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Abstract

We study descriptive complexity of counting complexity classes in the range from #P to # · NP.
A corollary of Fagin’s characterization of NP by existential second-order logic is that #P can be
logically described as the class of functions counting satisfying assignments to free relation variables
in first-order formulae. In this paper we extend this study to classes beyond #P and extensions
of first-order logic with team semantics. These team-based logics are closely related to existential
second-order logic and its fragments, hence our results also shed light on the complexity of counting
for extensions of first-order logic in Tarski’s semantics. Our results show that the class # ·NP can be
logically characterized by independence logic and existential second-order logic, whereas dependence
logic and inclusion logic give rise to subclasses of # · NP and #P, respectively. We also study
the function class generated by inclusion logic and relate it to the complexity class TotP ⊆ #P.
Our main technical result shows that the problem of counting satisfying assignments for monotone
Boolean Σ1-formulae is # ·NP-complete with respect to Turing reductions as well as complete for
the function class generated by dependence logic with respect to first-order reductions.
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19:2 Counting of Teams in First-Order Team Logics

1 Introduction

The question of the power of counting arises in propositional and predicate logic in a
number of contexts. Counting the number of satisfying assignments for a given propositional
formula, #SAT, is complete for Valiant’s class #P of functions counting accepting paths
of nondeterministic polynomial-time Turing machines [32]. Valiant also proved that #SAT
even remains complete when restricted to monotone 2CNF-formulae.

The class #P can be seen as the counting analogue of NP, which was shown by Fagin
[11] to correspond to existential second order logic, where the quantified relation encodes
accepting computation paths of NP-machines. Hence, if we define #FOrel to count satisfying
assignments to free relational variables in first-order (FO-) formulae, we obtain #FOrel = #P.
This result has been refined to prefix classes of FO showing, e.g., that #Πrel

2 = #P [30].
If we define #FOfunc in the same fashion as #FOrel except that we count assignments

to function variables instead of relation variables, then obviously #FOfunc = #P. The
situation changes for the prefix classes, though. In particular, unlike for #Πrel

1 , it holds that
#Πfunc

1 = #P, and, remarkably, also arithmetic circuit classes like #AC0 can be characterized
in this context [7].

In this paper we consider a different model-theoretic approach to the study of counting
processes using so-called team-based logics. In these logics, formulae with free variables are
evaluated not for single assignments to these variables but for sets of such assignments (called
teams). Logics with team semantics have been developed for the study of various dependence
and independence concepts important in many areas such as (probabilistic) databases and
Bayesian networks (see, e.g. [16, 5, 15]) for which model counting is an important inference
task (see, e.g., [3, 27]). In addition, team-based logics have interesting connections to a wide
range of areas such as formal semantics of natural language [4], social choice theory [28], and
quantum information theory [18].

In team semantics, a first-order formula is satisfied by a team if and only if all its members
satisfy the formula individually. Interest in teams stems from the introduction of different
logical atoms describing properties of teams, called team atoms, such as the value of a
variable being functionally dependent on other variables (characterized by the dependence
atom =(x̄, y)), a variable being independent from other variables (characterized by the
independence atom ȳ⊥x̄z̄), and the values of a variable occurring as values of some other
variable (characterized by the inclusion atom x̄ ⊆ ȳ), etc. ([31, 14, 12]).

We initiate in this paper the study of counting for team-based logics. In our proofs we
utilize the known correspondences between team-based logics and existential second-order
logic (Σ1

1) and its fragments (see Theorem 2). We want to stress that our results are also
novel for existential second-order logic and its fragments, and that there is no natural way to
carry out the study of the function class generated by inclusion logic, that is, FO extended
by the inclusion atom, in Tarskian semantics.

We define #FOteam to be the class of functions counting teams that satisfy a given
FO-formula, and similarly for extensions of FO by team atoms. Making use of different team
atoms, we give a characterization of # ·NP. While it is relatively easy to see that with every
finite set A of NP-definable team atoms, the class #FO(A)team stays a subclass of # ·NP
(Toda’s generalization of #P, see [17] for a survey of counting classes like these), we show
that FO extended with the independence atom is actually sufficient to characterize the full
class # ·NP:

#FO(⊥)team = #Σ1
1 = # ·NP.
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The situation with inclusion logic and dependence logic is more complex due to their
strong closure properties: satisfaction of formulae is closed under union for inclusion logic
and is closed downwards for dependence logic. We show that #FO(⊆)team is a subclass of
TotP, which is a class of counting problems with easy decision versions. Note that TotP is
a strict subclass of #P unless P = NP and consequently the same holds for #FO(⊆)team.
Furthermore, #FO(=(. . . ))team is a subclass of # ·NP, which we believe to be strict as well.
Interestingly, both classes contain complete problems from their respective superclasses. In
establishing this result for dependence logic, we introduce an interesting class of monotone
quantified Boolean formulae and show that the corresponding counting problem where
the all-0-assignment is not counted, #Σ1CNF−∗ , is # · NP-complete. In order to prove
# ·NP-completeness we also show that the more natural problem of counting all satisfying
assignments of the same class of formulae is # ·NP-complete by introducing a new technique
of simultaneous reductions between pairs of counting problems, which we hope will also be
useful in other contexts.

For inclusion logic we show that the well-known #P-complete problem #2CNF+ is
in #FO(⊆)team and that the problem of counting assignments for existentially quantified
dual-Horn formulae is hard for #FO(⊆)team.

In related previous work, so-called weighted logics have been used to logically characterize
counting complexity classes [1], and the decision-problem analogue PP of #P and the
counting hierarchy have been logically characterized in [21, 23, 6]. Counting classes from
circuit complexity beyond #AC0 have been logically characterized in [8].

Due to space restrictions, we only give proof sketches for some theorems, and detailed
proofs for all results throughout the paper are deferred to the full version of this paper.

2 Definitions and Preliminaries

First-order Logic and Team Semantics

Let us start by recalling the syntax of first-order logic (FO). In this work, we only consider
relational vocabularies (i.e., vocabularies with no function or constant symbols), and thus the
only first-order terms are variables. Formulae of first-order logic are defined by the following
grammar:

ϕ ····= ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ | R(x) |¬R(x) | x = y | x 6= y (?)

where x, y are variables, R is a relation symbol, and x is a tuple of the appropriate number
of variables.

The set of free variables of a formula ϕ is defined as usual, and we sometimes write
ϕ(x1, . . . , xk) to emphasize that the free variables of ϕ are among x1, . . . , xk. A formula with
no free variable is called a sentence. For any k, the fragment Σk of FO consists of all formulae
of the form ∃x1∀x2 . . . Qxkϕ, where ϕ is quantifier-free and Q is either ∃ or ∀ depending on
whether k is odd or even; similarly, the fragment Πk is defined as the class of all formulae
∀x1∃x2 . . . Qxkϕ in prenex normal form with a quantifier prefix with k alternations starting
with universal quantifiers.

We only consider finite structures with a finite relational vocabulary σ. Denote the class
of all such structures by STRUC[σ], and let dom(A) denote the universe of a σ-structure A.
We will always use structures with universe {0, 1, . . . , n−1} for some n ∈ N\{0}. We assume
that our structures contain a built-in binary relation ≤ and ternary relations +,× with the
usual interpretation, i.e., ≤ is interpreted in a model of any size as the “less than or equal to”
relation on N, + is interpreted as addition and × as multiplication. We write encσ(A) for
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19:4 Counting of Teams in First-Order Team Logics

the standard binary encoding of a σ-structure A (see e.g., [20]): Relations are encoded row
by row by listing their truth values as 0’s and 1’s. The whole structure is encoded by the
concatenation of the encodings of its relations.

We assume that the reader is familiar with the usual Tarskian semantics for first-order
formulae, in which formulae are evaluated with respect to single assignments of a structure.
In this paper, we also consider so-called team semantics for first-order formulae, in which
formulae are evaluated with respect to teams. A team is a set of assignments of a structure,
that is, a set of functions s : {x1, . . . , xk } → dom(A), where we call {x1, . . . , xk } the domain
of the team. Note that the empty set ∅ is a team, called empty team, and the singleton {∅}
containing only the empty assignment is also a team. We denote by team(A, (x1, . . . , xk)) the
set of all teams over a structure A with the domain {x1, . . . , xk}. Due to certain connections
between team logics and second-order logic it is often helpful to view teams as relations. Let
A be a structure and X a team of A with domain {x1, . . . , xk}. A and X induce the k-ary
relation rel(X) on dom(A) defined as

rel(X) ··= {(s(x1), . . . , s(xn)) | s ∈ X}.

Furthermore, for any subset V ⊆ {x1, . . . , xk} of variables we define

X
∣∣
V
··= {s

∣∣
V
| s ∈ X},

the restriction of team X to domain V .
We define inductively the notion of a team X with domain {x1, . . . , xk} of a structure A

with A ··= dom(A) satisfying an FO-formula ϕ(x1, . . . , xk), denoted by A |=X ϕ, as follows:
A |=X α for α an atomic formula if and only if for all s ∈ X, A |=s α in the usual
Tarskian semantics sense.
A |=X ϕ ∨ ψ if and only if there are teams Y, Z ⊆ X such that Y ∪ Z = X, A |=Y ϕ and
A |=Z ψ.
A |=X ϕ ∧ ψ if and only if A |=X ϕ and A |=X ψ.
A |=X ∃xϕ if and only if there exists a function F : X → P(A)\{∅}, called supplementing
function, such that A |=X[F/x] ϕ, where

X[F/x] = {s[a/x] | s ∈ X and a ∈ F (s)} and s[a/x](y) =
{
a, if x = y,

s(y), else.

A |=X ∀xϕ if and only if A |=X[A/x] ϕ, where X[A/x] = {s[a/x] | s ∈ X and a ∈ A}.

A sentence ϕ is said to be true in A, written A |= ϕ, if A |={∅} ϕ.
FO-formulae ϕ are flat over team semantics, i.e., A |=X ϕ, if and only if A |=s ϕ for all

s ∈ X. In this sense, team semantics is conservative over FO-formulae. We now extend
first-order logic by sets of atomic formulae which are not flat. For any sequence x of variables
and variable y, the string =(x, y) is called a dependence atom. For any sequences x, y, z of
variables, the string y ⊥x z is called an independence atom. For any two sequences x and
y of variables of the same length, the string x ⊆ y is called an inclusion atom. The team
semantics of these atoms is defined as follows:
A |=X=(x, y), if and only if for all s, s′ ∈ X, if s(x) = s′(x), then s(y) = s′(y).
A |=X y⊥xz if and only if for all s, s′ ∈ X such that s(x) = s′(x), there exists s′′ ∈ X
such that s′′(x) = s(x), s′′(y) = s(y) and s′′(z) = s′(z).
A |=X x ⊆ y if and only if for all s ∈ X there is s′ ∈ X such that s(x) = s′(y).
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For any subset A ⊆ {=(. . . ),⊥,⊆}, we define FO(A) as first-order logic extended by the
respective atoms, and refer to such a logic as team-based logic. More precisely we extend the
grammar (?) by adding a rule for each atom in A. For example for FO({⊆}) we add the rule

ϕ ····= x ⊆ y,

where x, y are tuples of variables. For convenience, we often omit the curly brackets and
write for example FO(⊆) instead of FO({⊆}).

The team-based logic FO(=(. . . )) is known in the literature as dependence logic [31],
FO(⊥) as independence logic [14] and FO(⊆) as inclusion logic [12]. We recall some basic
properties of these logics from [31, 14, 12]: Formulae of FO(=(. . . )) are closed downwards,
i.e., A |=X ϕ and Y ⊆ X implies A |=Y ϕ, formulae of FO(⊆) are closed under unions, i.e.,
A |=X ϕ and A |=Y ϕ implies A |=X∪Y ϕ, and formulae of any of these logics have the empty
team property, i.e., A |=∅ ϕ always holds.

The above atoms expressing team properties can be generalized, as we will do next. Let
us first recall below the definition of generalized quantifiers, where we follow the notations
from [22, 26].

I Definition 1. Let i1, . . . , in (n > 0) be a sequence of positive integers, and σ a vocabulary
consisting of an ij-ary relation symbol for each 1 ≤ j ≤ n. A generalized quantifier of type
(i1, . . . , in) is a class C of σ-structures (A,B1, . . . , Bn) such that the following conditions
hold:
1. A 6= ∅ and for each 1 ≤ j ≤ n, we have Bj ⊆ Aij .
2. C is closed under isomorphisms, that is, if (A′, B′1, . . . , B′n) ∈ C is isomorphic to

(A,B1, . . . , Bn), then (A′, B′1, . . . , B′n) ∈ C.

Let Q be a generalized quantifier of type (i1, . . . , in). Let us extend the syntax of first-order
logic with an expression AQ(x1, . . . , xn), where each xj is a tuple of variables of length ij
and Vars(xi) is the set of variables in xi. We call AQ a generalized (dependency) atom (of
type (i1, . . . , in)), and its team semantics is defined as:

A |=X AQ(x1, . . . , xn) if and only if(rel(X
∣∣
Vars(x1)), . . . , rel(X

∣∣
Vars(xn))) ∈ Q

A,

where QA = {(B1, . . . , Bn) | (dom(A), B1, . . . , Bn) ∈ Q}.

We say that a generalized dependency atom AQ is NP-definable if there is an NP-algorithm
that decides for a given structure A and a given team X whether A |=X AQ(x1, . . . , xn)
holds or not. A set A of generalized atoms is NP-definable if every a ∈ A is NP-definable.
For example, the set A = {=(. . . ),⊥,⊆} is NP-definable.

Many results in this paper are based on the expressive power of the logics defined above,
that we shall now recall. We first recall some notions and notations. Existential second-order
logic (Σ1

1) consists of formulae of the form ∃R1 . . . ∃Rkϕ, where ϕ is an FO-formula. Let σ be
a vocabulary. We write σ(R) for the vocabulary that arises by adding a fresh relation symbol
R to σ, and we sometimes write ϕ(R) to emphasize that the relation symbol R occurs in the
σ(R)-formula ϕ. If A is a σ-structure, we write (A, Q) for A expanded into a σ(R)-structure
where the new k-relation symbol R is interpreted as Q ⊆ dom(A)k. A σ(R)-sentence ϕ(R)
of Σ1

1 is said to be downward monotone with respect to R if (A, Q) |= ϕ(R) and Q′ ⊆ Q

imply (A, Q′) |= ϕ(R). It is known that ϕ(R) is downward monotone with respect to R if
and only if ϕ(R) is equivalent to a sentence where R occurs only negatively (see e.g., [24]).

MFCS 2019



19:6 Counting of Teams in First-Order Team Logics

I Theorem 2 (see [12, 24, 13]).
1. For every σ-formula ϕ of FO(⊥), there is an σ(R)-sentence ψ(R) of Σ1

1 such that for all
σ-structures A and teams X,

A |=X ϕ ⇐⇒ (A, rel(X)) |= ψ(R). (1)

Conversely, for every σ(R)-sentence ψ(R) of Σ1
1, there is a σ-formula ϕ of FO(⊥) such

that (1) holds for all σ-structures A and non-empty teams X.
2. The same as the above holds for formulae of FO(=(. . . )) as well, except that in both

directions for FO(=(. . . )) the relation symbol R is assumed to occur only negatively in
the sentence ψ(R).

3. In particular, over sentences both FO(⊥) and FO(=(. . . )) are expressively equivalent
to Σ1

1, in the sense that every σ-sentence of FO(⊥) (or FO(=(. . . ))) is equivalent to a
σ-sentence ψ of Σ1

1, i.e., for any σ-structure A,

A |= ϕ ⇐⇒ A |= ψ,

and vice versa. As a consequence of Fagin’s Theorem (see [11]), over finite structures
both FO(⊥) and FO(=(. . . )) capture NP.

4. For any σ-formula ϕ(x1, . . . , xk) of FO(⊆), there exists a σ(R)-formula ψ(R) of positive
greatest fixed point logic (posGFP) such that for all σ-structures A and teams X,

A |=X ϕ ⇐⇒ A, rel(X) |=s ψ(R) for all s ∈ X;

and vice versa. In particular, over sentences FO(⊆) is expressively equivalent to posGFP.
As a consequence of Immerman’s Theorem (see [19]), over finite structures, FO(⊆) is
expressively equivalent to least fixed point logic (LFP). Thus, by [19, 34], over ordered
finite structures, FO(⊆) captures P.

5. Let ϕ(R) be a myopic σ-formula, that is, ϕ(R) = ∀x(R(x) → ψ(R, x)), where ψ is a
first order σ-formula with only positive occurrences of R. Then there exists a σ-formula
χ ∈ FO(⊆) such that for all σ-structures A and all teams X:

A |=X χ(x)⇔ A, rel(X) |= ϕ(R).

Propositional and Quantified Boolean formulae

In this paper, we will also consider certain classes of propositional and quantified Boolean
formulae. As usual, we use CNF to denote the class of propositional formulae in conjunctive
normal form and k-CNF to denote the class of propositional formulae in conjunctive normal
form where each clause contains at most k literals. A formula in CNF is in the class DualHorn
if each of its clauses contains at most one negative literal.

For a class C of Boolean formulae, we denote by Σ1C the class of quantified Boolean
formulae in prenex normal form with only existential quantifiers where the quantifier-free
part is an element of C.

For a class C of quantified Boolean formulae we denote with C+(resp. C−) the class of
formulae in C whose free variables occur only positively (resp. negatively). For example,
Σ13CNF− consists of all quantified Boolean formulae in prenex normal form with only
existential quantifiers, where the quantifier-free part is in 3CNF and the free variables occur
only negatively. Note that in Boolean formulae all variables are free.
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Counting Problems and Counting Classes

This paper aims to identify model-theoretic characterizations of counting classes in terms of
team-based logics. Let us now recall relevant previous results on the descriptive complexity of
counting problems. We begin by defining the most important complexity classes for counting
problems.

I Definition 3. A function f : {0, 1}∗ → N is in #P if there is a non-deterministic polynomial
time Turing machine M such that for all inputs x ∈ {0, 1}∗,

f(x) is the number of the accepting computation paths of M on input x.

This definition can be generalized as follows.

I Definition 4. Let C be a complexity class. A function f : {0, 1}∗ → N is said to be in # · C
if there are a language L ∈ C and a polynomial p such that for all x ∈ {0, 1}∗:

f(x) = |{y | |y| ≤ p(|x|) and (x, y) ∈ L}|.

Obviously #P = # · P, and it is well known that #P ⊆ # · NP ⊆ # · coNP = #PNP,
where, under reasonable complexity-theoretic assumptions, all these inclusions are strict; see
[17] for a survey of these issues.

I Definition 5. A function f : {0, 1}∗ → N is in TotP if there is a non-deterministic
polynomial time Turing machine M such that for all inputs x ∈ {0, 1}∗,

f(x) is the number of the computation paths of M on input x minus 1.

Subtracting 1 from the number of computation paths is neccessary since otherwise TotP-
functions could never map to 0. In [29] it was shown that TotP is the closure with respect to
parsimonious reductions of self-reducible counting problems from #P whose decision version
is in P. It follows that TotP ( #P unless P = NP.

Next, we define the relevant logical counting classes.

I Definition 6. A function f : {0, 1}∗ → N is said to be in #FOrel if there is a vocabulary
σ with a built-in linear order ≤, and an FO-formula ϕ(R1, . . . , Rk, x1, . . . , x`) over σ with
free relation variables R1, . . . , Rk and free individual variables x1, . . . , x` such that for all
σ-structures A,

f(encσ(A)) = |{(S1, . . . , Sk, c1, . . . , c`) : A |= ϕ(S1, . . . , Sk, c1, . . . , c`}|.

If the input of f is not of the appropriate form, we assume the output to be 0.

In the same fashion, subclasses of #FOrel, such as #Σrel
k and #Πrel

k for arbitrary k, are
defined by assuming that the formula ϕ in the above definition is in the corresponding
fragments Σk and Πk.

Recall the relationship between the above defined logical counting classes and #P:

I Theorem 7 ([30]). #Σrel
0 = #Πrel

0 ⊂ #Σrel
1 ⊂ #Πrel

1 ⊂ #Σrel
2 ⊂ #Πrel

2 = #FOrel = #P.
Furthermore, #Σrel

0 ⊆ FP.

Complete problems (i.e., hardest problems) for counting classes have also been studied
extensively. Let us now recall three reductions that are relevant in this study. Let f and h be
counting problems. We say that f is parsimoniously reducible to h if there is a polynomial-
time computable function g such that f(x) = h(g(x)) for all inputs x, f is Turing reducible
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19:8 Counting of Teams in First-Order Team Logics

to h if f ∈ FPh, and f is metrically reducible to h if there are polynomial-time computable
functions g1, g2 such that f(x) = g2(h(g1(x)), x) for all inputs x. Clearly, metric reductions
are Turing reductions with one oracle query. Besides these three familiar reductions we
now define another type of reductions, called first-order reductions. First recall that for
any two vocabularies σ1, σ2, an FO-interpretation (or a first-order query) is a function
I : STRUC[σ1]→ STRUC[σ2], represented as a tuple I = (ϕ0, ϕR1 , . . . , ϕR`

) of FO-formulae
over σ1 with k free variables, that maps any structure A ∈ STRUC[σ1] to another structure
I(A) ∈ STRUC[σ2], whose domain is a subset of dom(A)k (i.e., a set of k-ary tuples of
elements in A) defined by ϕ0 and relations Ri are defined by ϕRi

(see [20] for detailed
discussion). In the team semantics case, we also need to define how teams are transformed by
the interpretation I. The value I(X) is defined in a straightforward way: individual elements
from Ak·m in X are mapped to elements from I(A)m in I(X), where k is the arity of tuples
in the domain of the structure I(A), and m is the arity of the team I(X). Now, we define
first-order reductions via FO-interpretations as follows:

I Definition 8. Let f1, f2 be two functions. We say f1 is first-order reducible or FO-reducible
to f2 (denoted f1 ≤fo f2) if there are vocabularies σ1, σ2 with σ2 = (Ra1

1 , . . . , Ral

l ) and an
FO-interpretation I = (ϕ0, ϕR1 , . . . , ϕR`

), where ϕ0, ϕR1 , . . . , ϕR`
are FO-formulae over σ1,

such that for all A1 ∈ STRUC[σ1], there are k ∈ N and A2 ∈ STRUC[σ2] with

dom(A2) = {(x1, . . . , xk) | A1 |= ϕ0(x1, . . . , xk)}

and for all i ≤ k

Ri((x1
1, . . . , x

k
1), . . . , (x1

ai
, . . . , xkai

))⇔ A1 |= ϕRi(x1
1, . . . , x

k
1 , . . . , x

1
ai
, . . . , xkai

)

and f1(encσ1(A1)) = f2(encσ2(A2)).

It is often possible to find complete problems in counting classes by counting satisfying
assignments for certain (quantified) Boolean formulae. Let F be a class of quantified Boolean
formulae. Define the problem #F as follows:

Problem: #F
Input: Formula ϕ ∈ F

Output: Number of satisfying assignments of ϕ

For example, #SAT, the function counting the number of satisfying assignments for proposi-
tional formulae, as well as its restriction #3CNF, are complete for #P under parsimonious
reductions, while #2CNF+ and #2CNF− are complete for #P under Turing reductions.
Observe that for all Σ1CNF-formulae ϕ it holds that the number of satisfying assignments
is equal to that of the formula ϕ̃ obtained by negating all literals in all clauses in ϕ. Thus,
#Σ1CNF+ and #Σ1CNF− are in a sense the same problem. In fact all our results for #C+

(for a class of formulae C) also hold for #C− and vice versa. This also holds for #Horn and
#DualHorn. Note that Aziz et al [2] studied the problem #Σ1SAT under the name projected
model counting and observed that it is contained in # ·NP.

Next we introduce the central class for this paper, a class of counting problems in
the context of team-based logics. For any set A of generalized dependency atoms, we
define #FO(A)team to consist of those functions counting non-empty satisfying teams for
FO(A)-formulae. Note that by the empty team property of dependence, independence, and
inclusion logic formulae any function that counts all satisfying teams (including the empty
team) could not attain the value 0.
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I Definition 9. For any set A of generalized atoms, #FO(A)team is the class of all functions
f : {0, 1}∗ → N for which there is a vocabulary σ with a built-in linear order ≤ and an
FO(A)-formula ϕ(x) over σ with a tuple x of free first-order variables such that for all
σ-structures A,

f(encσ(A)) = |{X ∈ team(A, (x)) : X 6= ∅ and A |=X ϕ(x)}|.

We denote by fϕ the function defined by ϕ.

I Example 10. As an example for how to work with team semantics in a counting context,
we show that the #P-complete problem #2CNF+ is contained in both #FO(=(. . . ))team

and #FO(⊆)team. Let ϕ(x1, . . . , xn) =
∧
Ci ∈ 2CNF+, where each Ci = `i,1 ∨ `i,2 and

`i,j ∈ {x1, . . . , xn}. Consider the vocabulary τ2CNF+ = {C2}. We encode the formula
ϕ(x1, . . . , xn) by the structure A = ({x1, . . . , xn}, CA), where (x, y) ∈ CA if and only if the
clause x ∨ y occurs in ϕ.

We show that #2CNF+ can be defined by counting non-empty teams (which correspond
to assignments mapping at least one variable to true) satisfying suitable formulae from FO(⊆)
as well as FO(=(. . . )). For this purpose, we encode Boolean assignments to the variables
x1, . . . , xn by teams over one variable t. Since the universe of our structures is exactly the
set of variables of the formula ϕ(x1, . . . , xk) in question, assignments to the variables can be
encoded by inclusion of the values of the variables xi in t in the team.

Now, the following FO(⊆)-formula defines #2CNF+:

ϕ⊆(t) = ∀x∀y(¬C(x, y) ∨ x ⊆ t ∨ y ⊆ t).

Intuitively, this formula states that if a pair (x, y) of variables in ϕ occur in the same clause
(i.e., C(x, y) holds), then the value of one of the two variables x, y is contained in the team,
or it is set to true.

To define the same problem in FO(=(. . . )) where inclusion atoms are not any more
available in the language, we need to encode assignments differently. We now encode
variables xi being set to 1 by not including them in the team over the variable t. The
FO(=(. . . ))-formula that defines #2CNF+ is the following:

ϕ=(... )(t) =∃min∀z min ≤ z∧

∀x∀y∃x′∃y′
(

=(x, x′)∧ =(y, y′) ∧ (¬x = y ∨ x′ = y′)∧

(x 6= t ∨ x′ = min) ∧ (¬C(x, y) ∨ x′ 6= min ∨ y′ 6= min)
)
.

Intuitively, in the above formula we use existential quantifications together with dependence
atoms to express that x′ is a function of x, and this function f is guaranteed in the formula
to be consistent with the assignment encoded by the team. We shall interpret a function
mapping to the minimal element of the universe (encoded by the variable min in the formula)
as an assignment to 0, and a function mapping to any other element as an assignment to
1. Now, the second last conjunct in our formula states that all variables that occur as
values of t in the team (which correspond to those xi set to 0) are mapped by our function
f to the minimal element. Finally, the last conjunct in our formula checks whether the
2CNF-formula is satisfied by the assignment encoded by f . Note that in order to talk about
the assignment to two variables simultaneously, in the above formula we actually use two
(equivalent) functions to encode the same assignment.

MFCS 2019
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3 A Characterization of the Class # · NP

In this section, we characterize the class # · NP in terms of team-based logics. Our first
result shows that # · NP is the largest class attainable by counting teams in team-based
logics FO(A), as long as all generalized atoms in A are NP-definable.

I Theorem 11. For any set A of NP-definable generalized atoms, #FO(A)team ⊆ # ·NP.

Proof Sketch. Let ϕ(x) ∈ #FO(A)team. To show that fϕ ∈ # ·NP we note that fϕ can be
computed by counting on input encσ(A) the number of teams X such that A |=X ϕ(x). It
is thus sufficient to show that the letter can be checked in NP on input (encσ(A), X). In
this proof, the only places that involve nondeterminism are disjunctions (guess the split),
existential quantifiers (guess the supplementing function) and NP-definable generalized atoms
(checkable in NP by definition). J

Next, we prove the converse inclusion of the above theorem by proving a stronger result:
The whole class #·NP can actually be captured by a single generalized atom, the independence
atom.

I Theorem 12. # ·NP ⊆ #FO(⊥)team

Proof Sketch. It is sufficient to show # ·NP ⊆ #Σ1
1 since by Theorem 2.1 we have #Σ1

1 =
#FO(⊥)team.

Let f ∈ # ·NP. Then there are a polynomial p and L ∈ NP such that

f(x) = |{y | |y| = p(|x|), (x, y) ∈ L}|.

We encode tuples (x, y) of strings with |y| = p(|x|) as structures A(x,y) by encoding the string
x as a structure Ax in the standard way, and y as a unique relation Ry over dom(Ax)k for
some k ∈ N. Finally, Fagin’s theorem gives a Σ1

1-sentence ϕ such that for all x,

|{y | |y| = p(|x|), (x, y) ∈ L}| = |{y | A(x,y) |= ϕ}| = |{R | Ax |= ϕ(R)}|. J

I Remark 13. The class #P can also be characterized by counting teams. A variant L of
dependence logic that defines exactly the first-order definable team properties in the sense of
Theorem 2 was introduced in [25]. Since #P = #FO (see [30]), this logic L captures #P.
We do not present the details of L in this paper, but only note that L has weaker versions of
quantifiers and disjunction instead of the standard ones as defined in Section 2.

4 Counting Teams in Dependence and Inclusion Logic

In this section, we study the smaller classes #FO(=(. . . ))team and #FO(⊆)team. We begin
by showing that the # · NP-complete problem #Σ1CNF−∗ , defined below, is contained in
#FO(=(. . . ))team. We will show # ·NP-completeness for #Σ1CNF−∗ in Theorem 26.

Problem: #Σ1CNF−
∗

Input: Formula ϕ(x1, . . . , xk) ∈ CNF−

Output: Number of satisfying assignments of ϕ, dis-
regarding the all-0-assignment

Note that the all-0-assignment is the assignment mapping each variable to 0.

I Theorem 14. #Σ1CNF−∗ ∈ #FO(=(. . . ))team.
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We will show that the above problem is actually complete for #FO(=(. . . ))team with
respect to first-order reductions. First-order reductions turn out to be particularly natural
in our context, as all our classes are closed under these reductions.

I Theorem 15. #FO(A)team is closed under first-order reductions for A ⊆ {=(. . . ),⊥,⊆}.

Next we show that the problem #Σ1CNF−∗ is hard and thus complete for #FO(=(. . . ))team

under first-order reductions. Our proof technique is similar to that of [9], where the data
complexity of inclusion logic is shown to be polynomial.

I Theorem 16. #Σ1CNF−∗ is complete for #FO(=(. . . ))team with respect to first-order
reductions.

Having proven our results for dependence logic FO(=(. . . )), we now turn to inclusion
logic FO(⊆). We first prove that #FO(⊆)team is a subclass of #P.

I Theorem 17. #FO(⊆)team ⊆ #P.

The above theorem naturally gives rise to the question whether #FO(⊆)team actually
coincides with #P. However, we identify in the next lemma a particular property of
#FO(⊆)team functions, making this equivalence unlikely to hold.

I Lemma 18. Let ϕ(x) ∈ FO(⊆) be a formula over a vocabulary σ. Then the language
L ··= {w | fϕ(w) > 0} is in P.

I Corollary 19. If P 6= NP, then #FO(⊆)team 6= #P.

Theorem 17 and Corollary 19 indicate that #FO(⊆)team is most likely a strict subclass
of #P. Nevertheless, we show in the next theorem that #FO(⊆)team contains the problem
#DualHorn which is complete for #P with respect to Turing reductions. It is unknown
whether #DualHorn ∈ #FO(=(. . . )).

I Theorem 20. #DualHorn ∈ #FO(⊆).

We continue by exhibiting a hard problem for the class #FO(⊆)team. It is an open
question whether the problem is definable by an inclusion logic formula.

I Theorem 21. #Σ1DualHorn is hard for #FO(⊆)team with respect to first-order reductions.

It seems to us that #FO(⊆) is a strict subclass of #P and the decision versions of
problems in #FO(⊆) are in P. For this reason, we now investigate relationship between
#FO(⊆) and the subclass TotP. We show that #FO(⊆) is a subclass of TotP and that TotP
contains #Σ1DualHorn. We conjecture that these classes do not coincide, but this question
remains open.

I Theorem 22. #FO(⊆) ⊆ TotP

I Theorem 23. #Σ1DualHorn ∈ TotP

5 Complete Problems for # · NP

In this section we show that #Σ1CNF−∗ is # ·NP-complete. To this end, we first observe that
#Σ1CNF is # ·NP-complete. Afterwards we show that the smaller class #Σ1CNF− remains
# ·NP-complete by adapting the proof for #P-completeness of #2CNF+ given by Valiant
[33]. We conclude this section with a reduction from #Σ1CNF− to #Σ1CNF−∗ showing the
# ·NP-completeness of the latter.

MFCS 2019
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I Lemma 24. #Σ1SAT and #Σ1CNF are # ·NP-complete under parsimonious reductions.

I Theorem 25. #Σ1CNF− is # ·NP-complete under Turing reductions.

Proof Sketch. Membership follows from 24, since #Σ1CNF− is a special case of #Σ1CNF.
For the hardness proof, we show a chain of reductions adapted from the one used by Valiant
[33] to show the #P-completeness of #2CNF+. Recall that the main steps of Valiant’s chain
of reductions are:

#3CNF ≤ PERMANENT ≤ #PERFECT-MATCHING
≤ #IMPERFECT-MATCHING ≤ #2CNF+.

Our idea is to add a Σ13CNF-formula to the input of each problem in the above chain of
reductions, and to express certain properties of the respective inputs in the added formula.
We then count only the solutions to the input that also satisfy the added formula.

As part of the chain of reductions we will make use of the following problem:

Problem: #(3CNF,Σ13CNF−)
Input: Formula ϕ(x1, . . . , xk) ∈ 3CNF and for-

mula ψ(x1, . . . , xk) ∈ Σ13CNF−

Output: Number of satisfying assignments of ϕ ∧ ψ

We will reduce #Σ13CNF to #(3CNF,Σ13CNF−), and then apply the above chain of
reductions (with added formulae, as described above). This results in a reduction to
#(2CNF−,Σ13CNF−), defined analogously to the above problem. Finally it is straightfor-
ward to show #(2CNF−,Σ13CNF−) ≤ #Σ1CNF− using the fact that for ϕ ∈ 2CNF− and
ψ ∈ Σ13CNF−, the prenex normal form of ϕ ∧ ψ is a Σ13CNF−-formula. We conclude by
sketching the first reduction.

#Σ13CNF ≤ #(3CNF,Σ13CNF−): We construct for any ϕ ∈ Σ13CNF two formulae
ϕ′ ∈ 3CNF and ψ ∈ Σ13CNF− such that #Σ13CNF(ϕ) = #(3CNF,Σ13CNF−)(ϕ′, ψ).

Assume ϕ = ∃y1 . . . ∃y`
∧
Ci ∧

∧
Di ∧

∧
Ei, where clauses Ci only contain free variables

of ϕ, clauses Di contain only bound variables of ϕ, and clauses Ei contain at least one free
and at least one bound variable of ϕ. We can now simply add all clauses Ci to ϕ′ and all
clauses Di to ψ.

To handle the remaining clauses, we add for each Ei a new free variable ei. We then
express in ϕ′ that ei is true if and only if clause Ei is not satisfied by the assignment to the
free variables, and express in ψ that Ei has to be satisfied by the assignment to the bound
variables if ei is true. The former does not involve any bound variables and for the latter,
the only needed free variable is ei, which only occurs negatively. J

Because of the special role of the empty team in the team logics we consider, we will also
show the completeness for another version of #Σ1CNF−, denoted as #Σ1CNF−∗ , for which
the all-0-assignment is not counted.

I Theorem 26. The problem #Σ1CNF−∗ is # ·NP-complete under Turing reductions.
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6 Conclusion

In this paper we have studied the following hierarchy of classes defined by counting problems
for team-based logics:

TotP ⊆ #Lteam = #P ⊆ #FO(⊥)team = # ·NP

⊆ ⊆

#FO(⊆)team #FO(=(. . . ))team

We also showed that our classes are closed under first-order reductions and that #FO(⊆)team

and #FO(=(. . . ))team contain complete problems from #P and # · NP, respectively. The
latter problem is even complete for #FO(=(. . . ))team under first-order reductions.

The connection between #FO(=(. . . ))team and the classes #P and # ·NP is not yet clear.
While we know that a complete problem from # ·NP is contained in it, it is open whether
the class coincides with # ·NP, and (if not) whether it contains the class #P. We conjecture
that the answer to both questions is negative, since the defining logic has closure properties
that make it unlikely to contain counting versions of non-monotone problems from #P.

Regarding #FO(⊆)team, the search for a complete problem could be interesting. We
have only showed that the problem #DualHorn is contained in this class and the problem
#Σ1DualHorn is hard for this class, but neither of the problems is known to be complete.

The lower end of our hierarchy deserves further study as well. The class #FOteam (i.e.,
the class with no dependency atoms in the formulae) can be shown to be a subclass of FTC0,
the class of functions computable by families of polynomial size constant depth majority
circuits (see [35]). The circuit-based counting class #AC0, counting proof trees in polynomial
size constant depth unbounded fan-in circuits [35], was characterized in a model-theoretic
manner by counting assignments to free function symbols in certain quantifier-restricted
FO-formulae [7]. A similar quantifier restriction for #FO(A)team, where A consists of the
dependency atom plus a totality atom (that we did not study in the present paper), also
leads to a characterization of #AC0. This suggests that low level counting classes and
circuit classes in the context of counting problems for team-based logics might be worth
studying. Another natural question is to search for generalized dependency atoms that lead
to interesting relations to complexity classes. Besides the aforementioned totality atom,
the constancy or the exclusion [12] atom are worth examining. In particular, it is an open
question to find an atom A such that #FO(A)team = #P. The logic L of [25], though it
satisfies the equality, is not of this form.

In the context of counting complexity theory, an interesting question to study is the
approximability of problems in different classes. In our case, it is unlikely that any of our
classes is efficiently approximable (in the sense of FPRAS): In [10] it was shown that it
is unlikely that the number of satisfying assignments of CSPs can be approximated by an
FPRAS, unless all relations in the constraint language are affine. Since our classes contain
counting problems for classes of formulae which do not admit this property, this result
applies. Consequently, it would be interesting to study restrictions of our full classes to
obtain, possibly, efficiently approximable fragments.

Our proof of the completeness of #Σ1CNF− for # ·NP introduces problems that arise
from “pairing decision problems” and gives simultaneous reductions between such pairs. This
idea might be helpful in other contexts as well; in particular it should lead to more interesting
complete problems for # ·NP or higher levels # ·Σk of the counting polynomial-time hierarchy.
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