1,340 research outputs found

    Efficiency of PRI and WRR DiffServ scheduling mechanisms for real-time services on UMTS environment

    Get PDF
    The next generation of mobile phones will be probably all-IP based enabling users to access Internet services. In order to make this possible a satisfactory quality of service, at least equal to the fixed Internet, must be ensured. To achieve this goal an end-to-end QoS system must be constructed. Another fact is the dominance of IP over other technologies due, in large measure, to its characteristic of working with heterogeneous technologies. Consequently, being IP the common denominator on a heterogeneous environment, it is important to develop end-to-end IP QoS guarantees for the different applications over distinct access technologies. This is particularly important for cellular wireless networks due to the ever growing expansion of mobile phone users. One way to contribute to this goal is to apply DiffServ QoS mechanisms to UMTS technology in order to model an End-to-End QoS communication system. A mapping of DiffServ CodePoints into UMTS classes can be applied in order to get efficient PHB configurations. This paper proposes an architecture to support end-to-end quality of service to several application services running on mobile UMTS user agents and communicating with servers located in a wired internet. The proposed architecture is based on a DiffServ model, where QoS parameters are set either by the user agent or by the SGSN. In particular, RED queue management and PRI or WRR scheduling policies are enforced. Different UMTS traffic classes are mapped into different DiffServ parameters. The performance of this architecture has been evaluated by simulation using NS, assuming different network load scenarios. In particular, the delay and packet loss experienced by VoIP, Video, FTP and HTTP traffic are evaluated in the cases of PRI and WRR scheduling policies, and compared to those measured when DiffServ is not implemented. Finally, a revenue function to estimate the profits that an ISP could expect by using a DiffServ implementation on IP UMTS core routers is proposed.(undefined

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    GTFRC, a TCP friendly QoS-aware rate control for diffserv assured service

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this article describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC). The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flowā€™s RTT and target rate. Simulation measurements and implementation over a real QoS testbed demonstrate the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    Resource management in IP-based radio access networks

    Get PDF
    IP is being considered to be used in the Radio Access Network (RAN) of UMTS. It is of paramount importance to be able to provide good QoS guarantees to real time services in such an IP-based RAN. QoS in IP networks is most efficiently provided with Differentiated services (Diffserv). However, currently Diffserv mainly specifies Per Hop Behaviors (PHB). Proper mechanisms for admission control and resource reservation have not yet been defined. A new resource management concept in the IP-based RAN is needed to offer QoS guarantees to real time services. We investigate the current Diffserv mechanisms and contribute to development of a new resource management protocol. We focus on the load control algorithm [9], which is an attempt to solve the problem of admission control and resource reservation in IP-based networks. In this document we present some load control issues and propose to enhance the load control protocol with the Measurement Based Admission Control (MBAC) concept. With this enhancement the traffic load in the IP-based RAN can be estimated, since the ingress router in the network path can be notified by marking packets with the resource state information. With this knowledge, the ingress router can perform admission control to keep the IP-based RAN stable with a high utilization even in overload situations

    Implementation and performance analysis of a QoS-aware TFRC mechanism

    Get PDF
    This paper deals with the improvement of transport protocol behaviour over the DiffServ Assured Forwarding (AF)class. The Assured Service (AS) provides a minimum throughput guarantee that classical congestion control mechanisms, like window-based in TCP or equation-based in TCP-Friendly Rate Control (TFRC), are not able to use efficiently. In response, this paper proposes a performance analysis of a QoS aware congestion control mechanism, named gTFRC, which improves the delivery of continuous streams. The gTFRC (guaranteed TFRC) mechanism has been integrated into an Enhanced Transport Protocol (ETP) that allows protocol mechanisms to be dynamically managed and controlled. After comparing a ns-2 simulation and our implementation of the basic TFRC mechanism, we show that ETP/gTFRC extension is able to reach a minimum throughput guarantee whatever the flowā€™s RTT and target rate (TR) and the network provisioning conditions
    • ā€¦
    corecore