14,001 research outputs found

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    Securing Internet of Things with Lightweight IPsec

    Get PDF
    Real-world deployments of wireless sensor networks (WSNs) require secure communication. It is important that a receiver is able to verify that sensor data was generated by trusted nodes. In some cases it may also be necessary to encrypt sensor data in transit. Recently, WSNs and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this paper we provide End-to-End (E2E) secure communication between an IP enabled sensor nodes and a device on traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of 6LoWPAN extension for IPsec on Contiki. Our extension supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, communication endpoints are able to authenticate, encrypt and check the integrity of messages using standardized and established IPv6 mechanisms

    VLSI implementation of an energy-aware wake-up detector for an acoustic surveillance sensor network

    Get PDF
    We present a low-power VLSI wake-up detector for a sensor network that uses acoustic signals to localize ground-base vehicles. The detection criterion is the degree of low-frequency periodicity in the acoustic signal, and the periodicity is computed from the "bumpiness" of the autocorrelation of a one-bit version of the signal. We then describe a CMOS ASIC that implements the periodicity estimation algorithm. The ASIC is functional and its core consumes 835 nanowatts. It was integrated into an acoustic enclosure and deployed in field tests with synthesized sounds and ground-based vehicles.Fil: Goldberg, David H.. Johns Hopkins University; Estados UnidosFil: Andreou, Andreas. Johns Hopkins University; Estados UnidosFil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Pouliquen, Philippe O.. Johns Hopkins University; Estados UnidosFil: Riddle, Laurence. Signal Systems Corporation; Estados UnidosFil: Rosasco, Rich. Signal Systems Corporation; Estados Unido

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices
    • …
    corecore