
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Spring 5-10-2014

Activity-Aware Sensor Networks for Smart
Environments
Debraj De

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
De, Debraj, "Activity-Aware Sensor Networks for Smart Environments." Dissertation, Georgia State University, 2014.
https://scholarworks.gsu.edu/cs_diss/83

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

TITLE: ACTIVITY-AWARE SENSOR NETWORKS FOR SMART ENVIRONMENTS

by

DEBRAJ DE

Under the Direction of Prof. WenZhan Song

ABSTRACT

The efficient designs of Wireless Sensor Network protocols and intelligent Machine Learning

algorithms, together have led to the advancements of various systems and applications for Smart

Environments. By definition, Smart Environments are the typical physical worlds used in human

daily life, those are seamlessly embedded with smart tiny devices equipped with sensors, actuators

and computational elements. Since human user is a key component in Smart Environments, human

motion activity patterns have key importance in building sensor network systems and applications

for Smart Environments. Motivated by this, in this thesis my work is focused on human motion

activity-aware sensor networks for Smart Environments. The main contributions of this thesis are

in two important aspects: (i) Designing event activity context-aware sensor networks for efficient

performance optimization as well as resource usage; and (ii) Using binary motion sensing sensor

networks’ collective data for device-free real-time tracking of multiple users.

Firstly, I describe the design of our proposed event activity context-aware sensor network

protocols and system design for Smart Environments. The main motivation behind this work is

as follows. A sensor network, unlike a traditional communication network, provides high degree

of visibility into the environmental physical processes. Therefore its operation is driven by the

activities in the environment. In long-term operations, these activities usually show certain patterns

which can be learned and effectively utilized to optimize network design. In this thesis I have

designed several novel protocols: (i) ActSee [1] for activity-aware radio duty-cycling, (ii) EAR [2]

for activity-aware and energy balanced routing, and (iii) ActiSen [3] complete working system with

protocol suites for activity-aware sensing/ duty-cycling/ routing.

Secondly, I have proposed and designed FindingHuMo [4] (Finding Human Motion), a Ma-

chine Learning based real-time user tracking algorithm for Smart Environments using Sensor Net-

works. This work has been motivated by increasing adoption of sensor network enabled Ubiq-

uitous Computing in key Smart Environment applications, like Smart Healthcare. Our proposed

FindingHuMo protocol and system can perform device-free tracking of multiple (unknown and

variable number of) users in the hallway environments, just from non-invasive and anonymous

binary motion sensor data.

INDEX WORDS: Smart environments, Wireless sensor networks, Routing, Radio duty-
cycling, User tracking, Machine learning.

TITLE: ACTIVITY-AWARE SENSOR NETWORKS FOR SMART ENVIRONMENTS

by

DEBRAJ DE

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2014

Copyright by
Debraj De

2014

TITLE: ACTIVITY-AWARE SENSOR NETWORKS FOR SMART ENVIRONMENTS

by

DEBRAJ DE

Committee Chair: WenZhan Song

Committee: Sushil Prasad

Xiaolin Hu

Mark Keil

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2014

iv

DEDICATION

This dissertation is dedicated to Georgia State University. This dissertation is also dedicated to

my parents Alok Ranjan De and Atreyi De for their endless support, sacrifice, hard work, love and

passion for academics.

v

ACKNOWLEDGEMENTS

This dissertation work would not have been possible without the support of many people. I

want to express my gratitude to my advisor Professor WenZhan Song for his continuous guidance,

patience and support. It is not only his invaluable academic knowledge and methodologies, but

also his passionate attitude and discipline to succeed in my future career development. He gave me

the invaluable passion and effort for quality research.

I’d also like to thank my fellow lab-mates and co-workers for helping me through valuable

knowledge sharing and contributions. I made many great friends and co-workers at Georgia State

University, Washington State University, Ohio State University during my PhD and MS endeavors.

I’ll especially thank Mingsen Xu and Lei Shi for their wonderful and memorable companionship

with research works, productive discussions, support, and real great friendships.

Finally, I wish to thank all of my family members and all my friends for their unconditional

support, love, patience and understanding.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS xvi

PART 1 INTRODUCTION 1

1.1 Introduction . 1

1.1.1 Smart Environments . 2

1.1.2 Motivation and Challenges . 3

1.2 Our Approach . 6

1.2.1 Activity-Aware Protocols for Sensor Networks 6

1.2.2 Multi-User Tracking with Binary Motion Sensor Network 7

1.2.3 Thesis Organization . 8

PART 2 RELATED WORKS 9

2.1 Sensor Network Systems for Smart Environments 9

2.2 Duty-Cycling MAC protocols in Sensor Networks 11

2.3 Routing Protocols in Sensor Networks . 12

2.4 User Tracking in Smart Environments . 14

PART 3 ACTSEE: ACTIVITY-AWARE RADIO DUTY CYCLING . . 16

3.1 Background . 16

3.2 Activity-Aware Radio Duty Cycling . 17

3.2.1 System Model . 17

3.2.2 Validation of Activity State Delivery Latency Model 19

vii

3.2.3 Proposed ActSee Protocol . 21

3.3 Experimental Study and Performance Evaluation 28

3.3.1 Evaluation on Real Sensor Network Testbed 29

3.3.2 Evaluation on Sensor Network Simulator 34

3.4 Summary . 35

PART 4 EAR: ENERGY AND ACTIVITY AWARE ROUTING . . . 36

4.1 Background . 36

4.2 Energy and Activity Aware Routing . 37

4.2.1 Preliminaries . 37

4.2.2 Algorithm and Protocol Design . 39

4.3 Theoretical Analysis . 46

4.4 Implementation and Performance Evaluation 53

4.4.1 Implementation of EAR . 54

4.4.2 Evaluation in Motelab Tested . 55

4.4.3 Evaluation in TOSSIM Simulator . 59

4.5 Summary . 63

PART 5 ACTISEN: ACTIVITY-AWARE SENSOR NETWORK SYSTEM 64

5.1 Background . 64

5.2 ActiS en: Activity-Aware Sensor Network System 65

5.3 Activity-Aware Sensing . 69

5.4 Activity-Aware Radio Duty-Cycling . 71

5.5 Activity-Aware and Energy-balanced Routing 78

5.6 ActiS en System Design . 84

5.7 Performance Evaluation and Analysis . 85

5.7.1 Experiment in Large Scale Real Sensor Network Tested 87

5.7.2 Performance Evaluation . 89

5.7.3 Experiment in Simulation . 94

viii

5.7.4 Performance Evaluation . 95

5.8 Summary . 98

PART 6 FINDINGHUMO: USER TRACKING IN SMART ENVIRONMENTS 99

6.1 Background . 99

6.2 Proposed Real-Time Multi-Target Tracking System 102

6.2.1 Adaptive-HMM Algorithm . 107

6.2.2 Path Disambiguation Algorithm CPDA 114

6.3 Performance Evaluation . 116

6.3.1 System setup . 116

6.3.2 Multi-user Tracking Experiment . 118

6.4 Summary . 121

PART 7 CONCLUSIONS 122

REFERENCES . 123

ix

LIST OF TABLES

Table 4.1 List o f symbols used . 37

Table 6.1 List o f parameters and their description 103

x

LIST OF FIGURES

Figure 1.1 Example of application domains of Sensor Networks. 1

Figure 1.2 Different layers and components of Wireless Sensor Networks. 2

Figure 1.3 Smart Home example scenario. 3

Figure 1.4 Smart Environment example scenario. 4

Figure 1.5 Change of activity pattern in 24 hours with time and space 5

Figure 3.1 Activity Transition Probability Graph (AT PG) learnt from the CASAS

Smart Home testbed [5]. The significant transition probability from node

27 to nodes 14, 25 and 26 are 12%, 45% and 40% respectively. 18

Figure 3.2 State delivery latency (seconds) vs. Hopcount with varying Duty Cycle. 20

Figure 3.3 State delivery latency (seconds) vs. Duty Cycle (%) with varying hop-

count. 20

Figure 3.4 Illustration of ActSee: node 0 is the sink, node 1 is currently active node,

node 2 and node 6 are neighbors of nodes 1. The routing path from node

2 to sink is 2�3�4�0, and that one from node 6 to sink is 6�5�0. In this

example, VA =2, 3, 4, 6, 5, and the set VI contains the remaining nodes. In

ActS ee, node 1 will pre-select a duty cycle assignment for all nodes in VA

and propagate its decision to them during current stage. All the remaining

nodes will work with lowest duty cycle. 23

Figure 3.5 TinyOS node software stack with activity-aware design for ActSee. . . . 29

Figure 3.6 Testbed setup. 30

Figure 3.7 Testbed emulating motion activity event with projected light beam. . . . 31

xi

Figure 3.8 Distribution of data delivery latency. 31

Figure 3.9 Delivery latency of packets after event occurrence for various duty cycling

strategies. 32

Figure 3.10 State delivery latency (seconds) for different starting active state. 33

Figure 3.11 Throughput at Sink (packets/second) for different starting active state. . 33

Figure 3.12 Network Lifetime (days) for different starting active state. 34

Figure 4.1 Event activity detected and reported by node with motion sensor in

smart workplace, and corresponding energy consumption pattern of sen-

sor node. 36

Figure 4.2 Illustration of activity patterns and data generation in network. 37

Figure 4.3 Activity-awareness for sensor network. 39

Figure 4.4 Activity Transition Probability Graph (including both significant and neg-

ligible transition probabilities) generated from the CASAS Smart Home

testbed with layout shown in Figure 4.5. 40

Figure 4.5 Activity Transition Probability Graph (pruned for significant activity tran-

sition) learnt from the CASAS Smart Home testbed. The significant transi-

tion probability for example from node 27 to nodes 14, 25 and 26 are 12%,

45% and 40% respectively. 41

Figure 4.6 Distribution of Energy Balance index (B) 42

Figure 4.7 TinyOS node software stack included with activity-awareness and energy-

balance design for EAR. 53

Figure 4.8 Most frequent activity sequences (order of active nodes) occurred in each

floor of Motelab testbed during experiment 54

xii

Figure 4.9 Distribution of data delivery latency. 56

Figure 4.10 Data throughput at Sink. 57

Figure 4.11 Minimum node energy in network. 58

Figure 4.12 Mean data delivery latency (seconds) with varying network size. 60

Figure 4.13 Data throughput at base station (successfully delivered message per unit

time) in Bytes/second with varying network size. 61

Figure 4.14 Projected network lifetime (days) with varying network size. 61

Figure 4.15 Energy consumption per successfully delivered message per node (uJ/-

packet/node) with varying network size 62

Figure 5.1 Probability of occupancy in the kitchen of a smart home for assisted living

(CASAS [5]), detected by motion sensor. 64

Figure 5.2 The system architecture of ActiS en 65

Figure 5.3 Workflow diagram of ActiS en system and inter-relationship among (a)

Activity-Aware Sensing, (b) ActDutyCycling, and (c) ActRouting . . . 67

Figure 5.4 Changing rate of activity detected; PIR (passive infrared) motion sensor

data (sampling frequency 10 Hz) shown with transition from no activity to

higher activity and then to lower activity. 69

Figure 5.5 Scenario showing need of activity-aware radio duty-cycling 72

Figure 5.6 Non-uniform Duty cycle control in ActDutyCycling. The set of parameters

< f , (gc, gp, c, b) > for each nodes are shown. It is assumed that the

predicted source transition is from node A to node E with a probability

0.60 . 76

xiii

Figure 5.7 Activity-Aware non-uniform radio duty-cycling in network 77

Figure 5.8 Energy balanced routing . 78

Figure 5.9 Network Lifetime of 30 × 30 grid network for different routing algorithms

(MaxSum: maximum sum of energy of routing path, Max-Min: maximum

of minimum energy on routing path, ShortestPath: shortest path (minimum

hop) routing, MaxEn: maximum energy neighbor). 80

Figure 5.10 Distribution of Energy Balance (EB) 82

Figure 5.11 TinyOS software structure of ActiS en 84

Figure 5.12 Most frequent activity sequences (order of active nodes) occurred in each

floor of Motelab testbed during experiment 86

Figure 5.13 Activity Transition Probability Graph with 27 nodes, learnt from the

CASAS Smart Home testbed [5]. Transition probability for example from

node 27 to nodes 14, 25 and 26 are 12%, 45% and 40% respectively . . 87

Figure 5.14 Distribution of data delivery latency 89

Figure 5.15 Data throughput at Sink . 91

Figure 5.16 Minimum node energy in network . 92

Figure 5.17 Dynamic radio duty cycle due to ActDutyCycling 93

Figure 5.18 (a) Mean data delivery latency (seconds) with varying network size (b)

Data throughput at Sink (Base Station) with varying network size . . . 96

Figure 5.19 (a) Projected network lifetime (days) with varying network size (b) Energy

consumption per successfully delivered message per node (uJ/packet/node)

with varying network size . 97

xiv

Figure 6.1 Motion sensor network deployment in a smart workplace environment.

The sensor node position and node ID’s are shown. 100

Figure 6.2 Multi-user overlapping motion trajectories. The table below the figure

shows the node or state sequence of each of the 3 users User1, User2 and

User3, with time. The dark blocks in the table indicate motion overlap or

crossover among the users. 101

Figure 6.3 FindingHuMo system: Multi-target tracking from binary motion sensor

network. 102

Figure 6.4 A working example of FindingHuMo. 104

Figure 6.5 Extended activity transition graph EATG constructed for the smart envi-

ronment layout shown in Figure 6.1. Solid lines indicate activity transition

between nodes 1-hop away, while dashed lines indicate activity transition

between nodes 2-hop away. Nodes 1-hop to each other, can be physically

reachable without triggering any other node. 105

Figure 6.6 (a) Adaptive-HMM: Splitting of non-overlapping motion into individual

HMM’s and then decoding state sequences using first order HMM. (b)

Adaptive-HMM: Decoding of state sequences for overlapping motion in

larger state and second order HMM. 106

xv

Figure 6.7 (a) Activity context driven selection of state set and state transitions in

Adaptive-HMM. The state sequence is saved only till ts + τ.T , and the next

HMM window computation starts at ts+(τ+1).T instead of ts+(dmax+1).T .

For single activated state the state set is smaller (activated nodes and their

1-hop neighbors) and uses transition only from (t − 1). But for multiple

simultaneous activated states the state set is larger (activated nodes and

upto their 2-hop neighbors) and uses transitions from time (t−2) and (t−1).

(b)Illustrative example of proposed CPDA algorithm. 109

Figure 6.8 Explanation of CPDA. The non-feature node m j1 has property Y(j1, u1) (u1

is the identifier of one of the users passing through m j1). Y(j1, u1)={ j2, j4}

is the scenario on left-hand side, and Y(j1, u1)={ j2, j3} is the scenario on

right-hand side. 114

Figure 6.9 (a) Testbed deployment of PIR motion sensor nodes in a smart workplace

environment. (b) Number of motion triggered nodes during 3 user exper-

iment. (c) Ground truth motion trajectories of 3 users during experiment,

with the path overlap/crossover shown. 117

Figure 6.10 (a) Tracking error (hopcount in EATG, between ground truth node and

detected node) measured for user1. (b) Tracking error measured for user2.

(c) Tracking error measured for user3. 119

xvi

LIST OF ABBREVIATIONS

• GSU - Georgia State University

• CS - Computer Science

• WSN - Wireless Sensor Network

• ATPG - Activity Transition Probability Graph

• HMM - Hidden Markov Model

• RFID - Radio-frequency identification

• MAC - Medium Access Control

• CMDP - Constraint Markov Decision Process

• LQI - Link Quality Indicator

• RSSI - Received Signal Strength Indicator

• MCU - Microprogrammed Control Unit

• GPS - Global Positioning System

• PIR - Passive Infrared Sensor

• EATG - Extended Activity Transition Graph

1

PART 1

INTRODUCTION

In this chapter we first introduce the main background of the thesis: human motion activity-

aware Wireless Sensor Networks for Smart Environments. Then we present the main research

challenges and our solution approach.

Figure 1.1 Example of application domains of Sensor Networks.

1.1 Introduction

Wireless Sensor Networks consist of spatially distributed devices communicating through

wireless radio and cooperatively sensing spatial-temporal physical or environmental conditions.

They provide a high degree of visibility into the environmental physical processes. Wireless Sen-

sor Networks (largely termed as WSN) have been used in pervasive domains of applications such

2

as: ubiquitous computing in Smart Environments, healthcare, scientific exploration, infrastructure

protection, military and surveillance, social, assisted living, and many more (indicated in Figure

1.1). However, there are significant challenges to the design for sustainability and reliability for

real-world applications. Those challenges come in all forms: software, hardware and application

specific designs. The important components of Wireless Sensor Networks (WSN) system are as

shown in Figure 1.2.

Figure 1.2 Different layers and components of Wireless Sensor Networks.

1.1.1 Smart Environments

One of the most emerging application domain for Sensor Networks is the Smart Environ-

ments. The formal definition of Smart Environments can be as follows. Smart Environments are

varied physical worlds typically used in human daily life, those are seamlessly embedded with

tiny devices capable of pervasive sensing, actuating and computing. These physically embedded

tiny devices are all connected through a continuous network for data collection, in order to enable

various pervasive applications and services. The Smart Environments include Smart Home, Smart

Building, Smart Workplace, Smart Farm, Smart Clinic, Smart Meeting Room etc. Example scenar-

ios of Smart Environments are show in Figure 1.3 and Figure 1.4. With the help of Wireless Sensor

3

Networks and Machine Learning technologies, Ubiquitous Computing is gaining momentum in

Smart Environments applications.

Figure 1.3 Smart Home example scenario.

1.1.2 Motivation and Challenges

The Smart Environments in majority are the physical environments used in human daily life.

Therefore human motion activity (spatial and temporal) patterns and behaviors are important fac-

tors for both: application or service, and sensor network system design. Motivated by this, in this

thesis I have explored two perspectives: (i) activity-aware system design perspective: how the hu-

man motion activity patterns can be intelligently used for sensor network protocol designs, and (ii)

activity-aware application perspective: how the human motion activities can be non-intrusively

identified for motion tracking applications. To note that this tracking application is very much

useful for a whole range of future applications of Smart Environments. One of the most important

of them is the Smart Healthcare. Being able to identify and analyze individual and group human

4

Figure 1.4 Smart Environment example scenario.

motion activity behaviors in regular life in Smart Environments has the great potential in designing

the future of remote and proactive Smart Healthcare systems.

In this dissertation we I attempt to solve two important research problems: (i) one related to

Smart Environments’s event activity context-aware sensor network protocol design, and (ii) another

related to a specific application of user movement tracking with motion sensor networks in Smart

Environments. First I discuss the motivation behind attempting these two research problems. Then

I will briefly present my contribution to solve these two problems.

The first problem I attempt to solve is designing sensing event activity context-aware network-

ing for sensor networks in Smart Environments. A Smart Environment may contain many highly

interactive and embedded devices embedded inside it. These devices may be controlled to meet the

demands of the environments and applications. While the Smart Environments offer many societal

benefits, they also introduce novel and complex challenges for wireless sensor network protocol

design.

For example a future Smart Home may be equipped with dozens of wireless connected sen-

sors that aid in ensuring health and safety of its residents or providing building energy efficiency.

If these sensors are continuously operating in full-alert mode, they will consume a great deal of en-

ergy and bandwidth. The result is an expensive infrastructure that requires constant maintenance to

5

Figure 1.5 Change of activity pattern in 24 hours with time and space

replace batteries in order to meet application performance. Figure 1.5 shows the daylong average

triggering rate of two motion sensors (in different location context) in Cairo Smart Home testbed

[5]. The triggering rate for two motion sensors, one in bedroom and another in dining room, is cal-

culated using 24 hour data from 57 days. It can be observed that the user movement activity pattern

changes in context of time and space. Therefore the sensing and communication resource usage

in such sensor network can be adapted using the learned activity pattern. These have motivated

us to design an activity context aware sensor network that tries to intelligently adapt the network

resources using learned intelligence from activity patterns, without compromising the performance

of the application that it serves.

The second problem I attempt to solve is designing real-time and scalable multi-user tracking

system for any crowded Smart Environments, with the help of simple binary motion detecting sen-

sor networks. Smart Environments are equipped with sensors which keep tracking the movements

of users, who can for example be residents in a smart home, or employees in a smart workplace.

Modeling the behaviors of users is a key step in developing particular applications in a Smart En-

vironment. Identification and tracking the trajectories of users is the first step towards modeling.

In many applications, e.g., in a Smart Workplace, a Smart Clinic, or a Smart Home, users may

6

not want to reveal their identity all the time. So image or video camera sensors are not applicable

in these situations. In addition, the cost of sensors and communication device may drive design-

ers to choose binary sensors that are relatively cost effective and more likely to be accepted by

general users. The binary sensors (e.g., a binary proximity based sensor, or a motion detector)

only generates binary valued times series motion data. This poses a challenge to identify and track

user trajectories of multiple users. Tracking mobile users in Smart Environments has utilization

in many effective applications or services such as: data delivery to mobile users indoor ([6]); mo-

bile and social localization ([7]); smart wireless healthcare ([8]) etc. In addition user tracking has

application to study the working culture of a workplace [9]. These have motivated us to design a

real-time and scalable system for tracking of multiple (unknown and variable number of) targets

or human users in crowded Smart Environments.

1.2 Our Approach

Now we briefly describe our contributions to solve the research problems just described above.

The details of our research solutions are provided in the chapters to follow.

1.2.1 Activity-Aware Protocols for Sensor Networks

In the first part of this work, we present the design of three proposed sensor network proto-

cols: ActSee, EAR and Actisen. ActSee [1] is an activity-aware radio duty cycling protocol, given

the sensor network can use any routing protocol of it’s choice. Then EAR [2] is an activity-aware

and energy-balanced routing protocol, given the sensor network can use any radio duty cycling

protocol. Finally the complete ActiSen [3] system is a complete sensor networking solution with

activity-awareness integrated in all of: sensing, radio duty cycling and routing. The goal is to

imbue wireless sensor networks with cognitive capabilities and activity context awareness, in or-

der to make them act in a more intelligent manner and prolong their lifetime. The proposed and

designed protocols use behavioral pattern information from an available probabilistic activity tran-

sition graph (inferred from activity patterns in the Smart Environment it is deployed in). This

knowledge is used to efficiently optimize two seemingly conflicting performance goals (applica-

7

tion performance and constrained resource usage performance) of the wireless sensor network

through: activity-aware sensing, radio duty-cycling and routing.

The operation of the activity-aware sensor network is conceptually different from typical sen-

sor networks in a way that it proactively and adaptively optimizes the network operations using

learned activity patterns. The proposed activity-aware protocols and systems are implemented in

TinyOS-2.x (one of the most popular operating system for sensor networks). The experimental

results from simulation and real testbed experiments with large scale sensor networks indicate

that the activity-aware designs of proposed protocols outperform existing designs in: resource

optimization performance (energy efficiency, network lifetime etc.) and application performance

(event detection, data delivery latency, data delivery throughput etc.) for Smart Environments

sensor networks.

1.2.2 Multi-User Tracking with Binary Motion Sensor Network

In the second part of this work, we present FindingHuMo [4] (Finding Human Motion), a

real-time user tracking system for Smart Environments. FindingHuMo can perform device-free

tracking of multiple (unknown and variable number of) users in the Hallway Environments, just

from non-invasive and anonymous (not user specific) binary motion sensor data stream. The sig-

nificance of our designed system are as follows: (a) Fast tracking of individual targets from binary

motion datastream from a static wireless sensor network in the infrastructure. This needs to resolve

unreliable node sequences, system noise and path ambiguity; (b) Scaling for multi-user tracking

where user motion trajectories may crossover with each other in all possible ways. This needs

to resolve path ambiguity to isolate overlapping trajectories; FindingHumo applies the following

techniques on the collected motion datastream: (i) a proposed motion data driven adaptive order

Hidden Markov Model with Viterbi decoding (called Adaptive-HMM), and then (ii) an innovative

path disambiguation algorithm (called CPDA). Using this methodology the system accurately de-

tects and isolates motion trajectories of individual users. The system performance is illustrated

with results from real-time system deployment experience in a Smart Workplace Environment.

8

1.2.3 Thesis Organization

The rest of thesis is organized as follows. In chapter 2 we present the related works in the

literature. In chapters 3 and 4, we present the proposed ActSee and EAR protocols respectively.

Then in chapter 5 we present the complete activity-aware sensor network system, named ActiSen.

Next in chapter 6 we present the details of our proposed user tracking algorithm and system called

FindingHuMo. Finally in chapter 7 we conclude this thesis.

9

PART 2

RELATED WORKS

In this chapter we discuss the related works in the literature. First we cover the relevant works

in sensor networks system deployments in Smart Environments. Then we present related works

in key related protocols for sensor networks: radio duty-cycling and routing. Next we discuss the

works related to user tracking in Smart Environments.

2.1 Sensor Network Systems for Smart Environments

There is considerable amount of work done on development and deployment of sensor net-

work systems for Smart Environments. BScope [10] presents a sensor network architecture design

for activity recognition and analysis. Intelligent and networked sensors enabled in-house moni-

toring of elders is very much in demand due to considerable increase in aging population. Such

service has the great potential of increasing autonomy and independence for the elderly people,

while minimizing their risks of living alone. Driven by this need, BScope project designs a scal-

able framework for detailed behavior interpretation of elders. The system has three main design

components: sensors, middleware and behavior interpretation mechanisms. The behavior interpre-

tation mechanisms are designed to analyze and interpret the collected sensor data using a sensory

grammar.

ALARM-NET [8] presents the implementation of a wireless sensor network for assisted living

and residential monitoring in Smart Home. The goal is to improve the quality of healthcare and the

prospects of aging in place using sensor network technology. This project has attempted solving

challenging problems in scalability, energy management, data access, security, and privacy. The

system is designed with tiered network architecture with upper layer rich in energy and processing

capability, and lower layer with deployed environment sensors and body worn medical sensors.

It allows a two-way data flow and data analysis between the front-end and back-end, in order to

10

enable context-aware protocols designed for the residents’ individual patterns of living. This work

also discusses the querying system and security issues for smart home sensor network.

The work in [11] uses data from a deployed system to show the vulnerability of daily in-

home activity information from a wireless snooping attack, called FATS attack. This work has

demonstrated and evaluated the FATS attack on eight different homes containing wireless sensors.

Based on the analysis it has proposed and evaluated a set of privacy preserving design guidelines

for sensor network systems in Smart Homes.

Besides typical sensor nodes, RFID based sensor network [12] is also being used for daily

activity recognition. This work uses Intel Wisp RFID sensors emplaced on objects of daily use,

for capturing daily activity patterns. Gator Tech Smart House [13] deploys Atlas sensor-actuator

platform for behavioral monitoring and alteration for diabetic and obese Individuals. This also

presents middleware design in general for smart spaces. The Atlas platform consists a modular

architecture for scalable use of sensors and actuators. The work in CASAS [5] and MavHome

[14] uses motion and other kinds of sensors for tracking and monitoring the Activities of Daily

Living (ADL) for assisted living. Camera sensor network is used in [15] for research on vision-

based reasoning for smart environments and ambient intelligence. Other related ongoing works

are Smart Medical Home [16], Spinner [17] etc.

But in all smart home sensor networks, activity-awareness is not utilized for optimizing net-

work operation and resources. Context awareness in sensor network is also studied in several

works. The work in [18] presents a proactive communication algorithm for context aware sensor

network. But activity context awareness for dynamic adaptation of sensor network is an under-

utilized research direction. In this thesis we have designed several sensing event activity-aware

sensor network protocols (for sensing, radio duty-cycling and routing) and then a complete sys-

tem, where the sensor network dynamically and proactively adapts the operations to the event

activity patterns.

11

2.2 Duty-Cycling MAC protocols in Sensor Networks

The link layer in sensor network deals with the data transfer among neighboring nodes sharing

same wireless link. Due to the lossy wireless communication medium in sensor networks, reliable

and fast data exchange necessitates Medium Access Control (MAC). The MAC protocol design

in sensor network is required to satisfy some key properties: energy efficiency, scalability to node

density, communication synchronization, bandwidth utilization etc. The wireless communication

states of sensor nodes, especially the wireless radio idle state is the most energy-consuming oper-

ation. This makes efficient design of radio MAC protocol crucially important. There is significant

amount of research works done on MAC protocol design for wireless sensor networks. Existing

MAC protocols can be categorized into two types: synchronous and asynchronous approaches.

Synchronous MAC protocols specify the period of wake-up and sleep for communication to

reduce the unnecessary time and energy wasted in idle listening. Nodes periodically exchange

SYNC packets for synchronization and data transfer in the common active schedule. S-MAC [19],

T-MAC [20] etc. are examples of synchronous MAC schemes. The other type, the asynchronous

MAC protocols have no control overhead for synchronization unlike synchronous schemes, in

order to improve the energy efficiency compared. Examples of asynchronous schemes are B-

MAC [21], X-MAC [22] etc. They rely on low power listening (LPL), also called channel sam-

pling, to let a sender communicate to a receiver which is duty cycling.

B-MAC utilizes a long preamble to achieve low power communication. In X-MAC, short

preambles with target address information are used to reduce the excessive preamble, instead of

a long preamble. When a receiver wakes up and detects a short preamble, it looks at the target

address that is included in the preamble. If the node is the intended recipient, it keeps awake for

the incoming data, otherwise it goes to sleep immediately. Most of these MAC protocols are just

based on data traffic generated in the network, and they don’t generally learn from event activity

patterns and exploit them. So activity context aware radio duty cycling in sensor networks is

relatively unexplored and under-utilized.

12

2.3 Routing Protocols in Sensor Networks

The protocols required in sensor network layer include unicast/multicast routing, data collec-

tion and data dissemination. Routing protocols for sensor networks are responsible for maintaining

the routes in the network and have to ensure reliable multi-hop communication. Routing in sensor

networks is very challenging due to the inherent characteristics (such as many-to-one and one-

to-many routing requirements than just one-to-one routing) that distinguish sensor networks from

other networks. The unique characteristics of sensor networks require effective methods for data

forwarding and processing.

There are some previous works in the literature on activity-aware routing. The work in [23]

has proposed an adaptive Randomized Re-Routing (RRR) algorithm, designed to react to conges-

tion caused by unusual activity events in sensor networks so as to provide better quality of service

to the packets carrying the novel or unusual activity event data. Some relevant works on energy-

balanced or lifetime-maximized routing design issues include [24], [25], [26]. The work in [24]

has formulated the lifetime maximization problem as a linear program and has solved it using dis-

tributed heuristics technique. But this work assumes that the message generation rate at nodes are

fixed and known. In [25] the observation has been made that the linear program is equivalent to

that of a maximum concurrent flow problem. The algorithms proposed in [24] and [25] are able to

determine how the traffic (generated at a constant rate) should be split among the different routes

in order to maximize the network lifetime. Since the traffic generation rates are assumed to be con-

stant and known in these works, the network can solve the energy aware routing problem off-line.

The work in [27] converts the maximum network lifetime problem into a utility-based nonlinear

optimization problem and proposes a distributed routing algorithm to solve the problem. But this

work also assumes that the data generation rate at each node is fixed and known in advance. But

sensor networks are majorly driven by activities. Therefore the data generation rates at nodes are

usually non-uniform and not known exactly in advance. Our proposed protocol EAR uses this

more realistic view.

[28] proposes an energy efficient algorithm to find and maintain routes in mobile ad hoc

13

networks. It borrows the notion of learning from cognitive packet networks (CPN) to design a

robust routing protocol. Other recent works on energy aware and other different QoS aware routing

protocols are [29], [30], [31]. Self-aware networks are also effective in designing energy efficiency

and QoS awareness. Self-aware networks have self-awareness through online self-monitoring and

measurement, coupled with intelligent adaptive behavior in response to observations. Some latest

works on self-aware networks are [32], [33].

For many practical applications (for example smart environment activity detection sensor

networks) the message generation rate at different nodes are non-uniform and also dynamic. This

problem needs to be solved with online routing protocol which does not need to know the message

generation rates. An online routing algorithm max-min zPmin is proposed in [26] for network

lifetime maximization and it provides a competitive analysis. CMAX [34] proposes an algorithm

that tries to maximize the network capacity using shortest path computation with routing metric

based on node remaining energy. The work in [35] proposes E −WME online routing algorithm

for the scenario of energy harvesting sensor nodes. Most of these energy aware online routing

algorithms are based on remaining energy of relaying nodes. Unlike our proposed online routing

protocol EAR, these works don’t try to maintain energy balance in the network as a whole, and

don’t learn from activity patterns. In this paper we have considered the issue of energy balance

across the network. An energy-welfare index (using Atkinson Inequality Index) is utilized in [36]

to keep energy balance in network. But the forwarder selection procedure is complex and expensive

(computing the index for each forwarder for each packet). Also there is no theoretical analysis of its

proposed routing. To note that, for the goal of maximizing network lifetime one possible solution

may be to route the messages along the path with the maximal minimal fraction of remaining

energy (the max-min routing). The performance of max-min path can degrade in situations (as

described with some example in [26]). Another issue with the max-min routing is that following

route with max-min energy node may be expensive compared to other possible paths. For large

number of data streams there can be significant energy consumption for common nodes on max-

min routing paths. This creates bottleneck nodes with high energy consumption and thus degrades

the network lifetime quickly.

14

There are some works on activity-aware or context-aware networking. The work in [18]

presents a proactive communication algorithm for context aware sensor network. A framework for

integrated unicast and multicast routing in context-aware ordered meshes is presented in [37]. But

utilizing activity awareness for energy efficient and resource optimizing networking is not explored

in these works, while this thesis attempts these issues in depth.

2.4 User Tracking in Smart Environments

The problem of tracking multiple targets using sensor networks has been explored by prior

references [38], [39], [40] etc. RASS [41] provides a system for transceiver-free user tracking

with RF based technology. But it is not suitable when multiple user trajectories overlap. This is

because it assumes small enough triangular sized node set deployments to separately detect individ-

ual users. The work in [42] uses received signal strength (RSS) measurements for target tracking.

Using RSS is unreliable in different physical environments, thus limits it’s general applicability.

Binary sensors (e.g. passive infrared motion sensors) have drawn considerable contribution ([43],

[44] etc) for tracking applications, because of the properties like simplicity, non-invasive property

and minimal communication requirements. However, most of the related works are based on some

geometric models that can have limited applicability in real-time systems and varying environ-

ments. The existing works on multi-target tracking either use expensive and invasive sensors ([45],

[46]) or depend on specific models like geometry of sensing range and noise model ([44], [40]).

There are existing works on target tracking using movement modeling based filtering and

estimation. They mostly use Bayesian networks [47], Particle filters [48] or Kalman filter [49].

But most of those tracking algorithms in sensor networks either use expensive and invasive sensors

(e.g. camera system) or depend on assumed movement model, noise model, sensor calibration,

war-driving from WiFi/GSM signals (war-driving is the act of locating and possibly exploiting

connections to wireless local area networks while in mobility). For the tracking solution in this

thesis, we have used a modified version of Hidden Markov Model (HMM), with in-situ motion

activity context. Some existing works on using HMM for multi-target tracking are [50], [46],

[51]. But these works use expensive and invasive sensors, while our work uses a proposed activity

15

context aware HMM with simple binary motion data.

16

PART 3

ACTSEE: ACTIVITY-AWARE RADIO DUTY CYCLING

In this chapter we present the Actsee [1] protocol, an activity-aware radio duty cycling proto-

col for sensor networks in Smart Environments. ActSee utilizes the learned event activity pattern

information to intelligently and dynamically adjust radio duty cycles in wireless sensor networks.

First we describe in details, the main protocol in ActSee. Then we explain the system evaluation

and performance analyses of ActSee.

3.1 Background

Based on the existing works the following radio duty cycling strategies can be adopted for

activity detection sensor network systems. (a) The first strategy is Uniform duty cycling that lets

each node operate at the same radio duty cycle. However this simple and easy to implement

strategy is inefficient under activity context aware environment. This is because it fails to leverage

the underlying activity transition pattern. For example in Smart Home, during early morning when

the Smart Home residents are expected to be waking up from sleep, it is not necessary to keep all

the sensors active with higher duty cycle, but only those sensors which are located in the bedroom,

and nodes on active route from them. (b) The second strategy is Reactive duty cycling. Only when

a node successfully detects the present of an activity, it starts to increase the duty cycle of itself

and the sensors on the routing path from itself to the sink node (i.e. base station). Otherwise, the

nodes operate at a low duty cycle. Obviously, this strategy outperforms the uniform duty cycling in

terms of lower data delivery latency and higher energy efficiency. However, the main shortcoming

of this “reactive” strategy comes from the delay involved in delivery of data packets indicating

detected events (“decision propagation phase”). In particular, it may take longer time to inform

all the sensor nodes on the routing path to increase their duty cycle. When the activity transition

appears to be frequent, or the network size is large, the decision propagation delay may become

17

very significant bottleneck to the application performance. This is often unacceptable in critical

time sensitive applications such as in real-time tracking or monitoring. (c) The third strategy can

be existing synchronous or asynchronous MAC protocols. These classes of MAC protocols reacts,

based on the decision making after event activity data is generated in the network. But they don’t

have intelligence to exploit the typical activity patterns of the environment.

To our knowledge there doesn’t exist much work on duty cycling protocol that learns detected

activity patterns and then adapts according to it. Motivated by the shortcomings of existing strate-

gies, in this thesis we have proposed efficient duty cycling strategies that tries to achieve two goals,

that are apparently hard to satisfy together: low data delivery latency and higher network lifetime.

Besides the novelty of activity-awareness, the designed protocols are also unique in achieving both

these goals. ActS ee: (i) maintains high duty cycle for nodes on the routing paths for active and

predicted (predicted to be active in next stage or period, according to activity pattern) data sources

(for fast and reliable data delivery), (ii) maintains low duty cycle (for energy saving) for potentially

idle nodes which are not predicted to be active next, and (iii) has minimal decision propagation de-

lay to the base station. The big challenge for maintaining such non-uniform duty cycling is that,

the distribution of duty cycle of the nodes has to dynamically adapt with change of active and

predicted data sources.

3.2 Activity-Aware Radio Duty Cycling

3.2.1 System Model

The Activity Transition Probability Graph (AT PG) for a smart environment can be con-

structed based on the observed activity patterns of sensed events and their transitions. In AT PG,

a node represents a sensor node in the environment and an edge denotes a pair of sensor nodes

that can physically be reached directly from each other. These node pairs are connected with a

weighted edge in the AT PG graph that denotes transition of activity between them. In this way,

we can estimate the probability of transition between two sensor nodes, say x and y, based on the

relative frequency of events at x followed by event at y. Figure 3.1 shows the floorplan and layout

18

7

6

3
2

1 4

5
8

9

10

11

12

13
14

15
16

1718

19

20 21
22

23

24

25

26 27

Activity Transition
Probability Graph (ATPG)

n motion sensor

activity transition

Dining Room

Kitchen

Bedroom

Figure 3.1 Activity Transition Probability Graph (AT PG) learnt from the CASAS Smart Home
testbed [5]. The significant transition probability from node 27 to nodes 14, 25 and 26 are 12%,
45% and 40% respectively.

of sensor node distribution for the CAS AS smart home testbed [5]. The weight associated with

edge (x, y), denoting the probability of activity transition from x to y, is estimated as:

p(x, y) =
number o f events f or x f ollowed by y

number o f events f or x
(3.1)

More specifically, we model AT PG as a discrete time N-state Markov chain, X =

{x1, x2, · · · , xN}, with transition probabilities p(i, j) from state xi to x j (for 1 ≤ i, j ≤ N). Each

state xi is associated with a set of active sensor nodes at that state of activity. For simplicity of

presentation, let there be only one active sensor node at each state of activity. In practice, there

exists a cluster of active nodes at the same activity state, the cluster can be treated as a single node

for analysis. Such activity node clusters can be formed by finding the relatively densely connected

component in the activity transition graph. Example of such cluster in a smart home can be the set

of nodes in the kitchen, bedroom or bathroom etc. So the nodes closely related to the same activity

context usually fall into the same cluster. We denote the sensor node(s) associated with state xi as

vi. For any state xi, we define the neighbors of xi as those states x j ∈ X with positive transition

probability p(i, j) > 0 from xi.

19

The term state report latency is defined as the time it takes from the moment an activity enters

a new state to the moment the sink node is informed of that activity. In a typical sensor network,

the state report latency usually includes state detection latency and state delivery latency. The state

detection latency is defined as the time duration from the moment an event activity (e.g., motion)

occurred, to the moment a sensor has detected this event activity. In real-systems the state detection

latency can be negligible as the new-generation sensor node design achieves wake-on capability

[52]. Then state delivery latency is defined as the time duration from the moment the activity event

has been detected by sensor node to the moment the sink node receives the event data successfully.

By assuming the state detection latency is zero, in this work the focus is to design an activity-aware

radio duty cycling protocol that minimizes the expected state delivery latency. Ideally, if the radio

works with 100% duty cycle, the activity events can be reported with minimum latency.

Now in the system model, for each node v, we define a finite candidate set for duty cycle

assignment D(v) = {d1, d2, · · · , dn}, where di ∈ D(v). Specifically, D(v) defines all possible duty

cycle assignments for node v. For simplicity of notation, we assume D(v) = D ∀ v. Typically,

D = {2%, 5%, 8%, 10%, 15%, 20%, 25%}. We have formulated the optimal duty cycle assignment

problem as a Markov Decision Process, where decisions are made at points of time, referred to as

the decision stages or periods. Thus, time is divided into stages: T = {t|t = 0, 1, 2, · · · }. At the

start of each stage, the decision maker observes the system in a state, say xi ∈ X, and then chooses

action a j from the set of allowable actions in that state. In this work, an action specifies a duty

cycle assignment for each sensor node for the next stage.

3.2.2 Validation of Activity State Delivery Latency Model

In this subsection, we validate the estimated formulation for state delivery latency in terms of

node hop distance (to sink) and node duty cycle. We have performed experiments in a 100 node

sensor network using the TOSSIM simulator to compute the state delivery latency (fL) in terms of

hopcount (h) and duty cycle (d). The link-layer model in TOSSIM is valid for static and dynamic

practical scenarios. From the experimental data as in Figure 3.2 and Figure 3.3, it can be observed

that, fL varies almost linearly with h, and is inversely proportional to d. Therefore, if the routing

20

 0

 20

 40

 60

 80

 100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 99

D
el

iv
er

y
 L

at
en

cy
 (

s)

Hopcount

100% Duty Cycle
50% Duty Cycle
25% Duty Cycle
10% Duty Cycle

5% Duty Cycle

Figure 3.2 State delivery latency (seconds) vs. Hopcount with varying Duty Cycle.

 0

 20

 40

 60

 80

 100

5 10 20 25 30 40 50 60 70 80 90 100

D
el

iv
er

y
 L

at
en

cy
 (

s)

Duty Cycle (%)

1 Hop
20 Hop
40 Hop
60 Hop
80 Hop
99 Hop

Figure 3.3 State delivery latency (seconds) vs. Duty Cycle (%) with varying hopcount.

21

path is known and the duty cycle is determined for the nodes on the routing path, the state delivery

latency can be estimated as: fL ∝
h
d , so fL = c · h

d , where c is a constant factor depending on the

system set up factors such as network topology. This estimation of state delivery latency can also

be verified theoretically in standard network model. Assuming that all the nodes are synchronized,

the nodes on the selected route maintain the same duty cycle d. Then the message can travel

d ·T/Ttrans hops during one radio ON interval, where T is the time period of radio duty cycling and

Ttrans is the transmission time for one packet over a link. After that time, the message has to wait

during the radio sleep interval in the intermediate forwarder node. Then it is forwarded again via

d · T/Ttrans hops. Since the nodes are strictly synchronized, their radio duty cycle periods align in

time. This forwarding of data through radio ON period is performed h
d·T/Ttrans

times before arriving

at the sink, where h is the hopcount of sink from the source node. Therefore the total estimated

state delivery latency fL ∝
h

d·T/Ttrans
. Since Ttrans is constant for fixed message size and T is also

fixed, the formulation of fL validates our estimated model for data delivery latency: fL = c · h
d . It is

worth noting that besides hop distance and duty cycle, collisions and congestions among links may

also affect the delivery latency. But in the considered network scenario, collision and congestion

are usually negligible. In the network of concern, data traffic is usually low or moderate, e.g., 48

byte packet generation in every 5 seconds during activity detection. At any moment there is only a

limited number of active nodes generating data at low rate. Also the wireless radio communication

frequency can be chosen so that it does not overlap with other sources of radio signals (e.g., Wi-Fi,

microwave) in a smart environment.

3.2.3 Proposed ActSee Protocol

In ActS ee, we define the term E as the energy budget which is the maximum expected average

duty cycle allowed. We study the following constrained optimization problem: considering a long

state evolving process, given a device energy consumption budget E and an activity state transition

matrix P, what is the optimal radio duty cycle assignment strategy µ, such that the expected activity

state delivery latency (say, E[L]) is minimized, and the expected average duty cycle (say, E[d]) is

maintained under the budget such that E[d] ≤ E?

22

In the ActSee protocol each node keeps track of its hopcount to the sink, as well as the next

hop on the route to the sink. No matter what routing policy is used by the system, it will not affect

the results derived in ActSee which requires any change in routing path and hopcount to the sink

to be informed to the system. For ease of explanation, during any state xi, we partition all the

sensor nodes into two disjoint sets: inactive set VI and active set VA, where VA contains all the

sensor nodes that are associated with active node xi and its neighbor states in ATPG graph, as well

as those nodes appearing on the routing paths from them to the sink. (If xi has a self loop, xi is

also the neighbor state of itself.) Essentially, the active set VA contains all possible sensor nodes

that may become active or help in relaying in the next stage or time period. The rest of the nodes

belong to VI . The main idea behind ActSee is to increase the duty cycle of VA in the next stage,

while keeping VI in low duty cycle.

Now to eliminate the decision propagation delay existing in reactive strategy, ActSee works as

follows. Based on the available nodes in the network and the collected information about activity

patterns in form of AT PG graph, a back-end system (connected to sink) runs a linear program

routine to select the action set (duty cycle assignments for the nodes in VA for each possible ac-

tive node). Note that for continuous events like motion, all the neighbor nodes in ATPG are also

the neighbors in communication topology (but not necessarily vice-versa). Now for a deployed

network, the back-end system calculates only once, the action set of each possible active node.

This action set information is disseminated once, stored in the nodes, and updated when necessary.

Once a node is active, it reconfigures the duty cycles of its neighbors and also far-off nodes. It is

worth noting that ActS ee exploits the existing beacon message in a routing protocol to piggyback

the duty cycle assignment information. Thus it saves energy for distributed duty cycle assignment

task. Until some node is dead or some new node is added, the back-end system does not need

to recompute or disseminate the action set. Otherwise it recomputes the action set based on peri-

odically collected regular node status information. The activity pattern typically repeats in smart

environments after a reasonable learning period. Thus the linear program routine to select the ac-

tion set is not required to be run often. After the learning phase, ActSee conserves energy in a long

period, since it is computed based on the knowledge of activity patterns in AT PG.

23

At the beginning of each stage, the currently active sensor nodes vi use their duty cycle set for

assigning duty cycles to nodes in VA for the next stage. The detailed selection of a proper duty cycle

assignment is explained in the next subsection based on the strategy µ for duty cycle selection.

Then the decision is propagated to VA immediately during the current stage. By executing the

decision propagation phase during current stage, ActS ee is able to reduce the decision propagation

delay. For the remaining sensor nodes which do not receive any updated duty cycle information,

they operate at the lowest duty cycle during the next stage to save energy.

109

7

8

Active Node

Sink Node

Nodes associated with
node 1's neighbor states

Nodes in VA Nodes in VI

Figure 3.4 Illustration of ActSee: node 0 is the sink, node 1 is currently active node, node 2 and
node 6 are neighbors of nodes 1. The routing path from node 2 to sink is 2�3�4�0, and that
one from node 6 to sink is 6�5�0. In this example, VA =2, 3, 4, 6, 5, and the set VI contains the
remaining nodes. In ActS ee, node 1 will pre-select a duty cycle assignment for all nodes in VA and
propagate its decision to them during current stage. All the remaining nodes will work with lowest
duty cycle.

Let us illustrate with the example in Figure. 3.4 in which node 1 is the currently active node,

while nodes 2 and 6 are neighbors of node 1 in the AT PG. More precisely, the states of both

2 and 6 are neighbors of 1’s state in the AT PG. In this example, the routing path from node 2

is 2�3�4�0, and that from node 6 is 6�5�0. Also VA = {2, 3, 4, 6, 5} and VI = {7, 8, 9, 10}.

In ActSee, node 1 will pre-select a duty cycle assignment for all nodes in VA and will propagate

its decision to them during the current stage, while all the remaining nodes will work at lowest

duty cycle. Furthermore, an active sensor node can make a decision immediately based on local

24

Algorithm 1 Pseudo code for ActSee in each node v
Input: Optimal duty cycling strategy µ (computed from Algorithm 2) and current state information
Output: The duty cycle assignment during next stage

1: if v does not receive any updated duty cycle information then
2: Keep itself in lowest duty cycle in the next state;
3: if v = vi then
4: Randomly choose a duty cycle assignment (based on duty cycling strategy µ calculated from

Algorithm 2) for all sensor nodes in VA for the next stage;
5: Propagate the decision to the rest of the nodes in VA immediately;
6: if v , vi and it receives the decision from vi then
7: Adjust duty cycle correspondingly in the next stage;

information, given it knows its action set. Algorithm 1 provides the pseudo code for node. Here, µ

specifies the duty cycle assignment of the nodes at each state.

We model the computation of optimal duty cycling strategy problem as a Constraint Markov

Decision Process (CMDP). By solving the corresponding Linear Program (LP) in polynomial time,

we obtain an optimal strategy µ for each state. Additionally, the selection of different duty cycle

for each state is randomized under fixed distribution.

Constraint Markov Decision Process

Markov decision processes (MDP), also known as controlled Markov chains, constitute a basic

framework for dynamically controlling systems that evolve in a stochastic way. In a standard

MDP, the current action may also affect the transition probability for the next time period, but this

is not the case in this paper since the transition graph does not depend on the current duty cycle

algorithm. MDP is a generalization of (non-controlled) Markov chains, and many useful properties

of Markov chains carry over to controlled Markov chains. The model and problem that we consider

in this paper is especially challenging in the sense that more than one objective cost exist, and the

controller minimizes one of the objectives subject to constraint on the other.

To apply the above to our problem scenario, we define a tuple {O,X,A,P, L,D}, where O =

{t|t = 1, 2, · · · } denotes the set of decision epochs (note that decisions are made at the beginning

25

of each stage), and X = {x1, x2, · · · , xN} is a countable state space. Although we limit our study

to discrete activity state transitions, the continuous case can also be handled by dividing it into

discrete space. A is a metric set of actions. We denote A(xi) = {ai
1, a

i
2, · · · } as the action set

allowable at state xi. Each action ai
j ∈ A(xi) defines a duty cycle assignment for a sensor node

in the next stage. Let d(ai
j, v) denote the duty cycle assignment for sensor node v under action

ai
j. Theoretically, each sensor node has |D| possible duty cycle assignments, thus the action space

could be as large as N |D|. In order to reduce the search space, we again leverage the underlying

transition graph to facilitate our study. Specifically we restrict the action set A(xi) as follows: (i)

Only the nodes in VA, the possible active nodes in the next state, will be considered to increase the

duty cycle. The rest of the nodes operate with lowest duty cycle by default. (ii) All relay nodes that

appear on the routing path from the same source node, have the same duty cycle as that of their

source. (iii) For those nodes appearing on the crossover point of multiple routing paths, ActS ee

sets their duty cycle to the maximum one among all crossing paths.

We use the previous example in Figure 3.4 for illustration. In this example, a possible action

a1
j selected by node 1 could be d(a1

j , 2) = d(a1
j , 3) = d(a1

j , 4) = 10% and d(a1
j , 6) = d(a1

j , 5) = 15%.

Clearly, the size of searching space is 2|D| where 2 is the number of neighbor states of the current

state in this example. Now let ρ(xi, ai
j) denote the “occupation measure” of state xi and action ai

j. It

denotes the probability that such state-action pair ever exists in the decision process. Ev(d) denotes

the expected average duty cycle of sensor node v, which is expressed as in Eq. (3.2). Notice that the

“occupation measure” ρ() is decided by corresponding duty cycling strategy. The term P are the

transition probabilities. We define Pia j as the probability of moving from system state i to j, when

action a is taken. Since different duty cycling strategies will not affect the actual transition process

of the event activities, given the activity state transition probability matrix P, it is easy to conclude

that Pia j = Pi j. Let L be the immediate cost. In this paper, we define L(xi, ai
j) as the expected

average delivery latency during the next stage by taking action ai
j, where L(xi, ai

j) is expressed

as in Eq. (3.3). Recall that in terms of hop count and duty cycle, fL(vk v0, ai
j) denotes the

average delivery latency through a fixed routing path vk v0 under action ai
j, and N(xi) denotes

the neighbor set of state xi. Then the expected average delivery latency E[L] can be computed as

26

in Eq. (3.4). E is the maximum allowed expected average duty cycle budget. Therefore for each

node v, we have Ev[d] ≤ E.

Ev[d] =
∑
xi∈X

∑
ai

j∈A(xi)

ρ(xi, ai
j) · d(ai

j, v) (3.2)

L(xi, ai
j) =

∑
xk∈N(xi)

Pik · fL(vk v0, ai
j) (3.3)

E[L] =
∑
xi∈X

∑
ai

j∈A(xi)

ρ(xi, ai
j) · L(xi, ai

j) (3.4)

Optimal Duty Cycling Policy µ

In order to compute the optimal strategy of the CMDP with expected average cost criteria, we for-

mulate it as a linear programming (LP) problem. After solving the corresponding linear program,

we obtain the optimal strategy through normalization. The following presents how to formulate

the duty cycling optimization problem as a linear program.

Problem: LP-Minimizing Expected Delivery Latency

Objective: Minimize E[L]

subject to:

(1) ρ(xi, ai
j) ≥ 0, ∀xi, ∀ai

j

(2) Ev[d] ≤ E, ∀v

(3)
∑

xi∈X
∑

ai
j∈A(xi) ρ(xi, ai

j) = 1

(4) ∀x j ∈ X

∑
xi∈X
∑

ai
j∈A(xi) ρ(xi, ai

j)(δx j(xi) − Pi j) = 0

The constraints (1) and (3) ensure that ρ(xi, ai
j) is a feasible probability measure. The energy

budget can be restricted under the constraint (2) by setting the expected average duty cycle less

than E. In inequality (4), δx j(xi) is the delta function of xi concentrated on the state x j.

27

δx j(xi) =

1, if i = j

0, otherwise

The constraint (4) describes that the outgoing rate and incoming rate for a state must be the

same. At the same time, it emphasizes the property for ergodic processes. After solving the linear

program, we get an optimal occupation measure ρ() in terms of delivery latency minimization for

each state/action pair. However, since
∑

ai
j∈A(xi) ρ(xi, ai

j) ≤ 1, we can not directly use ρ(xi, ai
j) as the

probability of taking action ai
j at state xi. Instead, the stationary optimal duty cycling strategy µ

can be determined from ρ(xi, ai
j) as follows:

µ(ai
j|xi) =

ρ(xi, ai
j)∑

ai
j∈A(xi) ρ(xi, ai

j)

Here µ(ai
j|xi) describes the probability of taking action ai

j at state xi. It is easy to verify that∑
ai

j∈A(xi) µ(ai
j|xi) = 1. For any number of input states, Algorithm 2 can return an optimal strategy

µ in polynomial time. As the input to Algorithm 1, µ(ai
j|xi) for all j will be propagated to each

corresponding sensor node vi.

Algorithm 2 Computation of Optimal Duty Cycling Strategy µ
Input: Energy budget E, transition matrix P, underlying wireless sensor network topology G
Output: Optimal duty cycling strategy µ.

1: Solve corresponding CMDP linear programming to get the occupation measure ρ(xi, ai
j), ∀xi ∈

X,∀ai
j ∈ A(xi);

2: Calculate optimal duty cycling strategy µ from ρ(xi, ai
j) as:

µ(ai
j|xi) =

ρ(xi, ai
j)∑

ai
j∈A(xi) ρ(xi, ai

j)

28

3.3 Experimental Study and Performance Evaluation

The performance of the proposed ActSee protocol is evaluated both in (a) a real sensor network

testbed, and (b) a sensor network simulator TOSSIM [53]. The experiments with probabilistic

event activity transitions are performed with networkwide data collection at the sink node. In

the experiments, the active source nodes send activity detection data to the sink node through

forwarder nodes on a multi-hop path. In addition to the activity data, each node periodically reports

the energy level and other status information to the sink. As the base routing protocol we use the

shortest path routing, although ActSee can operate with any routing protocol. The whole system

is implemented in a manner suitable for real-time applications. The network topology information

and event activity data are collected at the sink node, and transferred to the back-end system for

AT PG graph generation and solving the Linear Program (using standard method). The back-end

system computes the optimal duty cycling strategy, as described in Algorithm 2. Then the resulting

action set (duty cycle assignments) from Linear Programming solver, is disseminated back into

the network once. The nodes perform the routine described in Algorithm 1. It is important to

note that after forming AT PG, the duty cycle assignments are disseminated into the network only

once. Afterwards, if a node is active, it sets the duty cycle of neighbors and far-off nodes through

communication of local beacon message sharing. So until a node dies, or a new node is added,

or the activity pattern changes (that can happen only in long time period, typically at least several

days, in smart environments), the duty cycle assignment strategy stored in the nodes is not changed.

Therefore, the networkwide dissemination of the duty cycle set is performed very rarely. Thus

there is minimum communication overhead for setting of duty cycles. The software system is

implemented in TinyOS-2.x.

Figure 3.5 shows the sensor node software architecture for ActS ee. The activities detected

by the sensing layer is processed in the application layer. The middleware stores the action set

for duty cycle assignment. Now with the current action set, the membership of node (being in the

active set VA or inactive set VI) and the neighbor set information (from network layer) are trans-

ferred to the link layer. Then the node reconfigures its own duty cycle and sends beacon message

29

ActSee

Figure 3.5 TinyOS node software stack with activity-aware design for ActSee.

to the neighbors to let them reconfigure their duty cycles accordingly. The energy consumption

is calculated using the relevant model of radio transmission, reception and radio idle states. In

our experiments, the performance of ActSee is compared with Uniform duty cycling, X-MAC (fre-

quently used in sensor network applications) and Reactive strategy. Recall that X-MAC represents

the class of asynchronous MAC protocols. Moreover, the performance of the Synchronous TDMA

MAC protocol performance will be equivalent to Uniform where the individual node duty cycles

are fixed.

3.3.1 Evaluation on Real Sensor Network Testbed

A network of 16 TelosB sensor motes is deployed on the wall in a smaller area, but accord-

ing to the physical deployment layout of motion sensor nodes in the kitchen and dining room of

CASAS smart home [5]. The transmission power of the radio is controlled to generate a multi-hop

network in the testbed area. Now light beam is projected in the space, and is programmed to move

according to the learned activity transition patterns in AT PG. The setup is shown in Figure 3.6

and Figure 3.7. This emulates the detected motion activities of the corresponding smart home

30

Figure 3.6 Testbed setup.

residents. The standard one-hop broadcast beacon message is utilized in ActSee and reactive duty

cycling protocols to piggyback extra information to share among the neighbors. A node sensing

light intensity above a threshold emulates detected activity. Each experiment with different duty

cycling protocols was performed for two hours, in order to generate a variety of probabilistic order

of event activities. The experimental set up for comparing different protocols are as follows.

The fixed duty cycle in the Uniform strategy is selected at the value to exactly satisfy the

previously described device energy consumption budget (for achieving at least a minimum network

lifetime). In the Reactive strategy, the nodes by default maintain minimum duty cycle in the duty

cycle assignment setD. But they reactively reconfigure the duty cycle of nodes on an active route

to the maximum duty cycle in D. In X-MAC, the sleep period is selected in order to maintain a

projected average duty cycle satisfying the device energy consumption budget. Figure 3.8 shows

the distribution of the activity state delivery latency. In Uniform and X-MAC, around only 50%

of the packets are delivered with latency within 9000 ms. In Reactive, 70% of the packets are

delivered within latency of 9000 ms. Finally, in the ActSee protocol, 92% of the packets are

delivered within 9000 ms. Therefore ActSee provides much reduced data delivery latency.

Figure 3.9 shows instances of delivery latency of 8 consecutive packets delivered at the sink

31

Figure 3.7 Testbed emulating motion activity event with projected light beam.

 0

 20

 40

 60

 80

 100

1000 5000 10000 15000 18000

C
D

F
 (

%
)

Activity State Delivery Latency (ms)

Uniform
X-MAC
Reactive

ActSee

Figure 3.8 Distribution of data delivery latency.

32

Figure 3.9 Delivery latency of packets after event occurrence for various duty cycling strategies.

after an event occurs. Uniform has the same high latency. X-MAC has better latency after initial

wake-up with preambles, but still suffers from high latency due to insufficient duty cycles of nodes

on the active route. Reactive performs better from 4th packet, after reactive setting of duty cycles.

But ActSee maintains low latency for all the packets delivered after the event occurrence. This

is very important for time critical applications, where the delivery latency of the very first packet

(after event occurrence) is equally or more important than the subsequent ones. ActSee achieves

this improvement in delivery latency by setting active paths from possible next active nodes to the

sink, with high duty cycle. This also leads to better throughput of the collected data at the sink

node in ActSee, as compared to others. ActSee also intelligently saves energy by configuring the

idle nodes in the network with low duty cycle. ActSee provides the best expected network lifetime

(the time between network boot-up and the time when the first node dies).

33

Uniform X-MAC Reactive ActSee
Throughput (packets/sec) 7.54 8.52 9.65 12.55
Network Lifetime (days) 91 112 136 221

0

1

2

3

4

5

6

S-1 S-2 S-3 S-4 S-5 S-6 S-7A
v

er
ag

e
S

ta
te

 D
el

iv
er

y
 L

at
en

cy
 (

se
co

n
d
s)

Starting Active State

Uniform Reactive ActSee

Figure 3.10 State delivery latency (seconds) for different starting active state.

0.00

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S-1 S-2 S-3 S-4 S-5 S-6 S-7

T
h
ro

u
g
h
p
u
t

at
 S

in
k
 (

p
ac

k
et

s/
se

co
n
d
)

Starting Active State

Uniform Reactive ActSee

Figure 3.11 Throughput at Sink (packets/second) for different starting active state.

34

60

90

120

150

165

S-1 S-2 S-3 S-4 S-5 S-6 S-7

P
ro

je
ct

ed
 N

et
w

o
rk

 l
if

ti
m

e
(d

ay
s)

Starting Active State

Uniform Reactive ActSee

Figure 3.12 Network Lifetime (days) for different starting active state.

3.3.2 Evaluation on Sensor Network Simulator

In the standard sensor network simulator TOS S IM set up, we use a network of 28 nodes in

the same layout as the real-time CASAS smart home testbed (Figure 3.1). The computed ATPG

information is used to generate probabilistic activity transitions among the nodes. Each experi-

ment with different starting states was 60 minutes long, and repeated 20 times to get the average

performance and to vary the probabilistic activity transitions.

Figure 3.10, Figure 3.11 and Figure 3.12 show the mean data delivery latency (in seconds), the

data throughput at sink (packets/second), and the projected network lifetime (in days) respectively,

for each starting state or active node S − 1, S − 2, S − 3, S − 4, S − 5, S − 6 and S − 7. A state S − i

(1 ≤ i ≤ 7) denotes one select node selected from the rooms (kitchen, bedrooms, dining room, etc.)

in CASAS smart home layout. So if the starting state of activity is different, the order of active states

(due to motion of smart home residents) will be different. Our experiments clearly demonstrate

that in terms of all the relevant parameters (latency, throughput, lifetime), the proposed protocol

ActSee significantly outperforms both Reactive and Uniform duty cycling strategies. For example,

the mean state delivery latency in ActSee is 67% to 92% better than Uniform, and 44% to 85%

35

better than Reactive. The data throughput at the sink in ActSee is 2.4 to 8.3 times better than

Uniform, and 1.6 to 6.4 times better than Reactive. Similarly, ActSee outperforms others in the

network performance metric (e.g., network lifetime). The projected network lifetime in ActSee is

1.8 to 2.4 times higher than Uniform, and 1.3 to 1.8 times higher than Reactive.

3.4 Summary

This chapter presents ActSee, a novel activity-aware radio duty cycling protocol for wire-

less sensor networks. This activity-aware protocol design learns from event activities in smart

environments and utilizes knowledge from an activity transition probability graph to dynamically

configure the optimal duty cycling strategy in order to provide improved data delivery latency

and throughput, while enhancing energy efficiency and hence network lifetime. The experimen-

tal results from real sensor network testbed and simulation validate the advantages of the ActSee

protocol.

36

PART 4

EAR: ENERGY AND ACTIVITY AWARE ROUTING

In this chapter we present the EAR [2] protocol, an energy and activity context aware routing

protocol for sensor networks in Smart Environments. EAR is an online routing protocol, which

chooses the next-hop relay node by utilizing: activity pattern information in the AT PG graph and

a novel index of energy balance in the network. EAR extends network lifetime by maintaining

an energy balance across the nodes in the network, while meeting application performance with

desired throughput and low data delivery latency. First we describe in details, the main protocol in

EAR. Then we explain the system evaluation and performance analyses of EAR.

Figure 4.1 Event activity detected and reported by node with motion sensor in smart workplace,
and corresponding energy consumption pattern of sensor node.

4.1 Background

Figure 4.1 shows the event activities detected and reported by a node (in a 30 node smart

workplace sensor network deployed across a floor) with motion sensor and corresponding node

energy consumption. Through observation, it is clear that node energy consumption (thus node

37

Table 4.1 List o f symbols used
Ei Initial energy of node i
Ei(k) residual energy of node i before routing message k
sk, dk, lk Source, destination and size of message k
ci j energy required by node i to send unit size data to node j
ptr(x, y) probability of activity transition from node x to y
ttr(x, y) predicted activity transition delay from node x to y
CL(i) activity cluster of node i

operations) is strongly correlated to the event activities. In long-term operations, these activities

usually show certain periodic patterns, which can be learned and exploited to optimize network

design. However, this has been underexplored in the literature. In this paper we present a novel

Energy and Activity aware online Routing (EAR) protocol for sensor networks.

4.2 Energy and Activity Aware Routing

We first introduce system models and formal problem definitions, then we describe EAR

protocol in details.

4.2.1 Preliminaries

The symbols used in EAR are listed in Table 4.1.

event

eventActive
Cluster

Active
Cluster

Predicted
Cluster

Predicted
Cluster

Predicted
ClusterPredicted

Cluster

routing path
activity transition

Sink

Inactive
Cluster

Figure 4.2 Illustration of activity patterns and data generation in network.

38

Learning Activity Patterns: Figure 4.2 illustrates the event activity patterns and data gener-

ation in a sensor network in smart environments. Based on the context of event activities, the nodes

in the network at any moment belong to one of the three types of clusters (set of sensor nodes):

Active Cluster (where the event activities are occurring in current time period), Predicted Cluster

(predicted to be in active cluster in next time period), Inactive Cluster (with no activity in current

period and no predicted activity in next time period). The membership of nodes being in clusters

changes with time according to an Activity Transition Probability Graph (AT PG). In such a graph,

the edge from node x to node y denotes the transition tuple < ptr(x, y), ttr(x, y) >, where ptr(x, y)

is the predicted activity transition probability and ttr(x, y) is the predicted activity transition delay,

for transition of activity from x-th cluster to y-th cluster. To note that the nodes in Active Clusters

will be involved in activity detection and computation, followed by sending the data to base station

node. Therefore it will be better to avoid involving nodes in Active or Predicted clusters as data

forwarder. The nodes with higher probability of being in inactive clusters can be more involved in

data forwarding task. This will save some energy (of data forwarding) for active nodes, and will

also save some MCU computation resource for the node’s own tasks (such as activity detection,

processing, communication etc.).

System Model: The energy cost of sleep state is much lower than that of transmitting/re-

ceiving state. The energy consumption is considered only for transmitting/receiving state in our

system model. The node overhear energy consumption model is used in various earlier works (e.g.

in [54]). The sensor network is considered as a graph G=(V, E), where V is the set of nodes and

E is the set of edges. Let n=|V | be the number of nodes. Each node i starts with initial energy

Ei. The source and destination of message k (of size lk) are denoted as sk and dk respectively. In

data collection scenario, dk is always the base station. Now suppose in multi-hop routing, node i

decides to forward message k to node j through link i j. Then node i consumes ci j energy per unit

length of data, therefore consuming a total lk.ci j amount of energy for transmitting message k.

Objective: The design objective of EAR is to meet application performance requirement

(e.g., throughput and delay) while maximizing network lifetime, by utilizing the activity pattern

information in AT PG graph.

39

4.2.2 Algorithm and Protocol Design

Activity Detection and Analysis

Application

activity data
Activity

Awareness

sensor networks

Figure 4.3 Activity-awareness for sensor network.

Distribution of Computation in EAR: The activity-awareness in sensor network is used in

EAR as shown in Figure 4.3. The event detection data in network is collected at base station

node for application purpose, and also used for constructing activity patterns in form of AT PG.

Then the AT PG information is disseminated back into the network once. Now until a node dies,

or a new node is added, or the activity pattern changes (that can happen only in long time period,

typically at least several days, in smart environments), the AT PG information stored in the nodes is

not changed. Therefore, the networkwide dissemination of AT PG information is performed rarely.

Thus there is minimum communication overhead. The activity pattern analysis is only done in base

station. All other calculations involved in EAR are distributed and localized. So all computations,

except activity pattern analysis are distributed and localized in the network.

Building and Maintaining AT PG: As a case study, we calculated an AT PG graph based

on sensed events in CASAS [5] smart home testbed. The probability of transition between two

sensor nodes x and y is based on the relative frequency of events at sensor node x followed by

40

Figure 4.4 Activity Transition Probability Graph (including both significant and negligible transi-
tion probabilities) generated from the CASAS Smart Home testbed with layout shown in Figure
4.5.

events at sensor node y. In AT PG, a node is generated for each sensor node that exists in the

environment. The probability associated with edge x, y is estimated using the formula in equation

4.1. The example AT PG with both significant and negligible transition probabilities is shown in

Figure 4.4. The revised AT PG with only significant activity transitions is shown in Figure 4.5.

p(x, y) =
| events f or sensor x f ollowed by sensor y |

| events f or sensor x |
(4.1)

Activity-Aware Routing Metric: Now we describe the notion of activity-awareness in EAR.

Suppose a node i is trying to forward message k whose source is node sk, which is in activity cluster

CL(sk). Then node i tries to forward the data to some node j with (a) less computed probability

p(CL(sk),CL(j)) of being active (given CL(sk) is active) and (b) less duration of being active

(tactive(j)) · p(CL(sk),CL(j)) can be calculated by summing up the computed probability along all

the paths from node CL(sk) to node CL(j) in the AT PG. tactive(j) can be calculated from weighted

(based on transition probability) activity transition delay from CL(j) to the next clusters. Let the

period of activity pattern be TP (which is 24 hours for smart home environments). Then activity-

awareness metric for node j when routing of message k is a(j, k) = p(CL(sk),CL(j)) · tactive(j).

41

7

6

3
2

1 4

5
8

9

10

11

12

13
14

15
16

1718

19

20 21
22

23

24

25

26 27

Activity Transition
Probability Graph (ATPG)

n motion sensor

activity transition

Dining Room

Kitchen

Bedroom

Figure 4.5 Activity Transition Probability Graph (pruned for significant activity transition) learnt
from the CASAS Smart Home testbed. The significant transition probability for example from
node 27 to nodes 14, 25 and 26 are 12%, 45% and 40% respectively.

p(CL(sk),CL(j)) =
∑

P∈CL(sk){CL(j)

∏
(xy)∈path P

ptr(x, y) (4.2)

tactive(j) =

∑
q∈N(CL(j)) ptr(CL(j), q).ttr(CL(j), q)

TP
(4.3)

Low computation overhead for activity metric: In real application scenario, the nodes don’t

need to compute the parameters p(CL(sk),CL(j)) and tactive(j) each time. The transition graph

information (transition probability and duration) can be stored (and updated if necessary in long

time duration) in the nodes in an MxM vector, where M is the number of clusters in the network.

This will indicate the values of p(CL(sk),CL(j)). Based on that matrix, the nodes can save calcu-

lated tactive(j) in an 1xM matrix. So the nodes can directly access the routing metric a(j, k). This

indicates that Activity Awareness metric doesn’t incur much computation overhead.

Energy-Aware Routing Metric: Now we describe the notion of energy balance in EAR.

In order to reach a balance in energy consumption rate across the network we use Atkinson’s

Inequality Index [55]. It is a measure of economic income inequality in a society. The index can

42

Figure 4.6 Distribution of Energy Balance index (B)

be turned into a normative measure by imposing a coefficient ε to weight incomes. Greater weight

can be placed on changes in a given portion of the income distribution by choosing ε, the level

of Inequality Aversion. The Atkinson index becomes more sensitive to changes at the lower end

of the income distribution as ε approaches 1. Conversely, as the level of inequality aversion falls

(ε approaching 0) the Atkinson Index becomes more sensitive to changes in the upper end of the

income distribution. Atkinson index A is defined as in equation 4.4.

A = 1 −
1
µ

[
1
N

N∑
i=1

y(1−ε)
i]1/(1−ε) (4.4)

Where 0 ≤ ε < 1, yi is the individual income of i-th entity (i = 1, 2, ..., N) and µ is the mean

income of total N entities. We calculate B=(1− A) as the energy balance index which is computed

locally in 1-hop neighborhood. So the index of energy balance Bi(k) computed by each node i

(before routing of some message k) is shown in equation 4.5. The term ei(k) = Ei(k)/Ei denotes

the normalized remaining energy before routing message k. Ei(k) is the residual energy of node

i before routing message k. The neighbor set of node i is denotes as N(i). ∆ (={N(i) ∪ i}) is the

set of 1-hop neighbors of node i and the node itself. So the index Bi is calculated using remaining

energy information of the neighbors and the node i itself. In Figure 4.6 the effectiveness of B

metric is shown. In a simulated environment in MATLAB with 100x100 sensor network grid, each

node has maximum 8 neighbors. Only three nodes in the network have energy value of 100. But

43

other nodes have energy between 500 to 1000. Then the distribution of locally computed B (with

ε=0.8) across the network is shown in Figure 5.10. It can be observed that B is high enough (close

to 1) everywhere, except in the neighboring region of the nodes with low energy. Therefore in a

distributed network B is a meaningful indicator of region with significant energy imbalance. Lower

B indicates higher degree of energy imbalance.

Bi(k) =
|∆|∑

j∈∆ e j(k)
[

1
|∆|

∑
j∈∆

e j(k)(1−ε)]1/(1−ε) (4.5)

The nodes in network maintain the hopcount from base station based on the default transmis-

sion power level. Now for purpose of routing convergence with delay control, (i) data is forwarded

to node with same or less hopcount, (ii) if data is carried by at most H forwarders with same hop-

count, it has to be forwarded next to a node with strictly lesser hopcount.

Routing Policy: Let messages are indexed in the order they are generated. Let sk, dk and lk

be the source, destination and length of message k. Suppose Ei(k) is the residual energy of node i

when the message k is generated but not routed. So Ei(1) is the starting energy Ei for node i. Let

the variable αi(k) = 1-(Ei(k)/Ei). Variable Bi(k) is the computed energy balance index of node i as

described before. Bi(k) denotes the degree of energy balance around the neighborhood of node i

before message k is routed. For activity awareness, the previously introduced parameter a(j, k) (=

p(CL(sk),CL(j)) · tactive(j)) is used where j ∈ N(i). In the description of the protocol there are two

constant parameters λ and σ.

Rationale behind routing policy: Here we explain the rationale behind the routing metric

chosen. (a) For the link i j the weight wi j increases with increase in ci j (energy spent by node i for

routing message k over link i j). So routing avoids the links with high message transmission cost.

(b) wi j increases with increase in both p(CL(sk),CL(j)) (i.e. for nodes with more probability of

being active) and tactive(j) (i.e. for nodes with more expected active duration). Thus routing tries

to select node (as forwarder) with less probability of being active and with less activity duration.

This property makes it activity-aware. (c) wi j increases with increase in the energy utilization αi(k)

44

Algorithm 3 EAR algorithm
1. Set the weight or routing metric wi j for the link i j as
wi j=ci j.a(j, k).(λαi(k) − 1)/Bi(k).
2. Find the best path from sk to dk in the graph with the forwarder node selection method
described. If node i has data packet to forward, select node j as its forwarder node as fol-
lows:

if hop travel < H then
j = arg min{wiq, q : q ∈ N(i) AND hopcnt(q) ≤ hopcnt(i) AND ciq < Ei(k)/lk} ; i f hopcnt(j) =

hopcnt(i) then hop travel+ = 1 ;
else

j = arg min{wiq, q : q ∈ N(i) AND hopcnt(q) < hopcnt(i) AND ciq < Ei(k)/lk} ; hop travel =

0;
3. Let γk be the cost of the best path found for message k. Now if γk ≤ σ, then route the message
k along the computed path, otherwise reject it. To note that γk=∞ if no such path is found.

of node i. So routing avoids nodes with low normalized residual energy. (d) Then wi j increases

with decrease in the energy balance Bi(k) of node i. So routing avoids nodes whose neighborhood

is relatively out of balance in residual energy. In addition, to note that in admission control, setting

the value of σ to infinity (then the only reasons for rejecting a message is insufficient energy for

routing) has shown results with good performance.

Competitive Ratio in Data Delivery: We now describe the calculated competitive bound for

EAR. Let cmax = maxi j∈Eci j, cmin = mini j∈Eci j, amin = mini j∈Ea(j, k) and ρ= cmax
cminamin

. Let L(k) be the

total size of messages that is successfully routed by EAR till the arrival of message k. Let Lopt(k)

be the total size of messages that is successfully routed by optimal offline algorithm till the arrival

of message k. Then the obtained competitive ratio result for EAR is as shown below. The detailed

proof is provided in next section.

Theorem 1 Suppose λ=2(nρ + 1), ρ= cmax
cminamin

, σ = ncmax and Q is a positive constant. For all mes-

sage k, let

lk ≤
mini∈V Ei

cmaxlg(λ)
(4.6)

then, L(k)
Lopt(k) ≥

1
1+Qlg(λ) ∀k

Delivery latency: It can be proved that EAR is a H-hop spanner. The H factor assures that the

45

routed data, carried through less active nodes and energy balanced neighborhood, is converged to

the base station. It is important to note that EAR actually reduces the data delivery latency to base

station, by routing them through less active nodes (nodes less busy with sensing, data processing

and forwarding). This is also supported from the experimental results (described later).

Network Lifetime: EAR is also proved in following theorem to provide sub-optimal network

lifetime.

Theorem 2 Let Tear and TML are network lifetime (time till first node dies) for EAR and optimal

network lifetime algorithm (algorithm for maximum lifetime) respectively. Then

Tear >
TML
∑S

k=1 PMin(smk)∑S
k=1 Patp(smk)

+
δ(
∑n

i=1 EML
i −
∑n

i=1 Eear
i)∑s

k=1 Patp(smk)

S is the number of message generated in the period TP.
∑S

k=1 PMin(smk) is the total energy con-

sumption for routing S message in TP, when minimum energy path routing scheme is used.∑S
k=1 Patp(smk) is the total energy consumption for routing S message in TP, when purely activity-

aware routing scheme is used. (
∑n

i=1 EML
i −

∑n
i=1 Eear

i) denotes the difference between total remain-

ing energy in network after time TML and Tear. The detailed proof is provided in next subsection.

Reliable Data Delivery: EAR follows routing metric based on energy and activity index. But

EAR is not affected by link failure rate in lossy wireless medium. It has been observed through

a number of experimental works (e.g. in [56]) that for any link, Packet Reception Rate (PRR)

saturates to sufficiently high (almost 100%) when the link RS S I is at least -90 dBm, or when

the Link Quality Indicator LQI is 100. In system implementation of EAR, a node eliminates its

neighbor node from routing table, to whom it’s RS S I is < -90dBm or it’s LQI is < 100. So EAR

can achieve gains in overall energy and resource usage, while not suffering data delivery guarantee

because of failure rate of the links. This makes it practically applicable in any kind of harsh

application environment.

Network Energy Balance: Through localized energy balance, EAR tries to keep a balance

in remaining energy of nodes across network. This is crucial both for networks with uniform

and non-uniform (e.g. heterogeneous network) starting energy. This is also useful for energy

harvesting sensor networks. Maintenance of energy balance across network inherently increases

46

lifetime, also gives the opportunity to intelligently utilize dynamically available energy sources.

According to [57], Atkinson index measurement of inequality remains unchanged if there is an

equi-proportionate change of all levels of income. Now EAR ensures messages are not forwarded

by nodes with low energy, or not overheard by nodes with very low energy. Thus from the property

mentioned, EAR tries to thwart the degradation in energy balance in local neighborhood due to

routing of messages generating from nodes in non-uniform rate. In this way EAR tries to keep

better energy balance in the network.

4.3 Theoretical Analysis

We now present the theoretical proof of Theorem 1 and Theorem 2 described in earlier section.

n Proof of Theorem 1: We associate a cost fi for each node i ∈ V . Now the cost fi(k) for node i

before the arrival of message k is as described in equation 4.7.

fi(k) = Ei(λαi(k) − 1)/Bi(k) (4.7)

Let S (k) be the set of messages those are successfully routed by EAR until the arrival of

message k. Now to prove the competitive ratio, we first find the lower bound of total message

length successfully routed by EAR, in terms of node cost fi.

Lemma 1
∑

i∈V fi(k) ≤ 2qMP.lg(λ).σL(k)

Proof 1 Considering any message k′ ∈ S (k), from equation 4.7, for any node i ∈ V:

47

fi(k′ + 1) − fi(k′)

≤
Ei.(λαi(k′+1) − 1)

Bi(k′ + 1)
−

Ei.(λαi(k′) − 1)
Bi(k′)

=
Ei.λ

αi(k′)

Bi(k′)
.(

Bi(k′)
Bi(k′ + 1)

.λαi(k′+1)−αi(k′) − 1)

−
Ei

Bi(k′)
.(

Bi(k′)
Bi(k′ + 1)

− 1)

≤
Ei.λ

αi(k′)

Bi(k′)
.(

Bi(k′)
Bi(k′ + 1)

.λlk′ei j/Ei − 1)

−
Ei

Bi(k′)
.(

Bi(k′)
Bi(k′ + 1)

− 1)

∆ (={N(i) ∪ i}) is the set of node i and its neighbors. We define two terms X(k′)=
∑

p∈∆ Ep(k′)

and Y(k′)=
∑

p∈∆−i Ep(k′)(1−ε). Then due to cost of routing message k′ for node i and cost of over-

hearing message k′ by awake neighbors of i:

∑
p∈∆

Ep(k′ + 1) = X(k′ + 1) = X(k′) − lk′ei j − β1 (4.8)∑
p∈∆

Ep(k′)1−ε = Y(k′) + Ei(k′)1−ε (4.9)∑
p∈∆

Ep(k′ + 1)1−ε = Y(k′) + (Ei(k′) − lk′ei j)1−ε − β2 (4.10)

β1 and β2 are energy cost due to message overhearing, and they vary with every message k′. Now

48

we compute the expression Bi(k′)
Bi(k′+1) .

Bi(k′)
Bi(k′ + 1)

=

|∆|∑
p∈∆ Ep(k′) .(

1
|∆|

∑
p∈∆ Ep(k′)(1−ε))1/(1−ε)

|∆|∑
p∈∆ Ep(k′+1) .(

1
|∆|

∑
p∈∆ Ep(k′ + 1)(1−ε))1/(1−ε)

=
(X(k′) − lk′ei j − β1).(1

|∆|
(Y(k′) + Ei(k′)(1−ε)))1/(1−ε)

X(k′).(1
|∆|

(Y(k′) + (Ei(k′) − lk′ei j)(1−ε) − β2))1/(1−ε)

=
(X(k′) − lk′ei j − β1).21/(1−ε).(lg(Y(k′)+Ei(k′)(1−ε))−lg(|∆|))

X(k′).21/(1−ε).(lg(Y(k′)+(Ei(k′)−lk′ei j)(1−ε)−β2)−lg(|∆|))

=
(X(k′) − lk′ei j − β1)

X(k′)
.2

1/(1−ε).lg(Y(k′)+Ei(k
′)(1−ε)

Y(k′)+(Ei(k′)−lk′ ei j)(1−ε)−β2
)

=
(X(k′) − lk′ei j − β1)

X(k′)

.(
Y(k′) + Ei(k′)(1−ε)

Y(k′) + (Ei(k′) − lk′ei j)(1−ε) − β2
)1/(1−ε)

Now, the term T1= (X(k′)−lk′ei j−β1)
X(k′) is slightly lower than 1, the term T2= (Y(k′)+Ei(k′)(1−ε)

Y(k′)+(Ei(k′)−lk′ei j)(1−ε)−β2
)1/(1−ε)

is slightly higher than 1. This is due to relatively small amount of energy consumption in each

routing step (with respect to the remaining energy of nodes). Then it can be proved that T1.T2 ≤

M, where M is a relatively high positive constant. Then, Bi(k′)
Bi(k′+1) ≤ M.

Now from expression of fi(k′ + 1) − fi(k′): fi(k′ + 1) − fi(k′) ≤ 2 Ei.λ
αi(k
′)

Bi(k′)
.(Bi(k′)

Bi(k′+1) .λ
lk′ei j/Ei − 1),

and since value of λ is high. Therefore:

fi(k′ + 1) − fi(k′)

≤ 2
Ei.λ

αi(k′)

Bi(k′)
.(

Bi(k′)
Bi(k′ + 1)

.λlk′ei j/Ei − 1)

≤ 2
Ei.λ

αi(k′)

Bi(k′)
.(Mλlk′ei j/Ei − 1)

= 2
Ei.λ

αi(k′)

Bi(k′)
.(M2lk′ei jlg(λ)/Ei − 1)

49

Since lk ≤
mini∈V Ei
cmaxlgλ , therefore lk′ci jlg(λ)/Ei ≤ 1. For 0 ≤ x ≤ 1, 2x ≤ (x + 1). Therefore:

fi(k′ + 1) − fi(k′)

≤ 2
Ei.λ

αi(k′)

Bi(k′)
.(Mlk′ci jlg(λ)/Ei + M − 1)

≤
2qM.lk′ci jlg(λ)λαi(k′)

Bi(k′)

This is because λ is very high and q is a relatively large positive constant. Now let P(k′) be the path

over which the message k′ was successfully routed. Therefore
∑

i j∈P(k′) ci ja(j, k′)(λαi(k′) − 1)/Bi(k′)

≤ σ.

∑
i∈V

(fi(k′ + 1) − fi(k′))

=
∑

i j∈P(k′)

(fi(k′ + 1) − fi(k′))

≤
∑

i j∈P(k′)

2qM.lk′ci jlg(λ)λαi(k′)

Bi(k′)

= 2qM.lg(λ)lk′
∑

i j∈P(k′)

ci j(λαi(k′) − 1)
Bi(k′)

+2qM.lg(λ)lk′
∑

i j∈P(k′)

ci j

Bi(k′)

≤ 4qM.lg(λ)lk′σ

To note that |P(k′)|<n. For k′ < S (k), fi(k′ + 1) − fi(k′) = 0, fi(1) = 0 ∀i ∈ V. Then:

∑
i∈V

fi(k)

=
∑

k′∈S (k)

∑
i∈V

(fi(k′ + 1) − fi(k′))

≤
∑

k′∈S (k)

4qM.lg(λ)lk′σ

= 4qM.lg(λ)σL(k)

50

Let NS (k) be the set of messages successfully routed by the optimal off-line algorithm but re-

jected by EAR, until arrival of message k. Now we show that: ∀k′ ∈ NS (k),
∑

i j∈P(k′) ci ja(j, k′)(λαi(k′)−

1)/Bi(k′) > σ.

A message k′ ∈ NS (k) is rejected by EAR if: (i) there is not sufficient energy on some node to

forward the message, or (ii) γ′k > σ. Now the lemma holds true for situation (ii). We have to prove

the lemma for situation (i). Let message k′ is rejected due to situation (i) in the protocol. That

message k′ is successfully routed by optimal offline algorithm through path say Popt(k′). But for

EAR, there is at least a link i′ j′ ∈ Popt(k′), for which Ei′(k′)<l′kci′ j′ . Therefore αi′(k′)=1−Ei′(k′)/Ei′

≥ 1 − (1/lgλ) (using equation 4.6). Therefore:

∑
i j∈Popt(k′)

ci ja(j, k′)(λαi(k′) − 1)/Bi(k′)

≥ ci′ j′a(j′, k′)(λαi′ (k′) − 1)/Bi′(k′)

> ci′ j′a(j′, k′)(λ1−(1/lgλ) − 1)/Bi′(k′)

= ci′ j′a(j′, k′)(λ/2 − 1)/Bi′(k′)

≥ cminamin(λ/2 − 1) = ncmax = σ

Finally we show that:

ncmax(Lopt(k) − L(k)) ≤
∑
i∈V

fi(k) (4.11)

51

ncmax(Lopt(k) − L(k))

≤
∑

k′∈NS (k)

ncmaxlk′

<
∑

k′∈NS (k)

∑
i j∈P(k′)

lk′ci ja(j, k′)(λαi(k′) − 1)/Bi(k′)

≤
∑

k′∈NS (k)

∑
i j∈P(k′)

lk′ci j fi(k′)/Ei

≤
∑
i∈V

fi(k)
∑

k′∈NS (k),i j∈P(k′)

lk′ci j/Ei

≤
∑
i∈V

fi(k)

The second last step uses the fact that the node cost fi is non-decreasing. Last step uses the fact that

the total energy spent for routing the messages at a node cannot exceed its initial energy. Finally

from Lemma 1 and equation 4.11, we can prove the following expression, thus proving Theorem

1. (Q = 4qM is a positive value.)

L(k)
Lopt(k)

≥
1

1 + Q.lg(λ)
(4.12)

n Proof of Theorem 2: Competitive ratio analysis implicitly proves the sub-optimality of

EAR in lifetime w.r.t application point of view. To note that the competitive ratio analysis for

EAR used no previous knowledge of message arrival. Now for analysis of another definition of

network lifetime (time till the first node dies), we have utilized a property that is common to

Smart Environment applications. The nodes in sensor networks in such scenario generate same

amount of data in each time period, although in each period the data generation sequence may be

different. The time period can be short or long. This is actually common to a lots of sensor network

applications, for example Smart Home sensor networks, where the daily activity patterns are same,

thus message generation is roughly periodic. This is validated through collected motion detection

sensor network data in real experiments. So we have assumed here that in each time period [t, t+δ),

the message distributions on the nodes in the network are the same. Then its possible to schedule

the message routing with the same policy in each time period of δ.

52

Now let the network starts at time t = 0, network lifetime on optimal routing algorithm (for

maximum lifetime) is say TML, network lifetime on EAR routing algorithm is Tear. The initial

energy content of each node i ∈ V is Ei, remaining energy of each node i ∈ V after time TML is

Ei(TML), remaining energy of each node i ∈ V after time Tear is Ei(Tear). Let the message sequence

in any time period is m1, m2,, mS−1, mS .

n∑
i=1

Ei =

n∑
i=1

Ei(TML) +

M(TML)∑
k=1

PML
mk

(4.13)

n∑
i=1

Ei =

n∑
i=1

Ei(Tear) +

M(Tear)∑
k=1

Pear
mk

(4.14)

Where M(TML) and M(Tear) are the number of messages routed from time 0 to TML and from

time 0 to Tear respectively. PML
mk

and Pear
mk

are the power consumption of the k-th message mk by

running optimal algorithm for maximum lifetime and EAR algorithm respectively. The messages

are same in any two periods, without considering the sequence. Therefore it is possible to schedule

the messages so that the message rates along the same route are the same in any two periods.

Therefore:

M(TML)∑
k=1

PML
mk

=
M(TML)

S

S∑
k=1

PML
mk

=
TML

δ

S∑
k=1

PML
mk

(4.15)

M(Tear)∑
k=1

Pear
mk

=
Tear

δ

S∑
k=1

Pear
mk

(4.16)

Pear
mk

is the energy consumption of the message mk in a period by running algorithm EAR.

Now EAR considers remaining energy, energy balance and activity-awareness. Thus the total

energy consumption
∑S

k=1 Pear
mk

will be less than that of (
∑S

k=1 Pact
mk

) a purely activity-aware routing

algorithm (say act) that uses routing metric a(j,mk) for each node j. So,
∑S

k=1 Pear
mk

<
∑S

k=1 Pact′
mk

.

Now, for each message mk, it is possible to construct the Network Activity Transition Probability

graph for the sensor network G. AT P(smk) is the constructed ATPG graph where the data source

53

is smk , the weight for each node j is a(j,mk), and Patp(smk) is the computed energy consumption of

greedily selected path from smk to base station using the node weight a(j,mk). So
∑S

k=1 Patp(smk)

can be computed from G and AT P. Now,
∑S

k=1 Pear
mk
<
∑S

k=1 Pact
mk

=
∑S

k=1 Patp(smk). On the other hand∑S
k=1 PML

mk
>
∑S

k=1 PMin(smk), where PMin(smk) is that of the the minimum energy consumption path

in G from smk to base station. PMin(smk) can be computed from G. Therefore:

n∑
i=1

Eear
i +

Tear

δ

S∑
k=1

Patp(smk) >
n∑

i=1

EML
i +

TML

δ

S∑
k=1

PMin(smk) (4.17)

Tear >
TML
∑S

k=1 PMin(smk)∑S
k=1 Patp(smk)

+
δ(
∑n

i=1 EML
i −

∑n
i=1 Eear

i)∑s
k=1 Patp(smk)

(4.18)

4.4 Implementation and Performance Evaluation

In this section we have described the implementation, experiments and the analysis of results

in detail.

Sensor Mote Hardware

Link layer Sensor Driver

 Network Sensing

 Middleware Activity-Awareness

Application

activity detection

activity detection

EAR

activity awareness
 factor

neighbor
information

 (hop, energy balance,
activity awareness)

neighbor
information

data message,
beacon message

Figure 4.7 TinyOS node software stack included with activity-awareness and energy-balance de-
sign for EAR.

54

4.4.1 Implementation of EAR

In EAR protocol with admission control, the data source node needs to have some knowledge

about the network topology and the current energy of nodes. However, in practical network the

topology and energy level of the nodes change frequently. It may work for small networks using

information dissemination, but will be difficult to maintain for large networks. In this aspect, in

our implementation, EAR is locally applied to each one hop neighborhood in the network. We

have implemented EAR and other comparing routing protocols in TinyOS-2.x, one of the most

popular event based operating system environment for wireless sensor networks. The TinyOS node

software stack with activity-awareness and energy-balance design support for EAR is shown in

Figure 4.7. Regarding activity awareness in the experiments, the set of paths of activity in network

is used for probabilistic path selection, and the network nodes are injected with intelligence of

corresponding probabilistic transition information (AT PG graph).

Floor 1

(a)

Sink Node

Floor 2

(b)

Floor 3

(c)

Figure 4.8 Most frequent activity sequences (order of active nodes) occurred in each floor of Mote-
lab testbed during experiment

55

4.4.2 Evaluation in Motelab Tested

Evaluation environment: We have evaluated our proposed EAR protocol in large scale 82

node network of TelosB motes (physically distributed in three floors, as shown in Figure 4.8(a),

4.8(b) and 4.8(c)) in Harvard Motelab sensor network testbed [58]. The experiments are conducted

in 82 node network physically distributed across three floors.

Activity transition and data generation: From a separately deployed motion sensor network

testbed we have learned the activity transition patterns and have validated the construction of ac-

tivity transition graph AT PG. The activity transition patterns are modified to be scalable for a

82 node Motelab testbed, and is injected in the testbed for activity event generation and activity

transition. The activity transition decides the order with which nodes will be active.

The activity event generation makes node(s) active, letting it send data to sink node (base

station) at a high rate (we used data sending rate of 480 Bytes/second). We have emulated the

activity events by generating three independent sequences of active nodes (indicating motion trails)

each in one of the three floors. From a remote server, periodic serial message (containing new

active node numbers) is sent to the sensor motes in the testbed to generate the activity sequences.

The sensor nodes receiving the serial message with it’s ID start generating sensor data. Other

nodes act as relay only. This periodic activation of nodes through serial message follow the activity

transitions defined in the corresponding AT PG. In this way the activity transition experiments are

performed with networkwide data collection. In addition each node periodically sends one local

status data packet (containing information of remaining energy, hop count etc.) to sink every 30

seconds.

Comparison: For performance comparison we have compared EAR with standard existing

routing schemes to show performance improvement. Following relevant routing protocols are used:

PMin (shortest path routing), CT P [59] (very commonly used data collection protocol for sensor

networks, that uses link and path quality), and CMAX (an energy aware protocol [34] where data

is forwarded preferably to neighbor with higher remaining energy in the neighborhood).

The 82 node network formed a 9 hop routing tree with -5 dBm transmission power of CC2420

56

radio of TelosB motes. The sink node is in middle of the three floors. In this network data collection

scenario we have evaluated following parameters: (i) data delivery latency, (ii) data throughput,

(iii) minimum node energy in the network through time (indicating network lifetime). Now we

describe the performance analysis of our proposed EAR protocol compared to existing protocols.

 0

 20

 40

 60

 80

 100

1 3 5 7 10 15 20 30

C
D

F
 (

%
)

Delivery Latency (second)

PMin
CTP

CMAX
EAR

Figure 4.9 Distribution of data delivery latency.

Latency: Figure 4.9 represents the distribution of data delivery latency of packets in the 82

node network. It can be observed that EAR provides much lower latency than each of the comparing

protocols PMin, CTP and CMAX. In PMin, CTP, CMAX, 80% of the packets are delivered with

latency between 22 seconds to 25 seconds. But in EAR the 80% of the packets are delivered within

latency around 18 seconds. Therefore EAR provides much lower delivery latency, providing better

performance to the application. EAR achieves this improvement in latency by avoiding selection

of currently active nodes (which are busy with sensing and sending own data) as relays.

Data Throughput: Figure 4.10 shows the data throughput for each node at sink. More

throughput indicates more event data successfully delivered and reported at sink. It is observed

that for each of the 82 nodes, EAR provides much improved data throughput than others. For

all the 82 nodes EAR provides a data throughput improvement ranging from 6% to 13%. This

57

0.5
2.0

4.0

10

20

30

36

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

0.5
2.0

4.0

10

20

30

36

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

0.5
2.0

4.0

10

20

30

36

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

1
hop

3
hop

5
hop

6
hop

7
hop

8
hop

9
hop

4
hop

2
hop

CMAX

CTP

EAR

Throughtput (Bytes/second) vs Node Id

Throughtput (Bytes/second) vs Node Id

Throughtput (Bytes/second) vs Node Id
total 82 nodes

total 82 nodes

total 82 nodes

Figure 4.10 Data throughput at Sink.

58

advantage in EAR comes from avoiding selection of currently active nodes (which are busy with

sensing and sending own data) as relays.

 0

 20

 40

 60

 80

 100

200 500 800 1100 1400 1800

M
in

im
u

m
 N

o
d

e
E

n
er

g
y

 (
%

)

Time (s)

% Remaining Energy is w.r.t 0.05806 mAhr

PMin
CTP

CMAX
EAR

CMAX

PMin

CTP

Figure 4.11 Minimum node energy in network.

Lifetime: Figure 4.11 represents the minimum energy of any node in the entire network

through time. This property decides the network lifetime. The energy consumption is configured

in such a way that all nodes start with energy 2200 mAh. For indicating the rate of drop in minimum

remaining node energy in network, Figure 4.11 represents the energy drop with respect to a chosen

value of 0.05806 mAh. This value is chosen for purpose of analysis because the minimum node

energy in PMin reduces by an amount of nearly 0.05806 mAh energy in experiment run time of

1800 seconds (i.e. 30 minutes). This chosen value for analysis doesn’t affect the nature of energy

consumption of network. Now it can be observed that the minimum energy of any node in PMin,

CTP and CMAX depletes faster than the one in EAR. Therefore in protocols other than EAR

network node depletes almost all it’s energy within time 1800 seconds, had the network start with

0.05806 mAh for all nodes. But in same scenario in same time the minimum energy of any node in

EAR would have still around 32% energy left. Therefore it is clear that network lifetime for EAR

will also be much higher than others. EAR achieves this advantage because of energy balanced

59

relay node selection.

4.4.3 Evaluation in TOSSIM Simulator

To validate the scalability of EAR we have used network size containing 20, 40, 60, 80 and

100 nodes (all with lossy wireless channel). The topology of 20 node network closely follows the

node distribution in kitchen, dining room and bedroom of CAS AS testbed, as shown in Figure 4.5.

The topology of nodes in the other networks also follow the layout in Figure 4.5, but modified

according to the network size. The activities are probabilistic and follow the activity transition

patterns. We have generated AT PG with similar activity patterns for larger networks containing

40, 60, 80 and 100 nodes. When activities occur in a node, it performs some processing and then

sends out bunch of data packets containing activity detection data.

The energy consumption is calculated using the relevant model of: CC2420 radio parameters

(19.7 mA current consumption in receive mode, 17.4 mA current consumption in transmit mode,

250 kbps data rate with 48 kByte data packet size), and the MSP430 MCU parameters (3 mA

current consumption in active mode due to sensing and computation). To note that due to timer

and ADC read operations, sensor nodes can consume as high as 3mA current (as observed in [52]).

The remaining node energy is updated accordingly.

EAR is compared with following relevant routing protocols: PMin, CT P, MaxEn (data for-

warded to node with maximum remaining energy among the relay nodes) and CMAX. Each ex-

periment with a network size is conducted for 2 hours. This generates multiple possibility paths of

activity due to probabilistic activity transition in AT PG.

Data delivery latency: Despite preferring activity-aware and energy-balanced path, EAR also

provides better data delivery latency. This is because of the activity aware property of EAR, which

prefers less active nodes as forwarder (i.e. relay) node. This is validated from experimental results

in Figure 4.12. For different network sizes, EAR provides from 6.8% to 19.1% less data delivery

latency over others. CMAX and MaxEn are only energy-aware, so in non-uniform data generating

network (leading to non-uniform energy nodes) the routed data packets sometimes deviate and

follow a longer path. This leads to high data delivery latency. PMin has better data delivery

60

0.1

0.2

0.3

0.4

0.44

20 40 60 80 100

A
v
er

ag
e

D
el

iv
er

y
 L

at
en

cy
 (

se
co

n
d
s)

Network Size

PMin CTP MaxEn CMAX EAR

Figure 4.12 Mean data delivery latency (seconds) with varying network size.

latency by following shorter path, but suffers from retransmissions and from processing delay

when being forwarded through active nodes (busy in sensing, processing and sending own data).

CT P provides better delivery latency, but still performs worse than EAR because it doesn’t learn

from activity patterns.

Data throughput: EAR tries to minimize the network lifetime, with maintenance of net-

work energy balance. Despite providing these advantages, EAR doesn’t degrade the throughput

(successful message received at sink per unit time) much. This is validated through results in Fig-

ure 4.13. PMin and CT P provide better throughput. But throughput performance of EAR closely

follow (within upto 2% lesser) that of PMin and CT P. Energy-aware only protocols CMAX and

MaxEn suffer worse throughput for lack of activity-awareness and lack of faster convergence in

non-uniform activity generation network. To note that despite following activity and energy aware-

ness, EAR make sure faster convergence by using hop spanner property discussed earlier.

Network lifetime: From experimental results in Figure 4.14 it can be observed that EAR

achieves the maximum network lifetime for all the network sizes. For different network sizes,

EAR achieves an improvement in lifetime over others from 9.31% to 23.77%. Figure 4.14 CMAX

and MaxEn have better network lifetime than CT P and PMin, because CMAX and MaxEn are

61

26

30

40

50

60

67

20 40 60 80 100

T
h
ro

u
g
h

p
u

t
(B

y
te

s/
se

co
n
d

)

Network Size

PMin CTP MaxEn CMAX EAR

Figure 4.13 Data throughput at base station (successfully delivered message per unit time) in
Bytes/second with varying network size.

18

25

30

35

40

45

50

55

20 40 60 80 100

P
ro

je
ct

ed
 N

et
w

o
rk

 L
if

et
im

e
(D

ay
s)

Network Size

PMin CTP MaxEn CMAX EAR

Figure 4.14 Projected network lifetime (days) with varying network size.

62

energy aware protocols. But their performance is worse than EAR due to inability to keep energy

balance and to be activity-aware, CT P and PMin suffer because they are not activity-aware or

energy balancing. This is interesting observation for networks where data generation is a non-

uniform and dynamic process, but have some patterns.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.2

20 40 60 80 100

E
n
er

g
y

 C
o

n
su

m
p

ti
o

n
 (

u
J/

n
o

d
e/

p
ac

k
et

)

Network Size

PMin CTP MaxEn CMAX EAR

Figure 4.15 Energy consumption per successfully delivered message per node (uJ/packet/node)
with varying network size

Network energy consumption: EAR also has minimum network energy consumption for all

network sizes. In Figure 4.15 we have used the parameter for indicating effective network energy

consumption. This is represented by the parameter: the total energy consumption per delivered

packet per node. This indicates the average amount of energy spent by a node to enable one

successful routing and collection of a data packet from network to sink. It can be observed that

EAR has the minimum observed network energy consumption. For different network sizes, EAR

provides from 3.4% to 17.2% improvement in network energy consumption over others. This

proves the effectiveness of activity-awareness and energy balance of EAR. Due to energy balance

property and avoiding active nodes for forwarding, the network as a whole spends less amount of

energy for delivering data packets.

Scalability: All the advantages of EAR are achieved for network size varying from 20 to 100.

63

This proves the scalability, thus its real-world applicability for pervasive environments.

4.5 Summary

In this chapter we have presented our proposed EAR for activity-aware and energy-balanced

routing. As a case study EAR is evaluated with Smart Environment data trace. The experimental

results have demonstrated its efficiency both with respect to application and network performance,

as well as its scalability.

64

PART 5

ACTISEN: ACTIVITY-AWARE SENSOR NETWORK SYSTEM

In this chapter we present the ActiSen [3] system, Activity-Aware Wireless Sensor Networks

for Smart Environments. First we describe the sensing, radio duty cycling and routing protocols in

ActiSen in details. Then we present the system evaluation and performance analyses of ActiSen.

Figure 5.1 Probability of occupancy in the kitchen of a smart home for assisted living (CASAS
[5]), detected by motion sensor.

5.1 Background

Wireless sensor networks have enabled many important social and scientific applications and

its protocol design has received considerable research interest. But many existing works did not

realize an important difference between sensor networks and traditional networks. Unlike a tra-

ditional communication network, a sensor network is deeply embedded in environments and its

operation is driven by the activities in the environment. In many applications such as Smart

Environments, the information of event activity shows certain patterns in long run (as shown in

Figure 5.1). Most of the sensor network designs till date under-utilized the activity pattern for

65

performance improvement of the network. To note that in this paper activity is meant by the events

that are sensed and reported by the nodes in sensor network. For example in a Smart Home en-

vironment, one type of activity is the motion activity of the residents. There remains a missing

link in sensor network design: the feedback from sensed and analyzed activity pattern, back to the

network operation for resource usage. The activity pattern information, if utilized in an intelligent

manner, can improve the sensor network performance while reducing resource usages.

5.2 ActiS en: Activity-Aware Sensor Network System

Resource
Monitor

Home
Situation

Resource
Situation

AI Agent Sensing

Networking
(topology management
and routing protocol)

Transceiving
(MAC protocol)

sleep/wakeup or
adjust sampling

rate

context-driven
clustering and

routing

sleep/wakeup
or adjust sleep

interval

Figure 5.2 The system architecture of ActiS en

ActiS en adapts sensing, radio duty-cycling and routing according to its historical activity

pattern or transition information. Figure 5.2 presents the whole system architecture of ActiS en. An

AI agent is trained from the regular activities and situations in the application environment. The

agent provides Activity Transition Probability Graph (AT PG) (an example shown in Figure 5.13),

66

which contains information about transition probability and transition duration of all the activities,

predicted in the context of time and space. Figure 5.13 shows the AT PG with 27 nodes, learnt

from the CASAS Smart Home testbed ([5]). Using such intelligence about predicted activities, the

sensing, radio duty-cycling, and routing are dynamically configured for optimized operations. The

design of ActiS en includes:

• An activity-aware sensing scheme that achieves high event detection accuracy while reduc-

ing energy consumption through adaptive sampling intervals.

• An activity-aware radio duty-cycling protocol that dynamically adapts the radio’s duty-cycle

for low latency delivery, while maintaining high energy efficiency.

• An activity-aware and energy balanced routing protocol, that jointly considers activity pat-

terns and residual network energy to balance energy consumption rate across the network

thus prolonging network lifetime.

Now we describe the essence of Activity Transition Probability Graph (AT PG). In a Smart

Home at certain time of the day, a resident’s Activities of Daily Living (ADL) (say activity Ai) in a

region is monitored by a set or cluster of sensors, say Ci. It is worth noting that ActiS en system and

its protocols are designed for not only single source of activity (e.g. single resident), but generally

for multiple activities (e.g. multiple smart home residents). Then in the smart home scenario, after

some time the resident can probabilistically move to either cluster C j or Ck or some other cluster.

The activity-aware sensor network in such scenario can intelligently utilize its resource using the

knowledge from an Activity Transition Probability Graph or AT PG (say Gact). Each node of Gact

denotes some specific cluster Ci. The edge from node Ci to node C j denotes the transition tuple

< pi j, ti j > from Ci to C j. pi j is the predicted transition probability and ti j is the predicted transition

time. In ActiS en, the graph Gact is learned and updated by an AI agent.

After learning the ATPG Gact, the activity-aware sensor network utilizes it to optimize its

sensing, radio duty-cycling and routing operations. The protocols in ActiS en are designed in such

a way that activity detection sensors and the wireless radio can sleep as much as possible, while

67

change in activity
status according to

ATPG

change
sensing duty

cycle

change
radio duty

cycle

update
metric for

routing

periodically
calculate

remaining energy

activity
detected

route data

broadcast
beacon to
neighbor

reactively reset
duty cycle

reactive

proactive

betweenness

update
forwarding

history

receive beacon
from neighbor

information
gradient

information
gradient

energy
updateenergy

update activity
status

ActDutyCycling

ActRouting

Activity Aware
Sensing

Figure 5.3 Workflow diagram of ActiS en system and inter-relationship among (a) Activity-Aware
Sensing, (b) ActDutyCycling, and (c) ActRouting

68

the activity events are reliably covered, detected and reported to the sink (i.e. the base station).

Now we present an overall description of how the network in ActiS en works for the example of

smart home scenario. All the activity-aware protocols in ActiS en are later described in detail.

The design of sensing, radio duty-cycling, routing and their inter-relationship in ActiS en sys-

tem is shown in Figure 5.3. Each of the algorithms are later described in details in next subsec-

tions. Here is a brief description of computation overhead of different components (sensor nodes

and sink). (i) The event detection data in network is collected in sink node for application pur-

pose, and used for constructing ATPG activity pattern. The activity pattern analysis is only done in

sink. The activity transition pattern is disseminated into the network only once and updated if any

change happens in pattern, which is very rare. (ii) All other calculations involved in ActiS en are

distributed and localized in the network. The sensor duty cycle calculation uses locally stored ac-

tivity information. ActDutyCycling uses information of own and neighbors to calculate local node

radio duty cycle. ActRouting also uses own and neighbors information only for deciding next hop

node relay node. So all computations, except activity pattern analysis are distributed and localized

in the network. This makes it practically applicable to networks independent of size.

Here is a brief description of communication overhead of different components (sensor nodes

and sink). (i) All the sensor nodes in the network continuously sense activity and send the activity

data through multi-hop network data collection to the sink node. This is the convergecast or data

collection communication that goes on continuously whenever activity event is triggered. (ii) The

sensor nodes, in their local 1-hop neighborhood, periodically exchange (through 1-hop broadcast

communication) beacon message and share node or local neighbor information. (iii) Each node

also periodically sends (network-wide data collection communication) one local status data packet

(containing information of remaining energy, duty cycle, hop count etc.) to sink node with a rela-

tively large period. (iv) If there is any major change in the analyzed activity transition pattern in the

sink, the new activity transition information is disseminated into the network from the sink node

(through data dissemination communication). In ActiS en system it is not needed frequently to dis-

seminate data into network from sink. The dissemination can use any standard data disseminating

protocol (e.g. Cascades [60]).

69

From the activity transition probability graph Gact for current activity, a cluster Ci of sensor

nodes is constructed. The selection of member nodes of Ci is determined by the location context of

activity. Then the nodes which are not member of Ci can turn their activity detection sensors ON

less frequently. The nodes in Ci turn their activity detection sensors ON more frequently. Example

of cluster is kitchen cluster where resident activities can occur for considerable time at certain

phases of ADL (Activities of Daily Living). Now according to the activity transition graph, the

active cluster is changed from Ci to next active cluster C j, for the next predicted activity context.

After the predicted transition time ti j, Ci triggers C j to wake up and reconfigure. The previous

cluster Ci can be kept ON for a marginal time to watch for any remaining activity. Now we explain

in details, how sensing, radio duty cycling and routing are performed in ActiS en system.

no activity higher activity lower activity

av
er

ag
e

tri
gg

er
in

g
ra

te

Figure 5.4 Changing rate of activity detected; PIR (passive infrared) motion sensor data (sam-
pling frequency 10 Hz) shown with transition from no activity to higher activity and then to lower
activity.

5.3 Activity-Aware Sensing

Figure 5.4 shows an example of detected PIR motion sensor signal for a typical transition

of human activity among different intensities. Maintaining a fixed sampling interval for sensing

could result in either high energy consumption (when interval is small) or low detection accuracy

(when interval is big). Motivated by the need of an activity-aware adaptive sensing scheme, we

have proposed the following algorithm. Each node in the network proactively and reactively adapts

the sampling intervals.

70

Algorithm 4 ActS ensing: Activity-aware Adaptive Sensing
Each node i dynamically adjusts sampling intervals as fol-
lows:

loop
if i ∈ (S leep|Quasi − Active|Active) then

TOFF = (T s
OFF |T

q
OFF |T

a
OFF)

while no source transition do
if T peak

min (t) < T peak
min (t − 1) then

DC(t + 1) = (DC(t) + δ)
else

if T peak
min (t) > T peak

min (t − 1) then
DC(t + 1) = (DC(t) − δ)

else
DC(t + 1) = DC(t)

Proactive selection of base sampling interval: As described in Section 5.2, each sensor

node belongs to one of the three sets regarding role in activity sensing: Sleep (nodes outside

active or next predicted clusters), Quasi-Active (nodes inside the next predicted clusters and outside

active clusters), Active (nodes inside the active clusters). Then the sampling interval for activity

sensing is dynamically configured based on the type or role of the node at current moment. The

activity detection sensor is ON for TON and is then OFF for time T s
OFF (for S leep) or T q

OFF (for

Quasi − Active) or T a
OFF (for Active), such that T s

OFF > T q
OFF > T a

OFF . This technique lets only

the nodes in active regions sense more frequently, and the other nodes sense less frequently, thus

saving energy. In addition to wake and sleep schedule for sensor, the nodes keep two more timing

information. Once the sensor is ON, it only samples it after a stabilization delay TS T AB to remove

initial erroneous samples. Also the sensor is kept ON for an elastic margin time for allowing certain

fixed NS AMPLE number of samples in case a motion is detected inside TON . NS AMPLE samples are

needed by application for detecting level of activities. Thus adaptive sampling interval is needed

for the purpose of capturing important motion activity.

Reactive adjustment of sampling interval: In addition to proactively configured base sam-

pling interval for sensing, the proposed design lets the individual nodes reactively adjust the sens-

ing frequency in a finer scale with intensity of activity. When the activity frequency is low, a

higher sampling interval is fine for detecting the events. But when activity frequency goes high,

71

the sensing interval can be adaptively decreased to enable successful event detection. This allows

the nodes to potentially save more energy in idle situation, but also remain adaptive to changing

activity level. Let T peak
min (t) is the minimum timegap between two consecutive peaks in detected

activity signal during t-th interval of sensing. Then from tracking T peak
min (t) during intervals, the

sensing frequency DC(t + 1) is further adjusted with a finer scale of say δ. For example, the scale

δ is 1%. The reactive adjustment of sampling interval is also useful near the transition of data

source. Overall the proposed activity-aware sensing algorithm proactively and reactively adapts

the sensing frequency for saving energy, and assuring reliable event detection. The ActS ensing is

formally described in Algorithm 4.

Activity event beyond prediction: The activity-aware sensing algorithm is protected from

missed detection of unusual activity that don’t follow the predictions in AT PG. T s
OFF can be

set to a low but safe value based on human motion frequency. Then on occurrence of such unusual

event, activity-aware sensing algorithm will be able to detect it. Once detected, the reactive ad-

justment property will increase the sampling frequency for finer activity detection. Alternatively

sensor wake-on hardware property (in [52]) can be used by low energy cost sensor (always on) to

wake up higher energy cost sensor to detect activities. But this alternative can be applied in sensing

only some physical phenomena.

5.4 Activity-Aware Radio Duty-Cycling

In this section we describe our proposed activity-aware radio duty-cycling protocol. In a

typical wireless networks, a one-hop packet delivery latency usually includes processing delay,

transmission delay, and propagation delay, which are usually in milliseconds order. However, in a

low-duty cycle network, a sender may need to wait for its receiver to wake up before it can send a

packet. Thus sleep interval dominates the overall delivery latency. Therefore, in this work we only

consider sleep latency as notion of delay.

Need of non-uniform radio duty-cycling:

Scheduling the operation of the wireless radio is a crucial task in achieving efficient perfor-

72

B

S

I

C

F

A

E

G

H D

J

K
L

M N

current
source

predicted
source

sink

Figure 5.5 Scenario showing need of activity-aware radio duty-cycling

mance for wireless sensor networks. Now in the network at any time only certain active region of

sensor nodes generate data. This scenario is shown by an example in Figure 5.5. Suppose in the

network topology, the currently active data source is node A and predicted active data source is

node E. To note that in general case there can be multiple current or predicted active (data generat-

ing) nodes in network. Let the probable active routing path is A-D-H-S , and the probable routing

path for predicted source is E-I-S . Then an efficient radio duty-cycling policy is: (i) to maintain

high duty cycle for nodes on and near the routing paths for active and predicted sources (for fast

and reliable data delivery on any meaningful route selected), and (ii) to maintain low duty cycle

(for energy saving) for potentially idle nodes away from active routing paths (for example nodes J,

K, L, M, N etc.). The major challenge for maintaining such non-uniform duty cycling is that, the

distribution of duty cycle has to dynamically adapt with change of active and predicted sources.

In this aspect we have designed ActDutyCycling, an activity-aware radio duty-cycling protocol.

It is not just more energy efficient but also provides reduced latency for delivery of data to sink.

The potential of ActDutyCycling is that it can dynamically adapt the radio duty-cycling operation

across the network, in the context of current and predicted active regions.

73

Before describing ActDutyCycling in detail, we define the parameters pertaining to the radio

duty-cycling decision. The parameters for each node (say i) are described as follows:

Information Gradient (gi): Information potential or information gradient gi (as described in

[61] and [62]) is a real valued function for each node i. It is defined as a function that meets the

following requirements: its value is (a) 0 at the sink, (b) 1 at nodes on the active/predicted cluster,

(c) at any other node, the function value equals the average value of its neighbors. It can be shown

that there is a unique such function for any given source (it is the harmonic function meeting the

specified boundary conditions). The information gradient is a ‘smooth’ function with no local ex-

trema. It is stable to small changes in network connectivity. Effectively the information gradient

gi indicates the estimate of the nodes’ relative position between active/predicted cluster (source of

data) and the base station (sink of data). This parameter is used in ActDutyCycling for control-

ling the radio duty cycle in context of activity and node’s possible role as relay. ActDutyCycling

actually uses two gradient values: (a) information gradient for current data source (gci), and (b)

information gradient for predicted data source (gpi).

Hopcount (ci): It is a representative of the depth or the minimum hopcount from node i to

the base station. For scaling to maximum value of 1, ci is the ratio of hopcount to base station (say

hopi) to the estimated depth of the total network tree (say D). Then, ci = hopi/D. For practical

issues, if the depth of the network is hard to maintain, then one of the two alternative definitions

can be used. (i) ci can be considered as the ratio of hopcount to base station to the total number of

nodes in network (say N). Then, ci = hopi/N. (ii) If ideally ci has to be a local property of node,

then it can be defined as ci = (1-1/hopi). In experiments we have used the first definition of ci.

Betweenness(bi): Based on the activity transition probability graph and activity-aware routing

path designed for each predicted source, it is easy to calculate the probability that a given sensor

i will be involved in the routing path after the next source transition. The intuition behind our

design is that the sensors that have higher probability of becoming relay nodes in the next source

transition, deserve higher duty-cycle. We introduce a concept, betweenness, that have been widely

used in graph theory to describe the importance of a given vertex. Basically, vertices that occur

74

on many shortest paths between other vertices have higher betweenness than those that do not.

In this work, we redefine the betweenness of a vertex as the probability that it will appear in the

activity-aware routing path on the next source transition. Assume m is current source, pm, j is the

transition probability from m to j. Let I j(i) indicate whether i will appear at the routing path from j

to base station, e.g. I j(i) = 1 if i will appear in the routing path and I j(i) = 0 otherwise. I j(i) can be

obtained immediately after the activity-aware routing path is found (as discussed in next section).

Thus, the betweenness of given sensor i can be formally defined as: bi =
∑

j∈V pm, j · I j(i).

Relative remaining Energy (ei): It is an indicator of remaining energy of node i with respect to

the nodes in its neighborhood. For scaling to maximum value of 1, ei is represented as the ratio of

remaining energy of node i to the maximum of the energy of the neighbors and itself.

Now we describe our proposed activity-aware radio duty-cycling protocol, we call ActDutyCycling.

According to the data sending rate of the application, the radio on each node has a maximum sleep

interval (say TS max) and a minimum sleep interval (say TS min). The naive radio duty-cycling will

select a static and uniform sleep interval TS naive for each node in the network (TS min ≤ TS naive ≤

TS max). The radio ON time will be controlled by MAC protocol selected.

But ActDutyCycling prefers non-uniform duty cycle, and assigns duty cycle to nodes based on

their expected role in data delivery and available energy. In ActDutyCycling, a fraction of TS max

is dynamically assigned as the sleep interval TS acti (still satisfying TS min ≤ TS acti ≤ TS max). This

selection of TS acti is updated with time, is non-uniform across nodes, and is a function of the

parameters (described above): information gradient for current source, information gradient for

predicted source, hopcount, betweenness and relative remaining energy.

Determination of Sleep Interval: Suppose cluster Ci is active at current moment and cluster

C j is predicted to be the next active cluster. Then ActDutyCycling attempts to control the radio

duty cycle of the sensor nodes in the network, in order to satisfy following requirements:

(a) Reliable and low latency delivery of sensed data from active cluster node to the base sta-

tion.

75

(b) Assurance of future activity detection accuracy, by setting up active path in advance, from pre-

dicted cluster to the base station.

(c) Low duty cycle for nodes in inactive region for energy saving.

The effective sleep interval TS acti
i (t) for node i is a function f(gci(t), gpi(t), ci(t), bi(t), ei(t))

such that:

(a) As information gradient gci or gpi increases, TS acti
i decreases. Information gradient is

highest (fixed at 1) at nodes in the active and predicted clusters, and is lowest (fixed at 0) at the

base station. So the radio of the nodes near active/predicted cluster are made to be active more for

data relay.

(b) As hopcount ci to the base station increases, TS acti
i increases. So radio of the nodes near base

station are made to be active more for data relay.

(c) As betweenness bi of a node increases TS acti
i decreases. So probable nodes on the routing path

from next predicted source are made to be active more.

(d) If relative remaining energy ei of node i is below a critically low threshold (say elow), TS acti
i

increases. So radio of any node with critically low remaining energy in neighborhood can sleep

more for saving energy, and try to participate less in any data delivery.

Algorithm 5 ActDutyCycling: Activity-aware Radio Duty-cycling
if i ∈ (sink ∪ active cluster ∪ predicted cluster) then

TS acti
i (t) = TS min

else
if ei(t) ≤ elow then

TS acti
i (t) = TS max

else
f =min((1-gci(t)), (1-gpi(t)), ci(t), (1-bi(t)))
TS acti

i (t) = max(TS max. f , TS min)

Now ActDutyCycling works as follows. Each sensor node i in the entire network keeps track

of: hop count ci, relative remaining energy ei, betweenness bi and two gradient values (gci for

currently active cluster, gpi for predicted cluster). The ci, ei, bi, gci and gpi are periodically updated

76

in a distributed manner among the neighbors. Then each node i computes the effective sleep

interval TS acti
i (t) as shown in Algorithm 5.

B

S

I

C

F

A

E

G

H D

J

K
L

M N

current
source

predicted
source

sink <0.00, (1.00, 0.50, 1.00,
0.00) >

<0.00, (0.00, 0.00,
0.00, 0.60)>

<0.25, (0.75, 0.25, 0.67,
0.00)>

<0.33, (0.38, 0.13, 0.33,
0.00)>

<0.33, (0.38, 0.50, 0.33,
0.60)>

<0.00,(0.75, 1.00, 0.67,
0.60)>

<0.25, (0.75, 0.25,
0.67, 0.00)>

<0.33, (0.38, 0.13,
0.33, 0.00)>

<0.33, (0.38, 0.06,
0.33, 0.00)> <0.25, (0.75, 0.12,

0.67, 0.00) >

<0.67, (0.33, 0.06,
1.00, 0.00) >

<0.67, (0.33, 0.06,
1.00, 0.00) >

<0.67, (0.16, 0.06,
0.67, 0.00) >

<0.67, (0.16, 0.03,
0.67, 0.00) >

<0.84, (0.16, 0.03,
1.00, 0.00) >

A

B

C

DE F

G

H

I

J

K

L

M

N

S

higher duty cycle nodes low duty
cycle nodes

Figure 5.6 Non-uniform Duty cycle control in ActDutyCycling. The set of parameters < f , (gc, gp,
c, b) > for each nodes are shown. It is assumed that the predicted source transition is from node A
to node E with a probability 0.60

The working of ActDutyCycling is illustrated in Figure 5.6 in a network topology same as in

Figure 5.5. At certain moment in the network, the parameters of ActDutyCycling for each node

are shown. Then using gradients, hopcount, betweenness and energy, the nodes calculate their

individual sleep interval. As shown in the figure: (i) sink (S), current source (A) and predicted

source (E) select minimum sleep interval (i.e. maximum duty cycle), (ii) the nodes on or near

77

active route between current/predicted source and sink (nodes I, H, D, G, C, B and F) select

relatively low sleep interval (i.e. higher duty cycle), (iii) nodes away from active region (nodes

J, K, L, M and N) select larger sleep interval (i.e. low duty cycle). Here node I has a high

betweenness, so selects relatively low sleep interval (i.e. higher duty cycle). Therefore in this

activity context ActDutyCycling lets only meaningful nodes keep awake more, while letting other

nodes sleep more.

Figure 5.7 Activity-Aware non-uniform radio duty-cycling in network

The effectiveness of ActDutyCycling is also shown in a simulation environment of 100x100

sensor grid in Figure 5.7. As shown in Figure 5.7, the nodes in the grid maintain information gra-

dients for currently active and predicted clusters. Then according to ActDutyCycling mechanism

the nodes calculate their individual duty cycle. It can be clearly observed that only a set of nodes

between base station and possible data source (active and predicted clusters) maintain high duty

cycle, while the other nodes in network keep a relatively low duty cycle. This shows the advantage

of using activity-aware radio duty-cycling, leading to energy efficiency and at the same time assur-

ing reliable and low latency data delivery.

The role of ActDutyCycling in the whole ActiS en system and the relationship of ActDutyCycling

78

with sensing and routing components is illustrated in Figure 5.3.

5.5 Activity-Aware and Energy-balanced Routing

In ActiS en, at any moment, only some set of nodes perform activity detection. This non-

uniform distribution of data source in network leads to non-uniform energy consumption of nodes

in the network. In such scenario an efficient routing solution is the one with: (i) awareness of

activity context and (ii) maintenance of energy balance across network. The nodes in active region

can be excluded from task of data relay as much as possible. This will keep the processing unit

(MCU) of the active nodes available for sensing, processing and communicating. Then there are

other nodes in the network available who are not performing any activity detection. These nodes

have their energy and MCU available for relaying the data stream to the sink. Therefore meeting

network-wide energy balance and activity-awareness are also interlinked to some extent.

B

S

I

C

F

A

E

G

H D

e = 40

e = 95
EB=0.6616

e = 5

e = 90e = 15
EB=0.8248

e = 45
e = 45

EB=0.9988

e = 70e=25
EB=0.9322

Figure 5.8 Energy balanced routing

Network energy balance is a critical issue in routing for achieving longer network lifetime and

reduced network energy consumption. A greedy routing scheme will exploit nodes with good path

quality or node with high energy, leading to energy drain of certain nodes and eventually network

79

failure. For example, in the network in Figure 5.8, nodes A, B, C, D, E, F, G, H and I have their

remaining energy e as shown. Node A, the currently active data source, has to decide the relay

node from B, C, D, E. An energy greedy algorithm, looking for maximum energy neighbor, will

choose path A-B-F-S . Another energy greedy routing scheme, looking for path with maximum

energy, will choose path A-C-G-S . But in all of these cases the node with low energy (F, G or

I) will soon drain its energy, leading to network failure. But an energy balanced routing, with

localized knowledge about degree of energy balance in network, is more efficient. Such energy

balancing routing algorithm will choose a better energy balanced path A-D-H-S . This can increase

the network lifetime considerably. An energy balanced routing is different from max-min routing.

A max-min routing protocol selects a path with maximum of the minimum energy. But our energy

balanced protocol prefers the local energy balance in the network for routing decision. This can

be more useful also in case there is data flow from multiple sources. In that case for max-min, all

the flows will be directed towards the max-min energy node. This will be detrimental to the cause

resulting in increased routing stretch and increased energy consumption of some bottleneck nodes.

Then instead of assigning locally energy balanced path for each flow will be more effective.

Through MATLAB simulation in large scale network, it has been confirmed that our proposed

ActRouting performs much better than other energy aware routing techniques (maximum energy

neighbor, maximum energy path, max-min energy). The simulation environment is set up as fol-

lows: in each time epoch each node in the network generates and sends a flow of packets and

forwards received packets from children in last epoch. The base station is placed at one corner of

the grid. The average lifetime of a number of experiment runs is shown in Figure 5.9. One more

useful observation from large scale network simulation is that, ActRouting performs even better

in the scenario where nodes boot up with uneven distribution of remaining energy. Therefore the

proposed routing algorithm can efficiently extend the lifetime of a network even with considerable

energy imbalance.

The proposed ActRouting is based on activity context and energy inequality. It employs in-

telligently energy balanced data delivery in local region of the network, leading to global energy

balance and improved network lifetime. The rationale behind using routing based on local energy

80

0

100

200

300

400

ActiRoute MaxSum Max-Min ShortestPath MaxEn

L
if

et
im

e
(e

p
o

ch
)

Uniform initial energy
Non-uniform initial energy

ActRouting MaxSum Max-min Shortest
Path

MaxEn

Figure 5.9 Network Lifetime of 30 × 30 grid network for different routing algorithms (MaxSum:
maximum sum of energy of routing path, Max-Min: maximum of minimum energy on routing
path, ShortestPath: shortest path (minimum hop) routing, MaxEn: maximum energy neighbor).

balance is that, it can guide the data through energy balanced path without requiring any global

knowledge or large network state. ActRouting also handles the situation where local region is

energy balanced, but all the nodes have low energy. Atkinson’s Inequality Index [55] is used in

ActRouting for indexing local energy balance, because it uses local entropy and the index can also

be controlled based on needed degree of energy balance.

Atkinson Index: In order to reach a balance in energy consumption rate across the network

we use Atkinson’s Inequality Index [55]. It is a measure of economic income inequality in a

society. The index can be turned into a normative measure by imposing a coefficient ε to weight

incomes. Greater weight can be placed on changes in a given portion of the income distribution

by choosing ε, the level of Inequality Aversion. The Atkinson index becomes more sensitive to

changes at the lower end of the income distribution as ε approaches 1. Conversely, as the level of

inequality aversion falls (ε approaching 0) the Atkinson Index becomes more sensitive to changes

in the upper end of the income distribution. Atkinson index AT is defined as in equation 5.1.

81

AT = 1 −
1
µ

(
1
N

N∑
i=1

y(1−ε)
i)1/(1−ε) (5.1)

Where 0 ≤ ε < 1, yi is the individual income of i-th entity (i = 1, 2, ..., N) and µ is the mean

income of total N entities. We have used the Atkinson index AT for the scenario of sensor networks

where the income parameter is replaced by the parameter normalized remaining energy rei(t), the

remaining energy of node i at time t divided by the maximum energy capacity. Therefore Atkinson

index AT of the entire network at time t is as shown in equation 5.2.

AT (t) = 1 −
1

reavg(t)
(

1
N

N∑
i=1

rei(t)(1−ε))1/(1−ε) (5.2)

Where reavg(t) is the average of the remaining energy rei(t) of all the nodes in the network

at time t, N is the number of nodes in network. Since this index contains information of all the

nodes in the network, only a centralized algorithm can compute the index completely. But it is

possible to apply a distributed protocol where every node can compute the index locally within

its 1-hop neighborhood. We apply the formulated Atkinson index AT in the problem of data for-

warding. When a node has data packet to forward, the research challenge is to choose the relay

node from the next available neighbors. The use of Atkinson index AT penalizes large inequality

in remaining energy. An energy balanced relay node selection tries to maintain a balance in energy

consumption rate of the nodes in the local region. This local balance in turn results in balance in

energy consumption across the whole network.

Energy Balance Metric: Now we formulate our proposed routing metric, called Energy

Balance (say EB) for relay selection. We design EB as (1-ATlocal), where ATlocal is the Atkinson

Index computed locally in 1-hop neighborhood. Since ATlocal denotes the level of energy inequality

in 1-hop neighborhood, EB here denotes the level of energy equality or energy balance in 1-hop

neighborhood. So at time t the routing metric EBi(t) computed by each node i is as shown in

equation 5.3.

82

EBi(t) =
1

reavg(t)
(

1
|∆|

∆∑
i=1

rei(t)(1−ε))1/(1−ε) (5.3)

To note that for each node, ∆ is the set of 1-hop neighbors and the node itself. So the metric

EB is calculated using remaining energy information of the neighbors and the node itself.

Figure 5.10 Distribution of Energy Balance (EB)

In Figure 5.10 the effectiveness of EB is shown. In a simulated environment in MATLAB

with 100x100 sensor network grid, each node has maximum 8 neighbors. Only three nodes in

the network have energy value of 100. But other nodes have energy between 500 to 1000. Then

the distribution of locally computed EB across the network is shown in Figure 5.10. It can be

observed that EB is high enough (very close to 1) everywhere, except in the neighboring region

of the nodes with low energy. Therefore in a distributed network EB is a meaningful indicator of

region with significant energy imbalance. Lower EB indicates higher degree of energy imbalance.

The advantage of ActRouting in the initial example is described in Figure 5.8 with calculated EB

metric.

Relay Selection: Now we describe the data forwarding scheme. The nodes in 1-hop neigh-

borhood periodically share their normalized remaining energy (rek) and Energy Balance metric

EBk (k ∈ neighbor) through beacon message broadcast. From the rek(t)’s of neighbors and its own

remaining energy rei(t), each node i recomputes its metric EBi(t) and shares its current value of

EBi(t) with neighbors using broadcasted beacon message. Suppose at time t, node i has data packet

83

Pi(t) to send to the next relay node. Then energy balanced data delivery is performed as follows. (i)

Having information of EB for all the neighbors, node i chooses the neighbor node with maximum

EB, which has the same or less hop count to base station, as the next relay node to forward the data

to. (ii) An opposite approach is used in relay selection when the remaining energy of the node is

critically low. Then node i chooses the neighbor node as relay, which has minimum EB (in a hope

to find a local region with some high remaining energy nodes) and same or less hop count to base

station. (iii) In case the EB of the neighbors are very close to each other, the relay is selected as

the one with maximum remaining energy, which has the same or less hop count to base station.

In addition ActRouting uses more activity-awareness in following way. A node outside cur-

rently active or predicted active region, has higher priority of getting selected as relay node (than

a node inside region of active or predicted data source). Overall, in a completely distributed man-

ner the proposed algorithm ensures relatively uniform distribution of energy consumption rate and

hence better network lifetime. The strength of the proposed algorithm is that locally computed

EB has inherent visibility into energy distribution in 2-hop neighborhood. To ensure faster routing

convergence an added technique can be used. If a data packet is forwarded to nodes with same

hop count for certain number of times, in the next step it is forwarded to the node with only lesser

hopcount and better EB.

Algorithm 6 ActRouting: Activity-aware and Energy-balanced Routing
Each node i periodically computes the Energy Balance (EB) involving all of its 1-hop neigh-
bors and itself. If node i has data packet to forward, select node j as its relay node as fol-
lows:

if (EBmin
k /EBmax

k) ≥ 0.9 (k ∈ neighbori) then
j = max(remaining energy) AND hop j ≤ hopi

else
if energyi ≤ energycritical then

j = min(EB) AND hop j ≤ hopi

else
j = max(EB) AND hop j ≤ hopi

Readjustment of radio duty cycle: For a data forwarding node, once the neighbor relay

node is selected using ActRouting, it will readjust the duty cycle of the relay. This can keep the

84

selected route active so that the stream of data from the current source can be sent to base station

with reliability and low latency. Then, once a node i selects its relay as node j, i repeatedly unicasts

a message to j (until acknowledged) notifying it to run the radio on maximum duty cycle set by the

application. To note that when current data source changes, j will not receive any data to forward

for a number of radio sleep/wake intervals. Then j will run the radio back to the duty cycle decided

by ActDutyCycling.

The role of ActRouting in the whole ActiS en system and the relationship of ActRouting with

sensing and radio duty-cycling components is illustrated in Figure 5.3.

5.6 ActiS en System Design

Mote

MAC Sensor Driver

 Network

middlewareActivity Awareness

Application

 Sensing

betweenness,

active/predicted

cluster

Information

Gradient,

hopcount, betweenness

set

Sleep interval
energy estimation

neighbor energy,

neighbor EB

Actiroute ActiSense

ActiTran

ActRouting

ActDutyCycling

ActSensing

Figure 5.11 TinyOS software structure of ActiS en

85

The ActiS en system is designed in TinyOS-2.x. The TinyOS software architecture in ActiS en

is shown in Figure 5.11. The knowledge of Activity-Awareness resides in the middleware that can

be utilized by application for smart environment. The cluster membership information is config-

ured from Activity-Awareness module to the ActRouting module in network layer to dynamically

configure the current gradient, predicted gradient and betweenness parameters. Based on these pa-

rameters the ActDutyCycling module configures link layer for dynamically configuring the sleep

interval. The ActS ensing module in sensing component uses activity knowledge from Activity-

Awareness module and accordingly configures duty cycle for the activity detection sensors. The

energy consumption is calculated using the relevant model of radio transmission, reception and

radio idle states. The values used in the energy model are as follows: CC2420 radio parameters

(19.7 mA current consumption in receive mode, 17.4 mA current consumption in transmit mode),

250 kbps data rate with 48 kByte data packet size, and the MSP430 MCU parameters (3 mA cur-

rent consumption in active mode due to sensing and computation). The remaining node energy is

accordingly updated. The node remaining energy information is used in the ActRouting network

module in terms of normalized remaining energy and Energy Balance parameters. The information

gradients, hopcount, remaining energy, Energy Balance (EB) are shared among neighbors, piggy-

backed in the broadcasted beacon message. Instead of beacon message of MAC protocols, the

software design uses beacon message in routing protocol layer (in route and neighbor maintenance

routine). The beacon message is broadcasted with (adaptive time period) among the neighbors. We

have utilized the existing beacon message used in the routing layer. These beacon messages are

piggybacked with more information containing information gradient, hop count and other required

parameters. The beacon messaging in ActiS en uses dynamic and adaptive beacon period.

5.7 Performance Evaluation and Analysis

In this section we represent in detail the experimental evaluation and performance analysis to

show the effectiveness of our proposed activity-aware design of ActiS en.

86

Floor 1

(a)

Sink Node

Floor 2

(b)

Floor 3

(c)

Figure 5.12 Most frequent activity sequences (order of active nodes) occurred in each floor of
Motelab testbed during experiment

87

5.7.1 Experiment in Large Scale Real Sensor Network Tested

Evaluation environment: We have evaluated our proposed ActiS en system in large scale 82

node network of TelosB motes in Harvard Motelab sensor network testbed [58]. The experi-

ments are conducted in 82 node network physically distributed in three floors, as shown in Figures

5.12(a), 5.12(b) and 5.12(c). The default radio range of used TeloB motes (uses CC2420 radio

chip) is typically 50m for indoors and 125m for outdoors. The experiment environment in Motelab

testbed is indoor environment.

7

6

3
2

1 4

5
8

9

10

11

12

13
14

15
16

1718

19

20 21
22

23

24

25

26 27

n motion sensor

activity transition

Dining Room

Kitchen

Bedroom

Figure 5.13 Activity Transition Probability Graph with 27 nodes, learnt from the CASAS Smart
Home testbed [5]. Transition probability for example from node 27 to nodes 14, 25 and 26 are
12%, 45% and 40% respectively

Activity transition and data generation: From a separately deployed motion sensor network

testbed we have learned the activity transition patterns and have validated the construction of ac-

88

tivity transition graph AT PG (Figure 5.13). The activity transition patterns are modified to be

scalable for a 82 node Motelab testbed, and is injected in the testbed for activity event generation

and activity transition. The activity transition decides the order with which nodes will be active.

The activity event generation makes node(s) active, letting it send data to sink node (base

station) at a very high rate (we used data sending rate of 480 Bytes/second). We have emulated the

activity events by generating three independent sequences of active nodes (indicating motion trails)

each in one of the three floors. From a remote server, periodic serial message (containing new

active node numbers) is sent to the sensor motes in the testbed to generate the activity sequences.

The sensor nodes receiving the serial message with it’s ID start generating sensor data. Other

nodes act as relay only. This periodic activation of nodes through serial message follow the activity

transitions defined in the corresponding AT PG. In this way the activity transition experiments are

performed with network-wide data collection. In addition each node periodically sends one local

status data packet (containing information of remaining energy, duty cycle, hop count etc.) to sink

every 30 seconds.

Comparison: For performance comparison we have compared combinations of existing rout-

ing schemes with selected MAC protocol, with ActRouting (ActiS en without ActDutyCycling) to

show performance improvement due to ActRouting, and then compared with whole ActiS en system

(ActRouting + ActDutyCycling on top of selected MAC protocol) to show performance improve-

ment due to both activity aware routing and duty cycling. Following relevant routing protocols are

used: PMin (shortest path routing), CT P [59] (very commonly used data collection protocol for

sensor networks, that uses link and path quality), and CMAX (an energy aware protocol [34] where

data is forwarded preferably to neighbor with higher remaining energy in the neighborhood). As

explained earlier, ActDutyCycling in ActiS en system doesn’t propose a new MAC protocol, but

offers performance improvement of the MAC protocol in use by adapting the effective sleep inter-

val with activity patterns. In the real testbed of TelosB motes we have used the X − MAC [22] as

the base MAC protocol. In the experiments we have compared the following configurations:

(a) PMin + X-MAC: PMin + X − MAC protocol.

89

(b) CTP + X-MAC: CT P + X − MAC protocol.

(c) CMAX + X-MAC: CMAX + X − MAC protocol.

(d) ActRouting + X-MAC: ActRouting + X − MAC protocol.

(e) ActiS en: ActRouting + ActDutyCycling (using selected X − MAC protocol).

The 82 node network formed a 9 hop routing tree with -5 dBm transmission power of CC2420

radio of TelosB motes. The sink node is in middle of the three floors, as shown in Figure 4.8(b).

In this network data collection scenario we have evaluated following parameters: (i) data delivery

latency, (ii) data throughput, (iii) minimum node energy in the network through time (indicating

network lifetime), (iv) duty cycle of the nodes, (v) network energy consumption etc. For radio

duty cycling X-MAC is used with 5 seconds sleep interval, while ActDutyCycling (used on top of

X-MAC), uses sleep interval range between TS max = 10 seconds and TS min = 1 second.

5.7.2 Performance Evaluation

Now we describe the performance analysis of our proposed ActiS en system compared to

existing protocols.

 0

 20

 40

 60

 80

 100

1 3 5 7 10 15 20 30

C
D

F
 (

%
)

Delivery Latency (second)

PMin+X-MAC
CTP+X-MAC

CMAX+X-MAC
ActRouting+X-MAC

ActiSen (with X-MAC)

Figure 5.14 Distribution of data delivery latency

90

Latency: Figure 5.14 represents the distribution of delivery latency of packets in the 82 node

network. It can be observed that ActRouting + X-MAC provides much lower latency than each of

the comparing protocols (PMin + X-MAC, CTP + X-MAC, CMAX + X-MAC), and then the whole

ActiS en system performs even better. In PMin + X-MAC, CTP + X-MAC, CMAX + X-MAC, 70%

of the packets are delivered with latency between 20 seconds to 25 seconds. But in ActRouting +

X-MAC and ActiS en, the 70% of the packets are delivered within latency around 13 seconds to 15

seconds. Therefore ActiS en provides much lower delivery latency, providing better performance to

the application. ActiS en achieves this improvement in latency by (a) avoiding selection of currently

active nodes (which are busy with sensing and sending own data) as relays by ActRouting, and

(b) adaptive increase in duty cycle from ActDutyCycling for the active and predicted active nodes.

Even in case the activity transitions don’t always follow the AT PG, reactive duty cycle adjustments

in ActRouting and ActDutyCycling provides improved latency.

Data Throughput: Figure 5.15 shows the data throughput for each node at sink. More

throughput indicates more event data successfully delivered and reported at sink. It is observed

that for each of the 82 nodes, ActiS en provides much improved data throughput than others. For

all the 82 nodes ActiS en provides a data throughput improvement ranging from 5% to 13%. This

advantage in ActiS en comes from (a) higher duty cycle on the route containing nodes between

active data sources and the sink, and (b) avoiding selection of currently active nodes (which are

busy with sensing and sending own data) as relays by ActRouting.

Lifetime: Figure 5.16 represents the minimum energy of any node in the entire network

through time. This property decides the network lifetime. The energy consumption is configured

in such a way that all nodes start with energy 2200 mAh. For indicating the rate of drop in minimum

remaining node energy in network, Figure 5.16 represents the energy drop with respect to a chosen

value of 0.05806 mAh. This value is chosen for purpose of analysis because the minimum node

energy in PMin + X − MAC reduces by an amount of nearly 0.05806 mAh energy in experiment

run time of 1800 seconds (i.e. 30 minutes). This chosen value for analysis doesn’t affect the nature

of energy consumption of network. Now it can be observed that the minimum energy of any node

in PMin + X-MAC, CTP + X-MAC and CMAX + X-MAC depletes faster than the one in ActiS en.

91

0.5
2.0

4.0

10

20

30

36

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

0.5
2.0

4.0

10

20

30

36

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

0.5
2.0

4.0

10

20

30

36

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

1
hop

3
hop

5
hop

6
hop

7
hop

8
hop

9
hop

4
hop

2
hop

CMAX + X-MAC

CTP + X-MAC

ActiSen (using X-MAC)

Throughtput (Bytes/second) vs Node Id

Throughtput (Bytes/second) vs Node Id

Throughtput (Bytes/second) vs Node Id
total 82 nodes

total 82 nodes

total 82 nodes

Figure 5.15 Data throughput at Sink

92

 0

 20

 40

 60

 80

 100

200 500 800 1100 1400 1800

M
in

im
u

m
 N

o
d

e
E

n
er

g
y

 (
%

)

Time (s)

% Remaining Energy is w.r.t 0.05806 mAhr

PMin+X-MAC
CTP+X-MAC

CMAX+X-MAC
ActRouting+X-MAC

ActiSen (with X-MAC)

CMAX + X-MAC

PMin + X-MAC

CTP + X-MAC

Figure 5.16 Minimum node energy in network

Within 1800 seconds time, the minimum energy of any node in PMin + X-MAC, CTP + X-MAC and

CMAX + X-MAC reduces by an amount close to 0.05806 mAh. Therefore in protocols other than

ActiS en network node depletes almost all it’s energy within time 1800 seconds, had the network

start with 0.05806 mAh for all nodes. But in same scenario in same time the minimum energy of

any node in ActiS en would have still around 33% energy left. Therefore it is clear that network

lifetime for ActiS en will also be much higher than others. ActiS en achieves this advantage because

of (i) ActDutyCycling’s adaptively lowering of duty cycle during non-active phase of nodes and

(ii) ActRouting’s energy balanced relay selection.

Dynamic duty cycling: Figure 5.17 shows an example of dynamic configuration of sleep

interval (therefore dynamic change of duty cycle) of a node because of ActDutyCycling protocol

in Actisen. The dynamic duty cycle in Actisen is illustrated with the example of activity transition

from node 126 to node 129 to node 130 (126 Õ 129 Õ 130). During the experiment the node 126

was maintaining a lower effective duty cycle. But according to AT PG when predicted source is

closer to that node its duty cycle gradually increases because of the information gradient. Then

the node becomes the predicted source and increases the duty cycle to around 15%. It continues

93

0

2

4

6

8

15

 0 50 100 150 200

D
u

ty
 C

y
cl

e
(%

)

Time (seconds)

0

2

4

6

8

15

 0 50 100 150 200

D
u

ty
 C

y
cl

e
(%

)

Time (seconds)

0

2

4

6

8

15

 0 50 100 150 200

D
u

ty
 C

y
cl

e
(%

)

Time (seconds)

node 126 becomes
predicted source

node 126 becomes
active source

node 126 no more
active/predicted source

node 129 becomes
predicted source

node 129 becomes
active source

node 129 no more
active/predicted source

node 130 becomes
predicted source

node 130 becomes
active source

node 130 no more
active/predicted source

T1

T1

T2

T2
T3

T3

Node 126
Duty Cycle

Node 129
Duty Cycle

Node 130
Duty Cycle

Figure 5.17 Dynamic radio duty cycle due to ActDutyCycling

94

the duty cycle of 15% since it turns into active source after some time. At the same time node

129 becomes predicted source and it’s duty cycle gets higher. But when the node 126 is no more

an active, the duty cycle gradually drops to low value. Then node 129 becomes active source and

node 130 becomes predicted source. In similar manner as node 126, the duty cycle of nodes 129

and 130 gets updated. This shows an example of duty cycle change during activity transition in the

network.

5.7.3 Experiment in Simulation

In TOSSIM sensor network simulator set up with different network size, the motion activity

trajectory is simulated by periodically activating (setting nodes as the data source) a trajectory of

nodes one by one with an interval of 30 seconds. In the simulation physical separation between

the closest nodes was 5 meter. The radio range was set to the default, and each node had multiple

neighbors, more than just the physically closest neighbors. For each network configuration, we

have evaluated the following parameters: (i) mean delivery latency, (ii) data throughput at sink,

(iii) projected network lifetime, and (iv) network energy consumption.

Evaluation environment: We have evaluated our proposed ActiS en system in TinyOS sensor

network simulator TOSSIM [53] with varying network size from 20 to 100, to validate the scala-

bility of proposed activity-aware design. For each network size, the nodes are deployed randomly

in the area so that the minimum nodes separation is at least 5 meters. The sink node is at one corner

of the deployed area. The simulation scenario is set up like a smart environment where detected

activity information is reported to the sink.

Activity transition and data generation: In TOSSIM simulation experiments a python pro-

gram periodcially decides the active nodes and the activity transitions. This controls the order of

active nodes in the network.

Comparison protocols: For performance comparison, following relevant routing protocols are

used: PMin (shortest path routing), CT P [59] (link and path quality aware routing), and CMAX

95

(energy aware routing). As explained earlier, ActDutyCycling in ActiS en system doesn’t propose a

new MAC protocol, but offers performance improvement of the MAC protocol in use by adapting

the effective sleep interval. For MAC protocol in TOSSIM simulation we have used CSMA.

In the simulation experiments we have compared the following configurations:

(a) PMin + CS MA: PMin (shortest path routing) + CS MA

(b) CT P + CS MA: CT P + CS MA

(c) CMAX + CS MA: CMAX (energy aware routing) + CS MA

(d) ActRouting + CS MA: ActRouting + CS MA

(e) ActiS en: ActRouting + ActDutyCycling with selected CS MA protocol

5.7.4 Performance Evaluation

Data delivery latency: Figure 5.18(a) shows the mean data delivery latency for the selected

data sources for varying network size. Now it is observed that ActiS en has much lower average

latency than other for all network size. The improvement in latency ranges from 15% upto 46%.

This shows that ActiS en provides better application performance with reduced latency in event

data delivery and notification, which is also scalable from small to large network size.

Data throughput: Figure 5.18(b) shows the overall data throughput at sink for varying net-

work size. It is observed that ActiS en has much higher data throughput than others for all network

size. The improvement in throughput ranges from 2% upto 11%. This shows that ActiS en pro-

vides better application performance with improved data throughput in event data delivery and

notification, which is also scalable from small to large network size.

Lifetime: Figure 5.19(a) shows that the network lifetime of network using ActiS en is signif-

icantly higher than that of others for all network size. ActiS en achieves improvement in network

lifetime ranging from 17.1% upto 48.2%. The ActRouting and ActDutyCycling both contribute to

this advantage. ActDutyCycling reduces the energy consumption of nodes when they are outside

active region. ActRouting enables energy efficient selection of relay nodes on the active route.

These lead to more balance in energy consumption of nodes in network. These all finally lead to

effective decrease in node energy consumption in the network, resulting in improved lifetime.

96

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

20 40 60 80 100

M
ea

n
 D

at
a

D
el

iv
er

y
 L

at
en

cy
 (

se
co

n
d

s)

Network Size

PMin+CSMA
CTP+CSMA

CMAX+CSMA
ActRouting+CSMA

ActiSen (with CSMA)

(a)

 0

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 100

T
h

ro
u

g
h

p
u

t
at

 S
in

k
 (

B
y

te
s/

se
co

n
d

)

Network Size

PMin+CSMA
CTP+CSMA

CMAX+CSMA
ActRouting+CSMA

ActiSen (with CSMA)

(b)

Figure 5.18 (a) Mean data delivery latency (seconds) with varying network size (b) Data throughput
at Sink (Base Station) with varying network size

97

Network energy consumption: The improvement in duty cycle ensures reduced energy con-

sumption for ActiS en for the network. This is shown in Figure 5.19(b) which shows average

node energy consumption per successfully delivered packet at sink. This is a representative of

network energy consumption which in turn denotes energy efficiency. It is observed that the av-

erage network energy consumption is much lower in ActiS en than others, and it is scalable with

network size. This property of ActiS en gives the advantage of resource optimization for resource

constrained sensor networks.

 0

 10

 20

 30

 40

 50

 60

20 40 60 80 100

P
ro

je
ct

ed
 N

et
w

o
rk

 L
if

et
im

e
(d

ay
s)

Network Size

PMin+CSMA
CTP+CSMA

CMAX+CSMA
ActRouting+CSMA

ActiSen (with CSMA)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

20 40 60 80 100

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
u

J/
n

o
d

e/
p

ac
k

et
)

Network Size

PMin+CSMA
CTP+CSMA

CMAX+CSMA
ActRouting+CSMA

ActiSen (with CSMA)

(b)

Figure 5.19 (a) Projected network lifetime (days) with varying network size (b) Energy consump-
tion per successfully delivered message per node (uJ/packet/node) with varying network size

98

5.8 Summary

This chapter presents ActiS en, an activity-aware system design for wireless sensor networks,

that can learn from detected activity patterns. The activity-aware design creates and updates an

Activity Transition Probability Graph (ATPG) and then retroactively utilizes knowledge from it to

dynamically configure the sensing, routing and radio duty cycling operations for providing: bet-

ter performance to application, and resource optimization for resource constrained system. The

activity-aware design achieves this using activity-aware sensing, activity-aware radio duty cycling,

and activity-aware energy-balanced routing. The experimental results from real testbed and sim-

ulation experiments validate the advantages of activity-aware design and also show its scalability

with varying network size.

99

PART 6

FINDINGHUMO: USER TRACKING IN SMART ENVIRONMENTS

In this chapter, we present FindingHuMo [4], a novel algorithm and system design for real-

time and scalable tracking of multiple (unknown and variable number of) targets or human users

in any crowded Smart Environments.

6.1 Background

Smart Environments are equipped with sensors which keep tracking the movements of users,

who can for example be residents in a smart home, or employees in a smart workplace. Modeling

the behaviors of users is a key step in developing particular applications in a Smart Environments.

Identification and tracking the trajectories of users is the first step towards modeling. In many

applications, e.g., in a smart workplace, a smart clinic, or a smart home, users may not want to

reveal their identity all the time. In addition, the cost of sensors and communication device may

drive designers to choose binary sensors that are relatively cost effective and more likely to be

acceptable by general users. The binary sensors (e.g., a binary proximity based sensor, or a motion

detector) only generates binary valued times series. This poses a challenge to identify and track

user trajectories.

Our motivation in this work is solving two main challenges: (i) user specific motion track-

ing just from anonymous binary motion sensor data (binary motion sensors generate binary 0 or

1 samples, denoting no-motion and motion respectively), (ii) simultaneous tracking of multiple

(unknown and variable number of) users in crowded environment where motion trajectories can

overlap or crossover in all possible ways. Our designed system FindingHuMo (Finding Human

Motion) does not rely on meticulous calibration, war-driving, GPS localization, or any form of

fixed reference frame. The main contributions of our work are as follows:

100

104

93

base
station

backend
system

94

95
96

97

99
100

101

102

103

110

111

114

117 118 119 120

kitchen

elevators

printer
room

92

91

conferen
ce room

reception

lab

Figure 6.1 Motion sensor network deployment in a smart workplace environment. The sensor node
position and node ID’s are shown.

(a) design of a novel approach for scalable and real-time tracking of multiple targets from

just anonymous binary motion data. This includes: (i) proposal of a motion activity context driven

adaptive order Hidden Markov Model and Viterbi decoding (Adaptive-HMM algorithm), and (ii)

an innovative path disambiguation algorithm (called CPDA). Adaptive-HMM removes the system

noise and ambiguity in smaller time window using effect of hidden states, while CPDA removes

path ambiguity in a larger time window by applying constraints and inference on user interaction

based graph.

(b) Complete system design and performance evaluation in a real-time smart environment

(environment is shown in Figure 6.1).

101

User1 motion User2 motion User3 motion

User1
User2

User3

97 96 95 11911911811811711411411411199 119U1
114 114 111 119102120103949494969599 118U2
97 96 95 969710010111011011011011199 95U3
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

time

Figure 6.2 Multi-user overlapping motion trajectories. The table below the figure shows the node
or state sequence of each of the 3 users User1, User2 and User3, with time. The dark blocks in the
table indicate motion overlap or crossover among the users.

102

6.2 Proposed Real-Time Multi-Target Tracking System

The working methods of the whole system is described step-by-step with the physical layout

as shown in Figure 6.1 and accompanying example scenario in Figure 6.2. Figure 6.2 explains in-

stance of overlapping multi-user motion trajectories in a real smart workplace environment (layout

in Figure 6.1).

Q1 Q2 Q3 Qk
system
output

user motion trajectories

Interaction Graph
construction and Path

Disambiguation Algorithm

base
Station

Back-end
system

smart environment
physical design

Binary Motion Data
[N x dmax]

Extended Activity
Transition Graph

(EATG)

activity
transition
analysis

activity overlap/
crossover analysis

Adaptive Order HMM and
Viterbi decoding

variable
hop

EATG
data

update user
number k

signature

physical layout of nodes

Figure 6.3 FindingHuMo system: Multi-target tracking from binary motion sensor network.

Methodology System Resources: FindingHuMo system consists of: (i) a static wireless

sensor network (with binary motion sensors) deployed throughout the physical environment. The

binary motion data from each sensor node are collected through multi-hop network into a base

station; (ii) a back-end system computing user tracking algorithms on collected binary motion

datastream.

103

Table 6.1 List o f parameters and their description
M Set of motion sensor nodes (N = |M|)
b j(t) Output of sensor node m j at timeslot t
K The number of moving users
qi(t) Motion status of user i at timeslot t
(ts, (ts + dmaxT)) Time window of Adaptive-HMM compuation
(ts, (ts + CdmaxT)) Time window of CPDA compuattion

System Model and Problem Definition: Suppose the set of motion sensor nodes is M

(N=|M|). Then the motion sensor network collects binary motion data B(t) =
⋃N

j=1 b j(t), where

b j(t) = 0 or 1, is the binary motion status detected by node m j (∀ j ∈ (1,N)) at timeslot t. Now each

m j (∀ j ∈ (1,N)) denotes the possible motion states of a user in the environment. Therefore for user

i (i ∈ (1,K), K is the number of users), if the motion activity state at time t is qi(t)=m j, it indicates

that the user i is near the location of node m j at time t. The application output of the system is thus

the sequence of states {qi(t0), qi(t0 + T), qi(t0 + 2T),, qi(t0 + d.T),, qi(t0 + (D − 1)T)} ∀ i ∈

(1,K), where D can be a time period of user tracking (say 24 hours). The real-time requirement is

that each qi(t0 + dT) has to be computed in time (t0 + dT , t0 + dT + D′T) where D′ << D. Then the

research problem is how to compute motion trajectories (the sequence of states) dynamically for

all the users, from anonymous binary motion data stream B which doesn’t contain any user specific

information but just the collective motion status in the environment.

System Procedure: The operational architecture of proposed FindingHuMo is shown in

Figure 6.3. Based on some motion signature activities the system increments / decrements K, the

current number of users. Then based on detection of motion non-overlap /overlap in the binary

motion data of time window tS to (tS + dmaxT), the system applies a variable state and variable

order modified HMM. This exploits more information available and thus can capture contexts of

user activities more accurately. The output is segments of state sequences si (1 ≤ i ≤ K) for K

users. This, combined (or can be called stitched) with decoded path segments in a larger time

window of length dw.T (where dw.T=C.dmaxT , C is a constant), generates an Interaction Graph. A

proposed path disambiguation algorithm CPDA is processed on that graph, which finally results

in disambiguated node or state sequences of individual users. Algorithm 7 provides pseudo code

104

for the back-end system. The description and pseudocode of Adaptive-HMM and CPDA are later

presented in following subsections.

114

111

99

110

95
96

97

physical motion
trajectories of 3 users

in space

(imperfect) node sequence
from binary motion data

97

96

95

99

111 95

111

114

1 1

2

2

2

2 1

1

1

1

Interaction
Graph

Construction

Acti-HMM

97 96 95 99 111

114 114 111 99 111

97 96 95 99 95

decoded trajectories with error
due to overlap at node 99

114

1

97

96 96 95 99 111 114

114

111

114

111 99 95 96114

97

96 96 95 99 111 110

 time

 time

 time window

 time

 time

 time

97 96 95 99 111

114 114 111 99

11197 96 95

95
 time

 time

 time

99
Path

Disambiguation
algorithm

 Motion Data collection

final decoded trajectories
without error

114

110

96

114

96

110

114 110 96

11
1

 time window

Figure 6.4 A working example of FindingHuMo.

Working Example: Figure 6.4 illustrates how proposed FindingHuMo solves the above-

mentioned problem. The collected raw motion data contains unreliable node sequence with system

noise. This is refined by applying Adaptive-HMM. The decoded state sequence may still contain

error due to path crossover (e.g. crossover of decoded path for user 2 and user 3 at node 99). This

is further corrected by stitching the decoded paths and forming an Interaction Graph, which is

then disambiguated by applying proposed CPDA algorithm. This results in final decoded motion

trajectories. It is worth mentioning that the position of user is presented in form of sensor nodes’

position. Thus the tracking accuracy will be more (w.r.t the actual physical location of user) if the

sensor node deployment is more dense. Also the maximum number of users that can be tracked

simultaneously, is bounded by the number of sensor nodes deployed.

Next we separately present our proposed algorithms Adaptive-HMM and CPDA.

105

117 118 119 102

103

120

92

114

94
93

96
97

104

100

101110

111
95

99

a'(117, 114) = 0.50
a'(117, 118) = 0.50
a''(117, 92) = 0.33

a'(114, 117) = 0.50
a''(114, 118) = 0.33

a'(118, 117) = 0.33
a'(118, 92) = 0.33
a''(118, 114) = 0.33

a'(92, 118) = 0.50
a''(92, 117) = 0.33

Figure 6.5 Extended activity transition graph EATG constructed for the smart environment layout
shown in Figure 6.1. Solid lines indicate activity transition between nodes 1-hop away, while
dashed lines indicate activity transition between nodes 2-hop away. Nodes 1-hop to each other,
can be physically reachable without triggering any other node.

106

1 11 1 11 11 11111 11 11 111 11 111 1111

1 1
1 1111 1

1 1 1

1 11 1

117

118 1

92 11

119 11

102 111

103 1

120 1

114 11

111 111

110 1111

99 11

95 1

93

94

96

97

11

1111

100

101

11

1

104 1

117 118 119 102

103

120

92

114
94

93 104

117

114

96

101110

111 95
99

119

103

94
93

96 97

104

100
101110

95

119
102
120
103
102
119
92
118

110
111
114
111
99
95
99
111

97
104
97
100
101
100
97
96

S1

S3

S2

(a)

11
1 11

1 11
1 1

1
1

1
1

1
11

1 1

1 1
11 1

11
11

1 1 11
1

117 118 119 102

103

120

92

114
94

93

96
97

104

100

101110

111 95

99

99 111 114 114 114 117 118 118
99 95 96 94 94 103 120
99 111 110 110 110 110 101 100

S1
S2
S3

Nodes time

time

Binary
motion
data

EATG

decoded
sequence

(b)

Figure 6.6 (a) Adaptive-HMM: Splitting of non-overlapping motion into individual HMM’s and
then decoding state sequences using first order HMM. (b) Adaptive-HMM: Decoding of state se-
quences for overlapping motion in larger state and second order HMM.

107

Algorithm 7 Pseudo code for back-end system connected to base station of sensor network
Input: Binary motion data B(ts, ts + C.dmax.T) =

⋃
j b j(t) where ts ≤ t ≤ (ts + C.dmax.T) and

j ∈ M′ ⊂ M
Output: Decoded state sequence Q(ts, ts + C.dmax.T) =

⋃
i{qi(ts),....., qi(ts + C.dmax.T) } ∀ i ∈ (1,K)

1: Qw = NULL;
2: for t = ts → ts + C.dmax.T do
3: Q′(t, t + dmax.T) = Adaptive-Hmm(B(t, t + dmax.T)); (Adaptive-HMM algorithm)
4: Qw=Qw

⋃
Q′(t, t + dmax.T);

5: t ← t + dmax.T ;
6: Q(ts, ts + C.dmax.T) = CPDA(Qw); (CPDA path disambiguation algorithm)

Algorithm 8 Pseudo code for Adaptive-HMM algorithm Adaptive-Hmm()
Input: Binary motion data B(t, t + dmax.T)
Output: Decoded state sequence Q(t, t + dmax.T)

1: EATG(B(t, t + dmax.T)); (explained in subsection 6.2.1)
2: Update extended activity transition graph G;
3: λ = FormHMM(A,C, dmax, τ,Π); (Adaptive-HMM model creation, explained in subsection

6.2.1)
4: K = UserCount(B(t, t + dmax.T)); (to update the number of current users K, explained in

subsection 6.2.1)
5: Q(t, t + dmax.T) = Viterbi(λ,K); (explained in subsection 6.2.1)

6.2.1 Adaptive-HMM Algorithm

This subsection describes the Adaptive-HMM algorithm (Adaptive-Hmm() in main Algorithm

7). The pseudocode for Adaptive-Hmm() is shown in Algorithm 8. Adaptive-HMM’s operation is

motion activity driven to some extent. This is in a sense that, based on the activity amount detected

in the motion data segment, it applies different methods to extract the motion trajectories.

Extended Activity Transition Graph: This explains the task EATG() in Algorithm 8. It is

important to note that even single user trajectory, or multi-user non-overlapping trajectories cannot

be reliably concluded from just the binary motion data. Some knowledge of activity transition

relationship among the nodes (or states) is necessary for extracting exact motion trajectories. For

example in Figure 6.1 if both the motion sensors 93 and 94 are triggered, then from transitional

relation from last activated state 96 it can be concluded that the motion trajectory was ...96→94...

108

instead of ...96→93... The notion of activity transitional relationship among the nodes or states is

presented and used in this work in the form of an Extended Activity Transition Graph or EATG.

In EATG G = (M, E′, E′′, A′, A′′), a node m j ∈ M represents a sensor node in the environment,

weighted edge e′ ∈ E′ denotes a pair of sensor nodes that can physically be reached directly from

each other, and weighted edge e′′ ∈ E′′ denotes a pair of sensor nodes that can physically be

reached from each other by triggering one more node in between. The weights a′ and a′′ of edge

e′ and e′′ respectively denote direct 1-hop and indirect 2-hop activity transition between the nodes.

a′(m j2 ,m j1) =
#events (m j2(t)⇒ m j1(t + T))

#eventsm j2(t)
(6.1)

a′′(m j2 ,m j1) =
#events (m j2(t)⇒ m j1(t + 2T))

#events m j2(t)
(6.2)

Example EATG belonging the layout in Figure 6.1 is shown in Figure 6.5. Direct transition

probability A′ is constructed either directly from the physical layout or is trained from collected

binary motion data as illustrated in equation 6.2. Indirect 2-hop transition probability A′′ is trained

from binary motion data as in equation 6.2. The term #events m j2(t) ⇒ m j1(t + T) denotes the

number of events where m j2 is triggered at any time t and then followed by m j1 at time (t + T).

Adaptive Order HMM Modeling: This explains the task FormHMM() in Algorithm 8.

The system model is designed as a modified Hidden Markov Model (HMM) with a discrete time

stochastic process. The modified model is named Adaptive Order HMM or Adaptive-HMM, and

it’s working is shown in Figure 6.7(a). The Adaptive-HMM model is λ = (A,C, dmax, τ,Π) and the

set of states is M′.

(a) States: M′={m j} where m j ∈ M. So M′ contains only part of the states in M. Adaptive-

HMM chooses only the subset of states that are active and the neighbor (1-hop or 2-hop in EATG)

states. This reduces the computational complexity without compromising the accuracy (theorem

3). In the HMM time window t to (t + dmax.T), if the system detects say x non-overlapping mo-

tion (activated nodes at each slot of T are 1-hop away) it creates or forks out x HMM computa-

tions with each state set M′ containing activated nodes of corresponding motion sequence and

109

t0(1) t0+dT ts+ dmax T ts t0+DT

selected state sequence
selected state sequence

complete
state

space M

selected
states M'

S1
S2

t0+ T ts+ T t0(2)

(a)

97

96

95

99

111 95

111

114

114

114 110 96

97

96

95

99

111 95

111

114

114

114 110 96

CPDA

User1 User2 User3

paths with ambiguity due to
crossover at node 99

disambiguated paths after
applying CPDA algorithm

(b)

Figure 6.7 (a) Activity context driven selection of state set and state transitions in Adaptive-HMM.
The state sequence is saved only till ts + τ.T , and the next HMM window computation starts
at ts + (τ + 1).T instead of ts + (dmax + 1).T . For single activated state the state set is smaller
(activated nodes and their 1-hop neighbors) and uses transition only from (t − 1). But for multiple
simultaneous activated states the state set is larger (activated nodes and upto their 2-hop neighbors)
and uses transitions from time (t − 2) and (t − 1). (b)Illustrative example of proposed CPDA
algorithm.

110

their 1-hop nodes (example in Figure 6.6(a)). But if it detects overlapping motion (sequence

of motion activated nodes overlap in at least one slot of T) it creates a single HMM compu-

tation with state set M′ containing activated nodes of motion sequences and upto their 2-hop

nodes (example in Figure 6.6(b)). Example: In the example in Figure 6.6(a), the state sequence

110→111→114→111→99→95 →99→111 generate non overlapping state sequences with other

activated states due to other users. Thus the state set of individual HMM computation contains only

activated nodes (110, 111, 114, 99, 95) and their 1-hop nodes (117,96,101). But when that user’s

motion states are overlapped with others (motion shown in Figure 6.2) then the HMM computation

contains all the active states and upto their 2-hop neighbors (Figure 6.6(b)).

Sub-state selection in Adaptive-HMM: The sub-state selection in Adaptive-HMM doesn’t

affect the optimality of HMM model and Viterbi computation in our application scenario (due to

activity transitional relationship among nodes upto 2 hop away).

Theorem 3 In Adaptive-HMM the reduced state set M′ results in the same optimal state sequence

as that with complete state set M.

(b) State Transition Probability: In HMM computation for non-overlapping motion, A =

{a(j2, j1)}, where a(j2, j1) = P[q(t) = m j1 |q(t − 1) = m j2] = a′(m j2 ,m j1), and in HMM computation

for overlapping motion A = {a(j3, j2, j1)}, where a(j3, j2, j1) = P[q(t) = m j1 |q(t−1) = m j2 ANDq(t−

2) = m j3] = a′(m j2 ,m j1).a
′′(m j3 ,m j1); a(j3, j2, j1) is the state transition probability from motion

activated node m j3 at (t − 2) and m j2 at (t − 1) to node m j1 at time t (q(t) denotes the current

motion activated node at time t). Equivalently a(j2, j1) denotes state transition from (t − 1) to t.

Here Adaptive-HMM is motion activity driven. If there is motion overlap within time window, A

includes transition from states at (t − 2) and (t − 1). But for no overlap A includes transition only

from state at (t − 1).

(c) Emission Probability Distribution: For non-overlapping motion C = {c j(p)} and for

overlapping motion C = {c j2 j1(p)}. c j2 j1(p)=P[op|q(t) = m j1 ANDq(t − 1) = m j2] is the probability

that the system outcome at time t is op ⊆ M′ given node m j1 is activated at current t and node m j2

was activated at (t − 1). Equivalent meaning stands for c j(p).

111

(d) Time Window and Threshold: dmax is the time duration of the applied HMM. So the

HMM time length or time window is from ts to (ts + dmax.T). The HMM is computed for the time

window ts to (ts + dmax.T), but the resulting state sequence are saved only from ts upto an instant

(ts + τ.T). τ indicates a threshold point for accepting the resulting state sequence.

(f) Initial State Distribution: Π = {π j} (m j ∈ M′), where π j = P[q(ts) = m j] is the probability

that at starting time t of HMM time window the activated node is m j.

User Count in HMM time window: This explains the task UserCount() in Algorithm 8.

It updates the number of users K in HMM time window (t, t + dmax.T) using following: K =

max(Kpre + S igin − S igout, Know). Kpre is the number K from the previous HMM window (t −

dmax.T, t), S igin is the number of user entry signatures (e.g. node sequence 104 → 103), S igout is

the number of user exit signatures (e.g. node sequence 97 → 104), Know is the maximum number

of triggered nodes (that are at least 2 hops away in EATG) in any unit slot of T in the window.

Viterbi Computation: The procedure is explained in the task Viterbi() in Algorithm 9. Given

the values of M′, A, C, dmax, τ and Π, the HMM generates system observation sequence O = O(t)

O(t + T) O(t + 2T) ...O(t + dT).. O(t + dmax.T) = say o f (t,T, dmax) (where each O(t + dT) ⊆ M′).

So the problem is given such system observation sequence O, the model λ and states M′, how

to choose the corresponding state sequence Qi = qi(t) qi(t + T)..qi(t + dT)..qi(t + τ.T) = (say)

q f
i (t,T, τ) for each user i between time t and (t + τ.T). Finding the optimal state sequence with

respect to the Maximum a posteriori (MAP) criterion is efficiently done with the Viterbi algorithm

and tracing back through a matrix of back-pointers, starting from the end of the sequence. Standard

Viterbi decoding algorithm is modified for: multiple observation, multiple sequence decoding, and

fitting for activity awareness. For non-overlapping motion, viterbi algorithm is computed on first

order HMM [38] (task Viterbi1()) where transitions from time (t − 1) to t are considered. For

overlapping motion, viterbi algorithm is computed on second order HMM [63] (task Viterbi2())

where transitions from time (t − 2) and (t − 1) to t are considered. The pseudocodes for Viterbi1()

and Viterbi2() are shown in Algorithm 10 and Algorithm 11 respectively. It’s worth mentioning

that second order HMM captures a more amount of the activity contextual information than the

first order HMM.

112

Algorithm 9 Viterbi(λ,K): Viterbi decoding in Adaptive-HMM
Input: HMM model λ, user number K
Output: Decoded sequence Q(t, t + dmax.T)

1: if No motion overlap detected among trajectories then
2: for each trajectory: (i) Update λ by keeping only triggered nodes and their neighbors in

EATG; (ii) Q(t, t + dmax.T) = Viterbi1(λ); (1-state Viterbi decoding)
3: else
4: (i) Update λ by keeping only triggered nodes and their neighbors in EATG; (ii) Q(t, t +

dmax.T) = Viterbi2(λ,K); (2-state Viterbi decoding)

Algorithm 10 Viterbi algorithm Viterbi1(λ) on HMM for non − overlapping motion
Input:
HMM λ=(A,C, dmax, τ,Π);
state set M′;
observation sequence O=O(ts) O(ts + T)..O(ts + dT)..O(ts + dmax.T);
A and C contain state information from (t − 1) to t;
M′ contains activated nodes and their 1-hop nodes in EATG.

Output: Optimal activity state sequence Q=q(ts) q(ts + T)..qi(ts + dT)..qi(ts + τ.T) (τ ≤ dmax).

Variables:
δd(j)= max

q(ts),q(ts+T),..,q(ts+(d−1)T)
P[q(ts), q(ts + T), .., q(ts + dT) = j, O(ts), ..,O(ts + dT)|λ]

ψd(j)= argmax
q(ts),q(ts+T),..,q(ts+(d−1)T)

P[q(ts), q(ts + T), .., q(ts + dT) = j, O(ts), ..,O(ts + dT)|λ];

1: Initialization:
δ0(j) = π j.c j(O(ts)) (m j ∈ M′) and ψ0(j) = 0

2: Recursive step:
δd(j) = max

m j′∈M′
[δd−1(j′)a(j′, j)].c j(O(ts + dT))

ψd(j) = argmax
m j′∈M′

[δd−1(j′)a(j′, j)]

where (1 ≤ d ≤ dmax and m j ∈ M′)
3: Termination:

P∗ = max
m j∈M′

[δdmax(j)] u∗dmax
= argmax

m j∈M′
[δdmax(j)]

4: State sequence backtracking:

u∗d = ψd+1(u∗d+1), d = (dmax − 1), (dmax − 2), ..., 0

5: Output: {q(ts)=u∗0, q(ts + T)=u∗1, .., qi(ts + dT)=u∗d..qi(ts + τ.T)=u∗τ}

113

Algorithm 11 Viterbi algorithm Viterbi2(λ, K) on HMM for overlapping motion
Input:
HMM λ=(A,C, dmax, τ,Π);
state set M′; observation sequence O=O(ts) O(ts + T)..O(ts + dT)..O(ts + dmax.T);
A and C contain state information from (t − 2) and (t − 1) to t;
M′ contains activated nodes, their 1-hop and 2-hop nodes in EATG.

Output:
Optimal activity state sequence Q=q(ts) q(ts + T)..qi(ts + dT)..qi(ts + τ.T) for each k ∈ K (τ ≤ dmax).

Variables:
δd(j′, j, k)= max

q(ts),q(ts+T),..,q(ts+(d−2)T)
P[q(ts), q(ts+T), .., q(ts+(d−1)T) = j′, q(ts+dT) = j,O(ts), ..,O(ts+dT)|λ]

for each user k ∈ K
ψd(j′, j, k)= argmax

q(ts),q(ts+T),..,q(ts+(d−2)T)
P[q(ts), q(ts+T), .., q(ts+(d−1)T) = j′, q(ts+dT) = j,O(ts), ..,O(ts+dT)|λ]

for each user k ∈ K

1: Initialization (for each user k ∈ K):

δ0(j′, j, k) = π j.c j′ j(O(ts)) and ψ0(j′, j, k) = 0 (m j,m j′ ∈ M′)

2: Recursive step (for each user k ∈ K):

δd(j′, j, k) = max
m j′′∈M′

[δd−1(j′′, j′, k)a(j′′, j′, j)].c j′ j(O(ts + dT))

ψd(j′, j, k) = argmax
m j′′∈M′

[δd−1(j′′, j′, k)a(j′′, j′, j)]

where (1 ≤ d ≤ dmax and m j,m j′ ,m j′′ ∈ M′)
3: Termination (for each user k ∈ K):

P∗(k) = max
m j′ ,m j∈M′

δdmax(j′, j, k)

u∗dmax
(k) = arg jmax

m j′ ,m j∈M′
[δdmax(j′, j, k)] u∗dmax−1(k) = arg j′max

m j′ ,m j∈M′
[δdmax(j′, j, k)]

4: State sequence backtracking:

u∗d(k) = ψd+1(u∗d+1, u
∗
d+2, k) d = (dmax − 2), (dmax − 3), ..., 0

5: Output (for each user k ∈ K): {q(ts)=u∗0(k), q(ts + T)=u∗1(k), .., qi(ts + dT)=u∗d(k)..qi(ts + τ.T)=u∗τ(k)}

114

Real-Time applicability of Adaptive-HMM: There were some constraints to directly using

standard HMM model and Viterbi algorithm to our real-time application scenario. Regarding

length of time window (say W) the standard Viterbi algorithm requires O(W) operations. But the

standard algorithm is not applicable in the case of a streamed input (with potentially no ending

in sequence) and requirement of output within bounded delay. Regarding size of state space (say

S), the standard Viterbi algorithm requires O(S 2) operations, and still even on average O(S
√

S)

operations by a modified version of Viterbi [64]. Thus for real-time applicability we have designed

a model that is activity context aware with: (a) bounded length of time window (ts to (ts + dmax.T)),

and (b) varying size of system state M′ that is the set of motion activated nodes (in the time window)

and their 1-hop or 2-hop neighbor nodes in EATG (explained earlier). Therefore depending on the

amount of activity in sensed binary motion data Adaptive-HMM dynamically selects the state space

and HMM order.

6.2.2 Path Disambiguation Algorithm CPDA

mj1

mj2

mj3
mj4

mj1

mj2

mj3
mj4

OR
Y(j1,u1) = {j2, j3} Y(j1,u1) = {j2, j4}

Figure 6.8 Explanation of CPDA. The non-feature node m j1 has property Y(j1, u1) (u1 is the iden-
tifier of one of the users passing through m j1). Y(j1, u1)={ j2, j4} is the scenario on left-hand side,
and Y(j1, u1)={ j2, j3} is the scenario on right-hand side.

The output state sequences from Adaptive-HMM in each time window (of length dmax.T) is

partially disambiguated from the effect of path overlap or crossover. But it can’t always remove

longer term path ambiguity that spreads beyond the Adaptive-HMM time window. To alleviate

this, FindingHuMo applies a proposed Crossover Path Disambiguation Algorithm or CPDA to

the joint Adaptive-HMM output of last C number of time windows. It works as follows:

115

1. Combining Adaptive-HMM output of last C HMM time windows, it creates a directed graph

GI = (VI , EI , P) (called Interaction Graph) that contains nodes VI and edges EI belonging to

the output state sequences. P (={P(j)} j ∈ VI) is set of node property, explained in next step.

2. In the constructed Interaction Graph, each node j is given a state variable P(j) containing

information about how the user paths from the incoming nodes are distributed into the out-

going nodes. P(j) = {Y(j, u)} for every user u passing through node j. Nodes with determin-

istic and fixed value of Y(j, u) (like nodes containing exactly one path, entry/exit nodes) are

called feature nodes. The other intermediate nodes with possibly different values of Y(j, u)

are called non-feature nodes. Say on node m j1 , one of the incoming node to node m j1 is m j2 ,

and one of the outgoing nodes from m j1 is m j3 . Then for user path ui, if Y(j1, ui) = { j2, j3},

then it indicates that path of ui goes from m j2 through m j1 to m j3 .

3. Now based on the constraint on path distributions (imposed by GI) and the defined state

values Y(j, u) of feature nodes, the system applies Bayesian Network Inference on GI to

calculate most desirable state values Y(j, u) of non-feature nodes. The conditional probabil-

ity table value is selected as follows: P(Y(j1, ui) = { j2, j3}| j2) = a′′(m j2 ,m j3) (thus utilizing

EATG graph).

4. Finally, if for some non-feature node the Y(j, u) contradicts with the state sequence computed

by Adaptive-HMM, path segments in the state sequences are switched to follow Y(j, u).

Now we explain the proposed CPDA algorithm step-by-step through a working example

shown in Figure 6.7(b).

1. After computing Adaptive−HMM for the last 2 time windows (thus here C=2) the combined

output state sequences are: (i) 97 → 96 → 95 → 99 → 111 → 114, (ii) 114 → 114 →

111 → 99 → 111 → 110, and (iii) 97 → 96 → 95 → 99 → 95 → 96. These form the

Interaction Graph GI = (VI , EI , P) containing the nodes and the corresponding edges, as

shown in Figure 6.7(b).

116

2. Nodes 99 and 111 here are the non-feature nodes. Node 99 has 2 incoming nodes (95 and

111) and 2 outgoing nodes (111 and 95). Similarly node 111 has 1 incoming node (99) and

2 outgoing nodes (114 and 110). The for example for the user (say u1) who was moving in

the path 114 → 111 → 99... can cause for node 99: Y(99, u1) = {111, 111} or Y(99, u1) =

{111, 95}.

3. Now after running the Bayesian Network Inference, for example for node 99 and for user u1,

P(Y(99, u1) = {111, 95|111}) > P(Y(99, u1) = {111, 111|111}).

4. Thus the path (...111 → 99 → 95...) suggested by Y(99, u1) = {111, 95|111} contradicts the

part of Adaptive − HMM output path ...111 → 99 → 111.... Therefore the path 114 →

114→ 111→ 99→ 111→ 110 is corrected to 114→ 114→ 111→ 99→ 95→ 96. This

triggers the path 97 → 96 → 95 → 99 → 95 → 96 corrected to 97 → 96 → 95 → 99 →

111→ 110. This is because the path constraint has to be satisfied for each node that number

of incoming user paths is equal to the number of outgoing user paths. In this way the path

disambiguation is performed in CPDA.

Therefore Bayesian inference in CPDA helps eliminate some path ambiguity. This finishes

the description of the proposed system FindingHumo.

6.3 Performance Evaluation

In this section we first explain our experimental setup in a real smart environment, followed

by system performance analysis of multi-user tracking experiments.

6.3.1 System setup

A network of 20 TelosW [52] static wireless sensor nodes (Figure 6.9(a)) are deployed

throughout the 30 meter x 30 meter floor (Figure 6.1) workplace environment (in workplace of

Department of Computer Science, Georgia State University). As earlier shown in the physical

layout in Figure 6.1, the sensor nodes are deployed mainly in the hallways, key positions (e.g.

entry points: nodes 103, 104; exit points: nodes 97, 104; positions with high motion activities in

117

(a)

Time (seconds)

nu
m

be
r o

f
tri

gg
er

ed
 n

od
es

(b)

(c)

Figure 6.9 (a) Testbed deployment of PIR motion sensor nodes in a smart workplace environment.
(b) Number of motion triggered nodes during 3 user experiment. (c) Ground truth motion trajecto-
ries of 3 users during experiment, with the path overlap/crossover shown.

118

workday: nodes 118, 117, 102,114, 100, 101), some rooms (e.g. printer room: node 92, kitchen:

node 99, busy lab: node 93). These nodes are fixed on the ceiling and each of them are equipped

with Panasonic AMN-31111 PIR (passive infrared) motion sensor. The TelosW sensor nodes have

sensor wake-on capability [52] to rationalize MCU (the processing unit) usage. The detected mo-

tion data (sampled at 10 Hz when event triggered by motion) are collected by the base station

through multi-hop communication (formed a 5-hop network) and stored in a back-end database.

The choice for system parameters are as follows. Length of unit timeslot T has been chosen as 1

second, M contains 20 motion sensor nodes, dmax.T is 5 seconds. Based on system testing and eval-

uation, there were no false positive or false negative observed from the motion sensor. However,

the tracking challenges come from factors like time synchronization, loss of transmitted sensor

data, non-uniform node distribution and large number of overlapping users.

6.3.2 Multi-user Tracking Experiment

Experiment setup: In the performance evaluation experiment, three users (say U1, U2 and

U3) are made to repeatedly move through the space in overlapping paths (as shown in Figure 6.2

and Figure 6.9(c)). The ground truth of user position was recorded by the moving user, to compare

later with computed user trajectories. The ground truth has been compared to the following: (i)

offline 1-HMM (first order HMM computed offline on full time data), (ii) offline full state 2-HMM

(second order HMM computed offline on full time data), (iii) online full state 1-HMM (first order

HMM computed online on time window of data), (iv) online full state 2-HMM (second order

HMM computed online on time window of data), and (v) FindingHumo (this uses second order

HMM computed online on time window of data with activated subset of states, and then applying

path disambiguation algorithm). It is important to mention that no current method was found in

the existing literature, that fits this application scenario and requirements (binary sensor data, no

geometric model etc.). FindingHumo is compared here with different possible configurations of

HMM computation, showing the utilities of: online time window based HMM, partial state HMM

and path disambiguation algorithm.

Performance evaluation of multi-user experiment: The 3 user overlapping path experiment

119

-1

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

E
rr

o
r

D
is

ta
n

ce
 (

h
o

p
co

u
n
t

in
 E

A
T

G
)

Time (seconds)

Online 1-HMM
Online 2-HMM

FindingHuMo

(a)

-1

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

E
rr

o
r

D
is

ta
n

ce
 (

h
o

p
co

u
n

t
in

 E
A

T
G

)

Time (seconds)

Online 1-HMM
Online 2-HMM

FindingHuMo

(b)

-1

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

E
rr

o
r

D
is

ta
n

ce
 (

h
o

p
co

u
n

t
in

 E
A

T
G

)

Time (seconds)

Online 1-HMM
Online 2-HMM

FindingHuMo

(c)

Figure 6.10 (a) Tracking error (hopcount in EATG, between ground truth node and detected node)
measured for user1. (b) Tracking error measured for user2. (c) Tracking error measured for user3.

120

was conducted for about 150 seconds. Figure 6.9(b) shows the number of motion triggered nodes

through 60 seconds run of the experiment process. This indicates that a lot of time more or less than

3 (user number) nodes are triggered at once. This is because of real scenarios: the different and

non-uniform walking speeds of users, time synchronization issue (thus unreliable state sequences),

the non-uniformity of node deployments etc. This creates the challenge for tracking algorithms to

decode 3 best states indicating the state of each user. The tracking goal is to locate users with key

logical points, instead of exact co-ordinate. Therefore the tracking error is measured with hopcount

in the EATG graph. Say the ground truth is state m1 and detected state is m2, then the tracking

error is the shortest hopcount between nodes m1 and m2 in EATG. This is valid because adjacent

nodes in EATG indicate direct physical reachability. If the error had to be measured in terms of

distance, then the error distance could be measured as the summation of all hop distances. This

doesn’t change the general applicability of our designed system.

Figures 6.10(a), 6.10(b) and 6.10(c) show the performance of FindingHuMo for tracking

user1, user2 and user3 respectively. There are some key observations made from the compara-

tive performance analysis. (i) Full-state HMM computation time overhead is much higher than

partial-state computation. (ii) Online 1-HMM and online 2-HMM (use same time windows as that

of FindingHumo) performed same (same tracking error) as their corresponding offline version.

Therefore it is validated that here time window based online computation in FindingHumo does

not affect the optimality of computed path. (iii) As shown in Figures 6.10(a), 6.10(b) and 6.10(c),

2-HMM has much lesser tracking errors than 1-HMM. This is the advantage of using second order

HMM for overlapping paths. (iv) Finally, as in Figures 6.10(a), 6.10(b) and 6.10(c), FindingHuMo

showed no error in computed path. The errors that occurred in online 2-HMM (mostly 1 or 2 hop

error distances) were locally corrected by path disambiguation algorithm in FindingHuMo. The

average tracking error (in terms of tracking distance in hopcount) per unit timeslot T is as fol-

lows: (a) 1-HMM: 0.75 for user1, 0.78 for user2, 2.74 for user3; (b) 2-HMM: 0.08 for user1, 0.1

for user2, 0.35 for user3; (c) FindingHuMo: 0.00 for all users. Tracking User3 had more errors

for just HMM based computation, because it had more crossover with other users. But overall

FindingHuMo system corrects this error for all users, by added inference in CPDA.

121

In addition to overlapping path experiment, also test was conducted with non-overlapping

paths of those 3 users. The system performance indicated same trend as for the overlapping sce-

nario. Therefore overall, the experimental results show that FindingHumo performs much better

than other comparative configurations in computing accurate multi-user motion trajectories.

6.4 Summary

This work opens a relatively under-explored area where real-time multi-target tracking is done

without any geometric model and with simple non-invasive sensors. This work presents a novel

design of FindingHuMo (Finding Human Motion), a real-time user tracking system for Smart

Environments. FindingHuMo can perform device-free tracking of multiple users in the Hallway

Environments, just from non-invasive and anonymous (not user specific) binary motion sensor data

stream. It can solve complex challenges in multi-user tracking where user motion trajectories may

crossover with each other in all different ways. The performance improvement is demonstrated

with results from experiments in real testbed in a smart workplace environment.

122

PART 7

CONCLUSIONS

This doctoral thesis in essence, explores human motion activity aware sensor networks proto-

col designs and applications for Smart Environments. Such activity-aware sensor networks system

allows performance improvement of spatial and temporal data collection operations, and to save

critical resources like node energy, network lifetime. The activity-aware application in this thesis

explores non-invasive multi-user tracking with binary motion sensor network in Smart Workplace.

Machine Learning based knowledge mining applied on collective spatial-temporal binary motion

sensor data has led to fairly accurate tracking of multiple users’ movement trajectories.

The first part of this thesis describes designing activity-aware sensor networks for Smart Envi-

ronments in terms of three proposed protocols: ActSee, EAR and Actisen. ActSee [1] is an activity-

aware radio duty cycling protocol, given the sensor network can use any routing protocol of it’s

choice. Then EAR [2] is an activity-aware and energy-balanced routing protocol, given the sensor

network can use any radio duty cycling protocol. Finally the complete ActiSen [3] system is a

complete sensor networking solution with activity-awareness integrated in all of: sensing, radio

duty cycling and routing.

The second part of this thesis describes the works on an activity-aware sensor network appli-

cation: real-time non-invasive tracking of multiple users’ motion trajectories with binary motion

sensor networks in Smart Workplace environment. The designed algorithm is called FindingHuMo

or Finding Human Motion. FindingHuMo [4] can perform device-free tracking of multiple (un-

known and variable number of) users in the Hallway Environments, just from non-invasive and

anonymous (not user specific) binary motion sensor data stream.

123

REFERENCES

[1] S. Tang, D. De, W.-Z. Song, D. Cook, and S. Das, “ActSee: Activity-Aware Radio Duty-

Cycling for Sensor Networks in Smart Environments,” in Eighth IEEE International Confer-

ence on Networked Sensing Systems (IEEE INSS), 2011.

[2] D. De, W.-Z. Song, S. Tang, and D. Cook, “EAR: An Energy and Activity Aware Rout-

ing Protocol for Wireless Sensor Networks in Smart Environments,” The Computer Journal,

vol. 55, no. 12, 2012.

[3] D. De, S. Tang, W.-Z. Song, D. Cook, and S. K. Das, “ActiSen: Activity-aware Sensor

Network in Smart Environments,” Journal of Pervasive and Mobile Computing (PMC), Jan.

2012.

[4] D. De, W.-Z. Song, M. Xu, D. Cook, and X. Huo, “FindingHuMo: Real-Time Tracking of

Motion Trajectories from Anonymous Binary Sensing in Smart Environments,” in The 32nd

International Conference on Distributed Computing Systems (ICDCS’12), Jun. 2012.

[5] “CASAS Smart Home Project,” http://ailab.wsu.edu/casas/.

[6] H. Lee, M. Wicke, B. Kusy, O. Gnawali, and L. Guibas, “Data Stashing: Energy-Efficient

Information Delivery to Mobile Sinks through Trajectory Prediction,” in IPSN, 2010.

[7] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “Did You See Bob?: Human

Localization using Mobile Phones,” in MobiCom, 2010.

[8] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang,

and R. Stoleru, “Context-aware wireless sensor networks for assisted living and residential

monitoring,” Special Issue IEEE Networks, vol. 22, no. 4, pp. 26–33, Jul. 2008.

[9] D. O. Olguı́n, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pentland, “Sensible Organiza-

tions: Technology and Methodology for Automatically Measuring Organizational Behavior,”

IEEE Transaction on Systems, Man, and Cybernetics, vol. 39, Feb. 2009.

124

[10] D. Lymberopoulos, T. Teixeira, and A. Savvides, “The BehaviorScope Framework for En-

abling Ambient Assisted Living,” International Journal on Personal and Ubiquitous Com-

puting, vol. 14, no. 6, 2010.

[11] V. Srinivasan, J. Stankovic, and KaminWhitehouse, “Protecting your Daily In-Home Activity

Information from a Wireless Snooping Attack,” in UbiComp, 2008.

[12] M. Buettner, R. Prasad, M. Philipose, and DavidWetherall, “Recognizing Daily Activities

with RFID-Based Sensors,” in UbiComp, 2009.

[13] “Smart Home-based Health Platform for Behavioral Monitoring and Alteration for Diabetic

and Obese Individuals,” http://www.icta.ufl.edu/projects nih.htm.

[14] “MavHome,” http://ailab.uta.edu/mavhome/.

[15] “Smart Environments,” http://wsnl.stanford.edu/smartenv.html.

[16] “Smart Medical Home,” http://www.futurehealth.rochester.edu/smart home/.

[17] “Spinner,” http://www.media.mit.edu/resenv/spinner/introduction.html.

[18] S. Ahn and D. Kim, “Proactive Context-Aware Sensor Networks,” in EWSN, 2006.

[19] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor

networks,” in 21st Conference of the IEEE Computer and Communications Societies (INFO-

COM), Jun. 2002.

[20] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC Protocol for Wireless

Sensor Networks,” in The 1st ACM Conference on Embedded Networked Sensor Systems

(SenSys), 2003.

[21] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sensor

Networks,” in The 2nd ACM Conference on Embedded Networked Sensor Systems (SenSys),

2004.

125

[22] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble MAC protocol

for duty-cycled wireless sensor networks,” 2006.

[23] E. Gelenbe and E.-H. Ngai, “Adaptive qos routing for significant events in wireless sensor

networks,” in Mobile Ad Hoc and Sensor Systems, 2008. MASS 2008. 5th IEEE International

Conference on, Sept 2008, pp. 410–415.

[24] J. H. Chang and L. Tassiulas, “Energy Conserving Routing in Wireless Ad-hoc Networks,”

in INFOCOM, 2000, pp. 22–31.

[25] ——, “Fast Approximate Algorithms for Maximum Lifetime Routing in Wireless Ad-hoc

Networks,” in Networking, 2000.

[26] Q. Li, J. Aslam, and D. Rus, “Online power-aware routing in wireless Ad-hoc networks,” in

Mobicom, 2001.

[27] Y. Xue, Y. Cui, and K. Nahrstedt, “A Utility-based Distributed Maximum Lifetime Routing

Algorithm forWirelessNetworks,” in QShine, 2005.

[28] E. Gelenbe and R. Lent, “Power-aware ad hoc cognitive packet networks,” Ad Hoc Networks,

vol. 2, no. 3, pp. 205 – 216, 2004, quality of service in ad hoc networks. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1570870504000241

[29] E. Gelenbe and E. C. H. Ngai, “Adaptive random re-routing for differentiated qos

in sensor networks.” in BCS Int. Acad. Conf., E. Gelenbe, S. Abramsky, and

V. Sassone, Eds. British Computer Society, 2008, pp. 343–354. [Online]. Available:

http://dblp.uni-trier.de/db/conf/bcs/bcs2008.html#GelenbeN08

[30] E. Gelenbe and C. Morfopoulou, “Power savings in packet networks via optimised

routing,” Mob. Netw. Appl., vol. 17, no. 1, pp. 152–159, Feb. 2012. [Online]. Available:

http://dx.doi.org/10.1007/s11036-011-0344-0

126

[31] T. Mahmoodi, “Energy-aware routing in the cognitive packet network,” Perform. Eval.,

vol. 68, no. 4, pp. 338–346, Apr. 2011. [Online]. Available: http://dx.doi.org/10.1016/j.peva.

2011.02.002

[32] E. Gelenbe, “Steps toward self-aware networks,” Commun. ACM, vol. 52, no. 7, pp. 66–75,

Jul. 2009. [Online]. Available: http://doi.acm.org/10.1145/1538788.1538809

[33] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci, P. Nixon,

F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of autonomic communications,” ACM

Trans. Auton. Adapt. Syst., vol. 1, no. 2, pp. 223–259, Dec. 2006. [Online]. Available:

http://doi.acm.org/10.1145/1186778.1186782

[34] K. Kar, M. Kodialam, T. V. Lakshman, L. Tassiulas, and R. Tassiulas, “Routing for Network

Capacity Maximization in Energy-constrained Ad-hoc Networks,” in INFOCOM, 2003.

[35] L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically Optimal Energy-Aware Routing for

Multihop Wireless Networks With Renewable Energy Sources,” IEEE/ACM Transactions on

Networking, vol. 15, Oct. 2007.

[36] C. Ok, P. Mitra, S. Lee, and S. Kumara, “Maximum Energy Welfare Routing in Wireless

Sensor Networks,” in NETWORKING 2007, 2007.

[37] R. Menchaca-Mendez and J. J. Garcia-Luna-Aceves, “Robust and Scalable Integrated Rout-

ing inMANETs Using Context-Aware Ordered Meshes,” in INFOCOM, 2010.

[38] L. R. Rabinder, “A tutorial on hidden Markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, Feb. 1989.

[39] J. Shin, L. J. Guibas, and F. Zhao, “A distributed algorithm for managing multi-target identi-

ties in wireless ad-hoc sensor networks,” in Proceedings of the 2nd international conference

on Information processing in sensor networks (IPSN’03), Palo Alto, California, USA, Apr.

2003.

127

[40] Z. Zhong, T. Zhu, D. Wang, and T. He, “Tracking with Unreliable Node Sequences,” in

Proceedings of the 28th Conference on Computer Communications (INFOCOM’09), Reo de

Janeiro, Brazil, Apr. 2009, pp. 1215–1223.

[41] D. Zhang, Y. Liu, and L. Ni, “RASS: A Real-time, Accurate and Scalable System for Track-

ing Transceiver-free Objects,” in Ninth Annual IEEE International Conference on Pervasive

Computing and Communications (PerCom’11), Seattle, USA, 2011.

[42] X. Chen, A. Edelstein, Y. Li, M. Coates, M. Rabbat, and A. Men, “Sequential Monte Carlo for

Simultaneous Passive Device-Free Tracking and Sensor Localization Using Received Signal

Strength Measurements,” in International Conference on Information Processing in Sensor

Networks (IPSN’11), Chicago, USA, 2011.

[43] Z. Wang, E. Bulut, and B. K. Szymanski, “Distributed Target Tracking with Directional Bi-

nary Sensor Networks,” in GLOBECOM, 2009.

[44] J. Singh, R. Kumar, U. Madhow, S. Suri, and R. Cagley, “Tracking Multiple Targets Using

Binary Proximity Sensors,” in Proceedings of the 6th international conference on Information

processing in sensor networks (IPSN’07), Cambridge, Massachusetts, Apr. 2007.

[45] M. Han, W. Xu, H. Tao, and Y. Gong, “An Algorithm for Multiple Object Trajectory Track-

ing,” in Conference on Computer Vision and Pattern Recognition (CVPR’04), Washington

DC, USA, Jun. 2004.

[46] H. Ardö, K. Åström, and R. Berthilsson, “Real Time Viterbi Optimization of Hidden Markov

Models for Multi Target Tracking,” in WMVC, 2007.

[47] P. Nillius, J. Sullivan, and S. Carlsson, “Multi-Target Tracking - Linking Identities using

Bayesian Network Inference,” in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’06), vol. 2, 2006, pp. 2187–2194. [Online]. Available:

http://dx.doi.org/10.1109/cvpr.2006.198

128

[48] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for

Tracking Applications, A. House, Ed., 2004.

[49] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Transactions

of the ASME Journal of Basic Engineering, no. 82 (Series D), pp. 35–45, 1960. [Online].

Available: http://www.cs.unc.edu/\∼{}welch/kalman/media/pdf/Kalman1960.pdf

[50] H. Ardö, K. Åström, and R. Berthilsson, “Online Viterbi Optimisation for Simple Event

Detection in Video,” in ICVSS, 2007.

[51] X. Ma, D. Schonfeld, and A. Khokhar, “Distributed multi-dimensional hidden Markov model:

theory and application in multiple-object trajectory classification and recognition,” in Con-

ference of Multimedia Content Access: Algorithms and Systems II (SPIE’08), San Jose, CA,

USA, Jan. 2008.

[52] G. Lu, D. De, M. Xu, W.-Z. Song, and B. Shirazi, “TelosW: Enabling Ultra-Low Power Wake-

On Sensor Network,” in Seventh International Conference on Networked Sensing Systems

(INSS’10), Kassel, Germany, Jun. 2010.

[53] N. L. Philip Levis, TOSSIM: A Simulator for TinyOS Networks, Jun. 2003.

[54] P. Basu and J. Redi, “Effect of Overhearing Transmissions on Energy Efficiency in Dense

Sensor Networks,” in IPSN, 2004.

[55] A. B. Atkinson, “On the measurement of inequality,” Journal of Economics Theory, 1970.

[56] S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He, “ATPC:

Adaptive Transmission Power Control for Wireless Sensor Networks,” in Proceedings

of the 4th international conference on embedded networked sensor systems (SenSys

’06). New York, NY, USA: ACM Press, 2006, pp. 223–236. [Online]. Available:

http://dx.doi.org/10.1145/1182807.1182830

[57] T. Das and A. Parikh, “Statistical interpretation, decomposition and properties of Atkinson’s

inequality index,” Decisions in Economics and Finance, 1982.

129

[58] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: a wireless sensor network

testbed,” in Fourth International Symposium on Information Processing in Sensor Networks

(IPSN), 2005.

[59] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection Tree Protocol,” in

Proc. of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys), 2009.

[60] Y. Peng, W. Song, R. Huang, M. Xu, and B. Shirazi, “Cascades: A Reliable Dissemination

Protocol for Data Collection Sensor Network,” in IEEE Aerospace Conference, Big Sky, MT,

USA, Mar. 2009.

[61] H. Lin, M. Lu, N. Milosavljevic, and J. Gao, “Composable Information Gradients in Wireless

Sensor Networks,” in IPSN 2008, 2008.

[62] B. Kusy, H. Lee, M. Wicke, N. Milosavljevic, and L. Guibas, “Predictive QoS Routing to

Mobile Sinks in Wireless Sensor Networks,” in IPSN 2009, 2009.

[63] S. M. Thede and M. P. Harper, “A second-order Hidden Markov Model for part-of-speech

tagging,” in Proceedings of the 37th annual meeting of the Association for Computational

Linguistics on Computational Linguistics (ACL’99), Stroudsburg, PA, USA, 1999.

[64] S. Patel, “A lower-complexity Viterbi algorithm,” in International Conference on Acoustics,

Speech, and Signal Processing (ICASSP’95), Detroit, USA, 1995.

	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 5-10-2014

	Activity-Aware Sensor Networks for Smart Environments
	Debraj De
	Recommended Citation

	tmp.1397333051.pdf.nPoUY

