286 research outputs found

    The Quest for a Killer App for Opportunistic and Delay Tolerant Networks (Invited Paper)

    Get PDF
    Delay Tolerant Networking (DTN) has attracted a lot of attention from the research community in recent years. Much work have been done regarding network architectures and algorithms for routing and forwarding in such networks. At the same time as many show enthusiasm for this exciting new research area there are also many sceptics, who question the usefulness of research in this area. In the past, we have seen other research areas become over-hyped and later die out as there was no killer app for them that made them useful in real scenarios. Real deployments of DTN systems have so far mostly been limited to a few niche scenarios, where they have been done as proof-of-concept field tests in research projects. In this paper, we embark upon a quest to find out what characterizes a potential killer applications for DTNs. Are there applications and situations where DTNs provide services that could not be achieved otherwise, or have potential to do it in a better way than other techniques? Further, we highlight some of the main challenges that needs to be solved to realize these applications and make DTNs a part of the mainstream network landscape

    In Vivo Evaluation of the Secure Opportunistic Schemes Middleware using a Delay Tolerant Social Network

    Full text link
    Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this paper, we showcase the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment. The feasibility of creating a delay tolerant social network is demonstrated by using SOS to power AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. SOS and AlleyOop Social allow users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi.Comment: 6 pages, 4 figures, accepted in ICDCS 2017. arXiv admin note: text overlap with arXiv:1702.0565

    The heterogeneity of inter-contact time distributions: its importance for routing in delay tolerant networks

    Full text link
    Prior work on routing in delay tolerant networks (DTNs) has commonly made the assumption that each pair of nodes shares the same inter-contact time distribution as every other pair. The main argument in this paper is that researchers should also be looking at heterogeneous inter-contact time distributions. We demonstrate the presence of such heterogeneity in the often-used Dartmouth Wi-Fi data set. We also show that DTN routing can benefit from knowing these distributions. We first introduce a new stochastic model focusing on the inter-contact time distributions between all pairs of nodes, which we validate on real connectivity patterns. We then analytically derive the mean delivery time for a bundle of information traversing the network for simple single copy routing schemes. The purpose is to examine the theoretic impact of heterogeneous inter-contact time distributions. Finally, we show that we can exploit this user diversity to improve routing performance.Comment: 6 page

    Content storage and retrieval mechanisms for vehicular delay-tolerant networks

    Get PDF
    Vehicular delay-tolerant networks (VDTNs) were proposed as a novel disruptive network concept based on the delay tolerant networking (DTN) paradigm. VDTN architecture uses vehicles to relay messages, enabling network connectivity in challenging scenarios. Due to intermittent connectivity, network nodes carry messages in their buffers, relaying them only when a proper contact opportunity occurs. Thus, the storage capacity and message retrieving of intermediate nodes directly affects the network performance. Therefore, efficient and robust caching and forwarding mechanisms are needed. This dissertation proposes a content storage and retrieval (CSR) solution for VDTN networks. This solution consists on storage and retrieval control labels, attached to every data bundle of aggregated network traffic. These labels define cacheable contents, and apply cachecontrol and forwarding restrictions on data bundles. The presented mechanisms gathered several contributions from cache based technologies such as Web cache schemes, ad-hoc and DTN networks. This solution is fully automated, providing a fast, safe, and reliable data transfer and storage management, while improves the applicability and performance of VDTN networks significantly. This work presents the performance evaluation and validation of CSR mechanisms through a VDTN testbed. Furthermore it presents several network performance evaluations and results using the well-known DTN routing protocols, Epidemic and Spray and Wait (including its binary variant). The comparison of the network behavior and performance on both protocols, with and without CSR mechanisms, proves that CSR mechanisms improve significantly the overall network performance

    Impact of content storage and retrieval mechanisms on the performance of vehicular delay-tolerant networks

    Get PDF
    “Copyright © [2010] IEEE. Reprinted from 18th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2010). ISBN: 978-1-4244-8663-2 . This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Vehicular Delay-Tolerant Networking (VDTN) is a new disruptive network architecture based on the concept of delay tolerant networks (DTNs). VDTNs handle non-real time applications using vehicles to carry messages on their buffers, relaying them only when a proper contact opportunity occurs. Therefore, the network performance is directly affected by the storage capacity and message retrieving of intermediate nodes. This paper proposes a suitable content storage and retrieval (CSR) mechanism for VDTN networks. This CSR solution adds additional information on control labels of the setup message associated to the corresponding data bundle (aggregated traffic) that defines and applies caching and forwarding restrictions on network traffic (data bundles). Furthermore, this work presents a performance analysis and evaluation of CSR mechanisms over a VDTN application scenario, using a VDTN testbed. This work presents the comparison of the network behavior and performance using two DTN routing protocols, Epidemic and Spray and Wait, with and without CSR mechanisms. The results show that CSR mechanisms improve the performance of VDTN networks significantly.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN

    Cryptographic Key Management in Delay Tolerant Networks (DTNs): A survey

    Get PDF
    Since their appearance at the dawn of the second millennium, Delay or Disruption Tolerant Networks (DTNs) have gradually evolved, spurring the development of a variety of methods and protocols for making them more secure and resilient. In this context, perhaps, the most challenging problem to deal with is that of cryptographic key management. To the best of our knowledge, the work at hand is the first to survey the relevant literature and classify the various so far proposed key management approaches in such a restricted and harsh environment. Towards this goal, we have grouped the surveyed key management methods into three major categories depending on whether the particular method copes with a) security initialization, b) key establishment, and c) key revocation. We have attempted to provide a concise but fairly complete evaluation of the proposed up-to-date methods in a generalized way with the aim of offering a central reference point for future research

    Automated key exchange protocol evaluation in delay tolerant networks

    Get PDF
    Cryptographic key exchange is considered to be a challenging problem in Delay Tolerant Networks (DTNs) operating in deep space environments. The difficulties and challenges are attributed to the peculiarities and constraints of the harsh communication conditions DTNs typically operate in, rather than the actual features of the underlying key management cryptographic protocols and solutions. In this paper we propose a framework for evaluation of key ex- change protocols in a DTN setting. Our contribution is twofold as the proposed framework can be used as a decision making tool for automated evaluation of various communication scenarios with regards to routing decisions and as part of a method for protocol evaluation in DTNs

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Hybrid Routing in Delay Tolerant Networks

    Get PDF
    This work addresses the integration of today\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented
    corecore