174,613 research outputs found

    Fundamental Laws and Assumptions of Software Maintenance

    Get PDF
    Researchers must pay far more attention to discovering and validating the principles that underlie software maintenance and evolution. This was one of the major conclusions reached during the International Workshop on Empirical Studies of Software Maintenance. This workship, held in November 1996 in Monterey, California, brought together an international group of researchers to discuss the successes, challenges and open issues in software maintenance and evolution. This article documents the discussion of the subgroup on fundamental laws and assumption of software maintenance. The participants of this group in included researchers in software engineering, the behavioral sciences, information systems and statistics. Their main conclusion was that insufficient effort has been paid to synthesizing research conjectures into validated theories and this problem has slowed progress in software maintenance. To help remedy this situation they made the following recommendations: (1) when we use empirical methods, an explicit goal should be to develop theories, (2) we should look to other disciplines for help where it is appropriate, and (3) our studies should use a wider range of empirical methods (Also cross-referenced as UMIACS-TR-97-21

    Detection and analysis of near-miss clone genealogies

    Get PDF
    It is believed that identical or similar code fragments in source code, also known as code clones, have an impact on software maintenance. A clone genealogy shows how a group of clone fragments evolve with the evolution of the associated software system, and thus may provide important insights on the maintenance implications of those clone fragments. Considering the importance of studying the evolution of code clones, many studies have been conducted on this topic. However, after a decade of active research, there has been a marked lack of progress in understanding the evolution of near-miss software clones, especially where statements have been added, deleted, or modified in the copied fragments. Given that there are a significant amount of near-miss clones in the software systems, we believe that without studying the evolution of near-miss clones, one cannot have a complete picture of the clone evolution. In this thesis, we have advanced the state-of-the-art in the evolution of clone research in the context of both exact and near-miss software clones. First, we performed a large-scale empirical study to extend the existing knowledge about the evolution of exact and renamed clones where identifiers have been modified in the copied fragments. Second, we have developed a framework, gCad that can automatically extract both exact and near-miss clone genealogies across multiple versions of a program and identify their change patterns reasonably fast while maintaining high precision and recall. Third, in order to gain a broader perspective of clone evolution, we extended gCad to calculate various evolutionary metrics, and performed an in-depth empirical study on the evolution of both exact and near-miss clones in six open source software systems of two different programming languages with respect to five research questions. We discovered several interesting evolutionary phenomena of near-miss clones which either contradict with previous findings or are new. Finally, we further improved gCad, and investigated a wide range of attributes and metrics derived from both the clones themselves and their evolution histories to identify certain attributes, which developers often use to remove clones in the real world. We believe that our new insights in the evolution of near-miss clones, and about how developers approach and remove duplication, will play an important role in understanding the maintenance implications of clones and will help design better clone management systems

    Automatically Documenting Software Artifacts

    Get PDF
    Software artifacts, such as database schema and unit test cases, constantly change during evolution and maintenance of software systems. Co-evolution of code and DB schemas in Database-Centric Applications (DCAs) often leads to two types of challenging scenarios for developers, where (i) changes to the DB schema need to be incorporated in the source code, and (ii) maintenance of a DCAs code requires understanding of how the features are implemented by relying on DB operations and corresponding schema constraints. On the other hand, the number of unit test cases often grows as new functionality is introduced into the system, and maintaining these unit tests is important to reduce the introduction of regression bugs due to outdated unit tests. Therefore, one critical artifact that developers need to be able to maintain during evolution and maintenance of software systems is up-to-date and complete documentation. In order to understand developer practices regarding documenting and maintaining these software artifacts, we designed two empirical studies both composed of (i) an online survey of contributors of open source projects and (ii) a mining-based analysis of method comments in these projects. We observed that documenting methods with database accesses and unit test cases is not a common practice. Further, motivated by the findings of the studies, we proposed three novel approaches: (i) DBScribe is an approach for automatically documenting database usages and schema constraints, (ii) UnitTestScribe is an approach for automatically documenting test cases, and (iii) TeStereo tags stereotypes for unit tests and generates html reports to improve the comprehension and browsing of unit tests in a large test suite. We evaluated our tools in the case studies with industrial developers and graduate students. In general, developers indicated that descriptions generated by the tools are complete, concise, and easy to read. The reports are useful for source code comprehension tasks as well as other tasks, such as code smell detection and source code navigation

    Supporting Evolution and Maintenance of android Apps

    Get PDF
    Mobile developers and testers face a number of emerging challenges. These include rapid platform evolution and API instability; issues in bug reporting and reproduction involving complex multitouch gestures; platform fragmentation; the impact of reviews and ratings on the success of their apps; management of crowd-sourced requirements; continuous pressure from the market for frequent releases; lack of effective and usable testing tools; and limited computational resources for handheld devices. Traditional and contemporary methods in software evolution and maintenance were not designed for these types of challenges; therefore, a set of studies and a new toolbox of techniques for mobile development are required to analyze current challenges and propose new solutions. This dissertation presents a set of empirical studies, as well as solutions for some of the key challenges when evolving and maintaining android apps. In particular, we analyzed key challenges experienced by practitioners and open issues in the mobile development community such as (i) android API instability, (ii) performance optimizations, (iii) automatic GUI testing, and (iv) energy consumption. When carrying out the studies, we relied on qualitative and quantitative analyses to understand the phenomena on a large scale by considering evidence extracted from software repositories and the opinions of open-source mobile developers. From the empirical studies, we identified that dynamic analysis is a relevant method for several evolution and maintenance tasks, in particular, because of the need of practitioners to execute/validate the apps on a diverse set of platforms (i.e., device and OS) and under pressure for continuous delivery. Therefore, we designed and implemented an extensible infrastructure that enables large-scale automatic execution of android apps to support different evolution and maintenance tasks (e.g., testing and energy optimization). In addition to the infrastructure we present a taxonomy of issues, single solutions to the issues, and guidelines to enable large execution of android apps. Finally, we devised novel approaches aimed at supporting testing and energy optimization of mobile apps (two key challenges in evolution and maintenance of android apps). First, we propose a novel hybrid approach for automatic GUI-based testing of apps that is able to generate (un)natural test sequences by mining real applications usages and learning statistical models that represent the GUI interactions. In addition, we propose a multi-objective approach for optimizing the energy consumption of GUIs in android apps that is able to generate visually appealing color compositions, while reducing the energy consumption and keeping a design concept close to the original

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures
    • 

    corecore