Fundamental L aws and Assumptions of Software Maintenance

Adam A. Porter
Department of Computer Science
University of Maryland
College Park, MD, 20742
aporter @cs.umd.edu

Abstract. Researchers must pay far more attention to discovering and validating the principles that underlie software
maintenance and evolution. This was one of the major conclusions reached during the International Workshop on
Empirical Studies of Software Maintenance. This workshop, held in November 1996 in Monterey, California, brought
together an international group of researchers to discuss the successes, challenges and open issues in software
maintenance and evol ution.

This article documents the discussion of the subgroup on fundamental laws and assumptions of software maintenance.
The participants of this group included researchers in software engineering, the behavioral sciences, information
systems and statistics. Their main conclusion was that insufficient effort has been paid to synthesizing research
conjectures into validated theories and that this problem has slowed progress in software maintenance. To help
remedy this situation they made the following recommendations: (1) when we use empirical methods, an explicit goal
should be to develop theories, (2) we should look to other disciplines for help where it is appropriate, and (3) our
studies should use a wider range of empirical methods.

1. Introduction

All software systems evolve [1]. Asthey evolve they undergo numerous, successve changes -- to fix errors,
improve performance or other attributes, and to adapt to new environments. The longer a system stays in
service, the larger maintenance @sts are, and, therefore, it’s not surprising that maintenance @sts often
dominate initial development costs [2]. Clealy, improved tods, techniques, and processes can save agred
deal of time and money throughout the software industry.

To realize these savings, researchers are studying maintenance from many perspectives.

M aking individual modifications. To make changes developers have to understand the existing system,
evaluate the dfed of proposed changes, and then implement and validate it. To address these isaues,
reseachers gudy topics such as design recovery, program comprehension, impad analysis and regresson
testing.

Coping with evolution. Becaise systems undergo many changes, not just one, other reseachers focus on
the nature of change and how to limit its impad. Reseach in this areaincludes gructured programming,
object-oriented programming languages, software architectures and configuration management.

Managing the maintenance process. Maintenance is costly and somewhat unpredictable. Thus,
management toals for controlling maintenance ae in gred demand. Many reseachers have developed
metrics and models to predict when components are likely to need changing and how much that will cost.

These ae only a few examples of maintenance reseach. There ae many others. Clealy, software
maintenanceis a significant problem that continues to foster considerable adivity. However, as with other
software engineaing areas, there is a concern that our reseach efforts ladk hard evidence and criticd
evaluation, and that without these, we can't develop a deeg understanding of what tools and processes work,
when they work, or why. Consequently, many people believe that rigorous empiricd methods must be one
of the cornerstones of research in our field.

This belief brought a large group of reseachers to the International Workshop an Empiricd Studies of
Software Maintenance The workshop was help on November 8, 1996in Monterey, California and involved
reseachers from software engineaing, the behavioral sciences, information systems and management, and
statistics. The goa of this meding was to dscussthe strengths, weaknesses, and open isaues in empiricd
methods and determine how they could be profitably applied to improve software maintenance reseach.

The workshop attendees were divided into four groups.

1. Study and assessment of (new) technologies,

2. Methodologies for performing empirical studies,

3. Studies of the maintenance process: fundamental laws and assumptions, and
4. Maintenance process improvement in practice.

This article summarizes the findings of subgroup #3 Studies of the maintenance process. fundamental laws
and assumptions. This sibgroup is distingushed from others because their studies are not spedfic to
particular tools or methods. Insteal it tries to identify general principles. The group’s participants have
expertise in empiricad methods, but approach their studiesin different ways. Their badkgrounds are diverse:
software engineering, behavioral science, business, statistics, and others.

2. Summary of Discussion

Subgroup #3 had two working sesgons. During the first sesson, ead participant presented their reseach
and took questions from the other participants. Before the workshop ead participant receved the foll owing
list of questions about their work.

What were the study's goal and questions?

What empirical methods did you use (e.g., controlled experiment, case study, survey)?
Describe your study's design.

What threats to validity did you consider (construct, internal, external)?

What did you do well and what will you change in the future?

How much did it cost to perform the study?

What new questions do your results raise?

© N o g s~ w Db

Can other researchers replicate your study?

2.1 Synopsisof Presentations.

This sdion summarizes ead presentation. Of course, the few paragraphs given to ead presentation cannot
cgpture the caeful thought that goes into designing and conducting empiricd research. Plesse see the
complete procealings. Any mistakes or misrepresentations are unintentional, and are the sole responsibility
of the session chair, not the workshop participants.

* Maintenance of Reuse-Based Domain-Specific Software Product Lineg[3]. Presented by William
Thomas:

Reuse saves money and time. Therefore, greder levels of reuse promise eren greder savings.
Althoughthis semsto be @rred, the aithors urge usto look more dosely. A common way to get high
reuse levels is to split systems into two parts: one spedfic to the domain and the other to the
applicaion. The domain-spedfic part provides the infrastructure: interconnedion suppat, common
functions, and system architecture. Everything else is the application-specific part.

The auithors drongy agree that this approach reduces coding effort, but warn us that it may also
redefine maintenance Traditionally, applicaions are developed and maintained separately. However,
when applicaions sare ade, they may need to be maintained as a unit. Of course, developers can till
choose to maintain all applicaions individually, but may lose the benefit of domain-spedfic asts.
They might also choose to maintain all related applications as a unit, but that may constrain individual
applications.

Since the best way to manage this stuation is unclea, the aithors will conduct empiricd studies using
historicd data. They will explore such isaues as measuring the @st of evolving applicaions and
domains, coupling between applicaions and damain, patterns of change, and the dfed of domain
maturity on maintenance strategies.

This work reminds us that new technology can challenge, even invalidate, our basic assumptions.
» Using a Didactic Model to Measure Software Comprehension[4] . Presented by Elisabeth Dusink

One of the first steps in changing a system is understanding it. Documentation is suppcsed to help
understanding because it colleds g/stem knowledge and presents it in a structured way. The authors of
this article daim that developers lean about a system by realing its documentation. Furthermore, they
susped that qualiti es of the leaning process affed the quality of maintenance Based on a model of
leaning by Bloom[5], they argued that leaning progresses from gaining krowledge, to understanding
it, applying it, analyzing it, and, finally, to synthesizing new knowledge from it.

The aiuthors discussed a cntrolled experiment to link these levels of learning to maintenance success
The experimental subjeds, second-yea CS students, will be placed into three and four-person groups.
Each group will be given a 7,000 line amail system written in C, and asked to modify it. They exped
the change to take @out 80 hours per person to complete. For eat modification the experimenters will
determine whether the group made the @rred changes. Each person's understanding level will be
measured via a questionnaire.

One poatential outcome of this reseach is alow-cost index for maintenance success That is, we may be
able to test new technology by measuringits effed on urderstanding levels rather than by measuring its
effect on maintenance tasks themselves.

Change-Prone Modules, Limited Resources and Maintenance[6] . Presented by Warren Harrison

Maintainers often work under tight deadlines with meager resources. So sometimes they take short cuts
even though they'd prefer to design and implement ead change caefully. This kind of change is “ad
hoc”. It can be made rapidly, but often degrades dructure. In contrast “planned, structure preserving’
changes may preserve structure, but are more expensive. Harrison argues that ad hoc changes aren't as
damaging as has been claimed. He discussed data that showed that, in pradice changes tend to be
confined to a small part of the system. His conclusion is that modules that rarely change canot degrade
and, thus, can tolerate ad hoc changes.

The author aso outlined amodel to help dedde when to make al hoc changes and when to restructure.
In the model, the cost of a maintenance request is a function of the request’s complexity, the module’s
state, and the kind of change made. Althoughthe aithors are still developing the model, it captures two
important notions. (1) ad hoc patches degrade structure more than planned, structure preserving
changes do, and (2) the effect of ad hoc changes will be compounded in modules that change often.

One interesting feaure of this reseach is that it uses mathematicd techniques to model longterm
evolution. Since, by definition, evolution takes time, researchers must find ways to reason about it.
Tools like these are a first step in that direction.

An Empirical Exploration of Code Decay[7]. Presented by Adam Porter

Software systems must tolerate numerous, successve canges. As this happens, systems deteriorate and
changes become increasingly difficult. Eventually, new functionality cannot be alded and the system
must be redesigned. Since solutions to this problem would be valuable, these reseachers are
conducting a long-term, multidisciplinary projed to examine the fundamental causes, symptoms, and
remedies for code decay.

The projed tean contains reseachers in Statistics, Experimentation, Organizational Theory,
Programming Languages, Software Engineaing, and Visudization. Their primary data source is the
AT&T 5ESS™ switching system and its development data. This includes the switch's source @de and
change @ntrol history (=700000 changes) covering the last 15 yeas, its planned and adual
development milestones, effort and testing data, organizaional history, development pdlicies, and
coding standards.

To help the projed adchieve its goals quickly, they have mnstructed a set of model code atifads that
they cdl the “code dece testbed”. To do this they developed several small systems, attempted to
induce code decay in them, and used the resulting systems to evaluate ideas about code decay.

This reseach is a good example of how laboratory and field studies can work together to strengthen
results.

On Increasing Our Knowledge of Large-Scale Software Comprehension[8]. Presented by Anneliese
von Mayrhauser

Far too dten researchers crede solutions (todls) without understanding the problem. Thus, there's a
tendency to focus on a tod’s novelty or performance rather than on its efficag/. The aithors believe
that program comprehension is a fundamental maintenance problem. Consequently, they have begunto
study how software developers understand programs and how maintenance tools can make it easier.

They presented a cae study in which they analyzed how 11 professonal programmers performed
maintenance Then they tried to correlate what they saw with known theories of program

comprehension. These theories suggest that several fadors may affed maintenance task type, prior
exposure to the system, domain expertise, and language expertise.

The authors felt that limited sample size was one of the biggest problems that they and ather
experimenters face Therefore, they argue that we will have to combine data from multiple studies.
Further, this will require better methods for comparing studies, sharing data and terms, and analyzing
aggregate data.

One implication of thisisthat experimental results must generali ze beyond the environment from which
they were taken. This may be one of the most important open issues in empirical software engineering.

The Software Maintenance Process in Portugal[9] . Presented by Helena Mendes-Moreira

Maintenance ®sts are the dues of success In this work the aithors surveyed 37 software devel opment
organizaions in Portugal to charaderize their maintenance processs. They seleded companies with
more than 500 cevelopers and revenuesin excessof 13 milli on doll ars. After they examined the survey
responses they conducted interviews with several of the respondents.

They found that most of the maintenance performed in these organizations involved quick fixes, rather
than planned enhancements. Also, in many cases, suppat adivities such as updating documentation
were not done. More importantly, they found that the ratio of maintenance dfort to new development
effort was growing rapidly. This might be expeded in companies that enter the software market,
develop new products, and now, for the first time, must maintain them. Several participants noted
similar patterns in US industry.

This work raises the posshility of comparing historicd data from established organizations with
current data from emerging ones. Would they find common patterns of organizational growth despite
the changes in technology?

Predicting Aspects of Maintainability from Software Characteristics10]. Presented by Jarrett
Rosenberg

We have to change the way we study change. The aithor presented several studies that tried to predict
the likelihood and cost of certain maintenance tasks. His results cast doubt on the soundnessof current
metric-based modeling approaches. First he found little correlation between static complexity metrics
and repair adivity. Second, he found considerable and unexplained variation in the metric values,
suggesting that other, unknown, factors are driving maintenance.

The aithor stressed two flaws in current metrics research. Metrics tend to be purely syntadic, which
excludes vital semantic information. They also tend to be static, ignoring information about a system's
development and evolution (e.g., testing Hstory). The solution, however, isnot to define new measures.
Instead, he argued, we will need to focus on creating deep theories of maintenance-related factors.

This presentation stressed two important reseach goals: to continue raising our scientific standards,
and to borrow wisely from the ideas and approaches of other research areas.

Operational System Complexity[11]. Presented by Scott Schneberger

Maintenance battlenecks can shift as technology changes. The industry is moving more and more from
centralized to dstributed architedures. Will this sift change our assumptions about maintenance?
Schneberger suggests that it might. Since he daims, there is little data on the maintenance of
distributed applications, he performed an exploratory study.

In this work he modeled a system's complexity in terms of its components, their internal complexity,
and their interadions. To test this idea he nducted a survey. His initia results were that as
distribution increased (i.e., components gread over more procesrs), system complexity increased,
while component complexity deaeased. One of his conclusions is that distribution shifts complexity
out of individual components and into their interconnections.

The author aso pdnts out that, in some domains, there is a trend bad toward centralization. These
results suggest that the benefits of solving certain maintenance problems can change over time.

The Impact of Documentation Availability on Software Maintenance Productivity[12] . Presented by
Eirik Tryggeseth

One way to evaluate technology is to ask what would happen if it didn't exist. The author takes this
approach to see how documentation affeds maintenance success He dso asks whether this effed is
different for more- or lessskilled programmers. To dothis he performed a controlled experiment with
34 undergraduate students in computer science & subjeds. Before the experiment he dso measured the
students' skill in reading and writing C++ programs.

During the experiment the participants were aked to modify a 2700line C++ program. Half of them,
group B, were given documentation, the rest, group A, were not. The experimenters measured the
amournt of time that the participants gent understanding and modifying the system, and they measured
the quality of the modification. They found people who had dacumentation, group B, spent lesstime
understanding the system and made higher quality changes. They also found that the performance
measures for group B were aorrelated with the skill measures, while those of group A were not. One
explanation might be that Group B understood the system quickly, so programming skill became the
limiting factor for task performance Group A, however, found it hard to understand the system, and,
therefore, were unable to profit from their programming skill.

One implication of this result might be that system-level knowledge has a greaer (or, at least, more
immediate) effect on maintenance quality than individual programming skill does.

e Assessing Maintenance Processes Through Controlled Experiment[13]. Presented by Guiseppe
Visaggio

Sometimes the simplest approadh is the most cost-effedive. In this work the author explores the @st-
benefit tradeoffs between quick-fixes and a more thorough change process cdled iterative
enhancement. The goal of this work is gmilar to Harrison's (described ealier), but uses a @ntrolled
experiment rather than mathematical modeling.

The participants in this experiment were asked to modify two dfferent systems, once using the quick-
fix approach, once using an iterative enhancement approach. The aithor measured the @rredness
completeness effort, and traceility of ead change. They found that quick fixes were lessreliable and
degraded structure more than iterative enhancements did. One other interesting result was that quick-
fixes were done faster only when modification affected fewer than ten modules.

One fascinating observation is that these results appea to agreewith those discussed by Harrison even
though the researchers used very different research methods.

2.2 Organizingthe Current Literature

In the second sesdon the group analyzed their presentations and other existing research to seewhat, if any,
fundamental laws of software maintenance ae known. Becaise maintenance has © many facds, we first
developed a very roughtaxonomy of the fadors that might affed maintenance Then for eat caegory we
tried to synthesize mmmon results, hoping to identify potential laws. We thought this might also indicate
open areas that should be, but are not being, addressed. The cdegories represent fadors related to product,
people, process, and task.

1. Product. These fadors relate to how attributes of system artifads affea maintenance We divided
product fadors into two subcategories: complexity and structure. We assumed that complexity affeds
our ability to understand the product. Reseach in this areaincludes ftware complexity metrics and
structured programming. Structure refers to how system components are organized. We assaumed that
structure dfeds how changes impad a system. Reseach in this areaincludes qudies of ripple-effed,
development of design patterns, and studies of software architecture and domain-specific languages.

2. People. These fadors relate to how the dtributes of individuals and groups affed maintenance We
discused three levels of this fador: Individual, Team, and Organizaions. We asumed that
individuals' abiliti es, group dynamics, and organizational constraints affed maintenance. Research in
these areas include program comprehension, groupware, and cycle-time reduction studies.

3. Process. These fadors relate to how the adivities that individuals and teams carry out routinely affed
maintenance. We asumed that process fadors affed an organization’s ability to predictably achieve
their development goals. Research in this areaincludes documentation approaches, and configuration
management tools.

4. Task. These fadors relate to the viewpoint from which maintenanceis sudied. Some reseach focuses
on individual changes while other focuses on longer-term evolution processes.

Within ead of these cdegories, we tried to extrad common findings. One topic for which we had some
success was modularization. Several people stated that Parnas ealy work on information hiding [14]
ill ustrated some benefits of modularizaion, and that the dfed of this and ather reseach can be seen in
today’s object-oriented programming languages. See Kelfdéielor a survey of results in this area.

Unfortunately, we were unable to find too many more. Certainly some exist. But they didn't spring to mind
quickly. Althoughthe group members knew of many studies, we couldn’t distill their messages. Sometimes
group members disagread about the interpretation of single paper. Sometimes one paper’s findings were in
conflict with another paper’s. Which one, if either, was corred? In many other cases we didn’'t think the
work proposed any general findings.

Our interpretation is that as a field, we've aked many questions and taken many measurements, but what
we've leaned is unclea. Thus, our first conclusion is that we need to review the many studies published in
the literature to synthesize potential theories.

2.3 The Next Steps

Given more time, we probably could have found more common results, but the difficulties we had were
gtartling. One problem is that there hasn't been enough emphasis on synthesizing individual results into
theories. But another, more fundamental, problem is that many studies aren’'t designed to produce general
results.

Consider the following kinds of empirical research.

Feasibility studies. These studies are meant to validate new technology. Typicdly, the experimenter
exercises his or her toal or method to show that it performs better than some other method a todl. These
studies compare performances, but they rarely focus on the properties that make one tod better than
another.

Statistical M odeling. Many reseachers have modeled the relationships between various ftware metrics
and maintenance dtributes, such as change dfort, severity, and locdity. Since these models fit data without
understanding it (correlation vs. causdlity), there's a very littl e reason to believe that they will apply to other
data sets.

Observational studies. We dso see many studies that document the behavior of a single projed or
organizaion. These studies may be useful as benchmarks of typicd behavior, but they aren’t intended to
test any hypotheses. In fact, their authors rarely draw any actual conclusions..

Eadh of these types of studies frves a purpose and can further our understanding of software engineeing.
However, they are not designed to and are not likely to produce general theories. Thus, our second
conclusion is that theory building must be designed into our empirical research.

3. Future Challenges:

In the previous ®dions we reviewed some of the subgroup’s initial discussons. The group's adivity took
placein two sesgons. In the first sesson, the participants presented their studies and discussed their goals,
strengths, and wedknesss. During the second sesson we aeded a scheme for classfying maintenance
studies, classfied studies using this £heme, and then looked for common reseach findings in ead class
We found some common findings, but not as many as we thought we should have. This led usto look more
caefully at the field and ask why common results were so hard to find. Our main conclusion isthat a aiticd
part of scientific adivity has been negleded in software maintenanceresearch. That part is theory building—
which can be done ather by synthesizing individual results, or by propasing initial hypotheses and testing
and refining them.

The last issue we wrestled with was how to remedy this stuation. In this ®dion we discuss ®me of our
recommendations for deding with this problem. We divided these recommendations into three groups:
rethinking the goal of empiricd methods, supparting interdisciplinary research, and expanding the use of
empirical methods.

3.1 Rethinking the Goals of Empirical Methods

The quality of empiricd reseach has improved tremendously in the last few decaldes. But it must continue
to improve. In particular, we canot forget that measurement is only one part of scientific inquiry. We
routinely use measurement to describe, predict, and test. Thisisimportant, but, by itself, it does not give us
the deep understanding we need to control software development.

» To gain control over software development we need to have validated theories that are (1) general, (2)
causal, and (3) suggestive of control strategies.

General theories hold aadoss ®vera environments. Relationships that only hold in one environment are
still i mportant (for instance, for processimprovement), but as ientists we should not be satisfied with
them. Thus, we should strive to draw theories from our studies (even if they turn out to be wrong) so
that they can be tested in other environments.

Theories dould aso be caisal. Although the literature describes many reasonably-good predictive
models, they only capture rrelations. We shouldn't confuse arrelations with the underlying
principles we redly care éout. One of the key challenges to developing causal theories is to focus
more on discovering underlying principles and less on measuring high-level performance.

Finaly, if we have multiple candidate theories, we should prefer theories that suggest pradica control
strategies.

« Another isaue to consider is human variation. Differencesin netural ability affed every empiricd study.
Some reseachers are looking at ways to acount for these diff erences, but much more work needsto be
done. As we discusslater, other fields have this problem as well and may have some insight that will
help us.

e Although we ae ultimately concerned with professona programmers who build industrial software,
cost concerns leal us to use student subjeds. Since we do not entirely understand the relationship
between the student programmers and professonals, these studies are often discounted. Consequently,
we need to develop models of the differences between student and professional populations.

e Science must be apublic adivity. There have been cdls to make data public, but we must also share
artifads, procedures, and terminology as well. Repositories and web sites sould be set up and greaer
efforts should be made to conduct collaborative research.

e Scienceis iterative. As we build and test theories, we will find almost al of them to be incorred or
impredse. As authors and as reviewers, we will have to change how we think about and how we present
our findings.

3.2 Supporting interdisciplinary research

Too dten software engineeing reseachers think that our field is entirely unique. Software development
involves a web of individuals, groups and organizations working to build a complex array of products.
Therefore, it's certain that other fields have tools and techniques that we will find useful. For example,

» Behaviora scientists gudy how people work together (among other things). These have theories about
how people lean and understand, and how they work together. One of the group members, Jarrett
Rosenberg, coined the term “theory reuse” to describe this kind of interdisciplinary collaboration.

» Cognitive scientists gudy how people think. Consequently, they have experience defining instruments
to measure agpeds of human skill. As we discussed ealier, such instruments could play alarge role in
factoring human variation out of our empirical studies.

« Statistics drealy playsabig role in data analysis, experimental design, and hypaothesis testing. We can
also benefit from their knowledge of simulation methods, visualization methods, and mathematica
modeling.

» Businessdisciplines sich as organizaion theory and information systems management have agrea
ded of knowledge e&out how process organizaional structure, and business s$rategies affed people’s
ability to get work done. Understanding these dfeds may help us to remncil e studies from multiple
organizations. Also economists have considerable expertise in modeling complicated phenomena.

3.3 Expanding the Use of Empirical Methods

Controll ed experiments are the standard method for verifying theories. However, they are not perfed. They
are expensive, have limited external validity, and it may be very difficult or, even urethicd, to use them in
cetain situations. Therefore, in addition to traditional analysis techniques, we should consider other
methods for generating and testing theories.

e Quadlitative analysis. Refers to the analysis of data that is represented in words and pictures rather than
as numbers [16]. These gproaches do not have & many supparting analyses as traditional quantitative
methods do, but may provide a richer description of the phenomena being studied.

* Meta-analysis. Gathering enough data to draw sound conclusions is a major problem in empiricd
reseach. One way to solve this problem may be to integrate the data axd results of multiple studies.
This can be done on an ad hoc basis, but there dso approaches for statisticdly integrating the data.
These approaches are called meta-analysis.

» Mathematicd modeling and simulation. This approach has been widely used in computer science, but
not in software engineeing. This is unfortunate becaise mathematicad models can be powerful and
much less expensive then experimenting with an adual system or process They can adso be very
effective as a compliment to other approaches.

» Case studies. Many case studies are simply retrospedive descriptions of a projed. Sometimes we cdl
these “lesons leaned” articles or “experiencereports’. We should try to domore cae studiesin which
a hypotheses is stated and data is analyzed to see whether it is consistent with the hypothesis.

e Surveys. Surveys can be avery inexpensive way to aaquire lots of information at low cost. They have
problems, but again, there is a large community of researchers that use them and understand their
limitations.

One final point to make here is that ead of these goproaches has drengths and wegnesses. Sometimes the
best thing to do will be to combine two or more approaches.

4. Summary

Because software vendors must respond frequently and corredly to changing wser expedations, hardware
platforms, and aternative products, software systems must tolerate numerous, successve canges. In
pradice however, systems deteriorate ad changes become increasingly difficult to implement. Thus it's
easy to see why the costs of maintenance often dominate the costs of initial development.

Reseach that makes maintenance eaier will save considerable time axd money throughout the software
industry. Therefore, researchers have identified some sources of maintenance problems and developed
potential remedies for it. For example, some reseachers believe that repeaed changes compli cate asystem's
internal structure, so they have developed code metrics to model structural complexity. Others think that
some software designs are inherently lessflexible than others 2 they have focused on design patterns and
software achitedure. Still others argue that changes become more difficult becaise, over time, developers
lose their understanding of the system They have developed reverse engineaing todls, and formal
documentation.

The exad manner and degreein which different fadtors affed maintenance is unclea. It is clea, however,
that this information is vital if our reseach is to have sustained, predictable improvement. Because many
reseachers dare this belief, they attended a workshop o the topic of empiricd studies of software
maintenance. This article tries to summarize the ideas of the subgroup on Sudies of the maintenance
process: fundamental laws and assumptions.

This group's main conclusion was that reseach community in software maintenance has produced many
interesting results, but failed to consolidate them into useful theories. To help remedy this stuation the
group made three recommendations.

1. Reseachers dould design studies whose goal isto generate, test, and refine useful theories, not simply
to describe behavior. This implies that we must use much more sophisticated empiricd methods than
we currently do.

2. Reseachers sould look to ather disciplines for helpful insights, todls, and theories. However, they
should borrow wisely.

3. Empiricd reseach is ®verely limited by our inability to find adequately-sized samples. Reseachers
need to consider non-traditi onal techniques for combining data from multi ple sources, and need to use
multiple data collection and analysis approaches to make better use of small data sets.

5. List of participants

The sesson chair would like to thank the subgroup participants for helping to make the workshop a success
William Thomas, Helena Mendes-Moreira, Elisabeth Dusink, Warren Harrison, Jarrett Rosenberg,
Giuseppe Visaggio, Marie Vans, Anneliese von Mayrhauser, Eirik Tryggeseth, Scott Schneberger.

6. Bibliography

1 Belady, L.A. and M.M. Lehman, A Model of Large Program Development. IBM Systems Journal,
1976.15(1): p. 225--252.

2. Gibson, V.R. and J.A. Senn, System Structure and Software Maintenance. Communications of the
ACM, 1989. 32(3) p. 347--358.

3. Thomas, W. and J. Baldo. Maintenance of Reuse-Based Domain-Specific Software Product Lines.
in International Workshop on Empirical Sudies of Software Maintenance. November 1996Monterey, CA.

4, Dusink, E. and P.G. Kluit. Using and Didactic Model to Measure Software Comprehension. in
International Workshop on Empirical Sudies of Software Maintenance. November 1996Monterey, CA.

5. Bloom, B., ed. Taxonomy of Educational Objects. The Classification of Educational Goals.
Handbook 1. Cognitive Domain. . 1968, David McKay Company: New York.

6. Harrison, W. Change-Prone Modules, Limited Resources, and Maintenance. in International
Workshop on Empirical Studies of Software Maintenance. November 1996Monterey, CA.

7. Karr, A., A. Porter, and L. Votta. An Empirical Exploration of Code Evolution. in International
Workshop on Empirical Studies of Software Maintenance. November 1996

8. von Mayrhauser, A. and A.M. Vans. On Increasing our Knowledge of Large-Scale Software
Comprehension. in International Workshop on Empirical Studies of Software Maintenance. November
1996 Monterey, CA.

9. Castro, M. J. H. Mendes-Moreira. The Software Maintenance Process in Financial Organizations.
in International Workshop on Empirical Sudies of Software Maintenance. November 1996

10. Rosenberg, J. Problems and Prospects in Quantifying Software Maintainability. in International
Workshop on Empirical Sudies of Software Maintenance. November 1996Monterey, CA.

11 Schneberger, S.L. Position Paper for the International Workshop on Empirical Studies of
Software Maintenance. in International Workshop on Empirical Sudies of Software Maintenance.
November 1996Monterey, CA.

12 Tryggeseth, E. The Impact of Documentation Availability on Software Maintenance Productivity.
in International Workshop on Empirical Sudies of Software Maintenance. November 1996Monterey, CA.

13. Visaggio, G. Assessing Maintenance Processes Through Controlled Experiment. in International
Workshop on Empirical Studies of Software Maintenance. November 1996Monterey, CA.

14. Parnas, D.L., On the Criteria for Decomposing Systems into Modules. Communications of the
ACM, 1972.15(12).

15. Kemerer, C.F., Software Complexity and Software Maintenance: A Survey of Empirical Research.
Annals of Software Engineering, 1995.p. 1--22.

16. Gilgun J.F., Definitions, Methodologies, and Methods in Qualitative Family Research, in
Qualitative Methods in Family Research. 1992, Sage.

