95 research outputs found

    Compilation for QCSP

    Get PDF
    We propose in this article a framework for compilation of quantified constraint satisfaction problems (QCSP). We establish the semantics of this formalism by an interpretation to a QCSP. We specify an algorithm to compile a QCSP embedded into a search algorithm and based on the inductive semantics of QCSP. We introduce an optimality property and demonstrate the optimality of the interpretation of the compiled QCSP.Comment: Proceedings of the 13th International Colloquium on Implementation of Constraint LOgic Programming Systems (CICLOPS 2013), Istanbul, Turkey, August 25, 201

    Generalizing Consistency and other Constraint Properties to Quantified Constraints

    Full text link
    Quantified constraints and Quantified Boolean Formulae are typically much more difficult to reason with than classical constraints, because quantifier alternation makes the usual notion of solution inappropriate. As a consequence, basic properties of Constraint Satisfaction Problems (CSP), such as consistency or substitutability, are not completely understood in the quantified case. These properties are important because they are the basis of most of the reasoning methods used to solve classical (existentially quantified) constraints, and one would like to benefit from similar reasoning methods in the resolution of quantified constraints. In this paper, we show that most of the properties that are used by solvers for CSP can be generalized to quantified CSP. This requires a re-thinking of a number of basic concepts; in particular, we propose a notion of outcome that generalizes the classical notion of solution and on which all definitions are based. We propose a systematic study of the relations which hold between these properties, as well as complexity results regarding the decision of these properties. Finally, and since these problems are typically intractable, we generalize the approach used in CSP and propose weaker, easier to check notions based on locality, which allow to detect these properties incompletely but in polynomial time

    Positional Games and QBF: The Corrective Encoding

    Full text link
    Positional games are a mathematical class of two-player games comprising Tic-tac-toe and its generalizations. We propose a novel encoding of these games into Quantified Boolean Formulas (QBF) such that a game instance admits a winning strategy for first player if and only if the corresponding formula is true. Our approach improves over previous QBF encodings of games in multiple ways. First, it is generic and lets us encode other positional games, such as Hex. Second, structural properties of positional games together with a careful treatment of illegal moves let us generate more compact instances that can be solved faster by state-of-the-art QBF solvers. We establish the latter fact through extensive experiments. Finally, the compactness of our new encoding makes it feasible to translate realistic game problems. We identify a few such problems of historical significance and put them forward to the QBF community as milestones of increasing difficulty.Comment: Accepted for publication in the 23rd International Conference on Theory and Applications of Satisfiability Testing (SAT2020

    QBF with Soft Variables

    Get PDF
    QBF formulae are usually considered in prenex form, i.e. the quantifierblock is completely separated from the propositional part of the QBF.Among others, the semantics of the QBF is defined by the sequence ofthe variables within the prefix, where existentially quantifiedvariables depend on all universally quantified variables stated to theleft.In this paper we extend that classical definition and consider a newquantification type which we call soft variable. The idea is toallow a flexible position and quantifier type for these variables.Hence the type of quantifier of the soft variable can also bealtered. Based on this concept, we present an optimization problemseeking an optimal prefix as defined by user-given preferences. We statean algorithm based on MaxQBF, and present several applications – mainlyfrom verification area – which can be naturally translated into theoptimization problem for QBF with soft variables. We further implementeda prototype solver for this formalism, and compare our approach toprevious work, that differently from ours does not guarantee optimalityand completeness

    The number of clones determined by disjunctions of unary relations

    Full text link
    We consider finitary relations (also known as crosses) that are definable via finite disjunctions of unary relations, i.e. subsets, taken from a fixed finite parameter set Γ\Gamma. We prove that whenever Γ\Gamma contains at least one non-empty relation distinct from the full carrier set, there is a countably infinite number of polymorphism clones determined by relations that are disjunctively definable from Γ\Gamma. Finally, we extend our result to finitely related polymorphism clones and countably infinite sets Γ\Gamma.Comment: manuscript to be published in Theory of Computing System

    Set Constraint Model and Automated Encoding into SAT: Application to the Social Golfer Problem

    Get PDF
    On the one hand, Constraint Satisfaction Problems allow one to declaratively model problems. On the other hand, propositional satisfiability problem (SAT) solvers can handle huge SAT instances. We thus present a technique to declaratively model set constraint problems and to encode them automatically into SAT instances. We apply our technique to the Social Golfer Problem and we also use it to break symmetries of the problem. Our technique is simpler, more declarative, and less error-prone than direct and improved hand modeling. The SAT instances that we automatically generate contain less clauses than improved hand-written instances such as in [20], and with unit propagation they also contain less variables. Moreover, they are well-suited for SAT solvers and they are solved faster as shown when solving difficult instances of the Social Golfer Problem.Comment: Submitted to Annals of Operations researc

    Generalized Craig Interpolation for Stochastic Boolean Satisfiability Problems with Applications to Probabilistic State Reachability and Region Stability

    Full text link
    The stochastic Boolean satisfiability (SSAT) problem has been introduced by Papadimitriou in 1985 when adding a probabilistic model of uncertainty to propositional satisfiability through randomized quantification. SSAT has many applications, among them probabilistic bounded model checking (PBMC) of symbolically represented Markov decision processes. This article identifies a notion of Craig interpolant for the SSAT framework and develops an algorithm for computing such interpolants based on a resolution calculus for SSAT. As a potential application area of this novel concept of Craig interpolation, we address the symbolic analysis of probabilistic systems. We first investigate the use of interpolation in probabilistic state reachability analysis, turning the falsification procedure employing PBMC into a verification technique for probabilistic safety properties. We furthermore propose an interpolation-based approach to probabilistic region stability, being able to verify that the probability of stabilizing within some region is sufficiently large

    Counting of Teams in First-Order Team Logics

    Get PDF
    We study descriptive complexity of counting complexity classes in the range from #\#P to #â‹…\#\cdotNP. A corollary of Fagin's characterization of NP by existential second-order logic is that #\#P can be logically described as the class of functions counting satisfying assignments to free relation variables in first-order formulae. In this paper we extend this study to classes beyond #\#P and extensions of first-order logic with team semantics. These team-based logics are closely related to existential second-order logic and its fragments, hence our results also shed light on the complexity of counting for extensions of FO in Tarski's semantics. Our results show that the class #â‹…\#\cdotNP can be logically characterized by independence logic and existential second-order logic, whereas dependence logic and inclusion logic give rise to subclasses of #â‹…\#\cdotNP and #\#P , respectively. Our main technical result shows that the problem of counting satisfying assignments for monotone Boolean ÎŁ1\Sigma_1-formulae is #â‹…\#\cdotNP-complete as well as complete for the function class generated by dependence logic.Peer reviewe
    • …
    corecore