6 research outputs found

    Self-supervised Face Representation Learning

    Get PDF
    This thesis investigates fine-tuning deep face features in a self-supervised manner for discriminative face representation learning, wherein we develop methods to automatically generate pseudo-labels for training a neural network. Most importantly solving this problem helps us to advance the state-of-the-art in representation learning and can be beneficial to a variety of practical downstream tasks. Fortunately, there is a vast amount of videos on the internet that can be used by machines to learn an effective representation. We present methods that can learn a strong face representation from large-scale data be the form of images or video. However, while learning a good representation using a deep learning algorithm requires a large-scale dataset with manually curated labels, we propose self-supervised approaches to generate pseudo-labels utilizing the temporal structure of the video data and similarity constraints to get supervision from the data itself. We aim to learn a representation that exhibits small distances between samples from the same person, and large inter-person distances in feature space. Using metric learning one could achieve that as it is comprised of a pull-term, pulling data points from the same class closer, and a push-term, pushing data points from a different class further away. Metric learning for improving feature quality is useful but requires some form of external supervision to provide labels for the same or different pairs. In the case of face clustering in TV series, we may obtain this supervision from tracks and other cues. The tracking acts as a form of high precision clustering (grouping detections within a shot) and is used to automatically generate positive and negative pairs of face images. Inspired from that we propose two variants of discriminative approaches: Track-supervised Siamese network (TSiam) and Self-supervised Siamese network (SSiam). In TSiam, we utilize the tracking supervision to obtain the pair, additional we include negative training pairs for singleton tracks -- tracks that are not temporally co-occurring. As supervision from tracking may not always be available, to enable the use of metric learning without any supervision we propose an effective approach SSiam that can generate the required pairs automatically during training. In SSiam, we leverage dynamic generation of positive and negative pairs based on sorting distances (i.e. ranking) on a subset of frames and do not have to only rely on video/track based supervision. Next, we present a method namely Clustering-based Contrastive Learning (CCL), a new clustering-based representation learning approach that utilizes automatically discovered partitions obtained from a clustering algorithm (FINCH) as weak supervision along with inherent video constraints to learn discriminative face features. As annotating datasets is costly and difficult, using label-free and weak supervision obtained from a clustering algorithm as a proxy learning task is promising. Through our analysis, we show that creating positive and negative training pairs using clustering predictions help to improve the performance for video face clustering. We then propose a method face grouping on graphs (FGG), a method for unsupervised fine-tuning of deep face feature representations. We utilize a graph structure with positive and negative edges over a set of face-tracks based on their temporal structure of the video data and similarity-based constraints. Using graph neural networks, the features communicate over the edges allowing each track\u27s feature to exchange information with its neighbors, and thus push each representation in a direction in feature space that groups all representations of the same person together and separates representations of a different person. Having developed these methods to generate weak-labels for face representation learning, next we propose to learn compact yet effective representation for describing face tracks in videos into compact descriptors, that can complement previous methods towards learning a more powerful face representation. Specifically, we propose Temporal Compact Bilinear Pooling (TCBP) to encode the temporal segments in videos into a compact descriptor. TCBP possesses the ability to capture interactions between each element of the feature representation with one-another over a long-range temporal context. We integrated our previous methods TSiam, SSiam and CCL with TCBP and demonstrated that TCBP has excellent capabilities in learning a strong face representation. We further show TCBP has exceptional transfer abilities to applications such as multimodal video clip representation that jointly encodes images, audio, video and text, and video classification. All of these contributions are demonstrated on benchmark video clustering datasets: The Big Bang Theory, Buffy the Vampire Slayer and Harry Potter 1. We provide extensive evaluations on these datasets achieving a significant boost in performance over the base features, and in comparison to the state-of-the-art results

    Dissémination de l’information et dynamique des opinions dans les réseaux sociaux

    Get PDF
    Our aim in this Ph. D. thesis is to study the diffusion of information as well as the opinion dynamics of users in social networks. Information diffusion models explore the paths taken by information being transmitted through a social network in order to understand and analyze the relationships between users in such network, leading to a better comprehension of human relations and dynamics. This thesis is based on both sides of information diffusion: first by developing mathematical theories and models to study the relationships between people and information, and in a second time by creating tools to better exploit the hidden patterns in these relationships. The theoretical tools developed in this thesis are opinion dynamics models and information diffusion models, where we study the information flow from users in social networks, and the practical tools developed in this thesis are a novel community detection algorithm and a novel trend detection algorithm. We start by introducing an opinion dynamics model in which agents interact with each other about several distinct opinions/contents. In our framework, agents do not exchange all their opinions with each other, they communicate about randomly chosen opinions at each time. We show, using stochastic approximation algorithms, that under mild assumptions this opinion dynamics algorithm converges as time increases, whose behavior is ruled by how users choose the opinions to broadcast at each time. We develop next a community detection algorithm which is a direct application of this opinion dynamics model: when agents broadcast the content they appreciate the most. Communities are thus formed, where they are defined as groups of users that appreciate mostly the same content. This algorithm, which is distributed by nature, has the remarkable property that the discovered communities can be studied from a solid mathematical standpoint. In addition to the theoretical advantage over heuristic community detection methods, the presented algorithm is able to accommodate weighted networks, parametric and nonparametric versions, with the discovery of overlapping communities a byproduct with no mathematical overhead. In a second part, we define a general framework to model information diffusion in social networks. The proposed framework takes into consideration not only the hidden interactions between users, but as well the interactions between contents and multiple social networks. It also accommodates dynamic networks and various temporal effects of the diffusion. This framework can be combined with topic modeling, for which several estimation techniques are derived, which are based on nonnegative tensor factorization techniques. Together with a dimensionality reduction argument, this techniques discover, in addition, the latent community structure of the users in the social networks. At last, we use one instance of the previous framework to develop a trend detection algorithm designed to find trendy topics in a social network. We take into consideration the interaction between users and topics, we formally define trendiness and derive trend indices for each topic being disseminated in the social network. These indices take into consideration the distance between the real broadcast intensity and the maximum expected broadcast intensity and the social network topology. The proposed trend detection algorithm uses stochastic control techniques in order calculate the trend indices, is fast and aggregates all the information of the broadcasts into a simple one-dimensional process, thus reducing its complexity and the quantity of necessary data to the detection. To the best of our knowledge, this is the first trend detection algorithm that is based solely on the individual performances of topicsLa dissémination d'information explore les chemins pris par l'information qui est transmise dans un réseau social, afin de comprendre et modéliser les relations entre les utilisateurs de ce réseau, ce qui permet une meilleur compréhension des relations humaines et leurs dynamique. Même si la priorité de ce travail soit théorique, en envisageant des aspects psychologiques et sociologiques des réseaux sociaux, les modèles de dissémination d'information sont aussi à la base de plusieurs applications concrètes, comme la maximisation d'influence, la prédication de liens, la découverte des noeuds influents, la détection des communautés, la détection des tendances, etc. Cette thèse est donc basée sur ces deux facettes de la dissémination d'information: nous développons d'abord des cadres théoriques mathématiquement solides pour étudier les relations entre les personnes et l'information, et dans un deuxième moment nous créons des outils responsables pour une exploration plus cohérente des liens cachés dans ces relations. Les outils théoriques développés ici sont les modèles de dynamique d'opinions et de dissémination d'information, où nous étudions le flot d'informations des utilisateurs dans les réseaux sociaux, et les outils pratiques développés ici sont un nouveau algorithme de détection de communautés et un nouveau algorithme de détection de tendances dans les réseaux sociau

    Advances in Computational Social Science and Social Simulation

    Get PDF
    Aquesta conferència és la celebració conjunta de la "10th Artificial Economics Conference AE", la "10th Conference of the European Social Simulation Association ESSA" i la "1st Simulating the Past to Understand Human History SPUHH".Conferència organitzada pel Laboratory for Socio­-Historical Dynamics Simulation (LSDS-­UAB) de la Universitat Autònoma de Barcelona.Readers will find results of recent research on computational social science and social simulation economics, management, sociology,and history written by leading experts in the field. SOCIAL SIMULATION (former ESSA) conferences constitute annual events which serve as an international platform for the exchange of ideas and discussion of cutting edge research in the field of social simulations, both from the theoretical as well as applied perspective, and the 2014 edition benefits from the cross-fertilization of three different research communities into one single event. The volume consists of 122 articles, corresponding to most of the contributions to the conferences, in three different formats: short abstracts (presentation of work-in-progress research), posters (presentation of models and results), and full papers (presentation of social simulation research including results and discussion). The compilation is completed with indexing lists to help finding articles by title, author and thematic content. We are convinced that this book will serve interested readers as a useful compendium which presents in a nutshell the most recent advances at the frontiers of computational social sciences and social simulation researc

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore