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Abstract— This paper deals with the improvement of transport
protocol behaviour over the DiffServ Assured Forwarding (AF)
class. The Assured Service (AS) provides a minimum throughput
guarantee that classical congestion control mechanisms, like
window-based in TCP or equation-based in TCP-Friendly Rate
Control (TFRC), are not able to use efficiently. In response, this
paper proposes a performance analysis of a QoS aware con-
gestion control mechanism, named gTFRC, which improves the
delivery of continuous streams. The gTFRC (guaranteed TFRC)
mechanism has been integrated into an Enhanced Transport Pro-
tocol (ETP) that allows protocol mechanisms to be dynamically
managed and controlled. After comparing a ns-2 simulation and
our implementation of the basic TFRC mechanism, we show that
ETP/gTFRC extension is able to reach a minimum throughput
guarantee whatever the flow’s RTT and target rate (TR) and the
network provisioning conditions'.

I. INTRODUCTION

The increasing capabilities of high performance end-
systems and communication networks have greatly acceler-
ated the development of distributed computing. Distributed
applications were originally characterized by very basic com-
munication requirements that could be satisfied by a basic
fully reliable and ordered transport service. Today, many
applications have more demanding requirements, especially
in terms of delay and bandwidth, which cannot be delivered
without network support, such as that proposed by the IETF
DiffServ architecture. In the DiffServ framework, the Assured
Forwarding (AF) class of service provides a high delivery
probability as long as the aggregated traffic of each site does
not exceed its subscribed information rate [1]. Therefore, the
AF class of service is of special interest for multimedia con-
tinuous flows such as video streams, which need a minimum
guaranteed bandwidth and can support some losses and take
advantage of excess bandwidth (e.g. with layered coding).
More generally, the AF service fits well with traffic generated
by adaptive applications that can increase their throughput as
long as there are available resources and can decrease it to a
minimum rate when congestion occurs. This minimum assured
throughput (also called the target rate) delivered by the AF
service is given according to a negotiated profile with the
user. Nevertheless, such QoS support alone is not sufficient to
cope with either the full spectrum of application requirements
(e.g., reliability, timing) or the network control requirements.

I'This research work has been conducted in the framework of the EuQoS
European project.
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Indeed, the transport layer is devoted to applying an efficient
adaptation between the network services and the application
requirements. However, TCP is used by the vast majority of
applications. TCP is fully oblivious of the new application
layer QoS requirements, and applies error and order control
mechanisms that adversely affect continuous streams. More-
over, TCP applies a congestion control mechanism that focuses
on the network status while fully ignoring application layer
QoS requirements. The TFRC mechanism has been introduced
in order to reduce the disastrous impact of the potentially large
rate variations entailed by the AIMD based TCP congestion
control mechanism, while preserving the fair share of the
available bandwidth. Although going one step further towards
improving the service delivered to multimedia applications,
TFRC is still oblivious to both the target rate needed by the
application and the one offered in response by a network
service such as AF.

This article focuses on the integration of a first level of
QoS awareness (i.¢. the target rate) in the TFRC mechanism.
Our implementation of the basic TFRC mechanism has been
integrated, tested and validated in a compositional transport
protocol, named Enhanced Transport Protocol (ETP) [2]. We
show that this implementation is compliant with the TFRC
RFC [3] thanks to a cross-comparison between real measure-
ments and the ns-2 reference implementation. Nevertheless, we
show that when TFRC is used in an AF network service, it
has difficulties in reaching a guaranteed throughput. In order
to solve this problem, thanks to the compositional transport
architecture, we propose to make the mechanism QoS-aware
following the proposal presented in [4]. This previous study
based on ns-2 had shown the benefit of using gTFRC in a
DiffServ Assured Forwarding (AF) class. In this paper, we
validate and quantify the impact of this contribution from real
network measurements. This paper is structured as follows.
Section II presents the context of this study and provides some
background about the compositional framework. Section III
tackles a validation of the ETP/TFRC implementation. Section
IV evaluates QoS aware TFRC implementation and finally
section V gives some perspectives on this work.

II. CONTEXT

Much research has been carried out on Quality of Service
mechanisms for packet switching networks over the past ten
years. The results of these efforts have still not led to multi-



domain networks providing QoS guarantees [5]. Without loss
of generality, this study takes place in the EuQoS project.
The EuQoS project [6] is an integrated project under the
European Union’s Framework Program 6 which aims to deploy
a flexible and secure QoS assured system over a pan-European
testbed environment. The EuQoS System aims at delivering
QoS assurance to many applications requiring QoS guarantees
such as voice over IP, video on demand or medical applications
over multi-domain heterogeneous environment such as WiFi,
UMTS, xDSL or Ethernet technologies.

For this purpose, the EuQoS System integrates various
architectural components such as signaling protocols, traffic
engineering mechanisms, QoS routing, admission control,
and resource reservation schemes and tackles also the issue
of QoS aware transport protocols. In this context, network
configuration (i.e. resource allocation and reservation) is done
according to the user’s SLA and applications’ requirements.
This configuration is performed following a complex signaling
process’> which leads to the production of a QoS session
descriptor. This descriptor is implemented in an XML based
language named xQoS [7]. XQoS session descriptors give all
the details, related to the current session, that can be supported
by the EuQoS service (with respect to the users’ profile and the
network status) including application level information (e.g.,
coding schemes, application data unit types, etc.) and the
underlying network’s QoS features. This descriptor presents
all of the details regarding the current session including
application level information (e.g., coding schemes, applica-
tion data unit types, etc.) and the underlying network’s QoS
characteristics. This session descriptor can be used to decide
which transport level service, protocol and mechanisms offer
the most efficient adaptation between the application needs
and the offered network services. In this context, the Enhanced
Transport Protocol (ETP) [2] has been introduced for offering
a generic transport service and a dynamically configurable
transport protocol. ETP is a connection oriented and message
oriented transport protocol. ETP offers, among other things,
a partially ordered, partially reliable, congestion controlled
and time controlled end-to-end communication service. ETP
has been designed to be statically or dynamically configured
according to the application layer QoS requirements. ETP
services are implemented by the composition of configurable
micro-mechanisms suited to control and manage the QoS
needed by sessions’ flows. The figure 1 (a) shows a high
level view of the ETP architecture composed of control,
management and provisioning processing modules that can be
dynamically bound and configured. The processing modules
represent micro-mechanisms, such as a rate control, reliability
control, multiplexing, time control.

The ETP framework has been initially modelled and eval-
uated in a best-effort network [2]. [8]. However the con-
text of the previously mentioned EuQoS system allows the
transport protocol to be informed of the underlying network’s
QoS characteristics. In such a context, the network service

2The details of this signaling process is out of scope of the present study.
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Fig. 1. Enhanced Transport Protocol

description can be provided to ETP through an Extended Ap-
plication Programming Interface (E-API) for deciding which
micro-mechanisms to compose in relation to the associated
ETP session. This configuration scheme can be modelled as
described in figure 1 (b). In this figure the EUQoS CAC?
module represents the interface between the application and
the negotiation of the EuQoS system. This module provides
the XML configuration descriptor as described above.

We have implemented the TFRC mechanism as a process-
ing module in this compositional architecture. This TFRC
mechanism has been enhanced, as will now be described, in
order to take into account the QoS delivered by the underlying
network. ETP uses an object oriented approach to dynamically
instantiate micro mechanisms. The Java language has been
used for implementing ETP, because of its object oriented
properties. The rest of this paper focuses on this mechanism
and its behavior in the DiffServ/AF service. We show that
the basic TFRC mechanism is not able to use efficiently the
underlying level of service and then propose an extension
which improves the QoS delivered to continuous flows.

III. NoN FuNncTIONAL CONFORMANCE OF TFRC
IMPLEMENTATION

In this section we present a part of the validation measure-
ments that have been achieved on both the ns-2.28 simulator
(named in the following the reference TFRC implementation)
and the ETP framework (named in the following ETP/TFRC )

3Call Admission Control



with an underlying network of which the behavior is emulated
and controlled by the Dummynet tool [9]. We made scveral
tests and give in this section an overview of this validation.

A. General hypothesis and model

In order to validate the TFRC implementation, we used the
simple topology given in figure 2 for ns-2 simulator and the
real testbed.

100 Mbits/s

1 Mbits/s

RTT = 50ms or 250ms

Fig. 2. The simulation topology for TFRC validation

The real testbed is composed of two end-stations with
GNU/Linux, and one router with FreeBSD. We use a Dum-
mynet pipe in order to emulate the RTT and a packet loss rate
(PLR). For both simulations: the packet size is fixed at 1000
bytes; the router queue size is 50 packets; measurements are
carried out for 180sec. For each experiment, we compute the
average throughput at the server and at the receiver side.

B. Network with constant bandwidth

In the scenario presented in figure 3, we show that in a
network without any loss and with a constant bandwidth, the
ETP/TFRC implementation using the framework described in
section II acts like the reference implementation. Figure 3 (a)
shows the reference implementation results and figure 3 (b) the
ETP/TFRC results. In this scenario, the bandwidth is fixed at
1000Kbits/s and the RT'T" = 50ms. No loss occurs in the
network.
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Fig. 3.  Comparison between ns-2 and real TFRC implementation with
the following parameters: Bandwidth=1000Kbits/s RTT=50ms Packet Loss
Rate(PLR)=0%

These figures show that at the receiver side, the measured
throughput is identical in both figures. The throughput os-
cillations on the sender side are more significant in 3 (b)
than in 3 (a). This slight difference can be explained by the
different environments (i.c., simulation and real systems) and
particularly for the real implementation, the host processing
and CPU load influences the packet treatment and as a result
the delay in the network oscillates more. Nevertheless, the
ETP/TFRC behavior remains strongly similar to ns-2 and the
most important result is that on the receiver side, the same
throughput is obtained.

C. Impact of losses and end-to-end delay

The aim of this experiment is to show that in the case
of high RTT (250ms) and with 1% of packets being lost,
the ETP/TFRC implementation reacts in a similar way to the
reference implementation and that the convergence toward the
available rate is identical after a loss period. In the figure 4, we
show that the ETP/TFRC implementation responds properly
to the loss detection, during a large time period, of a specific
packet loss rate. The readjustment to a normal sending rate
is done in roughly the same amount of time (nearly 25sec in
this particular RTT case).
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Fig. 4. Comparison between ns-2 and real TFRC implementation with the
following parameters: Bandwidth=1000Kbits/s RTT=250ms PLR=1%

D. Impact of an UDP flow

In this experiment, the bandwidth remains unchanged. There
is no packet loss and the RTT equals 100ms. A UDP flow
with a rate equal to 500K bits/s is emitted between ¢t =
[30sec, 90sec]. In figure 5, due to the packet multiplexing
with a non responsive UDP flow, both implementations dras-
tically decrease during the UDP emission. Furthermore, the
ETP/TFRC implementation responds to the detection of losses
due to the UDP flow in the same way as the reference
implementation. When the UDP flow stops, the response of
both implementations remains similar.
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Fig. 5. Comparison between ns-2 and real TFRC implementation with
the following parameters: Bandwidth=1000Kbits/s PLR=0% with 500Kbits/s
UDP flow emitted between ¢t = 30sec,t = 90sec

E. Conclusions

We made experiments with several other scenarios similar to
those defined in [10] for the TFRC ns-2 validation. As this is
not the purpose of our paper, all these experiments deliver very
similar results and allow us to consider that our ETP/TFRC
implementation conforms to the ns-2 implementation.



IV. TESTBED MEASUREMENTS IN A DIFFSERV NETWORK

This section deals with the use of ETP/TFRC implemen-
tation in the DiffServ/AF class. We present our adaptation of
ETP/TFRC which allows the application to reach its target rate
whatever the RTT value of the application’s flow.

A. Problem statement

In the assured service class, the throughput of a flow breaks
up into two parts: a fixed part which corresponds to a minimum
assured throughput (packets belonging to this part are marked
in-profile) and 2. an elastic part which corresponds to an
opportunistic flow of packets (packets of this part are marked
as out-of-profile). In the event of congestion in the network, the
in-profile packets should not be lost. On the other hand, out-
profile packets are conveyed on the principle of “best-effort”
(BE) and are dropped first if congestion occurs. In this study,
we assume that the network is well-provisioned and that the
amount of in-profile packets belonging to all the traffic carried
does not exceed the resource allocated to the AF class.

In case of excess bandwidth in the network, the application
could send more than its target rate, so the network should
mark the applications excess traffic as out-of-profile. Then,
if the network becomes congested, many out-of-profile losses
occur and the optimal rate estimated by TFRC could fall below
the target rate requested by the application. TCP would react
in the same manner by halving its congestion window. As for
TCP in the AF class [11], the TFRC mechanism is not aware
that the loss was of an out-of-profile packet and that it should
not decrease its actual sending rate below the target rate. For
TCP, the solution was to introduce a conditioner able to better
mark the TCP flows by taking into account the sporadic nature
of the TCP flows [12], [13]. But the proposed conditioners are
not all really efficient in certain network conditions, such as
long RTTs, and are sometimes complex to use.

In contrast to TCP, as TFRC explicitly computes the actual
sending rate with the TCP throughput model given by (IV-A).

S
X= 0)
(RTT - /B2 + RTO - /22 .p. (1 +32-p?))

Where the sending rate (X) depends on the packet lost rate
(p), the mean packet size (s) and the Round Trip Time. RTO
refers to the TCP retransmission timeout value. Thanks to this
TCP equation, it is possible to directly act on this rate to avoid
the under-usage of the network service. Therefore, the present
proposal consists of making the sending rate estimator aware
of the target rate. This scheme avoids the indirect processing of
traffic conditioners while enhancing the performance in terms
of application throughput and TCP-friendliness.

The target rate is supposed to be known by the transport
layer by the way of the xQoS network service descriptor.
During the session, the transmit rate is computed at the sender
side as the maximum between the TFRC rate estimation and
the target rate, with the following equation (IV-A):

G = max(g, X) ()

Where: G is the transmit rate in bytes/second, g is the
target rate in bytes per second and X is the transmit rate
in bytes/second computed by the TCP throughput equation
specified in [3]. The rest of the ETP/gTFRC [4] mechanism
follows the TFRC specification. Thanks to this adaptation, the
application’s flow is sent in conformance with the negotiated
QoS while staying TCP-friendly in its out-of-profile part.

B. Model and general hypothesis

ETP/gTFRC performances have been evaluated over the
DiffServ testbed presented in figure 6. The hosts are PCs with
GNU/Linux and the routers run FreeBSD with ALTQ [14]
in order to implement the DiffServ network. The simulations
have been carried out using the following configuration: the
packet size is fixed to 1500 bytes; a two color token bucket
marker with a bucket size of 10* bytes is used on the
edge router; routers are configured with a queue size of 50
packets and RIO parameters in the core router are (min,q:,
MATout ,Pout »MiMin, MAZin, Pin)=(10,20,0.1, 20,40, 0.02),
the bottleneck between the core and the egress router is
1000 K bits/s; measurements are carried out for 180sec.

I] e Sl
| Tteeeell8WO0ms ____ee="T [E|

Edge Router Core Router

i

Fig. 6. The simulation topology for DiffServ experiments

We experimented with many different RTTs and target
rate configurations and give in this part a representative
measurement of the efficiency of ETP/¢TFRC . We measure
the performance obtained by ETP/¢TFRC in three scenarios.

C. Exactly-provisioned network

In figures 7, two flows are emitted on the testbed. The
first one has non favorable conditions since it has the highest
target rate to reach and a high RTT (RTT = 300ms, TR =
800K bits/s). The second flow has the lowest target rate
(200K bits/s) and a low RTT (10ms). The results for
ETP/TFRC are presented in figure 7 (a) and for ETP/gTFRC
in figure 7 (b). We can sce that ETP/gTFRC allows the target
rate to be reached more quickly than with TFRC and that
ETP/gTFRC keeps this target rate. The reason is obvious since
at the first rate decrease evaluation of the TFRC algorithm,
ETP/gTFRC evaluates a rate equal to the target rate.

In figure 7 (a), we can see that the decreasing phase occurs
for TFRC around ¢ = 10sec and that ETP/gTFRC does not
at this time deliver a rate lower than the negotiated target rate
(figure 7 (b)). Figure 7 (b) shows that the flow with the lower
target rate and the lower RTT is constrained to reach its own
target rate of 200K bits/s.
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D. Over-provisioned network

These experiments deal with an over-provisioned network
in two different situations where, respectively, the sum of the
target rates is equal to 800K bits/s (figure 8) and the sum of
the target rates is 600K bits/s (figure 9).
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The networks have respectively 20% and 40% of excess
bandwidth. Moreover, the more excess bandwidth in the
network, the more the flow with the highest target rate has
difficulty in reaching its target rate. This is due to the increase
of the out-of-profile traffic which involves more losses in
the network. These losses are more detrimental to the flow
with the highest target rate and the highest RTT. Indeed,
the TFRC algorithm can estimate an ideal rate under the
negotiated target rate and due to a long RTT, the flow can
have difficulty to return to its initial throughput as during the
period [80sec, 140sec] on figure 8 (a).

This is not the case with the use of ETP/¢TFRC . Neverthe-
less, we can see in figures 8 (b) and 9 (b) that the flow with
a lower RTT and lower target rate obtains a higher part of the
excess bandwidth. It is important to take into consideration
that the proportional sharing of the excess bandwidth was not

the aim of this study. This problem should remain under the
responsibility of the edge router conditioning.

E. Interaction with a TCP aggregate in an over-provisioned
network

The last experiment shows the interaction of TFRC or
gTFRC and a TCP aggregate. In this experiment, two ETP
flows with either TFRC or gTFRC mechanisms are sent versus
an aggregate of ten TCP flows. The TCP aggregate crosses a
token bucket marker with a target rate of 200K bits/s and
has an RTT equal to 1ms. Both ETP flows have respectively
a target rate of 400Kbits/s and 200K bits/s for RTT equal
to 300ms and 10ms respectively. Figures 10 give the results
obtained for both ETP flows.

1000 1000

TFRC TRA00Kbits RTT=300ms ~——
TFRC TR=200Kbi's RTT=10ms ——

GTFRC TR=400Kbit)s RTT=300ms ——
TFRC TR=200KDit/s RTT=10ms ——

800 800

600 | 600

ghput (Kb
ughput (Kb/s)

400

Throughput (Kb/s)
Thro

200

]

20 140 180 180

(b) TFRC and gTFRC and 10 TCP

0w 4 &

(a) 2 TFRC and 10 TCP

80 100 120 140 180 180

1000

GTFRC TR=400Kbit/s RTT=300ms ——
GTFRC TR=200Kbitis RTT=10ms ——

800

600

100 ‘ Netcrcrmn i h oot sstetogstod]
|

200 P sl somd i figuicn

ughput (Kbis)

Thro

0
0 2 4 e

(c) 2 gTFRC and 10 TCP

80 100 120 140 180 180

Fig. 10. Over-provisioned network 20% with ten TCP flows

For the TCP aggregate, the throughputs obtained of
447Kbits/s, 403Kbits/s, 362Kbits/s are respectively
shown in figures 10 (a, b, ¢). So the TCP aggregate always
reaches its target rate. In figure 10 (a), we sce that with
ETP/TFRC , both flows have difficulties in reaching their
respective target rate and that the flow with the higher target
rate and RTT does not reach a correct throughput value before
t = 120sec. In figure 10 (b), the ETP/¢TFRC flow easily
reaches its target rate. Nevertheless, due to the increase of
the in-profile traffic and the aggressive nature of the TCP
aggregate, the other flow with ETP/TFRC strongly decreases
its rate. Finally, in figure 10 (¢), both flows use ETP/gTFRC
and reach their target rate while the TCP aggregate still
remains aggressive and reaches its target rate too.

V. CONCLUSIONS AND FUTURE WORK

This paper has described a performance evaluation of an
implementation of TFRC-based mechanisms in a Java com-
position framework named ETP.

ETP/TFRC and ETP/gTFRC are both evaluated on a real
testbed. ETP/TFRC is compliant with [3] and a measure-
ment study shows its conformance with the ns-2 reference



implementation. As an extension, ETP/gTFRC can reach a
minimum guarantee throughput in a DiffServ/AF class what-
ever the network conditions and negotiated guarantees are.
These mechanisms are particularly promising in the context
of Quality of Service networks. Moreover, the ETP framework
will facilitate their integration with other transport mechanisms
such as partial reliability or timing control. The ETP protocol
is expected to be deployed and evaluated over the pan-
European EuQoS network.
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