7 research outputs found

    Accuracy study of image classification for reverse vending machine waste segregation using convolutional neural network

    Get PDF
    This study aims to create a sorting system with high accuracy that can classify various beverage containers based on types and separate them accordingly. This reverse vending machine (RVM) provides an image classification method and allows for recycling three types of beverage containers: drink carton boxes, polyethylene terephthalate (PET) bottles, and aluminium cans. The image classification method used in this project is transfer learning with convolutional neural networks (CNN). AlexNet, GoogLeNet, DenseNet201, InceptionResNetV2, InceptionV3, MobileNetV2, XceptionNet, ShuffleNet, ResNet 18, ResNet 50, and ResNet 101 are the neural networks that used in this project. This project will compare the F1-score and computational time among the eleven networks. The F1-score and computational time of image classification differs for each neural network. In this project, the AlexNet network gave the best F1-score, 97.50% with the shortest computational time, 2229.235 s among the eleven neural networks

    A localised learning approach applied to human activity recognition

    No full text

    Cross-Domain HAR: Few Shot Transfer Learning for Human Activity Recognition

    Full text link
    The ubiquitous availability of smartphones and smartwatches with integrated inertial measurement units (IMUs) enables straightforward capturing of human activities. For specific applications of sensor based human activity recognition (HAR), however, logistical challenges and burgeoning costs render especially the ground truth annotation of such data a difficult endeavor, resulting in limited scale and diversity of datasets. Transfer learning, i.e., leveraging publicly available labeled datasets to first learn useful representations that can then be fine-tuned using limited amounts of labeled data from a target domain, can alleviate some of the performance issues of contemporary HAR systems. Yet they can fail when the differences between source and target conditions are too large and/ or only few samples from a target application domain are available, each of which are typical challenges in real-world human activity recognition scenarios. In this paper, we present an approach for economic use of publicly available labeled HAR datasets for effective transfer learning. We introduce a novel transfer learning framework, Cross-Domain HAR, which follows the teacher-student self-training paradigm to more effectively recognize activities with very limited label information. It bridges conceptual gaps between source and target domains, including sensor locations and type of activities. Through our extensive experimental evaluation on a range of benchmark datasets, we demonstrate the effectiveness of our approach for practically relevant few shot activity recognition scenarios. We also present a detailed analysis into how the individual components of our framework affect downstream performance

    Human Activity Recognition using Inertial, Physiological and Environmental Sensors: a Comprehensive Survey

    Get PDF
    In the last decade, Human Activity Recognition (HAR) has become a vibrant research area, especially due to the spread of electronic devices such as smartphones, smartwatches and video cameras present in our daily lives. In addition, the advance of deep learning and other machine learning algorithms has allowed researchers to use HAR in various domains including sports, health and well-being applications. For example, HAR is considered as one of the most promising assistive technology tools to support elderly's daily life by monitoring their cognitive and physical function through daily activities. This survey focuses on critical role of machine learning in developing HAR applications based on inertial sensors in conjunction with physiological and environmental sensors.Comment: Accepted for Publication in IEEE Access DOI: 10.1109/ACCESS.2020.303771

    Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition

    No full text
    Human activity recognition (HAR) based on sensor data is a significant problem in pervasive computing. In recent years, deep learning has become the dominating approach in this field, due to its high accuracy. However, it is difficult to make accurate identification for the activities of one individual using a model trained on data from other users. The decline on the accuracy of recognition restricts activity recognition in practice. At present, there is little research on the transferring of deep learning model in this field. This is the first time as we known, an empirical study was carried out on deep transfer learning between users with unlabeled data of target. We compared several widely-used algorithms and found that Maximum Mean Discrepancy (MMD) method is most suitable for HAR. We studied the distribution of features generated from sensor data. We improved the existing method from the aspect of features distribution with center loss and get better results. The observations and insights in this study have deepened the understanding of transfer learning in the activity recognition field and provided guidance for further research

    Learning alternative ways of performing a task

    Full text link
    [EN] A common way of learning to perform a task is to observe how it is carried out by experts. However, it is well known that for most tasks there is no unique way to perform them. This is especially noticeable the more complex the task is because factors such as the skill or the know-how of the expert may well affect the way she solves the task. In addition, learning from experts also suffers of having a small set of training examples generally coming from several experts (since experts are usually a limited and ex- pensive resource), being all of them positive examples (i.e. examples that represent successful executions of the task). Traditional machine learning techniques are not useful in such scenarios, as they require extensive training data. Starting from very few executions of the task presented as activity sequences, we introduce a novel inductive approach for learning multiple models, with each one representing an alter- native strategy of performing a task. By an iterative process based on generalisation and specialisation, we learn the underlying patterns that capture the different styles of performing a task exhibited by the examples. We illustrate our approach on two common activity recognition tasks: a surgical skills training task and a cooking domain. We evaluate the inferred models with respect to two metrics that measure how well the models represent the examples and capture the different forms of executing a task showed by the examples. We compare our results with the traditional process mining approach and show that a small set of meaningful examples is enough to obtain patterns that capture the different strategies that are followed to solve the tasks.This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN2014-61716-EXP (SUPERVASION) and RTI2018-094403-B-C32, and by Generalitat Valenciana under grant PROMETEO/2019/098. David Nieves is also supported by the Spanish MINECO under FPI grant (BES-2016-078863).Nieves, D.; Ramírez Quintana, MJ.; Montserrat Aranda, C.; Ferri Ramírez, C.; Hernández-Orallo, J. (2020). Learning alternative ways of performing a task. Expert Systems with Applications. 148:1-18. https://doi.org/10.1016/j.eswa.2020.113263S118148van der Aalst, W. M., Bolt, A., & van Zelst, S. J. (2017). Rapidprom: Mine your processes and not just your data. arXiv:1703.03740.Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003Adé, H., de Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20(1-2), 119-154. doi:10.1007/bf00993477Ahmidi, N., Tao, L., Sefati, S., Gao, Y., Lea, C., Haro, B. B., … Hager, G. D. (2017). A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery. IEEE Transactions on Biomedical Engineering, 64(9), 2025-2041. doi:10.1109/tbme.2016.2647680Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113(3), 329-349. doi:10.1016/j.cognition.2009.07.005Blum, T., Padoy, N., Feußner, H., & Navab, N. (2008). Workflow mining for visualization and analysis of surgeries. International Journal of Computer Assisted Radiology and Surgery, 3(5), 379-386. doi:10.1007/s11548-008-0239-0Camacho, R., Carreira, P., Lynce, I., & Resendes, S. (2014). An ontology-based approach to conflict resolution in Home and Building Automation Systems. Expert Systems with Applications, 41(14), 6161-6173. doi:10.1016/j.eswa.2014.04.017Caruana, R. (1997). Machine Learning, 28(1), 41-75. doi:10.1023/a:1007379606734Liming Chen, Hoey, J., Nugent, C. D., Cook, D. J., & Zhiwen Yu. (2012). Sensor-Based Activity Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 790-808. doi:10.1109/tsmcc.2012.2198883Chen, L., Nugent, C. D., & Wang, H. (2012). A Knowledge-Driven Approach to Activity Recognition in Smart Homes. IEEE Transactions on Knowledge and Data Engineering, 24(6), 961-974. doi:10.1109/tkde.2011.51Chen, Y., Wang, J., Huang, M., & Yu, H. (2019). Cross-position activity recognition with stratified transfer learning. Pervasive and Mobile Computing, 57, 1-13. doi:10.1016/j.pmcj.2019.04.004Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: a survey. Knowledge and Information Systems, 36(3), 537-556. doi:10.1007/s10115-013-0665-3Dai, P., Di, H., Dong, L., Tao, L., & Xu, G. (2008). Group Interaction Analysis in Dynamic Context. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 275-282. doi:10.1109/tsmcb.2007.909939Ding, R., Li, X., Nie, L., Li, J., Si, X., Chu, D., … Zhan, D. (2018). Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition. Sensors, 19(1), 57. doi:10.3390/s19010057Duong, T., Phung, D., Bui, H., & Venkatesh, S. (2009). Efficient duration and hierarchical modeling for human activity recognition. Artificial Intelligence, 173(7-8), 830-856. doi:10.1016/j.artint.2008.12.005Fürnkranz, J. (1999). Artificial Intelligence Review, 13(1), 3-54. doi:10.1023/a:1006524209794Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining. ACM Computing Surveys, 38(3), 9. doi:10.1145/1132960.1132963Hoey, J., Poupart, P., Bertoldi, A. von, Craig, T., Boutilier, C., & Mihailidis, A. (2010). Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process. Computer Vision and Image Understanding, 114(5), 503-519. doi:10.1016/j.cviu.2009.06.008Hong, J., Suh, E., & Kim, S.-J. (2009). Context-aware systems: A literature review and classification. Expert Systems with Applications, 36(4), 8509-8522. doi:10.1016/j.eswa.2008.10.071Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation Learning. ACM Computing Surveys, 50(2), 1-35. doi:10.1145/3054912Kalra, L., Zhao, X., Soto, A. J., & Milios, E. (2013). Detection of daily living activities using a two-stage Markov model. Journal of Ambient Intelligence and Smart Environments, 5(3), 273-285. doi:10.3233/ais-130208Kardas, K., & Cicekli, N. K. (2017). SVAS: Surveillance Video Analysis System. Expert Systems with Applications, 89, 343-361. doi:10.1016/j.eswa.2017.07.051Krüger, F., Nyolt, M., Yordanova, K., Hein, A., & Kirste, T. (2014). Computational State Space Models for Activity and Intention Recognition. A Feasibility Study. PLoS ONE, 9(11), e109381. doi:10.1371/journal.pone.0109381Neumann, A., Elbrechter, C., Pfeiffer-Leßmann, N., Kõiva, R., Carlmeyer, B., Rüther, S., … Ritter, H. J. (2017). «KogniChef»: A Cognitive Cooking Assistant. KI - Künstliche Intelligenz, 31(3), 273-281. doi:10.1007/s13218-017-0488-6Papadimitriou, P., Dasdan, A., & Garcia-Molina, H. (2010). Web graph similarity for anomaly detection. Journal of Internet Services and Applications, 1(1), 19-30. doi:10.1007/s13174-010-0003-xPeng, L., Chen, L., Ye, Z., & Zhang, Y. (2018). AROMA. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(2), 1-16. doi:10.1145/3214277Rosen, J., Solazzo, M., Hannaford, B., & Sinanan, M. (2002). Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents’ Learning Curve Using Hidden Markov Model. Computer Aided Surgery, 7(1), 49-61. doi:10.3109/10929080209146016Sadilek, A., & Kautz, H. (2012). Location-Based Reasoning about Complex Multi-Agent Behavior. Journal of Artificial Intelligence Research, 43, 87-133. doi:10.1613/jair.3421Sanchez, D., Tentori, M., & Favela, J. (2008). Activity Recognition for the Smart Hospital. IEEE Intelligent Systems, 23(2), 50-57. doi:10.1109/mis.2008.18Škrjanc, I., Andonovski, G., Ledezma, A., Sipele, O., Iglesias, J. A., & Sanchis, A. (2018). Evolving cloud-based system for the recognition of drivers’ actions. Expert Systems with Applications, 99, 231-238. doi:10.1016/j.eswa.2017.11.008Sun, X., Kashima, H., & Ueda, N. (2013). Large-Scale Personalized Human Activity Recognition Using Online Multitask Learning. IEEE Transactions on Knowledge and Data Engineering, 25(11), 2551-2563. doi:10.1109/tkde.2012.246Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., et al. (2016). The sphere challenge. arXiv:1603.00797.Voulodimos, A., Kosmopoulos, D., Vasileiou, G., Sardis, E., Anagnostopoulos, V., Lalos, C., … Varvarigou, T. (2012). A Threefold Dataset for Activity and Workflow Recognition in Complex Industrial Environments. IEEE Multimedia, 19(3), 42-52. doi:10.1109/mmul.2012.31Wallace, C. S. (1999). Minimum Message Length and Kolmogorov Complexity. The Computer Journal, 42(4), 270-283. doi:10.1093/comjnl/42.4.27
    corecore