative results of the experiments. The first column contains
the input color image (with ground-truth freespace annotation) and the second
column the results of the disparity Stixel World baseline. The third and fourth
columns show results of our offline and online FCPN-based methods, respectively.
In the top-three images, the offline-trained FCPN detects less false obstacles than
the Stixel World baseline. However, it performs worse in several important cases:
it misses obstacles (such as the poles in the fourth row, the cyclist in the fifth row)
and also classifies a canal as drivable area (sixth row). In contrast, all-but-one
images show that our online trained FCPN outperforms both the Stixel World
baseline and the offline training strategy. It segments the scene with raindrops on
the car windshield robustly, while also the other results are more accurate. The
image in the fourth row visualizes an erroneous case: the online trained FCPN
does not detect the concrete poles, although they are present in the training masks.

4.5.2 Main quantitative results
For a more in-depth analysis, quantitative results are provided as well. The recall-
precision curves of the main experiments are provided by Figure 4.4, where the
left graph shows the full range and the right graph provides an enlarged view of
the top-right region (closest to the point of optimal performance).

A. Results on offline learning
The experiments with offline learning offer several interesting insights. First, the
results of supervised (manual labels) and self-supervised (disparity-based labels)
are nearly identical. This confirms the feasibility of self-supervised learning, since
relying on noisy labels does not hamper the performance of our system. Self-
supervised training on more data did not lead to a clear improvement of the
results in our experiments, as illustrated by the graph (yellow performs similarly
to red). This may indicate either that our network is too small to exploit the
additional data, or that the correlation within the new samples is too high to be
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Figure 4.3 — Qualitative results on the frames shown in the leftmost column with hand-annotated
freespace boundary. In the next columns, from left to right: disparity Stixel World baseline; our
FCPN result with offline training on manual labels; our FCPN result with online tuning. Colors
indicate the freespace segmentation true positives (green), false negatives (blue) and false positives
(red). Best viewed in color.

informative. Another noteworthy result is that the offline-trained FCPN, even
with the error-free manual annotations, does not outperform the traditional Stixel
World methods. This experiment in fact replicates the method of [67], which was
successful on the KITTI-road dataset, while retrained on our data. This observation
shows that our EHV-road dataset is indeed more difficult than the KITTI-road
dataset. This is likely due to our inclusion of images under adverse conditions and
the larger variety in road curvature. The latter specifically has a negative impact
on the consistency in the spatial prior in the FCPN.

B. Results on online learning
Considering our online training strategies, Figure 4.4 clearly shows that these
outperform the offline training strategies over the full range of recall, thereby
confirming the qualitative results of Figure 4.3. Most importantly, note that the
online tuned FCPNs now outperform the Stixel World baseline methods, which
is not the case for the FCPNs that relied solely on offline training. This highlights
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Figure 4.4 — Recall-precision curves of our experiments after 10,000 training iterations. This
figure is best viewed in color. The ROC curves happen to be clustered into two groups, since several
graphs closely overlap. One cluster consists of the blue, red and yellow graphs, the other one contains
the green, cyan and purple graphs.

the added value and effectiveness of our online tuning framework. The online
method is sufficiently robust under difficult yet realistic environmental conditions,
thereby enabling the use of a small and efficient method (the small network of [67]).
Sections 4.5.3 through 4.5.5 discuss several aspects of the online training process
in more depth.

C. Results on different data subsets
The employed test set contains both sequences captured under favorabe and under
adverse imaging conditions. This subsection explicitly emphasizes the effect of
these conditions briefly.

Segmenting the regular images is mostly solved by the disparity Stixel World
method, so that there is little to gain with additional processing. These images
are included in the set to avoid over-fitting on e.g. rainy conditions, and to show
that also the regular conditions can be handled by our algorithm. To provide this
balanced view, the scores in all graphs and tables are calculated on the complete
test set. As a result, the gains of several reported experiments in this chapter
may seem small from a quantitative point of view. However, the overview in
Table 4.4 shows that the gain of our processing is larger on the subset of rainy
images (4.2%). Moreover, note that these scores are evaluated over raw pixels,
using the metrics from the KITTI benchmark. Although the errors due to rain and
other poor conditions are limited in pixel count, they are important robustness
improvements for real-world applicability. The qualitative examples of Figure 4.3
illustrate this claim.
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Table 4.4 — Performance on different subsets (Fmax scores averaged over frames)

Method Regular frames Rainy frames

Disparity Stixel World 0.887± 0.073 0.867± 0.069

FCPNonl,tun-self 0.896± 0.088 0.909± 0.050

4.5.3 Analysis of online training convergence
The trends of our quantitative results over the number of training iterations are
shown in Figure 4.5. The training converges after 5,000 to 10,000 iterations and
the visible trends are consistent with the ROC curves in Figure 4.4. Specifically,
offline training is outperformed by online training and online tuning performs
slightly yet consistently better than online training from scratch. An important
conclusion of the experiments is that the contribution of online-tuned training
is most significant in the speed of convergence, and less relevant for the final
result after convergence. More specifically, the models that exploit online tuning
outperform offline methods and the baseline already after 100 iterations of training
(which takes less than half a second on a GeForce GTX970 graphics card), whereas
models trained from scratch need at least 500 iterations to match the offline FCPN
and more than 2000 to exceed the Stixel World algorithm.

Figure 4.6 portrays the convergence of the freespace-confidence maps of these
two methods. This exhibits the same trend, where the confidence maps produced
after 100 and 500 training iterations by FCPNonl,scr are overall more gray, showing
that there is not yet distinction between free or occupied space. Oppositely, the
confidence maps of FCPNonl,tun-self are already more discriminative at an early
training stage. This is visible from the higher contrast in the bottom-left image
when compared to the top-left image, and from the smaller changes from left
to right in the bottom row, when compared to the top row. Note that both final
freespace-confidence maps are not perfect in this case, since, ideally, the whole car
directly at the center of the image should be black (as it is not freespace).

4.5.4 Analysis of online training settings
Two different experiments have been conducted to asses the robustness of our
online training strategy around the FCPN. The first test analyzes the drop in
performance as a function of the delay between the frames on which the online
tuning is performed and the frame under analysis. The left graph in Figure 4.7
shows that the score drops only about 2% with a delay of 2.5 seconds.

The second test validates the influence of the number of FCPN layers that are
tuned online on the freespace segmentation result. The network has 5 layers with
parameters, so a comparison is made between tuning all layers (regular online
tuning) and tuning only the last 4, 3, 2 or 1 layer(s). Keeping all layers static is the
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Figure 4.5 — Convergence of scoring metrics Fmax and AP over FCPN training iterations. This
figure is best viewed in color.

Figure 4.6 — Illustration of convergence speed for online FCPN training methods. Top row:
FCPNonl,scr; bottom row: FCPNonl,tun-self; both after 100, 500, 5,000 and 10,000 iterations. Although
both networks end up with similar confidence maps, initialization with a pre-trained network clearly
speeds up the convergence. RGB input image is shown in the second row of Fig. 4.2.

offline training reference. The right graph in Figure 4.7 shows that tuning only the
final layer provides results within 1.5% of the full-tuning approach. Both these
experiments provide tradeoffs between tuning time and performance quality.

4.5.5 Analysis of online training with over-tuning
The results of the misalignment of the training sequences and the test frames with
the online-trained FCPNs are provided in Table 4.5. It is clear that the misalign-
ment has a negative impact on the performance of the online training approach,
as was to be expected. The scores drop even below the scores of the offline-trained
models, also for the FCPNs that were initialized with offline pre-training. Since
the online-trained FCPNs outperform all other methods when their training se-
quence and test frame are aligned, this validates our claim that the online training
is giving the system flexibility to adapt to new circumstances, and that over-tuning
can be exploited beneficially in the context of freespace segmentation for ADAS.
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Figure 4.7 — Two different experiments on robustness of our online tuning strategy. Left: tuning
on older frames. Right: tuning only the last couple of layers, with the first N static (N=0: tune all
layers, N=5: no tuning; same as offline training only).

Table 4.5 — Results of training FCPNs online on different training sequences: aligned (normal),
one sequence back or ahead in the (ordered) dataset (+1/-1), or with random permutation. The drop
in performance illustrates the adaptive power of the online tuning.

Offline Online training FCPNscratch Online tuning FCPNoff-self

(manual) Normal +1/-1 Random Normal +1/-1 Random

Fmax 0.87 0.91 0.83 0.79 0.92 0.83 0.80

AP 0.93 0.98 0.91 0.84 0.98 0.92 0.86

While the offline FCPNs give a good average generalization over the complete
training set, the online FCPNs specialize on a particular subset of the training
set. This hampers their performance on the complete set, however, this is actually
beneficial for the task of freespace segmentation for online adaptive ADAS.

4.6 Conclusions
The work in this chapter shows that Fully Convolutional Patch Networks can be
trained in a self-supervised fashion in the context of freespace segmentation for
ADAS. The segmentation results are comparable to a conventional supervised
strategy that relies on manually annotated training samples. Furthermore, we
have extended this result to accomplish that it also facilitates online training of
a segmentation algorithm. As a result of this approach, the freespace analysis
becomes highly adaptive to any traffic scene that the vehicle encounters. This
provides an increased robustness, while the size of the implemented network is
orders of magnitude smaller than previous systems.

With respect to the applied method of this chapter, we leverage the benefits of
applying a neural network for exploiting color modeling. The power of this new
approach is that the algorithm now directly feeds the color image signal into the
segmentation network, without the previously additionally required depth-aware
color modeling. The network architecture includes a spatial prior, referring to
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the distribution of class locations over the image, to exploit knowledge on the
varying scene layout. In conclusion, the network directly learns the nature of the
perspective camera imaging and is able to correctly segment the freespace.

The evaluation of our system provides the following key results:

A. Self-supervised training: Self-supervised training for freespace segmentation
is feasible when relying on imperfect, noisy labels generated with the disparity
Stixel World algorithm. Quantitatively, it leads to similar results (Fmax = 0.865

and AP = 0.932) as when relying on manual annotations (Fmax = 0.870 and
AP = 0.928), so that our method can operate successfully without manual labels.

B. Online training: All presented online methods (Fmax ' 0.92 and AP ' 0.98)
outperform the offline-only methods mentioned above. More importantly, without
online training the FCPN performs worse than the baseline (Fmax = 0.90) on our
data. This indicates that our strategy of online training is a good and efficient
proposal to leverage a small neural network by quickly adapting it to varying
imaging conditions.

C. Imaging conditions: The added value of our online framework is most pro-
nounced in the rainy-images subset of the data, where it outperforms the baseline
with 4.2%.

D. Pre-training/online tuning: Online training an FCPN from scratch or online
tuning from a pre-trained FCPN leads to the same segmentation performance.
However, the pre-trained network converges 5 times faster, thereby making it
feasible for real-time deployment.

Overall, the experiments show that the online training enhances the perfor-
mance with 5% when compared to offline training, both for Fmax and AP . This
can be explained by the fact that, due to our adaptation strategy, the system is not
required to generalize to a large amount of traffic scenes with a single detector.
Hence, the detector can -and should- be ’over-tuned’ on currently relevant data. In
turn, this benefits the use of a small FCPN whose training converges fast enough
to facilitate real-time operation. In conclusion, we have presented a system with
a small memory footprint and short inference time, that is still able to handle a
broad variety of scenes, without the need of manual labeling and without requir-
ing disparity in its critical path.

This concludes our work on freespace segmentation, which is a fundamental
low-level processing step for ADAS, which aims at supporting safe navigation
through everyday traffic. It provides a drivable ground region of the traffic scene in
front of the vehicle. In other words, it has a focus on the static part of this problem.
However, traffic scenes are a highly dynamic environment and imaging setting.
By incorporating dynamics, and extending the analysis only from the ground to
include objects as well, ADAS can potentially provide complimentary relevant
information. For instance, this relates to system questions, such as what space
is free in the next couple of seconds, or, what object lies on a potential collision
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course with the ego-vehicle. Timely answers on such questions would allow for
live warning and even future path planning. Therefore, to extend the freespace
analysis to a higher level of system operation, the next chapter will continue with
investigating a collision warning algorithm.
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for collision warning

5.1 Introduction
The previous three chapters of this thesis have addressed strategies for freespace
versus obstacle segmentation in color images captured with a stereo camera. In
the presented approaches, each frame is treated as a static scene. The adaptive
freespace segmentation methods consider the continuously changing scenery, but
not the dynamics of individual, moving objects. However, traffic forms highly
dynamic surroundings. When the current freespace is known, the next step is to
predict which space is free in the future, and, more importantly, where to avoid
potential collisions. The general objective of ADAS is to reduce traffic accidents,
predominantly by avoiding or mitigating collisions. This requires detecting po-
tential collisions accurately and timely, irrespective of whether the avoidance will
be executed by a human driver or automatically by a follow-up system.

The discussion on collision warning systems for ADAS technology in Chap-
ter 1, which will be extended in this chapter, can be summarized as follows. Cur-
rent collision prediction systems operate generally under one or several of the
following limitations:

• restricting analysis to the ego-lane in highway scenarios only, thereby ignor-
ing intersections and crossing or oncoming traffic [88];

• relying on pretrained pattern recognition, so that the system can only handle
traffic situations [89] or object classes [90], [91] that were a-priori known and
already available during training;

• leveraging high-level knowledge, which improves prediction quality when
it is reliably available. However, it puts difficult requirements on the infras-
tructure [21] and/or other participants. Examples of infrastructure require-
ments are having up-to-date HD maps and exploiting V2X communication
and/or centralized roadside compute [92]–[94]. Alternatively, a requirement

The work in this chapter has been presented at IS&T EI-AVM 2019 [40] (receiving a best-paper
award) and was published in IEEE Trans.-IV [41].
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on other participants is e.g., V2V communication about navigation intent.
These constraints do not scale to all possible types of obstacles.

A key takeaway from the current state of the art is the importance of a multi-
sensor setup to (1) provide redundancy on safety-critical system aspects to reduce
the effect of sensor malfunctioning, or to remove blind spots in the perception of
the surroundings, and (2) exploit different data modalities that, when combined,
provide all relevant information [21], [22]. These important aspects will be briefly
further elaborated upon below.

Providing redundancy: The current work should alleviate the limitations of
existing systems, which have been described above. This leads to some system
requirements, referring to redundancy and safety. The system should be indepen-
dent of high-level knowledge, for instance from HD maps or V2X communication,
which is not part of the ego-vehicle and not always available in the infrastruc-
ture. Moreover, the system should be independent of the obstacle type or collision
scenario. This implies a generic solution for collision warning with ADAS.

Exploiting data modalities: We develop a generic collision warning system using
a stereo video camera. Stereo cameras are increasingly employed in cars with
ADAS, mainly for high-level semantic reasoning and scene-geometry estimation.
This makes it relevant to investigate the level of feasibility of stereo vision to
generate collision warnings in a generic way. For that reason, this work explores
stereo imaging, while aiming at an algorithm that facilitates sensor fusion in the
near future.

To further detail the analysis of stereo video for our purpose, our research has
considered the strong gain in momentum of the Stixel World algorithm for efficient
automotive vision analysis. Originally, it addressed representing scene geometry
efficiently from disparity data [95], [96] (see Section 2.2). Additionally, it has a
proven value for different subdomains, such as semantic scene segmentation [97],
object detection [98] and online training supervision [34], [39]. Given this broad
promising range of Stixel World applications, the work in this chapter extends
this concept even further and explores how to extract relevant collision warning
information, starting from the bare disparity stixels. We aim at designing a generic
method, so that it can always benefit from the more advanced versions of the
Stixel World proposals under development, e.g. that realize object clustering or
find semantic labels.

The above discussion leads to the three following problem statements for this
chapter.

• Extending the static stixels with dynamic trajectory information: The approach
that is presented in this chapter relies on an external motion estimation
method, the results of which are fused into the stixel presentation. Addi-
tionally, stixels need to be tracked over time, so that current stixels need to
be associated to stixels of previous time steps. This concept is referred to as
dynamic stixels.
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• Incorporating measurement and modeling uncertainties: data measurements are
performed to account for uncertainties in the total decision making. The
aim is to provide confidences throughout the system pipeline. In this way,
the final decision obtains a nuanced nature. Since we build upon the stixel
representation, a key question is the appropriate modeling of the related
confidences.

• Performing a probabilistic collision data analysis: Essentially, our algorithm gen-
erates probabilistic collision data by sampling so-called asteroids from these
dynamic stixels. The result of this is then fed into the measurement update
step of a probabilistic Bayesian histogram-filter, which resolves around a
specifically designed state-space representation.

The remainder of this chapter is organized as follows. Section 5.2 presents an
overview of related work in the context of ADAS for collision warning, providing
similarities or differences with the proposed work. Section 5.3 describes the de-
sign choices and the corresponding high-level system architecture of our method,
which is followed by an in-depth view of the most relevant processing blocks in
Section 5.4. The evaluation strategy and results are presented in Section 5.5 and
5.6, respectively. Section 5.7 concludes the presented research.

5.2 Related work
The key elements of the research in this chapter are exploiting stixels for generic
collision warning, the use of non-static video cameras for ADAS, and video anal-
ysis for moving object detection, tracking and path prediction and subsequent
modeling in a state space. These objects can involve many and multiple types of
traffic participants (such as cars, pedestrians, cyclists, buses, etc.) which can pass
closeby to the ego-vehicle (e.g. the ADAS-equipped car), at maximum speeds of
around 50 km/h. This section incorporates these key elements.

A. The Stixel World: Stixels are vertical superpixels with fixed pixel width,
which are produced by analyzing disparity data with the Stixel World algo-
rithm [96]. This algorithm processes the data in a column-based manner and di-
vides the scene into either ground or fronto-parallel, rectangular obstacle patches,
which are assigned a single disparity value. This forms an efficient representation
of the scene geometry and has a proven value for different subdomains. For in-
stance, the disparity Stixel World has been fused with deep neural nets for both
semantic scene segmentation [97] and instance segmentation [99], where stixels
have been also clustered to detect and recognize objects [98]. Additionally, the
Stixel World analysis can provide a supervisory function in an online training
setup for free-space segmentation [34], [39]. The work in this chapter extends this
broad promising range of applications even further by exploring the strengths and
weaknesses of a stixel-based approach to extract collision warning information.
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B. Collision warning systems: In related work on collision warning systems,
several limitations can be observed that our strategy mitigates or avoids altogether.
First of all, most current systems are limited to highway scenarios [88], [92], [93].
Although those can operate at higher vehicle speeds, the systems will not be able
to deal with street crossings, non-vehicle traffic or oncoming traffic, which is not a
fundamental limitation in our method.

Second, most collision warning systems rely on vision with trained pattern
recognition. For instance, a MobilEye system will only recognize cars, trucks,
motorcycles, cyclists and pedestrians, with the additional limitation to fully visible
rear-ends for vehicle detection [91]. Similarly, the system of Cherng et al. classifies
situations into five pre-defined dangerous motions that are limited to the ego-
direction (such as cut-ins). Moreover, it can handle only regularly-sized cars, just
one of which may be in view in a scenario [89]. Both these approaches rule out
handling crossing, oncoming, and passing traffic, in contrast to our more generic
algorithm.

The mono-camera based system of Ess et al. deploys several class-specific detec-
tors, for instance for cars and pedestrians. Subsequently, they rely on class-specific
motion models to predict object trajectories for enhanced accuracy [90]. Similarly,
in research towards protecting Vulnerable Road Users (VRUs), successful systems
rely on modeling pedestrians and their context in high detail, such as analyzing
head poses to estimate navigational intent [100]. In contrast, the algorithm in [101]
tracks generic object proposals, and only afterwards tries to infer a semantic labels,
if desired and possible. The rational behind this strategy is that is is infeasible to
train a specific detector for all potential classes one can encounter. From a similar
starting point, our system can handle any tangible object, without knowing its
type. Additionally, our algorithm uses super pixels to operate at a medium-level
representation, not on an object level, since we purely aim at generating collision
warnings. This aspect makes the system more robust and more widely applicable
than most alternative approaches, since it is not limited to the set of objects for
which it was trained.

Thirdly, other previous work addresses free-space detection (the area in front
of the vehicle where it can drive) [33], [34], [39], [47], which is a related or even
the dual problem of collision warning. The currently proposed method explicitly
incorporates motion estimation, motion prediction and timing in the system and
analyzes the obstacle part of the scene instead of the ground part. This extends the
analysis to dynamic data instead of using only static data.

C. Motion modeling and tracking: Since our framework concerns tracking el-
ements over time and predicting their future path, a motion model and a data-
association strategy should be selected. Models for motion are available at differ-
ent levels of complexity, varying by the incorporation of steering angles, yaw rate,
acceleration and velocity [102]. These can also be employed in parallel and fused
afterwards to handle cluttered measurements in highly dynamic urban environ-
ments [103], and are commonly leveraged for intent prediction for vulnerable road
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users such as pedestrians [104], [105]. Since we aim at a class-agnostic analysis
and execute at a medium-level stixel representation, and not on object level, we
do not model model high-order motion dynamics or navigation intent. Instead
in this work, we use simple constant-velocity kinematics without any rotational
component and rely on the strength of having multiple stixels per object.

Regarding the problem of data association for tracking, we propose a strategy
similar to the extended SORT algorithm [106], which is a box-overlap analysis,
enhanced with appearance modeling. In contrast to [106], we simplify the ap-
pearance encoding into a color histogram and calculate similarity based on the
Bhattacharyya coefficient, an approach used more often in multi-object tracking
algorithms [107]. The benefit of our low-level histogram approach is that it does
neither require training on class-specific examples nor has to execute a neural
network during the association process.

D. State space: Systems in literature typically use geometry-oriented state
spaces, for instance by storing locations in occupancy grids that are updated and
refined over time [108]–[110], and then for collision analysis derive motion as a
secondary signal [108], [109]. In contrast, our design of the state space directly
stores the relevant information for or use-case, namely time-to-collision and angle-
of-impact. This is in line with the objective of designing a collision warning system.
For further reading on state spaces we refer to the book of Thrun et al. [111].

Summarizing, we focus our design on an urban setting with medium driving
speeds, with nearby traffic and obstacles. In contrast to collision warning systems
presented in related work, we do not limit ourselves to specific classes of objects
or types of scenarios and aim at generic collision cases and broad usage. To further
generalize, we avoid relying on semantic information on traffic layout or partici-
pant intentions and restrict ourselves in this work to affordable sensor hardware
without V2V or V2I communication infrastructure. Our algorithm exploits the
basic disparity stixels. However, it can always benefit from the more advanced
versions of the Stixel World proposals under development, e.g. with object cluster-
ing or semantic labels, since it is designed as a generic method. Finally, we design
a new state space that directly models the quantities of interest, namely angle and
time of impact.

5.3 High-level system architecture
This section explains the key concepts and design choices that are underlying
the high-level system architecture. First of all, a main challenge when working
with stereo disparity data is that it tends to be noisy in general, and missing or
erroneous on low-texture image regions, such as surfaces of smooth road or shiny
cars. The stixel representation addresses some of these aspects, but at the cost of
spatial quantization, due to the limited disparity resolution and fixed horizontal
grid. This, in turn, conflicts with smooth, fine-grained tracking of obstacles over
time. Given these kinds of challenges, a typical approach is to employ a proba-
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Figure 5.1 — High-level schematic overview of our collision warning system. It extracts flow and
disparity from stereo video and generates asteroids from stixels to analyze potential collisions.

bilistic processing pipeline. This facilitates maintaining any information in the
system, no matter how uncertain, for as long as possible. The proposed proba-
bilistic processing contains various elements. The core element is a Bayesian filter,
which is divided in a predict and an update stage. This filter operates within the
boundaries of a state space, which contains the probability of a collision with the
ego-vehicle from a certain angle at a certain time-to-collision. The use of stixels is
translated into a probabilistic representation to provide the measurement input
to the update stage of the Bayesian filter. This data flow is depicted in Figure 5.1,
also showing a Collision Analysis module that interprets the state and generates
warnings accordingly.

The state space and the three high-level processing blocks are described in the
following subsections.

5.3.1 State-space representation of collision data
Since the goal of our system is to provide collision warnings, we introduce a
state-space design over multiple dimensions that is directly suited to address such
warning information. A histogram offers an efficient yet flexible representation of
data with multiple dimensions relevant to collision warning, like angle of impact
and time to collision. It can represent multi-modal distributions directly without
enforcing high-level assumptions on the modeled data, which suits our aim of
providing class-agnostic collision warnings. For implementation, we define a
three-dimensional state space, the axes of which are time-to-collision (ttc), angle-of-
impact (aoi) and collision (col). Figure 5.2 shows a schematic visualization.

The system, as described in the figure, monitors such a state space for the
five sides-of-impact (s.o.i.) of the vehicle. The current work has a focus on the
frontal view, since that is within the field of view of the sensor setup. The time
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Figure 5.2 — Schematic visualization of the sides of impact (s.o.i.) around the ego-vehicle with
the employed coordinate system (left) and the state space with discretized angle-of-impact, time-
to-collision and p(col, ttc, aoi) versus p(¬col, ttc, aoi) for a single side of impact (right). Our
evaluation is focused on the area highlighted in red for the front side of the ego-vehicle.

axis is discretized with steps of half the sample time of the input data stream
(this equals 0.05 seconds) to a maximum of 5 seconds, and the angle-of-impact is
split uniformly in five non-overlapping ranges of 36◦ each. To obtain a complete
joint probability distribution, the algorithm calculates the belief in no collision
p(¬col, ttc, aoi) and the collision belief p(col, ttc, aoi) for each angle and time pair.

5.3.2 Bayesian filter: prediction
The prediction step of the Bayesian histogram filter in our system is straightfor-
ward due to the design of the state space: the entire space can be shifted over the
amount of bins along the time-to-collision axis, corresponding with the sampling
rate of the camera. Additionally, a normalized box-averaging filter is applied with
the same aperture as the shift. This filter introduces a dispersion of the belief to
reflect the uncertainty in the prediction step, i.e. the process noise.

5.3.3 Bayesian filter: measurement update
The principal stage of our Bayesian histogram filter is the measurement update
and consists of several steps, which will be detailed in the next section. Here,
first the high-level concept is presented. The aim is to convert the stereo video
data at the input via stixel and asteroid processing into a likelihood, which is
notated as p(measurement|col, aoi, ttc). First, the stereo image pair and the previous
left camera image are used to estimate the disparity and flow. The disparity is
processed with the Stixel World algorithm to build fronto-parallel rectangular
superpixels.

The next step is to convert these superpixels to probabilistic measurement data.
To this end, we propose a motion particle sampling method that is specifically de-
signed to capture typical noise in our stixel-based approach. In short, the process
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Figure 5.3 — Conceptual illustration of how asteroid clouds reflect the result of the error propaga-
tion in the measurement process.

consists of the following steps. First, in the process of estimating the velocity of a
stixel, the corresponding uncertainty in the form of a probability density function.
Second, moving particles, called asteroids, are generated according that probability
density function. These particles propagate the measurement uncertainty into
the collision warning process. The model captures uncertainty both in speed and
in direction, as illustrated in Figure 5.3 and described in the following. If both
speed and direction are measured with a high confidence, this will generate a
very dense ball of asteroids, traversing through space. However, a stixel with a
confident direction but with an uncertain speed will generate a laser-beam like
stripe of asteroids: they might hit the car all at the same point, but will arrive in a
time interval. Alternatively, a stixel with a confident speed but with an uncertain
direction will generate a set of asteroids in a wave-front, potentially hitting the
car from different directions at similar times. When both direction and speed are
uncertain, a dispersed cloud of asteroids can be expected. Concluding, this mod-
eling fluently combines accurate and uncertain measurements of noisy, dynamic
data, so that a realistic collision warning analysis can be performed.

5.4 Measurement update and collision analysis
This section presents the details of our key algorithmic contributions, depicted
by the three yellow processing blocks in Figure 5.4. The block diagram presents
a more detailed view of the top-left block of Figure 5.1. Besides the three yellow
processing blocks, the last subsection discusses our collision analysis, which is the
light purple block in Figure 5.1.
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Figure 5.4 — Schematic overview of the measurement update stage, generating the data likelihood
for the Bayesian filter of our collision warning system. Note that this a more detailed view of the
top-left block of Figure 5.1.

5.4.1 Stixel tracking
The Stixel Tracking block assigns motion to individual stixels and associates current
stixels with those of the previous time step. This facilitates modeling the dynamics
of the traffic scene in metric 3D world coordinates, which is crucial for predicting
potential collisions.

This Stixel Tracking block is provided with three inputs, namely (1) the set of
stixels of the current frame, (2) the optical pixel flow from the previous frame to
the current frame, and (3) the set of stixels of the previous time step. The first step
of this block is to translate the optical pixel flow to the flow in the 2D image plane
for each stixel. To this end, the median of the optical pixel flow is calculated over
all pixels that are contained in the stixel area, resulting in the stixel 2D image flow
(note that the optical flow corresponds to a 2D displacement measurement for
each pixel). Next, the 2D flow is translated to 3D-world motion by trying to match
each stixel to the corresponding stixel of the previous set. This matching process
first moves a current stixel to its previous position in the image plane according
to its 2D image flow. Then, it analyzes the overlapping stixels of the previous set
at that location. The stixel is disregarded if less then 75% of its moved area falls
within the image region (not traceability), or if less than 50% has overlap with
previous obstacle stixels (lack of correspondence). The overlap analysis is concep-
tually illustrated in Figure 5.5 and further explained below. If there is only one
overlapping stixel, this is considered the match. If there are multiple overlapping
stixels, these candidates are analyzed in a small selection process. First, candidates
that have an overlap ratio of less then 1/(Noa + 1) are disregarded, where Noa
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Figure 5.5 — Conceptual illustration of the stixel tracking process by overlap analysis. The stixel
is moved according to its optical motion flow (top, black striped) and then the overlapped stixels
are analyzed of the previous set (top, dotted light blue). This results into a match with a certain
confidence (bottom middle, green/yellow), or no match at all (red, right).

is the number of candidates. If this still leaves multiple candidates, the stixel is
matched to the candidates by computing the Bhattacharyya coefficient, and then
selecting the candidate with the highest coefficient value. This involves comparing
the stixel texture-wise via a normalized one-dimensional color histograms (10 bins
per channel). If no such candidate exists, no match is made. Each resulting match
is assigned a corresponding confidence from this overlap analysis, coa, which is
defined as follows:

coa(s) =

{
(A(scur) ∩ A(smatch))/A(scur), if Noa = 1;

1− (dmax
oa − dmin

oa )/dmax
oa , if Noa > 1;

(5.1)

where A(s) denotes a stixel area counted in pixels and dmax
oa and dmin

oa represent the
largest and the smallest disparity value of the candidate stixels, respectively. Using
this normalized disparity range as a confidence metric in the case of multiple
candidates, ensures that coa is not too conservative, especially if there is over-
segmentation in the previous set of stixels. More specifically, if a stixel overlaps
with multiple previous stixels that all have a similar disparity value, this should
not lead to a low confidence in the previous stixel position.

After the matching process, both stixels that could not be matched and stixels
that are clear outliers are removed, to avoid cluttering the subsequent process,
while still facilitating a high inclusion of measurements. The tracked stixel should
have a confidence of more than 0.5, it should be within relevant range of the ego-
vehicle (at most 30 m to the left or right, 2.5 m up or down; up to 60 m in front) and
it should have a relative speed below 150 km/h, considering that the maximum
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allowed absolute speed is around 50 km/h within our urban context. The colored
tails of the stixels in Figure 5.6 illustrate the result of the tracking process.

5.4.2 Asteroid sampling
The tracked stixels are supplied to the subsequent Asteroid Sampling block, which
generates so-called asteroids for each stixel. This step translates the dynamic
stixels into a probabilistic measurement distribution, which is an input to the
measurement-update stage of the Bayesian histogram filter. To this end, we first
define an asteroid as a particle with a trajectory sampled from two one-dimensional
Gaussian distributions, one for the x- and one for the z-velocities, so that

vx ∼ Nx(vx, σ
2
vx) and vz ∼ Nz(vz, σ2

vz ). (5.2)

Note that we have chosen to exclude the y-dimension at this stage. This is in
agreement with the design of the state space, which does not differentiate between
vertical angles of impact, while it also fits with the aspect that the stixel tracking
step already removes stixels that are situated too high or too low. To compensate
for this simplification, we assume that the ego-vehicle’s height spans this entire
horizontal range, where nothing can pass over or under. This assumption is over-
cautious, but it simplifies the estimation to a two-dimensional problem.

The average velocity in each axis is calculated from the Ntrack previous po-
sitions available in the stixel track, hence, for the x-direction we compute the
average speed vx as:

vx = 1
Ts·Ntrack

Ntrack−1∑
k=0

xt−k − xt−k−1, (5.3)

and analogous for the z-direction. In the equation above, Ts represents the sample
time of the data measurements, and t is the discrete time index of the current
frame.

The variances of distributions in Equation (5.2) are derived by extending the
standard uncertainty propagation in disparity estimation, using a camera pinhole
model with the stixel estimation and our matching process. First of all, the er-
ror propagation for the velocity estimate, using standard calculation rules from
probability theory [112], results in

σ2
vx(s) =

σ2
xt + σ2

xt−1

Ts
2 , (5.4)

and a similar propagation for the z-direction. Second, the stixel-position variances
can be defined from applying two camera pinhole models. These cameras have a
stereo camera baseline b, the u-coordinate of the left-camera’s principal point upp
and the left camera’s focal length fu. The obtained disparity estimation process
comes with uncertainty σ2

disp, which is fixed at 0.5 pixels, in agreement with the
general rule that the camera resolution provides a bound on the disparity accuracy.
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Starting from the stereo pinhole camera model that translates image coordi-
nates and disparity to world coordinates x and z, we can use the widely adopted
variance formula [113], which describes the relation between the variance of an
input variable a to an output function variable Q(a) as

σQ =

∣∣∣∣∂Q(a)

∂a

∣∣∣∣ · σa, (5.5)

to compute the error propagation to the output. This leads to the following equa-
tions for the standard deviation of the disparity-dependent coordinates x(d) and
z(d):

z(d) =
fu · b
d

=⇒ σz =
fu · b
d2
· σdisp, (5.6)

x(d) =
z · (u− upp)

fu
=
b · (u− upp)

d
=⇒ σx =

b · (u− upp)
d2

· σdisp. (5.7)

Additionally, we incorporate two aspects of our stixel-based processing, namely
to divide by stixel height h and, in case of the previous position, to scale with the
confidence in the overlap analysis coa. Therefore, we define the variances in x and
z for the current and previous stixel positions in accordance with these aspects
and the Eqns. (5.6) and (5.7) as follows:

σ2
xt(s) =

σ2
disp

h
·
(
b · (uc,t − upp)

d2
t

)2

, (5.8)

σ2
xt−1

(s) =
σ2
disp

coa · h
·
(
b · (uc,t−1 − upp)

d2
t−1

)2

, (5.9)

σ2
zt(s) =

σ2
disp

h
·
(
b · fu
d2
t

)2

, (5.10)

σ2
zt−1

(s) =
σ2
disp

coa · h
·
(
b · fu
d2
t−1

)2

, (5.11)

where the variables from the stixel under analysis h, uc, d and coa represent height,
central u-coordinate, disparity, and overlap-analysis confidence, respectively. Intu-
itively, stixels that have a larger height also have a more certain x- and z-position,
since each row of the stixel can be considered an additional measurement. More-
over, we have introduced a metric for the confidence in the overlap analysis that
ranges between zero and unity, hence 0 < coa ≤ 1. As a result, a sub-optimal
confidence of the overlap analysis will increase the uncertainty in the estimate
of the previous position. For example, when stixels can be matched clearly to a
predecessor, coa is close to unity, having little impact on the position estimate.
However, if the overlap analysis provides a low-confident match, the uncertainty
in the previous position will be enlarged. This reduces the impact of noisy tracks
into the collision analysis later in the pipeline, since they lead to dispersed asteroid

98



C
ha

pt
er

5

5.4. Measurement update and collision analysis

clouds, spreading their collisions over time and location.
The third aspect, after determining the stixel velocities and their uncertainties,

is to calculate the amount of asteroids that should be generated for each stixel.
This amount depends on several aspects, such as the stixel area and confidence,
which are included in the following equation:

Nast(s) = A(s) · ρast · cfit(s) · cσ2
d
(s). (5.12)

The core value in this equation is A(s), which is the stixel surface in m2 (and not
in pixels, as was used before), calculated by translating all four stixel u,v,d corner
points to 3D world coordinates. This surface is multiplied with the asteroid density
(ρast), a system parameter, to come to an initial number of asteroids. However, the
equation also incorporates two confidence values, that both can reduce the number
of generated asteroids. The first one, cfit(s), is adapted from [114] and defined by:

cfit(s) = 1/(1 + exp (eobstacle(s)− eground(s))), (5.13)

where the values eobstacle and eground model energies, given by

eobstacle(s) = 1
h

∑
v∈vc±h/2

|dv − d|, (5.14)

eground(s) = 1
h

∑
v∈vc±h/2

|dv − agnd(vc − v)− d|, (5.15)

with stixel values h (height), vc (center row) and d (disparity). Additionally, these
energies are summed over the rows v spanned by the stixel, and use dv as the
disparity data in the stixel area at row v and agnd as the expected slope of disparity
data representing flat ground in the image plane. This slope can be calculated
from the camera setup using agnd = b/hcam, where hcam is the height of the camera
above the ground surface.

To derive this formula for agnd, take two points pa and pb on the ground sur-
face, each with their own real-world coordinates (x, y, z), image coordinates (u, v)

and disparity d. Furthermore, denote the v-coordinate of the camera’s principal
point as vpp, the stereo baseline as b and its focal length as f . The d, v-slope coeffi-
cient agnd of the groundplane is then agnd = (da − db)/(va − vb). Stereo disparity
geometry provides that ya = za · (va − vpp)/f = b · f/da · (va − vpp)/f . Addition-
ally, it holds that ya = yb = hcam, since both points are on the ground surface.
Together, these equations imply that da = (va − vpp) · b/hcam, and analogous for
db. Combined, this results in agnd = b/hcam.

The confidence cfit(s) expresses how well the stixel model fits the raw disparity
it covers, knowing that the optimization process explores two options (ground or
obstacle). It compares fitting either a fronto-parallel surface or a sloped surface to
the condensed single disparity column in the stixel. The other confidence, cσ2

d
(s),

is the normalized inverted variance of the disparity within the stixel region. This
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Figure 5.6 — Left: our processing visualized in a top-down view with the ego-vehicle at the center
left (moving to the right), the camera field-of-view lines in dark orange; five colored sides-of-impact
and grid lines at every 10 m. Furthermore, the figure shows stixel tracks, sampled asteroid clouds
and detected colliding asteroids (in bright red). Right: corresponding camera image with the collision
warning overlay.

is more generic than the previous fitting-based confidence, since it also considers
the fact that a stixel spans multiple columns. However, both confidence values
aim to decrease the chance of generating spurious false asteroids from stixels in
noisy disparity data, by reducing the output number of asteroids in Eq. (5.12).

The top-down view in Figure 5.6 shows the sampled asteroid clouds as colored
blobs at the end of stixel tracks. The asteroid clouds from the trees (at the right of
the ego-vehicle) are larger, showing more uncertainty in those measurements.
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5.4.3 Asteroid propagation
The third block, Asteroid Propagation, takes the cloud of asteroids, propagates them
along their generated trajectories and monitors which of those are going to impact
a safety bubble around the ego-vehicle and their corresponding times to impact.

The propagation process relies on constant-velocity kinematics without any
rotational component. Currently, no advanced dynamic models are applied. The
constant-velocity model is a reasonable choice given the objective of offering a
generic, class-agnostic analysis. Moreover, the impact of this simplification is re-
duced by having multiple stixels per object and generating multiple asteroids per
stixel in a probabilistic fashion. Nonetheless, this constraint will limit the time
horizon for which our predictions are reliable. The goal is to explore these bound-
aries and to identify the strengths and weaknesses of the stixel-based approach,
rather than providing a stand-alone all-encompassing collision warning solution.
However, note that our method is capable to utilize additional information due to
its probabilistic design, if such information would be available to the system.

Performing the collision assessment based on a linear trajectory extrapolation,
can be solved efficiently as a standard geometric line-segment intersection prob-
lem, as presented in [115]. We model both the trajectory of the asteroid and the
side-of-impact lines with an origin point (αo and soio) and a vector (αv and soiv),
and find τ and ζ such that

αo + τ · αv = soio + ζ · soiv. (5.16)

By using this representation, τ directly provides the time to an impact, while
ζ indicates the location of the impact (as the distance from soio). Therefore, an
asteroid collides with the side-of-impact if and only if

(0 < ζ < |soi|) ∧ (0 < τ <∞), (5.17)

where |soi| represents the length of the side-of-impact.
For the truck at the left of the scene in Figure 5.6, the asteroids are clearly

projected in front of the object (marked in bright red) from analyzing the corre-
sponding tracks of the stixels.

5.4.4 From histogram to probability distribution
The results of the asteroid propagation process are represented in a 2D histogram,
matching the configuration of the state space. Each bin contains the amount of
colliding asteroidsmast for its corresponding angle-of-impact and time-to-collision.
This histogram is then translated into the likelihood with a linear model that
depends on the asteroid density parameter ρast by

p(mast|col, aoi, ttc) = 2/ρast ·mast/ρast, (5.18)

p(mast|¬col, aoi, ttc) = 2/ρast · (1−mast/ρast). (5.19)
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Whenmast ≥ ρast, we enforce saturation by setting p(mast|col, aoi, ttc) = 2/ρast and
p(mast|¬col, aoi, ttc) = 0. This means that a fully confident surface of 1 m2 will
generate enough asteroids to saturate a histogram bin, independent of the density
parameter. The factor 2 ensures that the probability distribution is normalized.
Next, the likelihood is fed into the Bayesian filter-update stage. Additionally,
the collision probabilities are further processed in the Collision Analysis block,
described below.

5.4.5 Collision analysis on the state space
The collision analysis block (see Figure 5.1) processes the state and generates
warnings if necessary. This module completes the system processing chain and
facilitates assessing the reliability of the analysis in a tangible way.

First, this block extracts a collision probability for each state cell from the
joint probability, by marginalizing over the collision axis, hence it calculates the
probability p(col|ttc, aoi) by the following equation:

p(col|ttc, aoi) =
p(col, ttc, aoi)

p(col, ttc, aoi) + p(¬col, ttc, aoi)
. (5.20)

Second, it adds robustness by employing a CFAR algorithm, which performs peak
detection and tracking in the probability distribution, as discussed in the following
subsection.

A. CFAR: peak detection
The next step is to identify peaks in the probability distribution that correspond
to potential collisions. This process addresses the fact that the asteroids in the
histogram are sampled from the noisy tracked stixel data, and hence, they travel
towards the car as a dispersed cloud. Since this shows similarities to detecting
objects in noisy Radar data, we propose to employ a well-established method from
that field and use a Constant False-Alarm-Rate (CFAR) detection scheme [116],
[117]. CFAR is an adaptive thresholding technique to find relevant peaks against
noisy background clutter. In theory, it provides the desired detections at the cost
of a pre-defined false-alarm rate, which explains the name. This is based on as-
sumptions on the distribution of background clutter. We now briefly describe this,
adapted to our context.

A CFAR detector checks if the probability in a cell is a local maximum and
higher than a certain threshold. This threshold is derived from the neighboring
cells to adapt it to the local noise caused by outlying measurements. We treat
each angle-of-impact (aoi) as an independent sequence of measurements, which
means that our CFAR neighborhood is one dimensional, along the time-to-collision-
axis (ttc) only, and not depending on the value of aoi. Therefore, we omit aoi
in the argument list of the probability distribution for brevity in the following
equations. Formally, our CFAR collision-peak detection Ccfar(ttc) is defined with
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the following set of equations:

Ccfar(ttc) = (p(col|ttc) > Tcfar(ttc)) ∧
(
ttc ≡ argmax

τ∈Θcfar

p(col|τ)

)
, (5.21)

Tcfar(ttc) =
αcfar

Ncfar

∑
τ∈Θcfar

p(col|τ), (5.22)

αcfar = Ncfar(p
−1/Ncfar
fa − 1), (5.23)

using several system parameters, where pfa is the theoretically desired probabil-
ity of false-alarm, Θcfar the definition of the neighborhood of the ttc-bin under
analysis, and Ncfar the corresponding amount of training cells (bins) in that neigh-
borhood. The neighborhood consists of training cells, both in front and behind
the cell under test. To suppress spurious detections, typically one or more guard
cells are defined, in between the cell under test and the training cells. Our Θcfar

is configured empirically as two front-training cells, two front-guard cells, six
after-guard cells and six after-training cells. Consequently, Θcfar spans 17 ttc-bins
and has Ncfar = 8.

B. CFAR: peak tracking
The CFAR peak detector provides the most critical time-to-collision and does not
handle any data association between multiple potential collision blobs in the state
in itself. In our CFAR peak-tracking step, we focus on detecting the most critical
collision smoothly, thereby addressing the majority of the situations, and leave
handling of multiple targets for future work.

Our CFAR peak tracker consists of a sliding-window buffer with a length of
seven frames for each angle-of-impact. Within that buffer, lines are fit through
every pair of collision-peak ttcs. This again assumes a constant-velocity model,
which would lead to a linearly decreasing ttc in more recent measurements. For
every line, the number of measurements in the buffer is found that are within
three ttc steps of the fitted line. If there are at least four of these inliers, the line
is considered to represent a collision event. The event with the highest number
of inliers is selected to generate a warning with its corresponding extrapolated
ttc. When multiple lines have equal support, the one with the most urgent time-
to-collision is given priority. This sliding-window strategy suppresses spurious
detections and simultaneously, it resolves missed peaks in the detection step of
the CFAR process.

Figure 5.6 presents an example result where the bright red stixels on the front
of the truck are stixels that cause the generated collision warning, visible in the
top-down view and also in the overlay on the camera image.
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5.5 Evaluation approach
This section explains the validation of the proposed system by addressing the
selection of data sets, performance metrics and the performed experiments. Even
though the provided evaluation cannot serve as an automotive-compliant end-
to-end validation of the system, it demonstrates the feasibility of our stixel-based
collision warning system through both simulated and real-world experiments.

5.5.1 Datasets
The strengths and weaknesses of the system will be analyzed using real-world
and simulated data. More specifically, we employ the well-known KITTI tracking
dataset, although this set contains a limited number of (near) collisions. We are
not aware of the existence of a real-world stereo-vision dataset that contains colli-
sions, and lack access to e.g. test sites with dummy objects such as used in [118].
Therefore, we analyze our system on a newly simulated PreScanStereoCollision
dataset, and a newly recorded real-world TUE&ACNL dataset with intentional
near-collisions. All datasets have a focus on urban environments and will be
discussed below.

The simulated PreScanStereoCollision dataset (PSSC) is newly made for this
research with the PreScan software package [119] and exported in KITTI dataset
format for compatibility. This simulated data is included in our evaluation to test
actual collisions and easily evaluate different relevant scenarios. We have created
5 sequences in the PreScan environment: Straight, Figure-8, Y-crossings-Fast, Y-
crossings-Slow and Mixed. Figure 5.7 shows example frames of each sequence.
Sequence Straight is a large rectangular trajectory containing head-on collisions
with static objects of decreasing sizes (e.g. from truck to car, down to kids) and
an empty road with common side objects such as trees and buildings. Sequence
Figure-8 contains similar obstacles, but now on a curved road, so that the ego-
vehicle is constantly changing its heading. The Y-crossings sequences contain
a straight trajectory for the ego-vehicle, with different objects approaching on
collision course from the right, appearing at consecutive y-crossings. In the Fast
version, each participant moves at its own nominal speed, while in the Slow one,
speeds are decreased such that the maximum relative collision speed is similar
to that of the collision speed in the Straight sequence. Finally, the Mixed sequence
is a busy, fully dressed city center with multiple traffic participants approaching
from various directions. It contains all kinds of vehicles and pedestrians that are
either on a safe or on a collision course, straight and from different angles. The
simulated stereo camera has a baseline of 30 cm, a resolution of 1024× 512 pixels
and a field of view of 46.2× 24.1 degrees.

Additionally, we evaluate our system on the KITTI-tracking dataset. This KITTI
data has no collisions and only a handful of near-collisions, but a crucial aspect is
to quantify the amount of false alarms on real-world data. The evaluation requires
ego-motion as well as the true object positions. Hence, the evaluation is limited
to the training set of KITTI-tracking. This is the only part of the dataset for which
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Figure 5.7 — Examples of our PreScanStereoCollision (PSSC) sequences, two frames per sequence;
from top to bottom: Straight, Figure-8, Y-crossings, Mixed.

the annotated object bounding boxes and positions are available, which can be
exploited to generate ground-truth collision warnings. We generate stixels on the
surface of object bounding boxes, and set their motion according to the annotated
motion of the object. These stixels are then used to generate a single asteroid each,
with fixed motion, which is extrapolated to produce the reference ttc labels.

Besides these two datasets, we have recorded a real-world dataset, TUE&ACNL,
at the Eindhoven University of Technology campus (TUE), the Automotive Cam-
pus Netherlands (ACNL) at Helmond and the roads in between. During these
recordings, the car is driven around the TUE campus in normal traffic for 30 min-
utes and is also steered towards near-collisions with other traffic or static obstacles.
The recordings at and towards ACNL are partially in normal traffic and partially
on temporarily closed roads. More importantly, several sequences were recorded
during nighttime. This dataset has no annotations of true obstacle positions and
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Table 5.1 — Evaluation data overview

Dataset Camera(1) #Pos #Neg

PSSC 30 cm; 46◦; Frames 880 1,914

( 4.7 minutes) 1024 pixels; 10 Hz Events 40 n.a.

KITTI 54 cm; 80◦; Frames 155 7,811

(13.3 minutes) 1242 pixels; 10 Hz Events 40 n.a.

TUE&ACNL(2) 30 cm; 44◦; Frames 23,000 (3)

(63 minutes) 480 pixels; 6 Hz Events ±100 n.a.

(1) Provided are: baseline, horizontal field-of-view, image width
and frame rate.

(2) TUE&ACNL has no ground-truth annotations.
(3) Roughly 5,000 of these frames have been recorded at night.

motion for a full quantitative evaluation. However, it offers a valuable qualita-
tive insight into the collision warnings that the system generates in real-world
conditions, since we have used a regular automotive-grade stereo camera. Ta-
ble 5.1 summarizes the properties of the employed annotated data, regarding the
duration and the number of frames and collision events.

5.5.2 Metrics
The performance of our collision warning system will be quantified at two po-
sitions in the processing chain, namely prior to and after CFAR peak tracking.
Ultimately, the goal is to design a system that handles the complete events prop-
erly. Hence, it is acceptable that the system misses a collision peak in some frames,
if it still detects the corresponding event relying on other frames. The evaluation
on a per-peak basis gives an idea on the intermediate level of performance. It
contains more samples,which increases the reliability of the analysis, while it also
provides insights into strengths or weaknesses in the processing. This perfor-
mance is also relevant for the described case where the collision analysis would
be fused in a larger system. The performance will be quantified by calculating the
recall, the precision and their harmonic mean (F1 score), both prior to and after
peak tracking.

5.5.3 Time range
As explained in Section 5.4.3, the time horizon in which our system can reasonably
operate is inherently limited by our modeling assumptions. The most dominant
limitation originates from our use of a constant-velocity motion model, which is
especially uncertain in our context of operation: urban areas with nearby traffic
from any direction.

106



C
ha

pt
er

5

5.5. Evaluation approach

0 0.5 1 1.5 2 2.5 3

Time-to-collision

0

10

20

30

40
N

u
m

b
e

r 
o

f 
c
o

lli
s
io

n
s

Distribution of collisions over ttc

PSSC: straight

PSSC: ycross-s

PSSC: ycross-f

PSSC: mixed

PSSC: figure 8

PSSC: combined

KITTI: combined

Figure 5.8 — Distribution of collisions over ttcs for the PSSC and KITTI datasets. The stacked
histogram shows the different PSSC subsequences. It illustrates that the KITTI recordings contain
very few potential collisions, motivating the need for the complementary simulated PSSC data.

To link our evaluation to real-world conditions, we rely on the stopping-
distance guidelines that are used by the NACTO [120] and NHTSA [121]. They pro-
vide ballpark figures for feasible de-acceleration, that are said to range from 6 m/s2

for a reasonably skilled driver to 9.8 m/s2 for a professional driver under good
conditions. Since our system is designed for urban scenery, the ego-vehicle speed
is around 50 km/h. In this case, it would require somewhere between 1.4-2.3 s to
fully stop the ego-vehicle, depending on driver skills and conditions. Therefore,
if the collision-detection module is integrated tightly into the car control system
(e.g. with automated emergency braking as in [118]), it should operate reliably at
least up to 1.4 s. However, if the module purely generates warnings to assist an
active human driver, it should operate reliably to up to 2.3 s.

Figure 5.8 shows the distribution of collision events in our data over time-to-
collision. The events in our simulated data are distributed rather homogeneously
between 0.3 and 3.0 s. However, the graph of the KITTI-event distribution confirms
that this data was recorded during a clean drive. Namely, the handful of short,
potential collision events are never closer than 1.5 s. Therefore, this part of the
experimental validation is focused on avoiding false warnings on the KITTI data
within the above-mentioned time intervals, while obtaining a high F1 score on the
PSSC in those same time intervals.

As mentioned, the objective of this work is to explore the operational bound-
aries and identify the strengths and weaknesses of the stixel-based approach,
rather than providing a stand-alone all-encompassing collision warning solution.

5.5.4 Experiments
The objective of the validation is already covered by the selection of the datasets,
i.e. simulated data with several relevant scenarios and real-world data to test
practical feasibility. To further explore the system robustness, we have evaluated
the performance over different settings of the core system parameters, being the
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asteroid density, the maximum tracking length and the parameter pfa for the CFAR
module within the Collision Analysis block. These experiments focus on validating
the newly designed functional blocks of the system.

Additionally, the influence of the quality of the input data is evaluated by
selecting different algorithms or settings to generate the disparity and optical flow
data. For disparity, a comparison is made between the traditional, widely adopted
Semi-Global Block Matching (SGBM) algorithm [56] and a newer, state-of-the-
art deep learning-based method, namely DispNet [122]. For flow estimation, the
FlowNet2 [123] method is employed, also based on deep learning. The authors of
FlowNet2 have presented several neural network architectures and made them
publicly available. The different available versions vary highly in inference speed,
with a trade-off against pixel-level performance quality. This can be exploited to
experimentally quantify the robustness of our data processing against degraded
input data. In turn, this will offer relevant insights on the trade-off between system
latency and performance quality. Since our our system is stixel-based rather than
pixel-based, we aim at being robust to these lower quality, yet faster versions of
flow estimation.

5.6 Results
First impressions of the visual results are provided by Figure 5.9. These illus-
trate typical performance on low-quality flow and noisy disparity, whereas our
probabilistic approach is still able to extract relevant information.

5.6.1 Quantitative evaluation on KITTI and PSSC
As a first quantitative evaluation, we present the performance with respect to the
ego-vehicle stopping time under different conditions, as discussed in Section 5.5.3.
Figure 5.10 portrays the performance of three system configurations that do not
detect any false events on the KITTI dataset for the use case of an integrated system
(no false positives with ttc <1.4 s, top graph), the use case of a human-in-the-loop
(no false positives with ttc <2.3 s, bottom graph) and an intermediate case (no
false positives with ttc <1.8 s, middle graph). Within the subset of configurations
that comply with that constraint, we present the one with the highest F1 on the
simulated PSSC data. From the graphs in Figure 5.10, we can conclude that the
majority of all collisions in all different contexts are detected correctly, showing
the strength of our method.

It is interesting to also discuss a failure case. On PSSC, the settings presented
above suffer from up to three false negatives, all in the Figure 8 sequence. The
main cause of these misses is the curved ego-motion, which (1) makes the poten-
tial collisions short, barely being the minimum required for the event detection
module, and (2) does not match well with the prediction step, which only consid-
ers straight motion. On top of the curved-motion complications, one collision is
with a person lying down on the road (second picture in Figure 5.7), which is so
low positioned that it is barely represented with stixels. CFAR correctly detects a
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Figure 5.9 — Three typical collision warnings illustrating clean results from good (left), medium
(center) or noisy (right) input, from top to bottom: left camera image with warning overlay, disparity
data, color-coded flow data, stixels with flow vectors, top-down scene view. Note that the ego-vehicle
is cornering in the first example, so the warning seems false but is actually correct.

peak at ttc =0.6 s, which is too late for the peak tracking to activate. This shows
that our current system is vulnerable for objects lower than around 0.4 m, and
could be better adapted to curved ego-motion.

A second set of quantitative results is presented in Figure 5.11, which provides
an analysis on how different system parameters influence the detection perfor-
mance using the PSSC data. Each row shows a different parameter: the method of
disparity estimation, the method of flow estimation, the maximal length of stixel
tracks, the asteroid density and the CFAR parameter pfa. We have accumulated
the results of all parameter combinations and have generated the surfaces by av-
eraging all sub-experiments with a specific value of the parameter under test. The
top set of graphs show the peak-detection results, the bottom set those after peak
tracking. Both present the recall, precision and F1 scores. Note that the color maps
represent a value surface showing the scores depending on two parameters.
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Figure 5.10 — Best performance on PSSC using settings that produce no false positives on the
KITTI data set with ttc <1.4 s (top), ttc <1.75 s (middle) and ttc <2.3 s (bottom).

Overall, the graphs show better performance at a smaller ttc. This makes sense,
since it is mostly closer to the ego-vehicle, so that the obstacle is clearer in view
and probably sufficiently long in view, such that it could be tracked better.

A noteworthy observation is how little the system performance is impacted by
the choice of the flow method. Using the smallest FlowNet2 version (FN2-s) yields
practically identical performance to using the full version, although the smallest
can be executed roughly 17 times faster than the full one (7 ms on an GTX-1080
GPU), at the cost of a drop in pixel-wise performance of up to a factor of 2 [123].
This shows the potential in robustness of combining a superpixel strategy with
probabilistic sampling and filtering, as discussed in Section 5.3.

Additionally, the surfaces show that allowing for longer stixel tracks improves
the recall and hence the F1 score of the system, both prior to and after CFAR peak
tracking. Other than that, there is a slight preference towards a smaller asteroid
density and a high pfa for the peak detection.

A similar analysis for the impact of system configuration on the results on
KITTI data is provided in Figure 5.12. Since there are so few actual potential
collisions, we only discuss the number of false positives here, which should be
low preferably. The surface plots show that most false CFAR peaks (prior to
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tracking) occur at a large ttc values. However, no false events occur at large ttc
values. This can be explained by the fact that the measurements at large ttc values
are more uncertain and tracking is not yet able to support the estimation, which
leads to inconsistent peak detections within the CFAR module. Subsequently, the
peak-tracking step filters these out, thereby improving the system robustness.

Other important observations are that reducing either the flow quality, or the
use of a small asteroid density, or a large pfa value, all have a slight negative impact
on the results. A striking graph is that of the maximum tracking length: shorter
tracks or long tracks are better than medium tracks. We hypothesize that short
tracks lead to noisy data that is filtered out later more easily, while long tracks
lead to more accurate estimations that do not need to be removed.

In the design of our state space and by the structure of the ego-vehicle’s impact
bubble, the system is able to handle collisions from all directions and at different
sides of impact. The reader should note that this is by design, rather than by the
presented experiments. However, the evaluation has been limited to the detection
of collisions at the front of the vehicle. The cause of this constraint is that the
annotated real-world data has been recorded with a single, forward looking stereo
camera, so that it is currently not feasible to validate this functionality in practice.
More specifically, the horizontal field of view of the sensor setup does not cover
many collisions from wide angles-of-impact, but in principle the system facilitates
this when the sensor coverage would be enhanced.

5.6.2 Timing
The algorithmic contributions are implemented in C++ and tested on a desktop
PC (Xeon E5-1660 0 CPU executing at 3.30 GHz with 12 cores and 15.6 GB RAM).
On the KITTI data, the Stixel World algorithm takes roughly 20 ms. The bottleneck
within our proposed blocks is the Stixel Tracking module, requiring 35-45 ms with
the current implementation and platform. It is faster on the PSSC data (15-20 ms),
since the stixel segmentation is much cleaner, which indicates that removing clut-
ter stixels prior to the matching process can speed up processing. Both Asteroid
Sampling, and their propagation including the collision check and the appended
histogram filter need 1-4 ms each, while the CFAR detection requires only up to
1 ms. Together, this results in a image throughput speed of 15-17 fps, which is
sufficiently fast for real-time operation on the 10-fps datasets.

5.6.3 Qualitative evaluation on TUE&ACNL
This section presents the qualitative results on the TUE&ACNL data, which con-
sists of real-world recordings of 63 minutes in normal traffic and on closed roads,
partially during the night, with several intentional near-collisions. Figure 5.13
presents four examples of typical ASTEROIDS performance on near-collisions.
The first three examples depict frames that have been captured 0.5 s apart, whereas
the snapshots of the rightmost example (with the small pole) are 0.16 s apart, since
it was only briefly on a collision trajectory. Even though we cannot quantify the
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estimated ttc values, the warnings generated by the system seem natural and
plausible to the driver. Moreover, there was not a single false warning during
the whole recording. Three-quarters of the data was recorded in bright sunny
weather, causing sharp shadows, high contrast, temporal flicker, direct sunlight
and reflections, which all can be handled correctly by our system. The rest of the
data was captured during nighttime. The system is still able to generate warn-
ings for near-collisions in the dark, although they typically occur later (earliest
at ttc ≈1.5 s). In conclusion, this experiment supports our proof-of-concept eval-
uation with the findings on the KITTI and PSSC datasets and shows promising
real-world applicability.
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Figure 5.11 — Impact analysis of system configuration on the system performance using PSSC
data, split over different parameters and plotted over time-to-collision. The color yellow represents a
desired high score. Note that reducing the quality of the flow and/or disparity has little impact on
the performance (top 2 rows).
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Figure 5.12 — Analysis of the relative impact of system configuration on performance with
KITTI data, split over different parameters and plotted over time-to-collision. Because of the low
actual potential collisions, we show only false positives. Color towards red represents an undesired
(relatively) high FP count. Note that the color ranges are stretched individually to emphasize relative
performance within each parameter. Hence, comparing results between parameters or with and
without peak tracking in an absolute sense is not the objective here and also not represented.
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Figure 5.13 — Examples of our system in action on TUE&ACNL data, in each row three snapshots
per collision event. From top to bottom: a car crossing and slowing down; a road works fence at
night; a slim lamppost and a low pole at the side of the road.
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5.7 Conclusions
This chapter has presented a vision-based collision warning system for ADAS
in intelligent vehicles. The approach is class-agnostic, since it detects general
obstacles that lay on a collision trajectory with the ego-vehicle without relying on
semantic information. This is in contrast with most current systems, which rely
on pre-trained pattern recognition and are limited to predefined object classes or
situations. The proposed framework estimates disparity and optical flow from
a stereo video stream, extracts stixels, and samples so-called asteroids, based on
an uncertainty analysis of the measurement process to model potential collisions.
This is all modeled as a Bayesian histogram filter with a time-to-collision versus
angle-of-impact state space.

The key contributions of the work in this chapter can be summarized as follows.
First, the algorithm is a probabilistic method with a newly introduced particle
sampling (asteroids) method. These asteroids are then applied to leverage the
efficient and well-known disparity stixels in a generic collision warning system.
Second, the fully probabilistic and specialized asteroid approach is not hampered
by noisy input data, thereby facilitating a reduction in computational effort for
calculating dense optical flow in the larger system. Third, the asteroid system
employs a state space that is newly designed and specific for collision warning,
based on axes over impact time and angle. These two physical quantities directly
offer insight in the relevant collision dynamics of the surrounding objects in the
scene, in contrast to commonly used static occupancy grids.

The evaluation provided the following key results:
A. Quantitative performance: The analysis on the KITTI and PreScanStereoCollision
datasets has shown that our ASTEROID system detects all potential collisions with
obstacles higher than 0.40 m and does not generate false warnings with ttc <2.3 s
on the KITTI data.
B. Performance gain by probabilistic design: The proposed probabilistic approach
can handle relatively low-quality input, such as noisy disparity and/or flow data.
Specifically, using the smallest FlowNet2 version (FN2-s) yields practically iden-
tical collision warning performance when compared to using the full version,
while the former one can be executed roughly 17 times faster than the latter (7 ms
on an GTX-1080 GPU), at the cost of a reduction in the pixel-wise optical-flow
performance of up to a factor of 2 [123].
C. System robustness: The system did not generate any false warnings on the
TUE&ACNL data, showing capabilities to handle bright sunny weather with
sharp shadows, high contrast, temporal flicker, direct sunlight and reflections.
Moreover, the system was still able to generate warnings for near-collisions in
the dark on nighttime data, although they typically occurred shorter ahead of the
collision (earliest at ttc ≈1.5 s).
D. Timing: The algorithmic blocks as presented in this chapter can be executed
to process data at 15-17 fps on a desktop PC. The bottleneck is the stixel-overlap
analysis ( 15-45 ms), while the other blocks of the proposed algorithm require
maximally 4 ms.
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Summarizing, the research in this chapter addresses collision warning that
successfully leverages probabilistic modeling of uncertain disparity and optical
flow measurements, where the representation facilitates fusion with other ADAS
processes. The algorithm can be employed on affordable hardware and has no
requirements whatsoever on car connectivity or HD maps. The validation utilizes
both known and new public data, featuring both real-world and simulated data
and includes scenarios at nighttime.

The previous chapters have presented research in stand-alone settings, show-
ing the step-by-step development of algorithms for freespace segmentation and for
generic collision warning, validated in isolated test environments. The next chap-
ter presents two different projects where newly developed stixel-based research
is integrated into larger systems. More specifically, it is practically embedded in
a larger context of scene modeling for military surveillance and for safety moni-
toring in semi-automated driving. Both examples in that chapter are supported
by the development of live prototypes, showcasing how the presented strategies
capture scene information that can be leveraged in real-world applications.
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6.1 Introduction
The previous chapters of this thesis have presented our stixel-based research for
freespace segmentation and generic collision warning. Additionally, we have
developed specialized extended versions of the Stixel World algorithm that have
been integrated into two different real-world prototypes: Change Detection 2.0
(CD2.0) and the demonstrator of Vision-Inspired Driver-assistance Systems (VI-
DAS), a European Horizon 2020 project. These prototypes represent two different
aspects in a broad range of applications, namely 3D modeling of static scenes
and dynamic analysis at object-level. The different objectives of these applications
evidently lead to different system constraints and requirements.

Static 3D scene modeling: The change detection system for the Netherlands
Ministry of Defence concerns accurate 3D modeling of static scenes around the
ego-vehicle, so that the current state of the environment can be compared to the
historic state which was captured earlier and stored in a database. The change
analysis requires pixel-level image registration, which is hampered by the fact
that the images typically are captured with large viewpoint differences. Dealing
with these viewpoint changes is best performed via a 3D model instead of relying
on 2D images.

Dynamic analysis at object-level: The VI-DAS demonstrator concerns regular,
yet dynamic traffic scenarios in which specific types of traffic participants need to
be detected, classified, localized and tracked. This information can be registered
in a local dynamic map for high-level risk analysis. Additionally, it can be used
directly to generate forward collision warnings, whenever the forward path of the
ego-vehicle is obstructed. To this end, our modules provide 3D obstacle detection
and classification by fusing the results of a deep neural network for semantic
segmentation with the 3D stixels and adding a low-weight clustering step. This
provides a generic object-level representation to analyze collision dynamics.

Together, these prototypes illustrate the versatility and flexibility of the applied
modeling in this thesis with regard to its operational domain. Both problem set-
tings and our prototyped solutions will be addressed individually in the following
sections. Each section will first provide a more detailed explanation of the system
context and the resulting technological challenges and constraints, followed by a
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discussion of related work. Consecutively, the proposed method and our evalua-
tion approach are presented, completed with the presentation and discussion of
the results and conclusion.

6.2 Project A: Change Detection 2.0
When driving the same route twice with a vehicle that has an on-board camera, it
is interesting to find similarities or differences with respect to previously gathered
information about the scenery. Detecting similarities is relevant for map registra-
tion purposes, i.e., localizing the ego-vehicle into a pre-recorded high-definition
digital map. Identifying differences has a related purpose, for instance to keep
the aforementioned digital map up-to-date automatically, or to detect anomalies
during safety inspection.

A relevant use case of the safety scenario is the semi-automated surveillance
in a military context. More specifically, it concerns the problem of identifying
road-side bombs, so-called Improvised Explosive Devices (IEDs), during military
and peace-keeping missions. These bombs have been the most important cause
of casualties for NAVO troops in the last few years. Therefore, the Netherlands
Ministry of Defence, amongst others, are interested in research for Countering Im-
provised Explosive Devices (CIED). The work in this section has been developed
specifically for that purpose and was supported by the Defence Expertise Centre
Counter-IED of the Netherlands Ministry of Defence, receiving funding within
the National Technology Program under the project title ”Change detection 2.0
for countering IEDs”. The next subsection will discuss the situational context in
more detail.

6.2.1 Context of military surveillance
When military personnel has to keep a hostile area safe, a common strategy is
to send out patrol vehicles that drive around to both show their presence and to
inspect and identify potential safety hazards. For these kind of patrols, a concrete
threat is that opponents use Improvised Explosive Devices (IEDs): bombs that are
hidden at the roadside or buried below it, and that are meant to be detonated if
the patrol car is nearby. In general, the detonation of an IED is not automated, but
done manually, both for the lack of advanced equipment and to avoid causing
local casualties. A common strategy is that the location of the IED is marked
with a simple object (such as an empty soda bottle), which looks mundane to the
unsuspecting eye, but can be spotted from far away with binoculars by the hostile
party that set up the IED. Then, the IED can be detonated from a distance when
the patrol car passes the marker.

It is not feasible to detect the explosive device itself when relying on a camera-
based computer vision system, since the device is typically hidden in a container,
a bush or even buried in the ground. However, the corresponding marker object is

The work in this section has been presented at VISAPP 2018 [42].

120



C
ha

pt
er

6

6.2. Project A: Change Detection 2.0

Position sensors 
(GPS & IMU)

Stereo camera

Historic-to-live 
Image Registration

Georeferenced 
Synchronisation

2D Change 
Detection 
& Analysis

User Interface

Database

Stixel-based
3D modeling

Video capturing Depth Estimation

Figure 6.1 — Conceptual diagram of the full Change Detection 2.0 system, adapted from [124].

clearly visible. By design, it can be spotted in visible light and even found from a
considerable distance. Moreover, the marker will only be present after a bomb has
been hidden, so that it will cause a change in the scene appearance if an area has
been visited regularly. This makes these markers important and relevant objects
for an automated detection system that assists the military personnel during their
surveillance.

The layout of the project was put forth by the military itself, naturally driven
by the desire to support soldiers under difficult operational conditions, by flagging
small changes that can indicate potentially life-threatening situations. Any kind of
support of an automated change detection system that complements the limited
concentration and memory capacity of humans is highly appreciated.

Additionally, separate military-funded projects address sensor modalities other
than camera vision, like ground-penetrating radar and light-polarization sensors.
The long-term goal is to develop a multi-modal detection system consisting of
the systems that are most promising individually and could complement each
other in an integrated setting. However, this is all beyond the scope of the work
presented here, which is purely focused on utilizing visual-light cameras. This
part is considered the basis for a whole class of CIED systems.

6.2.2 Technological goals, challenges and constraints
The high-level objective of the system is to automatically detect changes in scenes
under surveillance using camera footage. To this end, images that are captured
during a surveillance task should be compared to historic images that were
captured from the same environment on previous inspections and stored in a
database. The conceptual diagram of this system is presented in Figure 6.1, to
illustrate the overall processing stages in which the work of this chapter has to
operate and will be embedded. The figure shows that the system relies on GPS and
IMU sensors to accurately measure and store the position and viewing direction of
each captured image. This allows to rapidly retrieve the position-relevant historic
image from the database, by finding the image that was captured from the closest
distance to the viewpoint position of the actual live image.

Since the relevant changes for the system in this context cannot be fully a-
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Figure 6.2 — Prototype vehicle with the stereo camera system on top.

priori defined, the system cannot be limited to specific classes of objects. Hence, it
cannot rely on pretrained object detection, but instead it should be able to detect
generic changes. This requires a generic change analysis and will be executed in
2D images based on the analysis of pixels and their neighborhoods.

To this end, an image registration method should process the historic image in
such a way that it is aligned with the live image. Moreover, this image registration
should be pixel-accurate for the change detection process. However, surveillance
routes in a dangerous military context present several special operational condi-
tions for which the system needs high robustness.

Large viewpoint differences between historic and live images are unavoidable,
since the vehicle needs to drive different routes through rough terrain. This creates
a parallax effect during image capturing, such that objects in a 2D image of the
scene can change their relative position. Figure 6.3 provides an example where
this phenomenon occurs. As a consequence, it is impossible to use common 2D
image registration processes.

Natural changes in the scene appearance (parked cars that have disappeared,
varying weather conditions, shadows at different times of the day) impede the
use of methods based on pixel-flow (optical displacements of pixels from one to
another frame), since not all content is present in both the live and the historic
recording.

Life-threatening situations that occur when the vehicle has stopped too late,
ask for high sensitivity to small details at a large distance when operating the
vehicle at a reasonable speed. The design considerations are explained in more
detail in [124], the resulting prototype vehicle (Figure 6.2) is equipped with a
pair of ultra-high resolution (exceeding digital 4K television), high dynamic-range
cameras in a predefined stereo setup, capturing 5 stereo frames per second.

These operational conditions lead to the following technological constraints.
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Figure 6.3 — Illustration of the parallax effect, caused by large viewpoint differences: object C
appears either in front of object A or B in the 2D images, although none of them have moved in
reality.

• The large viewpoint difference, up to several meters, requires 3D image
modeling using the stereo camera.

• Small changes of interest require processing at a high resolution and locally-
accurate scene modeling, allowing change detection also above the ground
plane.
• 3D Modeling should be computationally efficient to allow sufficient compu-

tational budget for the other system modules and ensure real-time execution.

Therefore, the objective of the work in this chapter is to present an efficient yet ac-
curate 3D scene model, allowing to render the scene from a viewpoint with a large
displacement, e.g. several meters, to facilitate a pixel-accurate image registration
process for pixel-level image comparison.

The next section will briefly discuss strategies from related literature in the
light of the above-mentioned challenges and constraints.

6.2.3 Related work
The specified problem, expressed in computer vision terms, is a combination of
image registration and 3D scene modeling. This section briefly discusses related
work from both fields.

Image registration is required to map live images to the historic images that were
captured at an earlier time. Besides this time difference, there are also viewpoint
differences because the driven trajectories of the two inspections also differ in ge-
ographic positions of the vehicle expressed in world coordinates. Registration un-
der viewpoint differences has to address vehicle (and thus camera) displacement
and perspective camera distortion, for which various strategies exist in literature.
One broad category performs all the processing in the 2D image plane. To handle
the perspective distortion, it is possible to divide the 2D image into sufficiently
small parts such that an affine homography transform can be found for each part
individually. For example, the smaller parts can originate from a fixed grid [125],
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[126], or from segmenting the scene into planar regions [127]. Even though these
strategies can in theory handle the parallax issues as discussed in Section 6.2.2,
the available methods cannot be performed fast enough for real-time application
within our context.

The second category of registration makes use of 3D processing. This avoids
the parallax issue, since a change in camera viewpoint has no influence on the rel-
ative positions of the objects in the scene. Hence, change of viewpoint corresponds
to a single rigid transformation of the 3D scene. Consecutively, the transformed
3D scene is projected back to 2D in an image rendering step. An example of such
an approach is the hierarchical alignment presented in [128]. This system builds
a textured polygon model of (parts of) a scene, transforms it to the desired view-
point and renders a registered 2D image. The approach exploits a polygon model,
circumvents any parallax issues and can be executed in real time. This has moti-
vated us to adopt this approach as the inspiration for this research, and extend
the part of the scene that the system can analyze.

3D modeling of a scene can be performed with several different strategies.
The principal choice is between processing raw 3D point clouds or mesh-like 3D
models. Although it takes additional processing to compute the 3D model initially,
mesh-based models bring the benefit of (1) generally improving efficiency because
of their locality in the processing pipeline, and (2) avoiding noise and holes that
will typically arise when processing a raw 3D point cloud. Even though advanced
methods exist to enhance raw depth data, they typically rely on a filtering stage
that exploits the temporal coherence of a video stream with a high frame rate [129],
which is unfeasible in our pipeline given its relatively low frame rate. For these
reasons, we opt for building a 3D mesh in the modeling task. A similar strategy
was applied in [128].

Different approaches exist to build a 3D model from a point cloud. For instance,
highly accurate models are generated from nearby captured data in [130], [131].
However, their processing time is in the order of seconds [131] or minutes [130]
and their level of detail is not required in our context.

Many alternative modeling strategies have been developed from super-pixel
methods, which have been predominantly designed for image segmentation in-
stead of 3D modeling [132]. In general, they have been designed to process 2D
color images, such as LV [133], SLIC [134] and SEOF [135]. Each of these al-
gorithms has its own various extensions to incorporate disparity or 3D point-
cloud data. For example, extensions for LV involve LVPCS [136], MLVS [137] and
GBIS+D [138], while SLIC is extended in StereoSLIC [139] and SEOF is modified
into SEOF+D [138].

Although all of these methods can provide relevant super-pixel segmentations,
the resulting super-pixels are shaped irregularly, yielding an inefficient repre-
sentation. Moreover, they need to be calculated on the whole image at once. For
trading-off modeling flexibility against optimality and computational complexity,
the Stixel World algorithm was introduced [96]. This probabilistic super-pixel
method was designed specifically for the context of intelligent vehicles, aiming at
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providing a compact yet robust representation of traffic scenes in front of a vehicle,
which can be generated efficiently in real time. The Stixel World algorithm relies
on disparity data to partition scenes into vertically stacked, rectangular patches,
each of them with a certain height and 3D position with respect to the camera
sensor. These rectangular patches are labeled as either ground or obstacle during
the segmentation process, thereby providing a two-class semantic segmentation
as well as a 3D representation. On top of that, the Stixel World algorithm can
be computed efficiently by casting it as a column-wise dynamic programming
process, which facilitates parallel execution [96].

Another specialized scene modeling method for intelligent vehicles relies on
3D voxels [140]. It generates and removes cubic voxels to handle the dynamic
aspect of a traffic scene and stores them efficiently in an octree-based fashion. The
method relies on tracking the voxels over time and does not employ any real-world
regularization. However, our camera operates at a low frame rate (±6 FPS) and
at a much higher resolution (above HD instead of VGA). Therefore, the method
presented in [140] is likely to provide noisy and spurious false detections on our
system platform.

With these constraints, we propose to avoid overly-detailed modeling and
time-filtered approaches, and instead rely on efficient modeling that incorporates
real-world prior knowledge for within-frame regularization. Our system will
extend the work of [128] such that the analysis can cover the full scene instead of
the ground only. This is realized by customizing the efficient and robust disparity
Stixel World algorithm, as explained in the following.

6.2.4 Method overview
The system diagram involving 3D scene modeling and image registration is pre-
sented in Figure 6.4, which is a subset of the complete system depicted in Fig-
ure 6.1. The historic stereo images, stored in a database, are modeled in 3D using
their disparity measurements. This process consists of two submodules, namely
one that estimates a potentially curved ground model and one that models erect
obstacles. Consecutively, the corresponding RGB texture is projected on the 3D
modeled mesh. In parallel, the 3D transformation between the historic and the live
image is calculated, using RGB and disparity data. The textured historic 3D model
and the live 3D transformation are used to generate a synthetic 2D view of the
historic image, as if it would have been captured from the live viewpoint. Next,
this synthetic historic image and the live image can be compared and analyzed in
the pixel-level change detection block.

The work presented here concentrates on the 3D obstacle modeling to facilitate
generating a synthetic image from the historic data that has a high degree of
pixel-level correspondences to the live images. The spline-based ground-plane
modeling strategy and a change detection strategy are presented in [128]. The
system in [141] addresses estimating the 3D transformation and the synthetic
rendering of the historic image.
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Figure 6.4 — Conceptual diagram of the Change Detection subsystem. The focus of the current
work is the block that models obstacles in 3D via a customized stixel representation (depicted in
blue).

6.2.5 Customized Stixel World Model
The previous version of this Change Detection system could only register the
ground-plane region and not obstacles, thereby solely limiting the change analysis
to the ground plane. This work presents a strategy to incorporate the obstacles
within the same analysis, extending the system scope to the full scene. To this end,
we propose a modified version of the Stixel World algorithm. This algorithm has
been originally developed to produce efficient medium-level geometric represen-
tations, specifically for automotive applications [96]. It takes the disparity image as
an input, and generates rectangular patches that model obstacles as fronto-parallel
surfaces, as described earlier in Section 2.2.

To exploit stixels to generate a 3D mesh for the change detection applica-
tion using image registration under large viewpoint differences, we extend the
algorithm with slanting, interpolation and masking, successively described in
the following subsections. Although these extensions require additional compu-
tations compared to the original Stixel World algorithm, our design inherently
limits the impact of that on the computational load. Namely, these calculations are
performed at the level of stixels. As a result, the processing operates on a couple of
hundred well-defined rectangular superpixels, instead of on more than a million
raw, noisy pixel-level measurements. Our additions therefore improve the repre-
sentation accuracy without a severe influence on the computational efficiency.
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A. Slanting
The original Stixel World algorithm provides a model for the scene geometry as
a collection of fronto-parallel surfaces, called stixels. This is a sufficient approx-
imation for ADAS applications such as freespace or object detection. However,
the current goal is to create a textured 3D mesh to generate images from different
viewpoints. As a consequence, the flat fronto-parallel surfaces are insufficient,
since they are invisible when viewed sidewards (perpendicular to the driving
direction). Therefore, we propose to calculate stixels that are slanted over their
vertical axis, for an improved fit to the actual surface that they are representing. A
top-down view of this process is illustrated in Figure 6.5 A and B.

Stixel slanting is achieved by fitting a line through all (u, d) pairs in a stixel,
where u is the column index and d the disparity value of all valid disparity mea-
surements within a stixel rectangle. We have chosen to ignore the row index v in
this process for three reasons. Firstly, the horizontal axis is the dominant direction
in the viewpoint change, since the camera of the patrol car will be always mounted
at the same height and the car will be on the same ground level. Secondly, the
Stixel World optimization process already addresses geometric changes in the
vertical direction by introducing separate stixels. Thirdly, this strategy reduces the
problem to fitting a 2D line instead of a 3D plane.

The line fit itself is achieved by performing a singular value decomposition
(SVD) on the collection of (u, d) points within a stixel, solving an over-determined
least-squares problem. The result of the line-fit process provides each stixel with
new disparity values for its left and right sides, whereas first it had solely one rep-
resentative disparity value. The stixel surface is still considered rigid, and hence
not curved (solely rotated), so that intermediate disparity values can be interpo-
lated linearly between dleft and dright, depending on the u-coordinate of interest.
To increase the robustness of the slanting process, the algorithm requires that (1)
a stixel has a certain minimal height (h(s)), (2) a stixel contains a minimal share
of valid disparity measurements (Nvalid(s)) within its total pixel count (Nall(s)),
and (3) the resulting slanting slope (αslant(s)) is within practical boundaries. The
actual boundary values depend on the system configuration regarding applied
resolution and stixel width. For the work in this section, the relevant values were
determined empirically and are provided in Table 6.1. If these criteria are not
satisfied, the stixel is kept fronto-parallel to largely prevent the introduction of
artifacts into the 3D model.

Table 6.1 — Criteria for the slanting procedure in the experiments in this section.

Parameter Bound

Stixel height (in pixels) h(s) ≥ 45

Share of valid disparity measurements in s Nvalid(s)/Nall(s) ≥ 0.6

Slanting slope (in pixel-disparity per column) |αslant(s)| ≤ 1.0
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X

Z

Y

Figure 6.5 — Schematic illustration of stixel slanting and horizontal interpolation. Note the
vehicle-coordinate system at the top right: the z-axis is pointing forward along the camera viewing
direction (downwards in the drawing), the x-axis is pointing to the right from the vehicle (left in the
drawing) and the y-axis is pointing downwards for the vehicle, which corresponds to pointing into
the page in the drawing.

B. Interpolation
Stixels are calculated as rectangular patches that are adjacently positioned in im-
age columns. However, neighboring stixels may not be adjacent when they are
projected to 3D. The reason is that adjacent pixels can represent points that are
far apart in the real world, due to diverging camera imaging rays. Also, stixels
are straight surfaces of fixed pixel width, thereby limiting the shape that they can
model in the real world. The slanting process does not ensure connected stixels,
since it only changes the orientation of an otherwise rigid straight approximation
of the actual local obstacle surface. Therefore, an interpolation step is performed
after the slanting process. In this step, additional stixels are generated to horizon-
tally connect adjacent stixels if they are within reasonable bounds, as illustrated in
Figure 6.5 C. The bounds that should be satisfied depend on the positions of the
stixels in 3D, which are specified as follows. For two stixels s1 and s2 with their
distance to the camera in meters as z1 and z2 that are adjacent in the 2D image,
interpolation is applied if and only if |z1 − z2|/z1 < 0.02. The interpolation pro-
cess greatly reduces the amount of holes in the 3D mesh, which in turn facilitates
projecting a larger textured area, thus improving the image synthesis. Figure 6.6
illustrates the effect of this interpolation in practice.

C. Masking
Stixels are calculated within a fixed horizontal grid, consisting of stixel columns
that are 7 pixels wide in the input image. This means that vertical stixel bound-
aries are not necessarily aligned with real-world surface boundaries: a single stixel
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Figure 6.6 — Illustration of stixel interpolation in practice and corresponding synthesis improve-
ment.

rectangle can contain part of an object and part of the background. This may not
be relevant in the originally envisioned application such as obstacle detection.
However, it can cause crucial artifacts for the intended actual texture mapping,
which should facilitate pixel-level image comparison. Therefore, we apply a mask
to the texture on the stixel surface prior to image rendering from a new viewpoint.
All pixels within a stixel rectangle whose disparity values do not match the (pos-
sibly slanted) stixel surface, are considered invalid and are ignored in the texture
mapping, as illustrated in Figure 6.7. More specifically, a pixel pu,v is considered
valid for texture projection if and only if (du,v − d̂u)/d̂u ≤ 0.20, where du,v is the
original disparity value at location (u, v) and d̂u the approximated disparity value
in the slanted stixel. Effectively, this constraint removes outliers with respect to
the line-fitting process.

An alternative strategy would be to use stixels of a smaller width. However,
a smaller stixel width (a) reduces the robustness of the stixel calculation process
(since fewer disparity data points are available to fit a surface on), (b) harms
the efficiency (since more columns have to be analyzed and more stixels will
be generated) and (c) still does not address the core of the problem (since the
horizontal stixel grid remains fixed). Additionally, making the horizontal grid
adaptive would reduce the elegant representation efficiency of the Stixel World
approach, thereby harming the parallel computation. In conclusion, we deem it a
reasonable trade-off to remove some of the background texture.

6.2.6 Validation data, metrics and results
A. Datasets
The proposed system has been evaluated on two datasets, each consisting of
several sequences. The first set has a focus on slanted surfaces, such as depicted
in Figure 6.6. The videos in this dataset are used to verify the added value of
our extensions to the stixel representation. The other dataset contains structured
variations in lateral displacements of the driven trajectory, to explore the range of
viewpoint differences that our system can handle.
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Figure 6.7 — Illustration of stixel masking in practice, showing a stixel that contains part of a
tree and part of the background (left). The pixels representing the background are removed in the
masking process, cleaning up the projection (right).

The data has been recorded with the prototype vehicle shown in Figure 6.2,
which, next to the stereo camera, is also equipped with a GPS/IMU device that
serves to provide a geo-reference for the frames of the live recording to those in
the database. The recordings took place in urban and industrial environments and
the sequences were captured at different days and daytimes to include natural
and realistic changes in appearance. Note that the context of this research is spe-
cialized, and that, to the best of our knowledge, no suitable public benchmarks
are available.

B. Quantification metric
The objective of this system is to facilitate pixel-level image comparisons for de-
tecting changes. Hence, we quantify the performance of the system by annotating
points of interest and measuring the offset in pixels in the live and synthesized
historic data. To this end, we have manually annotated key points in the live data,
and marked those same points in the processed historic data. The first dataset
contains about 1,800 annotations in total, the second set about 650.

For each annotation, the Euclidean distance in pixels is calculated between
the corresponding marked points in the live and the synthesized historic data
(denoted as δp). With those results, the registration accuracy Acc (δp ≤ ζ) is com-
puted, which is defined as the percentage of annotations that have a pixel offset of
maximally ζ pixels. In general and after empirical findings, δp ≤ 5 is considered
acceptable for the consecutive processing blocks, given that the input image data
has a high-definition resolution of 1920 × 1440 pixels.

C. Results: ablation study on slanted surfaces
The main quantitative results on the first dataset (which has a focus on slanted
surfaces) are depicted in the graphs in Figure 6.8. It presents an ablation study
on our proposed geometrical additions to the stixel representation: slanting and
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Figure 6.8 — Quantified ablation study of the proposed additions to the algorithm.

interpolation. The original Stixel World representation serves as a baseline, and
already achieves Acc (δp ≤ 5) of 90 %. Adding either slanting or interpolation
results in an improved result of Acc (δp ≤ 5) = 93 %. When slanting and interpo-
lation are jointly exploited, the performance increases further to Acc (δp ≤ 5) =

96 %. When measuring more strictly with a smaller margin, this method achieves
Acc (δp ≤ 1) = 79 %, meaning that 79 % of the points is rendered to within 1 pixel
of its annotation.

D. Results: effect of lateral displacement
This section presents the results of the tests to quantify how well the proposed sys-
tem can handle increasingly large viewpoint differences between live and historic
data. These experiments are executed on the second dataset, based on driving the
same trajectory at different lateral offsets, perpendicular to the viewing direction.
The offsets vary from 0 to 700 cm and provide an insight into the robustness and
operational range of the system in practice with respect to e.g. driving on different
lanes.

The effect of this offset on the alignment accuracy Acc (δp ≤ 5) is summarized
in Table 6.2. Additionally, Table 6.3 provides an overview of illustrative examples.
Table 6.2 shows that the system achieves a registration score of 97 % under ideal
conditions, i.e., if the live and historic data are captured without a lateral offset. It
is not surprising that this score is below 100 %, since even without a lateral offset,
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the system still has to handle changes in appearance (due to changed lighting and
weather conditions), while handling inaccuracies that occur in the 3D modeling
and texture mapping. Despite these difficulties, the system can still correctly
register 90 % of the annotated points even at a viewpoint offset of 160 cm.

The images in Table 6.3 illustrate the degradation of the results for larger
offsets. Naturally, the core issue is that the overlapping area in the fields of view of
the live and historic data becomes small for large lateral offsets, so that the region
decreases in which pixels can be registered. This is clear from the increasing
amount of unavailable texture data (shown black) in the registered images (see
the third row of Table 6.3). This results in more unmatched points, that all end
up in the 15+ error bin in the histograms shown at the bottom row of Table 6.3.
Additionally, the effects of inaccuracies in the 3D modeling, such as disparity
quantization and the approximation with rectangular patches, become larger at
an increased capturing offset.

Table 6.2 — Registration accuracy for different lateral displacements of the vehicle trajectory,
using annotations up to a distance of 50 meters from the ego-vehicle.

Lateral offset 0 cm 160 cm 350 cm 530 cm 700 cm

Acc (δp ≤ 5) 97 % 90 % 71 % 53 % 20 %

6.2.7 Prototype deployment
The full system of Figure 6.4 was employed on a platform that was mounted in
the prototype vehicle shown in Figure 6.2. This included the disparity estimation
stage (not shown in the diagram) and the change detection modules beyond the
scope of the experiments reported in the current section. The modules of the
registration process are divided over three stages that are executed in parallel in
a pipelined fashion to maximize the system throughput. The obtained execution
times are presented in Table 6.4. If the scheduling overhead is taken into account
as well, the full system operates at 4 fps. This throughput rate is near real-time
operation and sufficient for proving the concept in a live demonstration, since the
UHD-resolution stereo camera operates at 6 fps.

132



C
ha

pt
er

6

6.2. Project A: Change Detection 2.0

Ta
bl

e
6.

3
—

Ex
am

pl
e

re
su

lts
of

th
e

pr
op

os
ed

re
gi

st
ra

tio
n

w
hi

le
in

cr
ea

si
ng

la
te

ra
ld

is
pl

ac
em

en
t.

Fi
rs

tr
ow

:l
iv

e
im

ag
es

(t
o

w
hi

ch
hi

st
or

ic
da

ta
sh

ou
ld

be
re

gi
st

er
ed

);
se

co
nd

an
d

th
ir

d
ro

w
:t

he
cl

os
es

th
is

to
ri

c
im

ag
es

an
d

th
ei

r
di

sp
ar

ity
;f

ou
rt

h
ro

w
:r

es
ul

tin
g

sy
nt

he
si

ze
d

im
ag

es
,w

he
re

bl
ac

k
re

gi
on

s
de

no
te

ar
ea

s
ou

ts
id

e
th

e
fie

ld
of

vi
ew

,m
is

si
ng

di
sp

ar
ity

da
ta

or
re

je
ct

ed
te

xt
ur

e
du

ri
ng

th
e

m
as

ki
ng

pr
oc

es
s.

La
st

ro
w

:a
lig

nm
en

te
rr

or
hi

st
og

ra
m

s
fo

r
a

sp
ec

ifi
c

la
te

ra
l

di
sp

la
ce

m
en

tu
si

ng
al

li
m

ag
es

in
th

e
da

ta
se

tw
ith

th
at

di
sp

la
ce

m
en

t.

La
te

ra
ld

is
pl

ac
em

en
t

0
cm

16
0

cm
35

0
cm

53
0

cm
70

0
cm

Li
ve

im
ag

e

H
is

to
ri

c
im

ag
e

H
is

to
ri

c
di

sp
ar

it
y

R
eg

is
te

re
d

im
ag

e
(r

es
ul

t)

H
is

to
gr

am
w

it
h

al
ig

nm
en

te
rr

or
s

0
5

10
15

+
Al

ig
nm

en
t e

rro
r (

pi
xe

ls
)

0

0.
1

0.
2

0.
3

0.
4

0.
5

Frequency

0 
cm

0
5

10
15

+
Al

ig
nm

en
t e

rro
r (

pi
xe

ls
)

0

0.
1

0.
2

0.
3

0.
4

0.
5

Frequency

16
0 

cm

0
5

10
15

+
Al

ig
nm

en
t e

rro
r (

pi
xe

ls
)

0

0.
1

0.
2

0.
3

0.
4

0.
5

Frequency
35

0 
cm

0
5

10
15

+
Al

ig
nm

en
t e

rro
r (

pi
xe

ls
)

0

0.
1

0.
2

0.
3

0.
4

0.
5

Frequency

53
0 

cm

0
5

10
15

+
Al

ig
nm

en
t e

rro
r (

pi
xe

ls
)

0

0.
1

0.
2

0.
3

0.
4

0.
5

Frequency

70
0 

cm

133



C
hapter6

6 . A P P L I C AT I O N P R O T O T Y P E S

Table 6.4 — Execution times of the proposed registration approach, both when stages are executed
in isolation and when all are running simultaneously (full load). The (*)-tasks in Stage 2 are executed
in parallel on CPU and GPU.

Execution time t [ms] t [ms]
Isolated Full load

Stage 1
GPU: Disparity estimation 90 153

Stage 2
CPU: 3D ground model (splines)* 130 200
GPU: 3D obstacle model (stixels)* 125 160

Stage 3
CPU: 3D pose estimation 100 120
GPU: View synthesis 30 46
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6.2.8 Conclusion
We have presented a system that constructs a 3D textured model of scenes cap-
tured with a high-resolution stereo camera from within a vehicle. This model is
highly customized for the specific goal of facilitating pixel-level change detection
between live and historic images. The context of this larger system is in military
surveillance, where patrol vehicles drive over similar trajectories, however, while
capturing images with large viewpoint differences, which nonetheless should
be exploited to automatically detect relevant changes in the scene. Our system
addresses this problem by modeling the scenes in 3D and generating synthetic
images with the historic data, as if they were seen from the viewpoint of the live
camera.

To this end, 3D models are created for both the ground surface and the obstacle
regions in the images, both exploiting stereo disparity data. Previous work ad-
dressed the ground-surface modeling. This work extends that system by adding a
customized Stixel World representation, so that the change analysis is no longer
limited to the ground surface alone. The customized stixel representation contains
slanted surfaces, interpolated stixels and masked texture regions. The combina-
tion of these additions maintain the efficiency of the original Stixel World model,
while simultaneously improving the modeling accuracy to be more suited and
more robust for the varying conditions of the change detection application.

The proposed additions together increase the pixel-level registration accuracy
with 6 % on new, manually annotated data. With low lateral offset between live
and historic data, our enhanced system scores Acc (δp ≤ 5) = 97 % and even
achieves Acc (δp ≤ 1) = 79 %. When the live recording is from an offset of 530 cm,
corresponding to more than a regular lane width, the system still obtains a score
of Acc (δp ≤ 5) = 71 %.

In conclusion, the proposed modeling increases the robustness and operational
range of the complete change detection system, since it can now analyze the
full scene instead of the ground surface alone. In addition to the quantitative
evaluation, the system shows promising qualitative results when actively used in
a real-time prototype mounted on a vehicle.

135



C
hapter6

6 . A P P L I C AT I O N P R O T O T Y P E S

6.3 Project B: Vision-Inspired Driver Assistance Systems
This section presents the prototyping of our work in the Vision-Inspired Driver
Assistance Systems project1 (VI-DAS), which was funded within the Horizon 2020
Research and Innovation Programme of the European Commision under Grant
Agreement number 690772.

6.3.1 Context of the VI-DAS project
As discussed in Chapter 1, the SAE defined six levels of automation, where Level 0
(L0) corresponds to no automation and Level 5 (L5) to full automation, anytime and
everywhere. At the intermediate levels, different aspects of control of the car are
shared between the human driver and the automation system. For example, an au-
tomation system with SAE-Level 2 functionality (L2, occasional automated driving)
can take control of both the vehicle’s speed ((de)-accelerating) and its lateral posi-
tion on the road (steering), provided that certain specific conditions are satisfied.
Examples of such conditions can be that automated driving is only supported
on clearly lane-marked highways and under favorable weather conditions. The
driver can release the operation of the pedals and steering wheel for a while, but
should monitor the systems functioning at all times and be able to engage imme-
diately when required for safety. A Level 3 system offers extended functionality.
Under certain conditions, it can be in control of speed and steering, it is able to
monitor the traffic around the ego-vehicle, while it will warn the driver if the sys-
tem detects a complicated situation that it cannot handle. In that case, the human
driver should be ready to take over control of the vehicle, but it reduces the need
for the human driver to be alert at all times.

However, research suggests that drivers may have difficulties adapting to
these partially automated stages [10]. Ideally, they should assess the systems
performance and be ready to take over manual control. In reality, the drivers
are prone to be distracted by performing secondary tasks such as reading or
interacting with their phone, which hampers their readiness to take back control
at any time [11], [12], so that driver monitoring is required in this context [94].

The VI-DAS project addresses this issue by investigating methods for handling
takeover (from manual to automated driving) and handover (from automated to
manual driving) situations for L2 and L3 automation levels. Figure 6.9 shows the
full human-machine-transition cycle and the desired high-level system functions
being active within each stage. It requires both monitoring the dynamic 3D traffic
situation outside and the human driver inside - to asses his or hers readiness for
takeover, and alerting if the outside situation requires this.

The remainder of this section is structured as follows. First, we will provide
a short explanation of the elements in the VI-DAS system architecture that are
relevant to our contribution by causing specific challenges and objectives (Sec-
tion 6.3.2). The actual proposed solution is presented in Section 6.3.4, while we

1The project webpage can be found at http://www.vi-das.eu/.
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Figure 6.9 — Human-Machine-Transition cycle as defined for VI-DAS, illustration from [142].

discuss the scenario, setup and data for evaluation in Section 6.3.5. The results of
this qualitative evaluation of our modules are presented in Section 6.3.6, which is
followed by a conclusion in Section 6.3.7.

6.3.2 Objectives and challenges within the VI-DAS architecture
Prior to explaining the objectives and challenges addressed in this section, first
the conceptual system architecture of VI-DAS is discussed briefly, which is shown
in Figure 6.10. Our contribution is a module in the Outside Sensing part, to detect
obstacles in 3D in the traffic scene outside the car.

Several system modules utilize the output of this sensing part. To facilitate L3
automation, the ego-vehicle should be able to perform path planning in traffic. To
this end, the VI-DAS architecture includes a risk-assessment module that predicts
likely trajectories of other traffic participants (top right of the understand-section in
Figure 6.10). This relies upon an HD map with lane-level road-layout information.
Dynamic objects in the live scene are registered to that road layout to improve
the accuracy of path prediction and the related risk assessment using a local
dynamic map (top left of the understand-section in Figure 6.10) [143]. Additionally,
information on both driver status and scene perception can be send to the cloud
(Connect & Cooperate section; center bottom region in Figure 6.10) to improve both
traffic flow and the safety of other traffic participants via V2X communication [94].

The modules described above require that the Outside Sensing part provides
object detection, with a 3D bounding box (location and dimension), and also classi-
fies it with semantic labels such as car or pedestrian. This is fundamentally different
from our work presented in the previous chapters, which only distinguishes the
coarse levels freespace, obstacles and obstacles on a collision trajectory (to be even more
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Figure 6.10 — Conceptual architecture of the VI-DAS project, illustration from [144].

precise: matter on collision course, without any explicit clustering into coherent ob-
stacles, let alone providing a semantic class for them). Nonetheless, we have seen
in this thesis and in other related work that the Stixel World algorithm provides
an efficient geometric representation of traffic scenes and has shown potential in
extended applications in the automotive perception context. Hence, the starting
point of the strategy in this section is again the disparity Stixel World algorithm,
which however presents a technical challenge. Namely, the Stixel World algorithm
yields medium-level, over-segmented and under-classified results, since the stixel
superpixels are not clustered into objects and only classified as obstacle or free-
space. Similarly, in the work presented in the previous chapters, our analysis was
done at either super-object level or at sub-object level. The super-object level has
involved separating the region of freespace versus the whole region of obstacles,
where all stixels are combined. The sub-object level has been targeting modeling
or tracking individual stixels, where multiple stixels can actually belong to the
same object. For the current application, stixels of the same object should be clus-
tered, so that the 3D bounding box can be estimated in real-world metric values,
and the clusters should be assigned a class label such as car, cyclist or pedestrian.

Next to these functional requirements, the perception model has to adhere to
several system constraints for proper integration and operational performance in
the VI-DAS architecture. These constraints are listed below.

• Scene-geometry analysis should include object bounding boxes with seman-
tic class labels and real-world metric dimensions.
• Video data is captured with a compact, inexpensive yet automotive-grade
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stereo camera.
• Outside-sensing module should offer interfaces in the exploited middleware

software system to ensure integration.
• System should execute at near real-time speed, with a frame rate of approxi-

mately 6 fps, to provide operation at the targeted vehicle speed.

The next subsection provides a brief discussion on the related work in this context.

6.3.3 Related Work
This subsection briefly presents the work that is directly related to the currently
proposed system.

A closely related method is the Semantic Stixel World [97]. In that work,
semantic information from a neural network is strongly fused within the cost-
optimization function of the disparity Stixel World algorithm, so that the geometry
and the semantics are inferred jointly. The authors show that this leads to both
an improved geometric modeling and to an improved semantic segmentation.
However, in this algorithm, the scene is still over-segmented, since the stixels are
not clustered into objects.

Additionally, several preliminary studies related to stixel clustering and seman-
tic classification have been conducted in VI-DAS-related project studies. Research
on performing geometric stixel clustering using graph cuts, alone or combined
with an Expectation-Maximization stage, showed that the geometrical features
were insufficient to provide a stable, reliable object-segmentation result with these
algorithms [145]. Follow-up research performed a lightweight geometrical clus-
tering using DBSCAN [146], followed by assigning class labels using a proba-
bility distribution over the cluster dimension and its location in the scene with
respect to the ego-vehicle. This distribution was a-priori modeled by analyzing
the semantic labels and disparity data that is included in the CityScapes training
dataset [147]. The evaluation procedure on the Cityscapes validation data showed
that the performance of the DBSCAN clustering was reasonable, while the fea-
tures used to assign the class probabilities were not sufficiently discriminative
for reliable semantic classification of the clusters. In other words, the approach
provides unreliable semantic labels, but decent cluster shapes [148].

In other recent work, conducted in parallel with ours, the semantic Stixel World
optimization function is extended further with a cost penalty on object-instance
segmentation. As a result, stixels are assigned a semantic label and are coherently
clustered into objects at the same time [99]. This could be an interesting approach
for future integration work or a comparison study, but this exploration is beyond
the scope of this current research. Instead, the adopted strategy here is a combina-
tion of semantic stixels and customized DBSCAN clustering, which is presented
in the next subsection.
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Disparity
Estimation

Semantic
Segmentation Fuse

Stixel
World

S-DBSCAN Corridor
estimation

Tracker LDM Risk
Assessment

Right image
Left image

HMI

Figure 6.11 — System diagram of the proposed SSCOD module (the blue blocks), showing
its connection to the risk-assessment path and, for the demonstration, its connection towards the
Human-Machine Interface (HMI) via the corridor-estimation block (purple). The green dotted line
delineates the ’Outside Sensing’ module from Figure 6.10.

6.3.4 Semantic Stixel Clustering for Object Detection (SSCOD)
This section briefly presents our approach to 3D object detection and classification
within the VI-DAS project. The method combines the efficient geometric model as
generated by the disparity Stixel World algorithm with the output of a neural net-
work that provides pixel-level semantic labeling. Our system pipeline is depicted
in Figure 6.11, which is explained below.

Using a stereo camera as input, the first stage estimates disparity, for which we
rely on the SGBM algorithm [56]. The disparity is then analyzed with the Stixel
World algorithm, resulting in the standard obstacle-versus-ground stixel represen-
tation. In parallel, a semantic pixel-level segmentation is performed by executing
a deep neural network. More specifically, we deploy an early version of the work
presented in [149], which is a deep fully convolutional network (FCN) that is
trained on the Cityscapes [147] and Vistas [150] datasets. These two streams of
information are combined in a small fusion stage that assigns a class to each stixel
by calculating the most common label in the stixel’s image rectangle, resulting in
semantic stixels. This is analogous to the disparity first baseline of [97].

The semantic stixels are then clustered. This processing stage first projects
the center point of each semantic stixel to its 3D world coordinate. This metric
point cloud is clustered with S-DBSCAN, a newly proposed clustering step. This
method is based on the original DBSCAN algorithm [146] and has a customized
distance function.

DBSCAN is a lightweight clustering algorithm with the additional benefits that
it intrinsically estimates the number of clusters (in contrast to clustering algorithms
like k-means) and it relies upon only two parameters. These parameters are (1) the
maximum distance between points within the same cluster and (2) the minimum
amount of points that should belong to a cluster. As a result, points in a sparsely
populated region will be likely not assigned to a cluster, so that DBSCAN generally
performs well in identifying dense blobs in noisy data [146].

The original DBSCAN algorithm relies on the Euclidean distance between
points. To incorporate the semantic labels, we additionally enforce that all points
in a cluster should have the same semantic label, as defined by
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DistanceS-DBSCAN(s1, s2) =

{
||x1 − x2||2, if l1 == l2;

∞, otherwise.
(6.1)

In the above equation, si is a stixel with a center point xi (expressed in either
metric 3D coordinates - meters, or a (u, v, d) triplet - image pixels) and a class label
li, for i ∈ {1, 2}.

With this distance function, the S-DBSCAN algorithm generates clusters of
stixels with a class label. The bounding box of the combined stixels in each cluster
provides an estimation of the object dimensions and location. Subsequently, these
results are passed on to two different modules. Firstly, as discussed in Section 6.3.2,
objects of interest (dynamic traffic participants such as cars and pedestrians) are
tracked and registered to the local dynamic map (LDM) for risk assessment. Sec-
ondly, we propose a rudimentary forward collision warning (FCW) system which
utilizes corridor estimation, depicted in purple in Figure 6.11. The FCW estimates
the length of the free corridor directly in front of the ego-vehicle. To this end, it
calculates a moving average of the closest detected distance of any object that
is present in the volume area of 2 meters high and wide, and 50 meters long, in
front of the vehicle. This corridor estimation stage provides a tangible result of the
SSCOD system that can be communicated to a user interface (Human-Machine In-
terface, HMI) and facilitates standalone experimental validation via the integrated
FCW functionality.

6.3.5 Evaluation strategy
This section presents how and in which traffic situations we have performed the
qualitative evaluation of the proposed system.

A. Test scenario
Within the VI-DAS project, natural driving data and real-world accident reports
have been analyzed. Based on that, several scenarios have been defined in which
the technology for handover/takeover-assist is most relevant. For our forward-
looking obstacle-detection system, the primary use case involves forward collision
warning in automated driving mode. The scenario that is selected for demonstra-
tion is defined as follows. The driver switches on L3 automated driving. The
ego-vehicle receives information about a road blockage roughly several hundred
meters ahead via V2I communication. The vehicle warns the driver to take back
control to handle this special situation. If the driver is paying attention and takes
back control, all is considered well. However, if the driver is distracted, which
will be detected by the Driver Monitoring System (DMS, included in the inside
sensing module), the system will provide a more urgent warning. As the ego-
vehicle is getting closer to the obstacle, it becomes critical to have a more accurate
measurement of the obstruction location than the one communicated by the cloud
service. Therefore, the camera-based system will detect the obstacle and will ini-
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tiate an emergency breaking procedure, provided that the driver still remains
unresponsive.

B. System setup
To integrate the different system modules, the existing RTMaps (Real-time Mul-
tisensor applications) software package is used2. It facilitates synchronized com-
munication of different modular building blocks, which can be developed in C++
or Python. The diagram of our SSCOD system with its internal stages is shown
in Figure 6.12. Throughout the presented experiments, we configure S-DBSCAN
with the radius parameter epsilon as 30 pixels when relying on (u, v, d) triplets,
and an epsilon of 3 m is recommended when employing metric coordinates. In
both cases, we set the minimum amount of points of a cluster to 3. The detected ob-
stacle bounding boxes are provided to the corridor-estimation stage. Additionally,
our diagram contains modules from different project partners, namely the object
tracker developed by Dublin City University, Ireland (for integration with the
LDM module, not included) and the driver-monitoring component of the inside
sensing module, developed by a collaborative industrial partner (Intel, Germany).
Additionally, we provide a component that monitors the state of the vehicle via
specific relevant CAN messages (such as speed, acceleration and the state of the
autonomous driving mode). All these systems communicate via a socket compo-
nent to an HMI module of another participating company (Akiani, France). The
HMI module resides in a different RTMaps diagram and decides which warnings
should be generated (depending on vehicle state, corridor analysis and driver
state), for which it can utilize several display devices.

C. Demonstration data and experiments
We have performed a feasibility study by executing several test drives with the
SSCOD system active in the car. The drives were performed both in live traffic
and on a closed road under controlled traffic conditions at a maximum speed
of 30 km/h. Note that in both cases, the SSCOD system was not linked directly
to the automated braking system, due to regulatory constraints. We have tested
the system both during daytime and nighttime conditions. On top of that, two
live demonstrations of our system were given at the ITS European Congress in
Helmond and Eindhoven, the Netherlands, June 2019. A visual example of this
demonstration event and venue is portrayed by Figure 6.13.

We execute our ASTEROID algorithm as presented in Chapter 5 on the same
data to compare the two different approaches as an additional experiment. The
evaluation in this chapter is of a qualitative nature, providing a proof-of-concept
demonstration at best, since no true positions of obstacles were annotated.

2The software webpage can be found at https://intempora.com/products/rtmaps.html
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Figure 6.13 — Live demonstration of the VI-DAS project at the ITS European Congress 2019.
Top: two snapshots from the viewpoint of the audience, showing our demonstration vehicle in white,
a stopped black vehicle that blocks the road and the large screen for the audience with a live stream
of the processing in the car. Bottom: an enlarged example of that processing. The demo narrator is
project leader Oihana Otaegui of Vicomtech.

6.3.6 Qualitative results
Typical results of the experiments in daylight are visualized in Figure 6.14. The SS-
COD algorithm detects the obstacle for the first time at a distance of 40-50 meters
(as estimated by the system itself). The length of the estimated free corridor is typ-
ically overestimated by the corridor-estimation stage, due to the delay introduced
by its internal sliding window buffer.

The ASTERIODS approach consistently generates a collision warning for the
first time with a ttc between 1.6 and 2.2 seconds, in correspondence with the results
presented in Section 5.6. Note that the estimated ttc increases in the snapshots,
since the ego-vehicle is slowing down while it is approaching the obstacle, to
avoid an actual real-world collision.

The results on nighttime data are illustrated in Figures 6.15 and 6.16. The
results of SSCOD during nighttime are less consistent than during the day when
inspecting the frame-by-frame detections. However, this is handled correctly by
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the freespace calculation in the corridor-estimation stage that considers multiple
frames. This effect is clearly visible in the example in Figure 6.16. The first two
frames displayed in the figure do not visually show a detected obstacle in the
current frame, but the system has already detected the car in previous and inter-
mediate frames, so that the free corridor is already decreased from 50 m to 40.9 m
and 24.1 m, respectively. As a result, the system displays a warning in red text in
the top-view visualization of the scene.

The first distance at which obstacles are detected at nighttime is less consistent
when compared to drives during daylight. At night, first detections occur typically
at a distance of 30-50 meters. Similarly, the ASTEROID collision warnings are
generated closer in time to the potential collision event at night than in daytime.
Typically, the first warning is provided at a ttc of around 1.0-1.5 seconds. The next
section discusses the strengths and pitfalls of both systems.

Discussion
Both the disparity estimation and the semantic scene parsing suffer from the
nighttime conditions. For instance, the leftmost scene in Figure 6.17 is full of false
stixels due to poor performance of the SGBM algorithm, which has not been tuned
for the considered night conditions. However, the ASTEROID system performs
well in this situation, which is explained by the tracking functionality and the
probabilistic strategy. More specifically, consistent stixels that also correspond
to true obstacles, can be tracked and are more stable in the measurements, so
that they stand out in the Bayesian filter, whereas the impact of false stixels due
to noisy data is mitigated by that same process. In contrast, the SSCOD system
does not have this benefit. The FCN suffers from the unseen night conditions,
leading to dangerous miss-classifications (like the pedestrian marked as a tree
in the third scene of Figure 6.17). It can also lead to false positives in the demo
scenario, as visible e.g. in the rightmost scene in Figure 6.17. The network seems
to have a bias towards the vehicle class, also under daytime conditions. As a
result, small clusters of stixels on roadside obstacles are easily falsely marked as a
vehicle, potentially blocking the free corridor and leading to a false warning. This
problem may be reduced by either retraining the network, or by employing the
strongly fused version of the Semantic Stixel World, which jointly infers a semantic
scene geometry from pixel-wise disparity and per-pixel semantic labels [97]. Since
ASTEROIDS are class-agnostic, they do not suffer from miss-classification issues,
thereby inherently making that approach more robust against new conditions.

6.3.7 Conclusion
We have presented a 3D semantic object detection system supplying its detections
to a risk-assessment module, which in turn uses an HD map to do trajectory
prediction and planning within the VI-DAS project framework. Since this requires
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Figure 6.14 — Comparing SSCOD (Rows 1 and 3) and ASTEROIDS (Rows 2 and 4) in daytime
with two demonstration drives at a closed road. The two top rows present snapshots that were
captured two seconds apart, the two bottom rows show snapshots of one second apart.
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both semantic labels such as pedestrian or vehicle, and a geometric representation,
we have fused the outcome of a deep neural network for semantic scene parsing
with the Stixel World model, and processed that with a lightweight, customized
semantic DBSCAN clustering step, to combine stixels into labeled objects.

All modules are implemented and integrated to facilitate real-time operation
within a prototype vehicle. To demonstrate the feasibility of this algorithm, we
have used it in combination with a corridor-estimation stage as a Forward Colli-
sion Warning (FCW) system, to perform several experiments. These were carried
out under nighttime and daytime conditions, and both in live traffic and under
controlled conditions on closed roads. The demonstrations indicate a good perfor-
mance for the test scenario defined in the VI-DAS project, which addresses scene
monitoring for handover and takeover scenarios. The FCW system should detect
vehicles on the road ahead and warn the driver or initiate an emergency braking
maneuver. Even though the evaluation is of a qualitative nature and by no means
an automotive-grade validation, the system seems to be able to handle the defined
scenarios well under daytime conditions. Even without an a-priori requirement
on nighttime conditions, the SSCOD system still shows promising results within
the scope of the selected, limited demonstration scenario.

Moreover, we have exploited the demonstration data to perform an additional
evaluation of the ASTEROID system of Chapter 5, just for the sake of further
comparison. ASTEROIDS seem to perform robustly on the assessed data and are
even able to handle the noisy nighttime data without requiring any fine-tuning of
the parameters.

The SSCOD and ASTEROIDS algorithms have a fundamentally different ap-
proach. Namely, SSCOD uses semantics and measures distance, whereas ASTER-
OIDS is class-agnostic and measures time. For an FCW system, the ASTEROID
system currently outperforms the SSCOD approach. However, the SSCOD system
is intended to be a submodule within the VI-DAS project framework, so that a
direct comparison is not entirely fair. Unfortunately, the complete VI-DAS risk-
assessment pipeline could not be integrated into our experimental vehicle in time
to perform a fully fair and more complete comparative study.
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This thesis addresses camera-based freespace segmentation, obstacle modeling
and collision warning systems. This final chapter summarizes the conclusions of
the individual chapters, discusses the findings regarding the research questions as
defined at the start of the thesis and presents an outlook on future developments.

7.1 Conclusions of individual chapters
This section provides an overview of the main conclusions of each chapter.

Chapter 2 has presented a color extension to the disparity-based Stixel World
algorithm, to more robustly segment freespace versus obstacles in traffic scenes, by
the online learning of color models in a self-supervised fashion. This extension par-
ticularly improves the robustness of the segmentation against erroneous disparity
estimates, which inevitably occur during challenging low-texture imaging situa-
tions, regardless of the quality of the applied stereo camera. The chapter presents
two main contributions. First, the Stixel World optimization criterion is extended
with a color-based cost term and its related color feature representation. Second,
we present a self-supervised online training stage for using a simple color model
that is kept representative during operational driving through different scenes. As
a key result, in detecting drivable distance (the novel application-inspired metric),
the proposed method increases the F1 score from 0.86 to 0.97. This result clearly
indicates that the Color-extended Stixel World method, based on strong fusion of
disparity and color modalities, is an accurate and robust method for road versus
obstacle segmentation.

Chapter 3 has introduced a stixel-based probabilistic framework for color-
based freespace versus obstacle segmentation. Similar to the previous chapter, this
research relies on self-supervised online color modeling via disparity analysis. The
new contribution in this chapter is the reduced dependency on actual disparity
measurements, facilitating a latency reduction of the analysis. To this end, color
processing is adopted with an informative color-pair representation, using the
first and second mode of an online-adapted indexed color space. This is further
enhanced by distance-aware color-histogram processing based on real-world met-
ric pixel surfaces, to address perspective camera distortion. The experiments show
that the proposed system improves the quality of the freespace analysis, while
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simultaneously approximately halving the latency (compared to both disparity-
based methods) and the computational load of the freespace segmentation al-
gorithm (compared to the strong-fusion approach). The quality improvement is
measured by a 4% lower overestimation of freespace compared to the disparity-
based baseline. As a result, the proposed system offers a reduced response time
when measuring from data acquisition input to data analysis output, combined
with an increased accuracy.

Chapter 4 leverages the strength of convolutional neural networks for free-
space segmentation. To preserve a low complexity as earlier, again a self-supervised
online training scheme is adopted, allowing a network with a small memory
footprint and fast execution. This is implemented with a Fully Convolutional
Patch Network (FCPN), which is trained in a self-supervised fashion. The experi-
ments show that the proposed algorithms with online training (Fmax ' 0.92 and
AP ' 0.98) outperform the offline reference methods with 5%, both for Fmax and
AP . More importantly, without online training, the FCPN performs worse than
the baseline (Fmax = 0.90) on the new data. This indicates that the online train-
ing strategy is a good and efficient proposal to enable the use of a small neural
network. The added value of the online framework is most pronounced in the
rainy-images subset of the data, where it outperforms the baseline with 4.2%. The
FCPN has a low memory footprint and fast inference time, while it is able to han-
dle a wide variety of scenes, requiring neither manually labeled training data, nor
disparity estimation in its critical segmentation path.

Chapter 5 presents a vision-based collision warning system for ADAS in in-
telligent vehicles. The approach is class-agnostic: it detects general obstacles that
lay on a collision trajectory with the ego-vehicle without relying on semantic in-
formation. The approach in this chapter has three main contributions. First, the
proposed algorithm is a probabilistic method with a newly introduced particle
sampling (asteroids) method. These asteroids are applied to leverage the efficient
and well-known disparity stixels in a generic collision warning system. Second,
the fully probabilistic and specialized asteroid approach with error propagation
is robust against noisy input data, which considerably reduces the computation
of the dense optical flow. Third, the asteroid system employs a state space that
is newly designed and specific for collision warning, based on axes over impact
time and angle. These two physical quantities directly offer insight in the relevant
collision dynamics of the surrounding objects in the scene, in contrast to com-
monly used static occupancy grids. The evaluations on three different datasets
show that the system (a) does not generate any false warnings on the real-world
KITTI dataset, (b) detects all collisions except one in a newly simulated dataset,
(c) provides error-free performance on a new qualitative real-world dataset with
near-collisions during both day- and nighttime.

Chapter 6 describes the integration of specialized and extended versions of
the described work into two real-world prototypes.

First, a system is presented that builds a 3D textured model of scenes, cap-
tured with a high-resolution stereo camera from a vehicle. This model is highly
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customized towards the specific goal of facilitating pixel-level change detection
between live and historic images. The context of the complete system is in military
surveillance, where patrol vehicles repeatedly drive over similar trajectories. Im-
age comparisons at the same location present large viewpoint differences, which
severely complicate change detection. The proposed solution is able to model
the scenes in 3D and generates synthetic images with the historic data from the
viewpoint of the live camera, all in real-time operation. The proposed solution
exploits a customized stixel representation that both contains slanted surfaces, in-
terpolated stixels and masked texture regions. The combination of these additions
maintain the efficiency of the original Stixel World model, while simultaneously
improving the modeling accuracy for varying conditions. The proposed additions
together increase the pixel-level registration accuracy with 6 % on new, manually
annotated data. With low lateral viewpoint offset between live and historic data,
the enhanced system scores Acc (δp ≤ 5) = 97 % and even Acc (δp ≤ 1) = 79 %,
where δp represents the allowed pixel margin. When the live recording is from an
offset exceeding a regular lane width, the system still achieves reasonable accuracy
of about 70 %.

Second, a 3D semantic object-detection system is presented that provides its
detections to a risk-assessment module, which uses an HD map for trajectory pre-
diction and planning within the VI-DAS (an EU H2020 project) framework. Since
this requires both semantic labels such as car and vehicle and a geometric repre-
sentation, the proposed algorithm fuses a deep neural network for semantic scene
parsing with the Stixel World model, and processes that with a lightweight, cus-
tomized semantic DBSCAN clustering step. The first contribution in this project is
the fusion of the semantic information from the neural network with the geometry
of the stixels. Second, a new semantic cost function for the point clustering step
is proposed, which together with the semantic stixels of the first contribution,
results in 3D semantic object detection. All modules have been implemented and
integrated to fully operate in live modus in a car. For demonstration, a corridor-
estimation module as a Forward Collision Warning system is designed and added
to show suitable performance. The demonstrations during both day- and night-
time indicate a good performance for the test scenario defined in the VI-DAS
project, which addresses scene monitoring for handover and takeover scenarios
in partially automated driving.

7.2 Discussion of the findings on the research questions
As stated in Section 1.3, the objective of this thesis is to improve computer vision-
based scene modeling in three different but related fields: freespace segmentation,
static obstacle modeling and dynamic obstacle analysis for collision warning.
These research directions are clearly visible in the contributions presented in this
thesis: Chapters 2, 3 and 4 concern improved freespace segmentation; Chapters 2
and 6A address improved modeling of static-obstacle regions of the scene; Chap-
ters 5 and 6B present collision warning systems. This section answers the research
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questions as presented in Section 1.4.5 using the performed work in this thesis.

RQ1 Improvement of the performance of freespace segmentation systems under
adverse imaging conditions and their robustness towards changing conditions
and environments.

• RQ1a: What are the common artifacts in current freespace algorithms and what is
their root cause?

The research in the first three chapters of this thesis discusses stereo camera-
based approaches, which is a commonly used sensing modality for computer
vision-based ADAS. The stereo data are exploited for geometry analysis via
disparity estimation. For this disparity signal, a popular state-of-the-art al-
gorithm to delineate ground versus obstacles in traffic scenes is the disparity
Stixel World algorithm. A pitfall of this algorithm is that it is prone to pro-
ducing false stixels on disparity artifacts, reducing the detected freespace.
These disparity artifacts originate from adverse imaging conditions such as
sharp shadows, light reflections, rain droplets or image regions that contain
either no texture or strongly repetitive patterns, which are all realistic issues
in everyday scenes. Additionally, algorithms that rely on machine learning,
for instance via pretrained color models for freespace, typically fail when
encountering situations that are either unseen (when the algorithm does not
have enough capacity to generalize), or uncommon situations (when the
algorithm does not have enough capacity to keep all relevant information at
hand).

• RQ1b: In what way can different data modalities from a stereo camera be jointly
leveraged in this context?

Typically, the artifacts described above are not directly clearly discernible
from the color images themselves, or at least show less indication of the pres-
ence of a potential obstacle at the artifact location. Hence, the strategy in our
freespace segmentation work is to combine disparity and color analysis, for
which three different ways are presented. Chapter 2 presents a system, em-
ploying strong fusion of color and disparity to avoid false stixel detections,
thereby improving the F1 score of drivable distance detection from 0.86 to
0.97. The key of this improvement is a more accurate freespace segmentation
due to the additional color analysis of the surrounding scene. Additionally,
Chapters 3 and 4 present specialized methods that rely on weak fusion of
color and disparity data. The richer color analyses in these chapters provide
a more accurate scene model, contributing to the freespace segmentation.
The experiments in those chapters show that this provides up to 4-5% im-
provement in several quality-oriented metrics. On top of this, these systems
facilitate a latency gain, since they do not require actual disparity estimation
to analyze the current frame. As a result, the response time from video input
to obtaining the freespace output can be halved without reducing the quality
of the results.
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• RQ1c: How can color models be extended for freespace segmentation, while retaining
a low complexity?

Both the color-extended (Ch. 2) and the color-based (Ch. 3) Stixel World
algorithms rely on histograms to model the two classes of interest (ground
and obstacles). Our research has further addressed the optimization of three
aspects, namely (1) the selection of preprocessing such as histogram equal-
ization, (2) adopting an appropriate color space (such as RGB, HS(I) or cus-
tomized) and potential quantization, and (3) choosing the most suitable
representation values to store in the histograms (such as color modes or gra-
dient strengths). Additionally, we have proposed to create the histograms
in a distance-aware fashion, so that colors nearby the ego-vehicle are prop-
erly balanced with those from image regions representing areas far away.
These extensions effectively reduce the overestimation of freespace with 4%
(i.e., it resolves otherwise missed obstacles), compared to disparity baselines.
Lastly, we have exploited a small convolutional neural network as a better
color-encoding strategy to more accurately extract freespace and obstacle
appearance information (Ch. 4). The objective of this strategy is to increase
the encoding capacity and flexibility of the color modeling, since some of
the experiments of preceding chapters have illustrated potential gains in
this direction. As a result, the overall quality performance of the freespace
segmentation is increased with about 4%, specifically on dark, rainy frames,
when compared to the baseline system.

• RQ1d: What is the added value of self-supervised online learning for increasing
robustness?

When a freespace segmentation system is implemented with low-complexity
color modeling, its capacity is typically insufficient for addressing large
variations in scenes, which lowers the system robustness. The proposed
freespace segmentation systems presented in Chapters 2, 3 and 4 rely on a
self-supervised online learning strategy that updates the information in the
color modeling during operational driving, so that the limited capacity of
the model is primarily focused on the actual scene appearance. Several of
our experiments show that the complete freespace segmentation framework
can operate robustly in new situations, even when the modeling capacity
is limited. This difference is most pronounced when using the small neural
network that was successfully employed on the relatively homogeneous
KITTI-road dataset, but failed on our newly recorded dataset with more
variation. However, when enhanced with our online training strategy, it
then actually outperforms the other baselines on that dataset with 4-5 %.

The online strategy requires a supervision strategy that can also be
executed during operational driving. To this end, we rely on the disparity
Stixel World algorithm and gather the potentially partially erroneous labels
over several frames to create a small dataset. The experiments show that
our modeling can generalize from these samples to improve the analysis of
the new frame, at least when the errors are within reasonable boundaries
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(i.e., not dominant in pixel count and/or not persistent over all frames in the
small online training data).

For this and the above questions on robustness of freespace segmenta-
tion, we have released the new EHV-road datasets publicly in three batches
(2014, 2015, 2017). It is a relatively small dataset (around 500 annotated
frames in total), but it is focused on relevant corner cases with difficult imag-
ing conditions or structures, making it relevant to test specific pitfalls. By
using this dataset, we have been able to show an improved robustness for
most of these cases.

RQ2 Leverage of computer vision to improve dynamic collision-warning func-
tionality.

• RQ2a: How can stereo disparity imaging be exploited for collision warnings?

Two of the contributions in this thesis provide information for collision
warning: SSCOD (Chapter 6B) and ASTEROIDS (Chapter 5 and 6B).

Both algorithms have a fundamentally different approach: SSCOD uses se-
mantics and measures distance, while ASTEROIDS is class-agnostic and
measures time. SSCOD has been developed as a submodule within the VI-
DAS system, and only its FCW capabilities are qualitatively validated in this
thesis, showing promising results in a live prototype vehicle for the project
scenario in the context of partially automated driving. The ASTEROID sys-
tem is evaluated on simulated data to incorporate collisions, real-world data
without collisions (the KITTI tracking dataset) and newly recorded data
with many near-collisions. All experiments confirm the feasibility of the
proposed approach in timely detecting collisions without generating false
warnings.

The key of using disparity analysis for both systems is to leverage a dis-
parity Stixel World algorithm that provides a model of the scene geometry in
an efficient way. In this regards, the additional, particularly attractive prop-
erty of the Stixel World algorithm is that it provides a generic analysis of
any scene, without specific pretrained knowledge about classes or scenarios
(e.g. for ASTEROIDS). Furthermore, it can also be extended to incorporate
semantic knowledge, if desirable and available (e.g. for SSCOD in VI-DAS).

To leverage the disparity stixels for generic collision warning in AS-
TEROIDS, several extensions are required, such as (1) assigning the static
stixels with dynamic flow information and then tracking them over mul-
tiple frames, and (2) generating a full error propagation to translate the
discrete and quantized stixels into smooth probabilistic processing. Specifi-
cally, the successful results on the nighttime data illustrate the robustness of
our method. Even though the per-frame stixel segmentation consists mostly
of erroneous segmentations, the ASTEROID system reliably generates solely
correct collision warnings.
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• RQ2b: Is it possible to prepare an ADAS module such that future sensor fusion can
be exploited beneficially?

All of our work has been performed using a generic stereo camera and
does not rely on costly hardware such as RTK-GPS, Lidar, or concepts that
require external infrastructure and large-scale societal adoption like V2V
communication or HD maps. It should be noted that in both of the exper-
imental systems presented in Chapter 6, other modules do rely on such
sensors for positioning or extra information from external communication,
but this extra information is not used for our algorithms. This adheres both
to the objective of relying on affordable hardware and to the objective of
presenting cost-efficient systems that can provide relevant information in
a standalone setup. Nonetheless, several of our algorithms have been de-
signed to facilitate fusion with other modules, if they would be available
and could offer relevant data. For instance, the FCPN-based freespace seg-
mentation algorithm of Chapter 4 does not merely generate binary masks,
but instead provides pixel-level confidences that are suitable for probabilis-
tic fusion. Likewise, the ASTEROID collision warning system of Chapter 5
is fully probabilistic, allowing it to either incorporate information of other
modules, or feed subsequent modules with its results including a measure
of confidence. Therefore, although this was not experimentally verified, the
author has the opinion that the presented systems offer generic ways of inte-
gration into larger systems, which then can leverage complementary sensor
modalities such as Radar.

• RQ2c: How should dynamic measurement data be represented efficiently for direct
support to collision warning?

To generate collision warnings that are actually valuable in mitigating the
collision, the originating direction of the danger is crucial information, to-
gether with its time of impact. To readily assess these dynamics, the pro-
posed ASTEROID system exploits a newly designed state space with two
dimensions, namely angle-of-impact and time-to-collision. As a result, the
stereo camera measurements are directly translated to the relevant physical
values for collision warning from any direction. The evaluation setup is not
extensive enough for a full quantitative evaluation of the multi-directional
approach (due to the use of a single forward-looking stereo camera), but
qualitative experiments have shown the expected and promising behavior
for multi-directional collision warning. The other presented collision warn-
ing system has addressed forward collision warning, using semantic stixel
clustering for object detection (SSCOD). For the addressed use case of the
project VI-DAS, the only relevant measure is the distance to any blocking
vehicle in the path of the ego-vehicle, without the need of a speed or time
measurement. Therefore, this system employs a basic and efficient strategy
of filtering consecutive distance measurements towards tracked vehicles in
front of the ego-vehicle.
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RQ3 Exploration of real-time applications of AI and 3D geometry in traffic-scene
and road-scene analysis.

• RQ3a: What methods can reduce the computational requirements of neural networks
to facilitate deployment in real-world systems?

Typically, most state-of-the-art systems employing neural networks rely on
architectures that are of increasing size and complexity, thereby hampering
real-world embedded deployment. In contrast, the work in this thesis con-
tains several optimized employment aspects, mainly to allow for networks
that are several orders of magnitude smaller than the commonly used alter-
natives. The key strategy of the proposed algorithms is leveraging strengths
of conventional, non-AI algorithms to support the analysis (a so-called hy-
brid approach), instead of developing fully end-to-end models where all
intelligence is included in the neural network, which is surely considerably
more complex.

First, for the freespace segmentation in Chapter 4, we adopt a small neu-
ral network and exploit overtraining of the network, to adapt it to changing
environmental conditions during operational driving. The training labels
for this purpose are being generated by a conventional algorithm, resulting
in a hybrid system that combines the flexibility of the neural network, the
strength of the training method and the core reliability of the conventional
method. A point of interest for future research for a system that relies on
online training is the required amount of computational resources for the
training process. At present, this is typically not optimized in embedded
platforms. A further future complicating point is the assessment of the safety
certification of a system that can update itself after deployment.

Second, the ASTEROID system of Chapter 5 consists of conventional
processing steps such as the well-known Bayesian histogram filter and a
CFAR detector, while the optical flow is generated with a state-of-the-art neu-
ral network. We have found that the experiments indicate that the smallest
version of FlowNet2 is sufficient for ASTEROIDS, which executes 17 times
faster than the full version of that network. This performance gain is at
the expense of a reduced pixel-level accuracy that is halved compared to
the largest version. Fortunately and by intentional design, the drop in this
specific performance metric is clearly addressed and circumvented in AS-
TEROIDS. Most importantly, the results of the ASTEROIDS experiments
illustrate that conventional methods can provide reliable results, even with
inaccurate data from small efficient neural networks.
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• RQ3b: How can 3D scene geometry be modeled efficiently and accurately, to make
it suitable for real-time synthetic view rendering?

Two of our algorithms concern modeling the obstacle region of traffic scenes,
treating everything as static information. The integrated work in the Change
Detection 2.0 project concerns improving the representation power and accu-
racy of obstacles in the scene (Chapter 6 A). To this end, the stixel models are
extended by (1) incorporating a slanting angle to better align fronto-parallel
stixels with slanted surfaces, (2) interpolate between adjacent stixels and (3)
mask away background content within stixel rectangles. This customized
stixel modeling facilitates rendering textured views from the scene, as if
taken from a different viewpoint, which can then be used for change detec-
tion analysis. Additionally, the proposed work on the color-extended Stixel
World algorithm provides better obstacle modeling, even though it is mainly
evaluated for improving freespace segmentation, while it is not exploited
for live-view rendering (Chapter 2).

7.3 Discussion and outlook
The main contributions to ADAS in this thesis are relying on a combination of
computer vision and AI techniques, while bearing efficiency in mind for realizing
real-world applicable systems. Since the rise of complex neural networks in the
field of artificial intelligence for computer vision analysis, they are hampered in
their employability onto embedded platforms, since the resource requirements
have typically risen as fast as, or even faster than the increase in performance. To
mitigate that issue, our strategy is to rely on hybrid systems that leverage both
traditional computation and the methods from artificial intelligence, so that the
complexity of the AI building blocks can be reduced by relying on the modeling
that the traditional methods provide. This trend of designing for resource-constrained
platforms is expected to grow in the coming years. This is already visible in recent
contributions that provide small and efficient neural networks with competitive
task performance, such as the SqueezeNet [151] and EfficientNet [152]. One par-
ticular interesting upcoming field is that of neural architecture search, and its
subfield hardware-aware neural architecture search (HA-NAS). HA-NAS designs
neural networks automatically case-by-case, by jointly optimizing task perfor-
mance (such as freespace segmentation) and resource efficiency (such as latency
on a target embedded device), using increasingly efficient search and optimiza-
tion techniques. By further developing such strategies that provide efficiency-
by-design, more elaborate functionality and further performance gains can be
expected, bringing applicable AI closer to reality.

As a result of the above, more ADAS are expected to become available at a
large scale, as they are and will be integrated in newer car models in different price
ranges. Observing current trends and prospectives on the mobility market, our
preferred design philosophy is on pursuing small incremental steps of automation by
extending functionality and the operational domain in alternating fashion, moving
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gradually up the SAE levels of automation, in contrast to pursuing an L5 vehicle
straight away. More specifically, the safety and accessibility of mobility can also
be improved with the intermediate partial automation via ADAS functionality to
which this thesis is related. Extrapolating from commonly accepted systems such
as anti-lock breaking system (ABS) and cruise control, via increasingly popular
blind-spot warning systems, automated parking, and lane-keep assist, this increas-
ingly automated support of drivers seems a natural extension for various reasons.
First, it offers the potential of maintaining a successful car-making business with
attractive price-performance trade-offs. Secondly, it facilitates a smooth path for
societal deployment and acceptance. Thirdly, it offers a reasonable time path for
developing legislation and car-insurance policies.

Besides this, in general an important factor of the successful large-scale de-
ployment of ADAS is the governmental support of these advances in automated
driving, in subsidies, in law making and in standardization or international reg-
ulations as well. For cross-border system applicability, it is required that either
ADAS can operate standalone completely (as is the approach in most of the work
in this thesis), or that communication protocols for collaborative approaches are
standardized globally. Effort towards the latter are undertaken via for instance
European subsidy projects, but global scalability of V2V communication or HD
maps availability remains a large unknown factor in the developments.

Regarding standalone ADAS and specifically our strategy of making them
self-adapting is the problem of assessing reliability of online tuning for ADAS for
real-world applications. Any ADAS would have to undergo a series of tests by a
governmental institute prior to commercial deployment. A rightful question then
is how to assess a system that can change itself after releasing it on the roads. This
involves proving a limited range of adaptability, and severe safety guarantees
of the underlying control mechanisms. An interesting line of research would be
to look into self-assessment, potentially via the upcoming field of AI for causal
reasoning, where the system should reset to a known safe state when it detects
that its modeling drifts far from trusted reference points. Perhaps an interesting
compromise is a centralized and crowd-sourced updating scheme, so that updated
models can be verified on offline data by the central unit prior to deployment
in the car. This would generate a delay in the adaptivity of the modeling, but
provides control over systems that are road-operational at a large scale.

A related discussion revolves around ethical responsibilities and insurance, to
define which party (driver, owner, manufacturer) is responsible in eventual ac-
cidents. These are complicated cases for which both legislation, insurance and
various consumer groups need to be consulted, from which a feasible introduction
strategy should be derived and implemented. In these development trajectories,
it has to be considered that ADAS, especially in early-stage mixed traffic, can and
will still cause accidents. In that period, the focus should be on managing the
trade-off of implementation benefits and safety risks.

In that light, the recent book by Verkade and te Brömmelstroet discusses the
several difficulties of designing the public space that has to be shared between
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a wide variety of users, while it is currently dominated by the default view in
favoring the car everywhere, every time [153]. Although ADAS are not the final
and only solution to the discussions raised in that work, we foresee a positively
contributing role of increasing the situational awareness of vehicles to enhance
sharing public space more evenly between relevant parties. Ultimately, the in-
crease of ADAS performance and functionality contributes on numerous aspects
of mobility, changing the experience of an individual user as well as impacting its
perspective within society as a whole.
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LDM Local Dynamic Map
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Lidar Light detection and ranging
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LW Learning Window

MaaS Mobility as a Service

MAP Maximum A-Posteriori

(HA-)NAS (Hardware-Aware) Neural Architecture Search

NN Neural Network
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TM Training Mask
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VRU Vulnerable Road User
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