1,620 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node

    Full text link
    Binary Neural Networks (BNNs) have been shown to be robust to random bit-level noise, making aggressive voltage scaling attractive as a power-saving technique for both logic and SRAMs. In this work, we introduce the first fully programmable IoT end-node system-on-chip (SoC) capable of executing software-defined, hardware-accelerated BNNs at ultra-low voltage. Our SoC exploits a hybrid memory scheme where error-vulnerable SRAMs are complemented by reliable standard-cell memories to safely store critical data under aggressive voltage scaling. On a prototype in 22nm FDX technology, we demonstrate that both the logic and SRAM voltage can be dropped to 0.5Vwithout any accuracy penalty on a BNN trained for the CIFAR-10 dataset, improving energy efficiency by 2.2X w.r.t. nominal conditions. Furthermore, we show that the supply voltage can be dropped to 0.42V (50% of nominal) while keeping more than99% of the nominal accuracy (with a bit error rate ~1/1000). In this operating point, our prototype performs 4Gop/s (15.4Inference/s on the CIFAR-10 dataset) by computing up to 13binary ops per pJ, achieving 22.8 Inference/s/mW while keeping within a peak power envelope of 674uW - low enough to enable always-on operation in ultra-low power smart cameras, long-lifetime environmental sensors, and insect-sized pico-drones.Comment: Submitted to ISICAS2020 journal special issu

    Activity-Aware Sensor Networks for Smart Environments

    Get PDF
    The efficient designs of Wireless Sensor Network protocols and intelligent Machine Learning algorithms, together have led to the advancements of various systems and applications for Smart Environments. By definition, Smart Environments are the typical physical worlds used in human daily life, those are seamlessly embedded with smart tiny devices equipped with sensors, actuators and computational elements. Since human user is a key component in Smart Environments, human motion activity patterns have key importance in building sensor network systems and applications for Smart Environments. Motivated by this, in this thesis my work is focused on human motion activity-aware sensor networks for Smart Environments. The main contributions of this thesis are in two important aspects: (i) Designing event activity context-aware sensor networks for efficient performance optimization as well as resource usage; and (ii) Using binary motion sensing sensor networks\u27 collective data for device-free real-time tracking of multiple users. Firstly, I describe the design of our proposed event activity context-aware sensor network protocols and system design for Smart Environments. The main motivation behind this work is as follows. A sensor network, unlike a traditional communication network, provides high degree of visibility into the environmental physical processes. Therefore its operation is driven by the activities in the environment. In long-term operations, these activities usually show certain patterns which can be learned and effectively utilized to optimize network design. In this thesis I have designed several novel protocols: (i) ActSee for activity-aware radio duty-cycling, (ii) EAR for activity-aware and energy balanced routing, and (iii) ActiSen complete working system with protocol suites for activity-aware sensing/ duty-cycling/ routing. Secondly, I have proposed and designed FindingHuMo (Finding Human Motion), a Machine Learning based real-time user tracking algorithm for Smart Environments using Sensor Networks. This work has been motivated by increasing adoption of sensor network enabled Ubiquitous Computing in key Smart Environment applications, like Smart Healthcare. Our proposed FindingHuMo protocol and system can perform device-free tracking of multiple (unknown and variable number of) users in the hallway environments, just from non-invasive and anonymous binary motion sensor data

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere

    An artificial intelligence based quorum system for the improvement of the lifespan of sensor networks.

    Get PDF
    Artificial Intelligence-based Quorum systems are used to solve the energy crisis in real-time wireless sensor networks. They tend to improve the coverage, connectivity, latency, and lifespan of the networks where millions of sensor nodes need to be deployed in a smart grid system. The reality is that sensors may consume more power and reduce the lifetime of the network. This paper proposes a quorum-based grid system where the number of sensors in the quorum is increased without actually increasing quorums themselves, leading to improvements in throughput and latency by 14.23%. The proposed artificial intelligence scheme reduces the network latency due to an increase in time slots over conventional algorithms previously proposed. Secondly, energy consumption is reduced by weighted load balancing, improving the network’s actual lifespan. Our experimental results show that the coverage rate is increased on an average of 11% over the conventional Coverage Contribution Area (CCA), Partial Coverage with Learning Automata (PCLA), and Probabilistic Coverage Protocol (PCP) protocols respectively
    • …
    corecore