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Abstract—The concept of backbone variables, i.e., variables
that take the same value in all solutions—or, equivalently,
never take a specific value—finds various important applications
in the context of Boolean satisfiability (SAT), motivating the
development of efficient algorithms for determining the set of
backbone variables of a given propositional formula. Notably, this
problem surpasses the complexity of merely deciding satisfiability.
In this work we consider generalizations of the concept of
backbones in SAT to non-binary (and potentially infinite) do-
main constraint satisfaction problems. Specifically, we propose a
natural generalization of backbones to the context of satisfiability
modulo theories (SMT), applicable to a range of different theories
as well as CSPs in general, and provide two generic algorithms
for determining the backbone in this general context. As two
concrete instantiations, we focus on two central SMT theories,
the theory of linear integer arithmetic (LIA) with infinite integer
domains, and the theory of bit vectors (BV), and empirically
evaluate the potential of the proposed algorithms on both LIA
and BV instances.

I. INTRODUCTION

The concept of backbone variables [1]–[3], i.e., variables
that take the same value in all solutions, has been stud-
ied extensively in connection with different combinatorial
problems [2]–[16] in the context of Boolean satisfiability
(SAT) [17]–[21] and also in the context of constraint sat-
isfaction problems (CSPs) [22]–[25]. In recent years, back-
bones have been used in a number of relevant practical
applications [26]–[30]. Backbone variables provide important
information. For example, the existence of backbone variables
precludes the existence of supersolutions [31]. Moreover,
backbone variables of SAT instances encoding real-world
problem instances can have various kinds of meaningful
interpretations depending on the context. For some examples,
in interactive product configuration identifying a backbone
variable during the configuration process can prevent users
from attempting to further construct unavailable configura-
tions [28]; backbones can represent faults in fault localization
in integrated circuits [26], [27]; in causal structure discovery,
backbone variables can represent equivalence classes of causal
structures [32]; and in abstract argumentation, backbones can
be used to realize the so-called ideal semantics [33].

Although the problem of determining the backbone (vari-
ables) of a given propositional formula surpasses the com-
plexity of merely deciding satisfiability, motivated by the wide
range of applications efficient algorithms for determining the
set of backbone variables of a given propositional formula
have been recently developed [20]. In the context of CSPs,
a notion of backbones has been proposed under the name of

frozen/fixable variables [5], [22], [23], defined as variables that
take the same value in all solutions. However, in comparison
with the CSP case, the definition of backbone variables we
propose in this paper is more general. Although our proposal
has connections to earlier work on minimal constraint net-
works [34] and minimal labelings in qualitative constraints
networks [35], a major difference is that we take a variable-
oriented view as opposed to a constraint-oriented view.

Specifically, in this work we consider generalizations of the
concept of backbones in SAT to non-binary (and potentially
infinite) domain constraint satisfaction problems. Differently
from the concept of frozen variables, we propose a more
generic concept of backbones. Instead of requiring a variable
to take a fixed value in all solutions (as is the case e.g. in the
traditional notion of backbone literals in the context of SAT),
we seek for the greatest domain reduction of individual vari-
ables, and more generally consider a variable to be contained
in the backbone if its domain can be reduced while maintaining
the set of solutions. This proposed natural generalization of
backbones applies e.g. to the context of satisfiability modulo
theories (SMT) for a range of different theories, as well as
CSPs in general.

From the computational perspective, we provide two generic
algorithms for determining the backbone in this general con-
text. As two concrete instantiations in the realm of SMT, we
focus on two SMT theories: the theory of linear integer arith-
metic (LIA)—with infinite integer domains—and the theory
of bit vectors (BV). Deciding the satisfiability of a system
of linear inequalities is important in different settings ranging
from formal verification to scheduling [36], [37]. Bit-vector
formulas as well find many applications, including bounded
model checking, analysis of hardware circuits, static analysis,
and test generation [37].

We empirically evaluate the potential of the proposed al-
gorithms on both LIA and BV instances. To the best of
our knowledge, no algorithms in the generality as presented
here have been previously proposed; in the context of SMT,
backbones have to the best of our knowledge been studied
only in very specific context, see e.g. [19].

It should be noted that, while efficient algorithms for
computing the backbone of SAT instances by iteratively call-
ing a SAT solver have been developed, such algorithms are
not directly applicable to non-binary domains. Specifically,
while several SAT encodings for finite-domain CSPs with
non-binary variables have been developed, such encodings
are not generally applicable for computing the backbone of
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the original CSP under the generalized notion considered
here. For instance, the so-called log encoding [38]. takes
Boolean variables for representing the individual bits of the
domain value assigned to a variable. A similar approach is
also standard practice in BV solvers many of which bit-
blast the the BV formula into a SAT instance and apply a
SAT solver to determine satisfiability [37]. Hence, applying a
SAT backbone computation algorithm on the resulting SAT
instance will only detect frozen bits in the representation
of the domain values, instead of precise information on the
admissible domain values.

The rest of this paper is organized as follows. After neces-
sary preliminaries (Section II), we introduce the notion of gen-
eralized backbones (Section III), and propose two generic al-
gorithms for determining generalized backbones (Section IV).
Before the conclusions in Section VI, we present results from
an empirical evaluation of the two algorithms implemented in
the contexts of linear integer arithmetic and bit-vector theories
in SMT (Section V).

II. PRELIMINARIES

We will propose a very general definition of backbones,
covering a range of constraint satisfaction formalisms, as well
as two generic algorithms for computing these generalized
backbones. For concreteness, we will illustrate the concepts
and algorithms in the context of SMT, and more precisely,
for the theories of LIA and BV. Before proceeding with the
notion of generalized backbones and algorithms for computing
them, we will hence now provide background on SMT, giving
definitions valid for LIA and BV theories.

A first-order theory T is a set of first-order sentences ( [36],
[37], [39]) over a signature S, where the signature S specifies
a set of predicate symbols, function symbols and constants.
A first-order model M is a pair 〈U , I〉, where the set U
represents a universe, and I represents an interpretation that
assigns a semantic to every symbol in S. In what follows, F
denotes a first-order formula modulo a theory. Var(F ) denotes
the set of variables (which are distinct from S). Given a model
M, a valuation ω is a partial map from Var(F ) to U . For
simplicity, we assume Var(F ) to be the set of variables that
occur free in formula F .

For a given valuation ω : Var(F )→ U , we writeM, ω �F
to indicate that the formula F is true, according to the usual
semantic of first-order logic, in model M, with ω giving the
valuation of the free variables in F .

Definition 1. Formula F is satisfiable modulo T when there
exists a model M = 〈U , I〉 of T and an assignment ω ∈
Var(F ) → U such that M, ω �F . The pair 〈M, ω〉 is a
satisfying assignment (SA) for F .

A concept used throughout the paper is that of partial
satisfying assignment.

Definition 2. A partial satisfying assignment for a formula F
is a pair 〈M, ω〉, where M is a model and ω is a valuation
over M such that dom(ω) ⊆ Var(F ) and such that for any

valuation of α ∈ Var(F ) \ dom(ω) → U , we have that
〈M, (ω ∪ α)〉 is a satisfying assignment for F .

Definition 3. A partial satisfying assignment 〈M, ω〉 for F
is a minimal satisfying assignment (mSA) if for any valuation
α ∈ Var(F ) → U such that dom(α) ⊂ dom(ω), the pair
〈M, α〉 is not a satisfying assignment for F . A minimum
satisfying assignment (MSA) is an mSA of smallest size.

Minimum and minimal satisfying assignments of ¬F are
referred to as minimum falsifying assignment (MFA) and
minimal falsifying assignment (mFA) of F respectively.

III. GENERALIZING BACKBONES

The concept of the backbone, i.e., the set of backbone
literals, of a propositional formula is a well-known concept in
SAT. For the following, we will assume basic understanding
of propositional formulas and satisfiability.

Definition 4 (Propositional backbones). The backbone B of a
propositional formula is the set consisting of those literals in
F which take the same value in all truth assignments satistying
F . Each literal in B is a backbone literal of F .

In this work, we aim for a general notion of backbone liter-
als to constraint satisfaction problems over discrete, possibly
infinite non-binary domains.

Assumption 1. The definition of generalized backbones and
the algorithms proposed in this work are essentially constraint
agnostic, under the following assumptions on the constraint
language.

(i) Variable domains are a subset of the set of integers.
(ii) There is a constraint solver which can decide instances

of the form ∃X∀Y.F (X,Y ) for any sentence in the
language.

Note that property (i) allows for both finite-domain vari-
ables, as well as infinite domains as long as there is a total
order over the elements of the domain.

A key intuition behind the following definition of general-
ized backbones is that we define backbones via the largest set
of domain values each of which appears in some solution of
the constraint satisfaction problem instance.

Definition 5 (Generalized backbones). A variable x with
domain D(x) in a constraint satisfaction problem instance
F is a backbone under the domain D′(x) ( D(x) if and only
if D′(x) is the largest subset of D(x) s.t. for each v ∈ D′(x),
F has a solution with x = v.

When restricted to Boolean domains (i.e., D(x) =
{true, false}), this definition is equivalent to the notion of
backbone literals in the context of SAT (recall Definition 4)
with D′(x) = true or D′(x) = false.

A. Instantiations in SMT

While Definition 5 also captures a range of other classes of
CSPs, we will in the following instantiate the definition and
the general algorithms within the realm of SMT. To exemplify



how the algorithms work—and to empirically evaluate instan-
tiations of the general algorithms in the context of central
SMT theories—we will focus on the theory of quantifier-free
linear integer arithmetic (LIA) and the theory of quantifier-
free bit-vectors (BV). The theory of LIA is used to repre-
sent boolean combination of linear inequalities of the form
a1x1+...+anxn+c ≤ 0 over the domain of integer. The theory
of fixed sized bit-vectors (BV) represents a natural way for
high-level reasoning about circuits and programs. Bit-vectors
are fixed-length sequences of binary bits which are interpreted
as unsigned or signed integers. The only predicate symbols in
the BV theory are ≤u and ≤s, interpreted as inequality of the
unsigned and signed integer encoding, respectively. Function
symbols include +,×,÷, & , |,�,�, and are intrepreted as
addition, multiplication, unsigned division, bit-wise and, bit-
wise or, left-shift, and right-shift, respectively.

Definition 6. A variable var is a backbone variable for an
SMT formula F if ∀var∃Y.F is false, where Y = Var(F ) \
{var}, or alternatively, when ∃var∀Y.¬F is true.

Notice that since ∃Y ∀var.F → ∀var∃Y.F , whenever
∀var∃Y.F is false, also ∃Y ∀var.F is false. This clearly shows
that backbone variables cannot appear as don’t-care. In this
sense, backbone variables can be referred to as necessary
variables, since without assigning them it is not possible to
satisfy the formula. To be more precise they have to be part of
every partial satisfying assignment. This relates to the case of
propositional logic where backbone literals are part of every
model. However, differently from the case of propositional
logic, where backbone literals can be assigned just one value,
here backbone variables can have a potentially infinite range
of values.

Proposition 1. If var is a backbone variable, then ∀Var (F )\
{var}.¬F is satisfiable and any value assigned to var is an
MFA of F .

This relates to the definition of backbone literal as unary prime
implicate given in the context of Boolean satisfiability [21].

Example 1. As an example, backbones in the context of LIA
can take the form

1) x ≥ l,
2) x ≤ l,

or a combination of them, i.e.,
1) x ≥ l ∧ x ≤ m with m > l,
2) x ≤ l ∨ x ≥ m with m > l.

We can also have more than one interval, like (x ≥ l ∧ x ≤
m) ∨ (x ≥ h ∧ x ≤ n), with m > l, n > h and h > m.
As a special case we have x = l when x ≤ l ∧ x ≥ l. This
kind of backbone variables are referred to as frozen/fixable
variables [5], [22], [23] within the CSP community. A formula
is unsatisfiable when for one variable we have x ≥ l∧x ≤ m
with m < l. �

IV. COMPUTING GENERALIZED BACKBONES

We present two algorithms, BB-OPT and BB-Q, for com-
puting backbone variables and the bounds of their domain.

Algorithm 1: GETBBVAR: computing all backbone vari-
ables

1 GETBBVAR(F )
2 bbvar = ∅
3 for var ∈ Var(F ) do
4 Y ← Var(F ) \ {var}
5 st← SOLVE(∃var∀Y.¬F )
6 if st then
7 bbvar = bbvar ∪ {var}

8 return bbvar

Algorithm 2: BB-OPT: backbone extraction using an
optimizer

1 BB-OPT(F )
2 bbvar ← GETBBVAR(F )
3 for var ∈ bbvar do
4 lb = GETLB(F )
5 ub = GETUB(F )
6 var domain = GETBOUNDS(F, var, lb, ub)
7 print var domain

We present here the two algorithms BB-OPT and BB-Q
(Algorithm 2 and Algorithm 4, respectively) in the context
of SMT theories without quantifiers. The approach can be
generalized to quantified formulas, where the variables var,
X and Y range over the free, non-quantified variables.

The first phase (Algorithm 1) is shared by the two algo-
rithms. The first phase aims at identifying all the backbone
variables. This is shown in Algorithm 1 which makes use of
Definition 6. The second phase depends on the theory taken
into consideration, since its aim is to compute the set of
admissible values of each variable. Nevertheless, the second
phase can be used with any constraint language respecting
Assumption 1. BB-OPT and BB-Q (Algorithm 2 and Al-
gorithm 4, respectively) work by computing the lower and
upper bounds of each admissible interval. In what follows,
lower and upper bounds may refer to the smallest and highest
value of an interval of admissible values without gaps in-
between, i.e., not necessarily of the entire domain. Although
similar in spirit, the algorithms differ in the way each bound
is identified. While the ability of BB-OPT (Algorithm 2)
to compute lower and upper bounds relies on solving an
optimization problem, BB-Q (Algorithm 4) only requires a
theory solver, although it still requires quantification support.
This makes BB-Q (Algorithm 4) more widely usable for
theories for which solvers with optimization capabilities are
not readily available.

A. BB-OPT

BB-OPT (Algorithm 2) starts by computing the set of all
backbone variables ( line 2). Then for each backbone variable
the lower and upper bound are computed. This is done by
solving an optimization problem of the form



Algorithm 3: GETBOUNDS subfunction: extracts the set
of intervals containing admissible solutions

1 GETBOUNDS(F, var, lb, ub)
2 Y ← Var(F ) \ {var}
3 bounds← ∅
4 st,m← SOLVE(∀Y.¬F ∧ var > lb ∧ var < ub)
5 if st then
6 fv ← m[var] // F falsified by var = fv
7 ub1← GETUB(F, var < fv)
8 b1←GETBOUNDS(F, var, lb, ub1)
9 lb1← GETLB(F, var > fv)

10 b2←GETBOUNDS(F, var, lb1, ub)
11 bounds← b1 ∪ b2
12 else
13 interval← {lb, ub}
14 bounds← {interval}
15 return bounds

min /max var subject to F, (1)

where F is the input formula and var is a backbone variable.
Note that a backbone variable may not have a lower or an
upper bound. As an example, consider the formula F = x <
5∨x > 10. The lower and upper bound are then given as input
to the function GETBOUNDS(F, var, lb, ub), which returns the
set of admissible values. If no lower or upper bound exist
for a variable, then lb = −∞ and ub = ∞, respectively.
Algorithm 3 works by interleaving the computation of MFAs
with the extraction of lower and upper bounds. At each step,
Algorithm 3 splits the interval received in input in two parts
and calls recursively the function GETBOUNDS on each of
them. The value that splits the interval is returned by the
call SOLVE(∀Y.¬F ∧ var > lb ∧ var < ub), where Y =
Var(F ) \ {var}. If the formula ∀Y.¬F ∧ var > lb∧ var < ub
is satisfiable, the value assigned to var is an MFA of F . The
corresponding falsifying value is then stored in the variable
fv (line 6 of Algorithm 3). This proves that not all the values
between lb and ub are part of an admissible solution and
that the interval received as input has to be refined. This is
done through a call to GETLB (GETUB) that returns a lower
(upper) bound subject to the additional constraint var > fv
(var < fv). The two functions GETLB and GETUB make
use of an optimizer in order to provide a value. Otherwise, if
∀Y.¬F ∧ var > lb ∧ var < ub is unsatisfiable, it means that
the set of values between lb and ub is an interval of admissible
values for var.

Example 2. Suppose we are given the LIA formula F = (x ≤
7∨ (x ≥ 11∧ x ≤ 13)∨ (x ≥ 16∧ x ≤ 20))∧ (x+ y ≤ 0) as
input. The execution of Algorithm 3 on this input is summa-
rized in Table I. The column Input gives the values received
in input by the functions SOLVE, GETLB and GETUB. When
the input has the form [lb, ub], the function being called is
SOLVE. When the input has the form var < val or var > val,

the function called is GETUB or GETLB, respectively. The
column Result gives the value returned by the functions. In
the case of SOLVE, when the formula is satisfiable, we write
directly the value assigned to the var. The third column
Intervals to Test contains the intervals that we still have to
test, and the fourth column Admissible Intervals lists the set
of intervals containing admissible solutions. �

B. BB-Q

In contrast to BB-OPT presented in Algorithm 2, BB-Q (see
Algorithm 4) does not rely on an optimizer. Algorithm 4 is
based on the observation that if an assignment v = l is an
upper bound (lower bound, resp.) of an interval of admissible
values for variable v, then v = l+ 1 (l− 1, resp.) is an MFA
for F (i.e., it is an MSA for ¬F ), which enables us to consider
the formula

F ′ = F ∧ ∀Var(Fr) \ {varr}.¬Fr ∧ (varr = var + 1), (2)

where formula Fr is a duplicate of F with all variables
renamed, i.e., for every variable var in formula F , there is the
corresponding variable varr in Fr. The idea of Algorithm 4
is to decide the formula F ′ for every backbone variable var
individually. Observe that if F ′ is satisfiable, then each of
its satisfying assignments returned by SOLVE(F ′) satisfies the
following.

1) The assignment contains an assignment to variables
Var(F ) satisfying F , which sets var = l.

2) The partial assignment varr = l+1 is an MSA of ¬F r.
This means that no assignment assigning var = l + 1

satisfies F , since all the assignments with var = l+ 1 falsify
F (see condition 2 above and recall that an MSA of ¬F is
an MFA of F , and that Fr is a duplicate of F ). Therefore,
l is an upper bound of an interval of admissible values for
var. The same technique can be used to find a lower bound
by considering varr = var − 1 in (2).

Observe that Algorithm 4 first computes a set of all back-
bone variables by calling Algorithm 1. For every backbone
variable var, Algorithm 4 enumerates exhaustively all up-
per and lower bounds of the interval of admissible values
for var (see line 4 and line 5). Once this is done, the
lists of lower lb lst = (lb1, lb2, . . .) and upper ub lst =
(ub1, ub2, . . .) bounds are zipped1 into one list of pairs
((lb1, ub1), (lb2, ub2), . . .) (see the corresponding subroutine
call on line 6 detailed as Algorithm 6), each defining an
interval [lbi, ubi]. The computed domain of the backbone
variable comprises the union of such intervals.

The GETALLUB subroutine is detailed in Algorithm 5.
It makes an extensive use of formula (2) (see line 3 of
Algorithm 5) and makes a sequence of SMT oracle calls
(line 6). All upper bound values computed are then blocked
(line 11) and Algorithm 5 returns as soon as no more upper
bound values can be extracted (line 8).

1For doing this, the standard convolution operation is applied used in a
number of programming languages, e.g. in Ruby, Python, Haskell, etc. Given
a tuple of sequences, convolution maps it into a sequence of tuples.



Table I: Example execution of Algorithm 3 on the formula F = (x ≤ 7 ∨ (x ≥ 11 ∧ x ≤ 13) ∨ (x ≥ 16 ∧ x ≤ 20)) ∧ (x + y ≤ 0). The
run is limited to the variable x.

Input Result Intervals to Test Admissible Intervals
(−∞, 20] FV: 14 [14, 20], (−∞, 14] ∅
x < 14 UB: 13 [14, 20], (−∞, 13] ∅
(−∞, 13] FV: 8 [14, 20], [8, 13], (−∞, 8] ∅
x < 8 UB: 7 [14, 20], [8, 13], (−∞, 7] ∅
(−∞, 7] UNSAT [14, 20], [8, 13] (−∞, 7]
x > 8 LB: 11 [14, 20], [11, 13] (−∞, 7]
[11, 13] UNSAT [14, 20] (−∞, 7], [11, 13]
x > 14 LB: 16 [16, 20] (−∞, 7], [11, 13]
[16, 20] UNSAT ∅ (−∞, 7], [11, 13], [16, 20]

Algorithm 4: BB-Q: backbone extraction using quantifiers

1 BB-Q(F )
2 bbvar ← GETBBVAR(F )
3 for var ∈ bbvar do
4 lb lst = GETALLLB(F )
5 ub lst = GETALLUB(F )
6 var domain = ZIPBOUNDS(lb lst, ub lst)
7 print var domain

Algorithm 5: GETALLUB subfunction: returns all the
upper bounds of a backbone variable

1 GETALLUB(F, var)
2 Fr ← RENAMEVAR(F )
3 F ′ = F ∧ ∀Var(Fr) \ {varr}.¬Fr ∧ (varr = var + 1)
4 ub lst← ∅
5 while true do
6 (st ,m)← SOLVE(F ′)
7 if not st then
8 break
9 val = m[var]

10 ub lst = ub lst ∪ {val}
11 F ′ = F ′ ∧ (var 6= val)

12 return ub lst

It is interesting to point out that our algorithms are able to
identify intervals that are not possible to compute when the
theory is encoded as a propositional formula and backbone
literals are extracted from that. Suppose, for example, that we
have a backbone variable x such that x ≥ 6 and x ≤ 8.
So the set of admissible values for x is {6, 7, 8}. This can
be represented in binary as {0110, 0111, 1000}, that clearly
contains no backbone literals.

V. EXPERIMENTAL RESULTS

We empirically evaluate instantiations of the two proposed
algorithms, BB-OPT and BB-Q, for computing generalized
backbones in the context of the quantifier-free SMT theories
of linear integer arithmetic and bit vectors. For this, we

Algorithm 6: ZIPBOUNDS subfunction: convolves the lists
of computed lower and upper bounds into a list of intervals

1 if lb lst[0] > ub lst[0] then
2 lb lst← {−∞} ∪ lb lst
3 if lb lst[−1] > ub lst[−1] then
4 ub lst← ub lst ∪ {∞}
5 intervals← ∅
6 for i ∈ {1, . . . , |lb lst|} do
7 intervals← intervals ∪ {(lbi, ubi)}
8 return intervals

Here and following the standard notation of most scripting programming
languages (e.g. Bash, Perl, Ruby, Python, etc.), index [−1] is used to denote
the last element of a list.

implemented BB-OPT and BB-Q for both of these theories,
using z3 [40] as the backend SMT solver. Here we present
a comparison of the running time performance of the two
proposed approaches. The experiments were run under Ubuntu
Linux on Intel Xeon E5540 2.53-GHz processors with 32 GB
of RAM. The per-instance time limit and memory limit was
set to 1800 seconds and 4 GB, respectively.

A. Results on LIA Formulas

We evaluated the performance of the two algorithms on
a total of 489 LIA instances. The instances were obtained
from two sources: from the benchmark set proposed in [41],
and from the benchmark set QF_LIA from the SMT-LIB
benchmark library (http://smtlib.cs.uiowa.edu/benchmarks.shtml).
The benchmark set proposed in [41] was generated by the
program analysis tool Compass [42]. The instances considered
are those on which at least one of the two algorithms, BB-OPT
and BB-Q, was able to finish.

The plot in Figure 2, with the number of instances solved
by the individual algorithms under different per-instance time
limits, shows that BB-OPT outperforms BB-Q: BB-Q timeouts
on 12 instances while BB-OPT is able to determining the
backbone of each of the instance. The advantage of BB-OPT
on BB-Q can be attributed to the hardness of the quantified
formulas that BB-Q has to deal with. Or, at least in the
context of LIA, the optimization algorithm implemented in z3

http://smtlib.cs.uiowa.edu/benchmarks.shtml


Figure 1: Comparison of the running times of BB-OPT and BB-Q
on LIA formulas

Figure 2: Number of instances solved by BB-OPT and BB-Q under
different per-instance time limits on LIA formulas

appears to perform more efficiently. The scatter plot depicted
in Figure 1 highlights how on most of the instances BB-OPT
outperforms BB-Q, apart from a few exceptions.

B. Results on BV Formulas

For evaluating the relative performance of BB-OPT and
BB-Q on bit-vector formulas, we used a total of 454 in-
stances from the benchmark set QF_BV from the SMT-LIB
benchmark library (http://smtlib.cs.uiowa.edu/benchmarks.shtml).
The final benchmark set includes those instances for which
at least one of the two solvers was able to compute all the
backbone variables within 1800 seconds. Figure 3 shows a
comparison between BB-Q and BB-OPT. As one can see, the
two solvers perform quite similarly on most of the instances.

Figure 3: Comparison of the running times of BB-OPT and BB-Q
on BV formulas

Figure 4: Number of instances solved by BB-OPT and BB-Q under
different per-instance time limits on BV formulas

However, on a non negligible set of instances BB-Q is able to
output the backbone in less time. On the other hand, BB-
OPT exhibits a more robust and stable behaviour in terms
of performance. This is particularly evident when looking at
Figure 4. In particular, BB-Q timeouts on 4 instances, while
BB-OPT is able to determine the backbone of each of them.

VI. CONCLUSIONS

We proposed a generalized notion of backbone variables,
covering a range of constraint satisfaction languages, and pro-
posed two generic algorithms for computing such generalized
backbones. For concreteness, we illustrated the algorithms in
the realm of SMT, implemented them for two central SMT
theories, the quantified-free theories of linear integer arith-

http://smtlib.cs.uiowa.edu/benchmarks.shtml


metic and bit vectors, and empirically evaluated the relative
performance of the algorithms on LIA and BV benchmarks.
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