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Abstract 

 
To prioritize software maintenance activities, it 

is important to identify which programming flaws 
impact most on an application's evolution. Recent 
empirical studies on such a flaw, code clones, have 
focused on one of the arguments to consider clones 
harmful, namely, that related clones are not 
updated consistently. We believe that a wider notion 
is needed to assess the effect of cloning on 
evolution. This paper compares measures of the 
maintenance effort on methods with clones against 
those without. Statistical and graphical analysis 
suggests that having a clone may increase the 
maintenance effort of changing a method. The effort 
seems to increase depending on the percentage of 
the system affected whenever the methods that share 
the clone are modified. We also found that some 
methods seem to increase significantly their 
maintenance effort when a clone was present. 
However, the characteristics analyzed in these 
methods did not reveal any systematic relation 
between cloning and such maintenance effort 
increase.  

 
1. Introduction 

A clone is a source code fragment whose structure 
is identical or very similar to the structure of another 
code fragment. Cloned code is a consequence of a 
frequent programming practice: copying a piece of 
functionality and pasting it in another context where it 
is adapted. A clone family (also called clone group or 
clone class) is a maximal set of source code fragments 
that are similar among themselves. There are many 
reasons to believe that clones are harmful for software 
maintenance, among others:  
1. unawareness of clone families leads to incomplete 

updates that generate bugs [1]; 
2. clones increase the size of code, making it more 

complex and difficult to understand [1];   
3. clones cause faulty behavior due to the lack of 

awareness of the different pre- and post-conditions 
of the source and target contexts of the copied 
code [2]; 

4. clones may indicate lack of inheritance or missing 
abstractions [1], which affects the flexibility of the 
design. 

Most of the previous work [3-8] just tackles the issue 
of incomplete updates. These empirical experiments 
have shown that changes are propagated to the clone 
family in less than half of the cases [3, 4, 8], and that in 
some cases the lack of consistent changes indeed leads 
to bugs [6]. Nevertheless, these findings are not 
enough to grasp the extent of the harmfulness of clones 
w.r.t. maintainability. In this paper, we aim to account 
for the effect of clones as a whole by focusing on how 
clones affect the maintenance effort of the methods 
they belong to. Sanders and Curran [9] have defined 
changeability as the set of "attributes of software that 
bear on the effort needed for modification, fault 
removal or for environmental change". Our aim is 
hence to find whether the existence of clones is a 
changeability attribute of methods. Finding supporting 
evidence for this would allow us to conclude that, in 
general, eliminating clones is a good maintenance 
investment.  

This paper presents four contributions. First, it 
introduces three measures to assess, in a holistic way, 
the effect of cloning on a method’s maintenance effort. 
Second, it presents a new approach to perform origin 
analysis. Third, it presents a methodology to analyze 
the effect of a programming flaw in a method on its 
changeability. Fourth, it shows that when methods 
have clones the change effort may increase, and that 
although that increase is not present in half of the 
cases, when it happens the effort increases 
significantly. The rest of the paper is organized as 
follows. Section 2 describes the hypothesis and the 
empirical data required to test it. Sections 3, 4 and 5 
explain the experiment, its results, and its threats to 
validity. Section 6 compares this experiment with the 
related work, and the final section presents concluding 
remarks and points to future work. 

 
2. Experiment  

 
The harmful effect of clones on changeability could 

go beyond incomplete and inappropriate changes. In 
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fact incomplete changes could be just separate 
evolution. An approach that measures cloning effects 
from a changeability point of view may reflect in a 
better way the four consequences of cloning mentioned 
earlier. The rationale is that each of those 
consequences leads indirectly, via incomplete updates, 
bugs or missing abstractions, to increased 
modifications to the code.  The purpose of our 
experiment is hence to find more general evidence for 
the belief that cloning affects the maintenance of an 
application, by measuring the overall effect of clones 
on changeability, which has not been quantified before 
(see Section 6). 

2.1 Hypothesis 

The hypothesis is: 
 If a method has clones, the effort spent in 

changing it increases.
The null hypothesis is: 

There is no difference on the maintenance effort 
spent on a method when it has clones and when it 

has none. 
We chose two ways of testing the null hypothesis. One 
is to consider only those methods that had periods with 
and without clones as suitable for analysis. Comparing 
the same method in two different periods allows us: (1) 
to eliminate noise due to differences in frequency and 
type of maintenance that exist between methods, and 
(2) to measure accurately the maintenance change due 
to clones.

Another way is to assume that methods, in general, 
have a typical maintenance effort. This means that 
regardless of the nature of the method its maintenance 
would lay among some typical values. For testing the 
null hypothesis we just compare those methods that 
were either always cloned or never cloned.  

To reject the null hypothesis, the maintenance 
measure must tend to differ between cloned periods (or 
methods) and not cloned periods (or methods), and to 
support the hypothesis the measure must be higher 
during the period with clones. 

2.2. Data gathered

Like several other studies on software evolution [4, 
6, 10], we see the evolution of a software system as a 
sequence s0 c1 s1 c2 s2 … sn, where si is a snapshot (e.g. 
a version) of the system's evolving code base and ci is a 
set of changes, leading from one snapshot to the next.  

A snapshot is a set of uniquely named methods, 
where uniqueness is achieved by taking into account 
the file, package and class to which the method 
belongs, and its signature. For each snapshot we gather 

not only the system's set of methods, but also whether 
the methods contain clones or not, as identified by an 
external clone detection tool (details in Section 3).  

As for defining what exactly constitutes a set of 
changes ci, we use an approach commonly used in 
software evolution studies. We retrieve from the 
system's CVS repository the commit transactions, i.e. 
those change commits that were done by the same 
developer, described by the same message, and within 
an interval of 3 minutes [10]. Since CVS repositories 
record changes at the file level, we map the lines 
changed per file to the set of methods changed. 

With these concepts we now define measures to 
describe changeability. 

2.3. Measures 

The measures to be computed are the likelihood and 
impact of change: together, they represent the work
required for maintaining a method. Hence, the 
independent variable is the fact of having a code clone 
or not, while the dependent variable is the maintenance 
work spent on a method. Our measures were inspired 
by the work of van Belle [11], but ours are normalized 
values, taking into account the change rate of the 
whole application. 

Effort is a common way to assess maintainability. 
Usually, it is measured in number of hours invested in 
a particular task. Given that we cannot obtain that 
value from a CVS repository, our measures 
approximate the effort of changing a method by 
indicating how much change is required to maintain a 
method during a period of time.  

To formally define the metrics, we need a predicate 
changed(m, c) that indicates if commit transaction c
changed method m. We do not consider method 
creation and removal as changes. Finally, a period is a 
set of not necessarily consecutive commit transactions.  

2.3.1. Likelihood. The likelihood of change of 
method m during period P is the ratio between the 
number of changes to m and the overall number of 
changes in the system, during P. A concise definition 
of likelihood is presented in table 1, where 
CommitsChanged(m,P)= {c∈ P |changed(c, m)} is the 
set of commit transactions that changed m during P.
The numerator of the above fraction is the number of 
changes to m during P, while the denominator counts 
the total number of changes, at method level, during P.

2.3.2. Impact. The impact of changes to method m
represents the percentage of the system that, on 
average, is changed whenever m changes during the 
period analyzed, i.e. it is the average percentage of 
methods that are changed by the same commit 
transactions that change m. The formula of impact is 
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shown in table 1, where CochangedMethods(m, ci)
returns the empty set if changed(m, ci) is false, 
otherwise returning {m' ∈ ci | changed(m', ci)}, and |si|
is the amount of methods that compose the snapshot i.

2.3.3. Work. Having computed the likelihood and 
impact of change of a method m, during the same 
period P, we define the effort of maintaining m during 
P as the product of those two values (see table 1).  

According to this, the work increases whenever the 
method requires to be changed more frequently 
(likelihood) or when its changes require propagation to 
a larger proportion of the system (impact).

Table 1. Measures used 
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2.4. Experiment definition 

To define the periods of interest for the previous 
measures, we consider the sets of commit transactions 
when the method has a clone (PC) and when it does not 
have a clone (PNC):

where the predicate cloned(m,ci) indicates that the 
method m has a clone after the commit transaction ci.

There are three disjoint sets to which a method can 
belong, depending on the length of its cloned and not 
cloned periods: it always had a clone (AC-methods), it 
never had a clone (NC-methods), or sometimes it had a 
clone and sometimes it did not (SC-methods). 
Formally: 

To reject the null hypothesis, we compare the 
average behavior of the changeability measures 

between AC-methods and NC-methods, and for each 
SC-method we compare the measures between its two 
periods. To validate the hypothesis, we check if the 
measures of SC-methods increase when cloned.  

Note that the measures should be affected by the 
fact of being cloned. The likelihood should increase 
because (1) cloning affects understandability which 
may lead to more changes; and (2) incomplete updates 
in clone families may require to be fixed. The impact 
should increase because (1) changes to clones generate 
ripple effects to their clone families, and (2) cloning 
may indicate lack of abstractions, which requires more 
methods to be modified than usual to achieve a logical 
change.

2.5. Case studies 

We expect that cloning behaves in the same way 
regardless of the application domain. Therefore,  we 
selected four open source  Java projects from 
SourceForge, with varying age, size, number of 
developers and activity rate (commit transactions per 
month), as Table 2 shows. The number of LOCs and 
methods reported are for the last version we analyzed.  

Table 2. Case studies and their characteristics 
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ganttProj. 44 14469 2701 20 May 03-Dec 06: 45
jEdit 92 7868 1381 13 Sep 01-Jul 06: 58 

freecol 54 3928 1087 14 Apr 04-Mar 07: 35
jboss/jboss 10 18781 5225 50 Apr 00-Jul 06: 63 

GanttProject is a scheduling application with 
facilities for doing Gantt charts, resource management, 
calendars, etc. JEdit is a text editor for programmers 
that can be configured as an IDE through its plug-in 
architecture. FreeCol is a game in which players have 
to conquer and colonize new worlds. JBoss is a J2EE 
based application server, from which we analyzed the 
jboss module. 

3. Data collected 
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We have built a tool [12] that gathers the required 
data (see section 2.2) and stores it in a MySQL 
database. That is, for each snapshot, the tool extracts 
from the CVS repository the files that have changed 
and, from the lines changed, computes the methods 
that were created, deleted and modified. After that, the 
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tool identifies which of the methods existing in that 
snapshot had clones.  

3.1. Elimination of noise from data 

To be able to draw accurate conclusions from the 
statistical analysis it is necessary to ensure that the data 
collected complies with our assumptions: whenever 
there is a clone it can be tracked along the versions of 
the method where it is located; each method is 
identified uniquely along its lifetime; all the 
functionality changes are taken into account. In the 
following sections we argue the steps required to 
ensure each of these assumptions. 

3.1.1. Clone identification. Our tool uses CCFinder 
[13] to detect the clones of 30 or more consecutive 
tokens. Setting 30 tokens as the threshold for the 
minimum clone length can increase the number of false 
positives because small clone fragments that are 
accidentally similar might be identified as clones. 
However, choosing that threshold can also increase the 
chances of identifying fragmented clones, i.e. those 
that are interrupted by a few lines of non-cloned code,  
which CCFinder does not find. 

We chose CCFinder because, compared with other 
clone detection tools, CCFinder has better 
performance, scalability, and recall, but a lower 
precision [14]. Moreover, CCFinder does not depend 
on the correctness of the source code analyzed. This is 
an important characteristic given that some snapshots 
have syntax errors. Furthermore, CCFinder does not 
rely on the syntax of the language, as it is the case with 
AST based detection tools. This makes CCFinder 
immune to the evolutions of the programming 
languages, like those that Java went through in the 
timeframe of the selected case studies.  

3.1.2. Method identification. Given that we 
identify methods by their signature and location 
(section 2.2), whenever a method (or its enclosing class 
and package) is renamed or moved, the tool assumes it 
has been deleted and another one has been created. 
This makes the results inaccurate. We therefore 
defined an algorithm to perform what is known as 
origin analysis [15]. That is, finding if m ∈ si is the 
same as method n ∈ si+1. Our algorithm works as 
follows: 
1. For each method detected as deleted by a commit 

transaction, the candidate set of methods contains 
those created by the same transaction.  

2. The set of candidates is divided into those that 
changed the signature but are in the same location 
(i.e. same file, package, and class), w.r.t. the 
original method that supposedly was deleted, and 

those that are in a different location but the 
method name and the parameters are the same. 

3. The candidates are compared line by line with the 
original method. If the similarity between the best 
candidate and the original method is above a 
certain threshold, then the candidate is identified 
as the new version of the original method.  

4. Once the whole system evolution has been 
processed, we have a set of pairs  
a-- X -->b stating that method b seems to be a new 
version of method a, and that they have a 
similarity X. Nevertheless, several methods may 
have the same possible evolution, i.e. a-- X -->b
and p-- Y -->b. Those cases are resolved by 
choosing the method that has the highest similarity 
with b. If all the possible previous versions of a b
have the same similarity, we assume that b is a 
new method and all its possible previous versions 
are deleted methods. 

5. We have now a set of pairs a->b stating that the 
unique method names a and b denote in fact the 
same method. We then put together pairs to obtain 
chains a->b->c->… that show rename and move 
operations on the same method. This step also 
ensures that the renaming of methods is stored as a 
change to the method. 

6. Finally, the information about the PC and PNC
periods of a, b, c, … is merged together. 

The similarity (i.e., step 3) between any two 
methods a and b is computed as follows, where a
designates the shorter method, i.e. the one with less 
lines. First, we remove all layout characters from a and 
b. Then, for each line of a, we compute its similarity 
with every line of b using the Strike A Match 
algorithm1  and we keep the highest similarity value. 
Next we compute the average value, over all lines of a,
and this will be the similarity between methods a and
b. Of all candidate methods in the "changed signature", 
the one with the highest similarity value is kept. If this 
value is above 70%, we consider to have found the new 
version of the original method, and proceed with step 
4. Otherwise, we go through the same process with the 
candidate methods in the "moved" set. If no method 
there has a similarity value above the 70% threshold, 
we consider the original method to be effectively 
deleted from the system.  

It might be tempting to use CCFinder to perform 
origin analysis, by checking which methods created in 
one commit transaction are clones of those deleted in 
the same transaction. However, CCFinder cannot find 
fragmented clones, i.e. those interrupted by a few lines 
of code. That is also the reason to compare the original 
and candidate methods line by line: the algorithm 
                                                          
1 www.catalysoft.com/articles/StrikeAMatch.html
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works even if there are new scattered lines from one 
version to the next one. In order for CCFinder to detect 
such cases, one would have to set a very low minimum 
number of similar sequential tokens, but this in turn 
would increase the possibility of false positives for the 
origin analysis.   

Results of the origin analysis filtering are 
summarized in table 3. The third row indicates how 
many methods were renamed or moved at least once in 
their lifetime. 

Table 3. Methods filtered with origin analysis 
gantt jEdit freec jboss

methods identified initially 14895 8434 4099 18942

number of unique methods 11805 7392 3901 17784

 from those were renamed 1743 858 184 1001

3.1.3. Eliminating atypical changes. The 
comparison of metrics can be greatly affected if one of 
the periods had atypical changes. An atypical change is 
a change that does not aim to modify a single 
functionality feature. Examples of atypical changes are 
those changes that make several improvements to 
functionality, or that restructure the application. When 
there is an atypical change in a period, the impact 
measure increases greatly, making it difficult to 
compare with a 'normal' period. We therefore discarded 
for each project the 2.5% largest commit transactions. 

3.1.4. Eliminating volatile periods. A volatile 
period is a short period and can affect significantly the 
comparison of the likelihood. Given that the likelihood 
is calculated on the number of overall methods 
changed per period, having periods with very different 
lengths increases the chances of having very different 
denominators in the likelihood of each period. This 
results in significantly different likelihoods even if the 
ratio of changes per commit is the same in both 
periods.  

We defined a volatile period as one that lasts less 
than 15% of the method’s lifetime. Any method with a 
volatile period (whether with or without clones) was 
not analyzed. 

3.2. Data analyzed  

Table 4 has the total number of methods after origin 
analysis, divided into the three groups, and the number 
of methods actually analyzed. Analyzable methods are 
those that have at least one change, so that the impact 
measure can be calculated.  Note that AC- and NC-
methods require at least one change in their lifetime to 
be analyzable, but SC-methods require at least one 
change in each period. 

As table 4 shows if comparing the NC-methods to 
the sum of AC- and SC-methods, there are far more 
methods without clones than with clones. As the drop 
to analyzable methods indicates, most methods are 
never changed. Note also that atypical changes, by 
definition, change methods across the whole system 
and hence usually affect all sets of methods (NC, AC, 
SC).
Table 4. Methods eliminated from the analysis 

gantt jEdit freec. jboss
NC 10428 6291 2962 13962

NC analyzable 3681 3659 2578 6177
NC after atypical filter 3312 2263 1310 4558

AC 790 418 363 1841
AC analyzable 91 206 213 802

AC after atypical filter 91 202 169 743
SC 587 683 576 1981

SC analyzable 210 332 330 613
SC after atypical  filter 194 329 262 558
SC after volatile filter 130 182 176 352

4. Results 

In this section we present the results of the experiment. 

4.1. Analysis of null hypotheses 

This section presents the distributions of the measures 
to test the null hypothesis. Tables 5 and 6 summarize 
the p-values obtained from the statistical tests. Table 5 
shows the p-value obtained by the Wilcoxon rank sum 
test (i.e. paired test) from comparing the distributions 
when cloned vs. when not cloned for the SC-methods. 
Table 6 shows the p-value obtained by the Mann 
Whitney test from comparing the distributions between 
AC- and NC-methods. The p-value indicates the 
probability that the null hypothesis was discarded by 
chance in the statistical test. Having a p-value under 
5% is considered to be enough to reject confidently the 
null hypothesis, i.e. to say that the distributions 
compared are different. The p-values that do not allow 
to reject the null hypothesis (>0.05), are highlighted in 
bold. These p-values could mean that the distributions 
are indeed very similar or that they are different but the 
statistical approximation does not show it. As several 
p-values were not small enough to reject the null 
hypotheses, we decided to check their results 
graphically to see if the distributions are indeed similar 
or if the statistical test just could not achieve enough 
confidence with the data provided. Statistical tests may 
produce misleading results if the distributions vary a 
lot. The statistical tests work either by obtaining the 
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median of differences between the distributions (t-test 
and Wilkinson test) or by computing the difference of 
the areas when one curve is above or below the other 
(MannWhitney test). However, it can happen by 
chance that the sum of the areas in which one curve is 
above is the same as the sum of the areas in which that 
curve is below the other. 

Tables 5 and 6 hence also show graphically the 
distribution of the changeability measures when cloned 
(dashed line) and when not cloned (solid line). Each 
row in tables 5 and 6 represents a case study and each 
column represents a changeability measure. The x-axis 
of each distribution graph represents the values of the 
measurement for that column, and the y-axis represents 
the value of the probability density function, i.e. it is a 
smooth curve that represents the proportion of methods 
that had the measurement value given by x. 

Several graphs show differences that statistical tests 
miss (bold numbers vs. curves that are different). In 
cases like the impact in freecol in table 5, although the 
test does not give certainty that the distributions are 
different when cloned and not cloned, the graphs show 
that there are differences.  

According to the p-values of table 5, the likelihood
did not change much for the methods sometimes 
cloned. When a method has a clone it is expected to 
undergo extra changes, namely those that come from 
changes to the clone family. However, the total number 
of changes in the system will increase as well. Given 
that the likelihood is a ratio between the changes on the 
method over the changes of the system, the fact that the 
likelihood remains unchanged when cloned and not 
cloned means that, in general, the number of extra 
changes is proportional in the numerator and 
denominator.  

According to the information in tables 5 and 6, 
impact behaves differently between cloned and not 
cloned. However, table 5 may be more accurate than 
table 6 because it compares the same methods when 
cloned and not cloned, which leaves out inherent 
differences on the changeability of each method. In all 
cases the main peak of the impact distribution is on the 
left end of the x axis: this means that most of the 
methods with clones have a low impact value. Given 
that the peak of the distribution when cloned is higher 
than the peak distribution when not cloned, for most of 
the cases, one can say that most of the methods seem to 
have a similar impact when cloned. So, most of the 
methods with clones have a similar low impact. 
Therefore, being cloned seems to standardize the value 
of a method’s impact.  

Not all impact distributions when cloned follow the 
pattern described before i.e. a higher peak than when 
not cloned, on the left end of the x-axis. Some of these 

distributions have (1) their highest peak slightly to the 
right of the peak of the not cloned distribution, or (2) a 
wider distribution. The first pattern can be seen in 
JEdit in table 6. This means that in general the impact 
of those always cloned is higher than those never 
cloned in this case study, which supports the 
hypothesis. The second pattern appears in freecol in 
table 5, and in jBoss in table 6. This pattern means that 
there is a significant number of methods with a higher 
value in their impact when they have clones, 
supporting as well the hypothesis. Besides, jBoss in 
table 6 also shows a second peak at the right end of the 
x-axis: a significant percentage of always cloned 
methods have a much higher impact than those never 
cloned. 

Summarizing, we have found evidence suggesting 
that, in general, cloning does not affect much the 
likelihood of changes, although it may increase the 
number of changes in a method. While in most of the 
cases cloning standardizes the impact of changing a 
method to the worst impact of the clone family, in a 
few others the impact seems to confirm the hypothesis. 

4.2. Support for the hypothesis 

We also calculate for each SC-method and for each 
measure the effect of being cloned. The effect is 
defined as the ratio of the increase or decrease of the 
measure between periods w.r.t. to the value of the 
measure during the not cloned period: 

where M is the measure, and m the method 
analyzed.

))(,(
))(,())(,(

)
mPmM

mPmMmPmM
m,increase(M

NC

NCC −
=

Figure 1 shows the increase of work in the cloned 
periods. The y axis shows the level of increase of the 
measure and the x axis shows the cumulative
percentage of methods in increasing order of y (work 
increase). The figure shows that it is inadequate to 
assume that all clones are harmful because in all case 
studies just half of the analyzed methods lead to an 
increase in maintenance effort. However, figure 4 
seems to confirm the intuition that clones can be very 
harmful for changeability. When the measures are 
lower when cloned, and hence the difference between 
the measures is negative, the measure decreased by at 
most 100% (lowest negative value on the y axis). But 
when the measures are higher when cloned, the 
difference could be up to 72479% (outside the y-axis 
range shown in the figure). Besides, there is a rapid 
growth in the difference of the measures as soon as it 
becomes positive. 
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Figure 1. Effect of clones on the work  

We decided to evaluate those methods that 
presented the highest increase of work to validate that 
there are clones that are worse for maintenance. We 
selected for each application those SC-methods that 
were in the top 10% of work increase when cloned. We 
expected to find any common characteristics in these 
harmful methods. The characteristics analyzed were 
size of the clone, size of the family, similarity in the 
name of the methods cloned, and the distance between 
methods cloned, i.e. the distance of the closest 
common ancestor between two methods in a tree 
defined by the package and class hierarchy. If the 
cloned methods are in the same class, their distance is 
zero, if they are in different classes of the same 
package, their distance is one. The distance is inspired 
on the clone classification by location proposed by 
Kapser [16]. 

The evaluated characteristics aim to grasp some of 
the reasons to consider clones harmful. The size of the 
clone could account for the effect on understandability 
of the method. The size of the family was looked at 
because the larger the family is the more likely it is that 
the method will change. The similarity of the method 
names show if the methods aim to provide similar 
functionality and therefore could be an example of lack 
of abstraction. Finally the distance of the methods aims 
to grasp the difficulty of modifying a clone family that 
does not have its clones close to each other. 

However, we could not find any trend in the 
characteristics among these clones. Sizes varied from 
30 to 99 tokens. The size of the clone families varied 
from 2 to 18 methods. The distance among clones also 
varied, from 0 to 5. The similarity of the names of the 
methods also varied, with pairs like  
org.gjt.sp.jedit.textarea.FoldVisibilityM

anager.virtualToPhysical(int)  - 
org.gjt.sp.jedit.textarea.FoldVisibilityM

anager.physicalToVirtual(int) and pairs like 
org.gjt.sp.jedit.browser.VFSFileNameField
.doComplete() -
org.gjt.sp.jedit.gui.PanelWindowContainer

$ButtonLayout.layoutContainer(Container).  
Apparently the huge differences in work are due to 

atypically small changes that just modified the method 

analyzed in the whole application in the period not 
cloned, making the value of the work much lower 
when not cloned than when cloned. However more 
research is needed in order to identify if there are 
clones that regardless of the method they belong to 
have harmful effects, and what characterizes them. 

5. Threats to validity 

This section discusses issues that may affect the 
results (internal validity) or the boundaries in which 
such results apply (external validity). 

First, CCFinder’s lack of precision threats the 
comparisons of the distributions due to the size of the 
compared sets of methods. If one set is much larger 
than the other (e.g. NC- vs. AC-methods), false 
positives in the smaller set may affect the average 
behavior of the measures for that set (in this case the 
AC-methods). Therefore, comparing average 
measurements would not assess correctly the 
difference of the measurements in the sets. However, 
as previously mentioned, clone detection tools with 
higher precision, based on abstract syntax trees, have 
many restrictions to overcome for analyzing long-lived 
programs written in an evolving language. False 
positives will be tackled in future work. 

Second, the selection of case studies could affect 
the results obtained. For example, dnsJava has unusual 
cloning patterns. There is a considerable amount of 
files repeated in several directories (e.g. 
org/xbill/DNS/ and org/xbill/DNS/utils/), 
during periods varying from 1 commit to 95% of the 
application’s lifetime. Moreover, these clones do not 
seem to be an experimental variation of the code, 
because the files change in the same way. Therefore, 
dnsJava might not be a suitable candidate for the 
analysis of the nature of cloning. This is a relevant 
observation given that dnsJava is a popular case study 
for the analysis of source code clones [4, 6].  We could 
not find any abnormal cloning patterns in the case 
studies we selected. 

Third, the case studies selected may not represent 
typical applications: they are small open source 
systems. Small applications are usually developed by 
small groups of developers, so it is likely that they 
know very well the code base. In particular, they may 
know the location of clone families and consequently 
maintain them consistently. This awareness of cloning 
may not happen in larger applications. Nevertheless, 
our results on jBoss (50 developers) indicate although 
that effect can be seen (the impact in table 6 has a 
second peak to the right of the x-axis), most of the 
methods (i.e. the main peak of the distribution) 
behaved like the other case studies. As for being open 
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source projects, we think that there is no limitation of 
our results given that it has not been proved yet that 
OSS applications are essentially different from closed 
source applications [17].  

Fourth, another potential problem is the diversity of 
domains in the case studies because they may present 
different types of cloning. However, on one hand, 
comparing the changeability of the same method in 
two different periods of time makes the nature of the 
method irrelevant for the analysis. On the other hand, 
given that distribution graphs show general behavior of 
the measures, individual differences that may affect the 
comparison of AC- and NC-methods have less impact. 
Besides, the methods of each application were 
compared only against methods of the same 
application. Furthermore, the results suggest that even 
if the type of cloning among applications is different, 
their overall effect in changeability effort is similar 
(figure 1). 

Fifth, the fact that all case studies are written in 
Java might affect the distribution of the types of cloned 
methods found, as some of the clones are introduced to 
cope with language limitations [18]. This issue might 
indeed lead to different results for applications written 
in other languages. So, in principle, our results apply 
only to Java applications and further research is needed 
for other languages.  

Sixth, the definition of commit transaction makes 
the measurements sensitive to the developer’s commit 
style. The assumption for the measurements is that 
commit transactions show a relation between methods 
that change together. However, if the developer 
commits in fixed time intervals regardless of the 
completeness of the changes, it is possible that the co-
change relations obtained are by chance. 

Seventh, given that the changes are identified at 
method level and not at clone level, it is possible that 
the changeability obtained has no relation with the fact 
of being cloned. However, as mentioned before, the 
idea was to assess if methods with clones were more 
difficult to change. That means that even if the change 
does not affect the cloned tokens it might be that the 
fact of being cloned was the cause of such change. 

Eighth, the noise reduction was done after finding 
that most of the harmful clones either had a very short 
cloned period or they were cloned in restructuring 
periods. Therefore, in order to find the real harmful 
cloned methods, we introduced thresholds for atypical 
changes and volatile periods obtained by trial and error 
on reducing the amount of false harmful clones. A 
more systematic approach with statistical outliers may 
improve the results. 

Finally, the fact that the NC methods are more 
affected by the removal of atypical changes may affect 
the comparison between AC and NC methods.  

6. Related work 

Several studies have addressed the impact of clones. 
Most of them have focused on the need for extra 
updates to keep the clone family consistent, and on the 
effects of not doing so [3-8]. Nevertheless, inconsistent 
changes may simply indicate separate evolution of the 
clones.  These studies therefore do not address the 
whole effect of clones on changeability. In fact,  some 
authors [18, 19] have found that not all cloning is 
harmful: it saves programming time, captures paired 
operations and crosscutting concerns, helps to identify 
which code is worth restructuring [18]. There are even 
cases where cloning has been argued a reasonable 
design decision [19].  

Our work is related to the study presented by Geiger 
et al. [5] as they tried to find if files that share a clone 
change together. Contrary to theirs, our study takes 
into account several details that could have affected 
their results, such as the granularity level (files vs. 
methods) and the fact that clones do not always span 
for the whole method’s lifetime, which means that 
Geiger et al. do not compare different periods. 

There are a couple of studies that assess the relation 
between clones and bugs [20, 21]. In contrast to our 
work, they do not analyze if the pasted clones required 
more maintenance, or maintenance that required more 
effort.  Li et al. found that inconsistent renaming of 
identifiers where the clone is pasted produces bugs. 
They found that 13% of cloning produced errors, and 
14% were potentially harmful [20]. Chou et al. 
analyzed code with errors, and found that bugs are 
correlated with developers that clone code without 
validating its pre- and post-conditions in the new 
context where the code is pasted, i.e. they are ignorant 
of the system’s rules or of the system’s interfaces [21]. 

The work closest to ours is the attempt by Monden 
et al. [22] to measure the impact of clones at module 
level. Maintenance is measured in absolute number of 
revisions. They found that modules are less 
maintainable if they have clones, in particular larger 
clones. However, our study is more precise: it is 
performed at a finer granularity level (i.e. methods 
instead of modules), and it has more accurate 
indicators of maintenance impact (measurements per 
period instead of number of revisions). Our measures 
are more precise since they are independent of the age 
of the methods, and of the overall level of activity 
(number of changes) on the system.  
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7. Conclusions and future work 

The software engineering community has increased 
its interest in code cloning in recent years, in particular 
regarding untested myths about their harmfulness 
Nevertheless, most of the studies have focused on 
analyzing if related clones are consistently changed or 
not, and whether such inconsistent changes lead to 
more bugs. Apart from Monden et al., no one seems to 
have directly attempted to measure whether cloning 
reduces the ease of changing the code, independently 
of the reason.  

We proposed a methodology to analyze source code 
flaws, by measuring the changeability of methods 
during periods with or without a particular 
characteristic of the method. The methodology is based 
on measures that capture the work required to keep the 
“consistency’’ of the application after the change. 
Given that our measures are not absolute values like 
[10, 22], they can be compared regardless of the 
lifetime of methods. Furthermore, being ratio values, 
the measures have an intuitive meaning: the lower the 
measure, the better the changeability.  

The results show that change effort may increase 
when the method has clones. In at least 50% of the 
cases, being cloned does not increase the changeability 
measures, but when it increases the difference can be 
significant. Such increase seems to be more related to 
the percentage of the system affected among the 
methods in the clone family, than to the type of clone 
that the method has.  

In future work we will investigate if the 
maintenance effort still increases after cleaning the 
data from false positives and atypically small changes. 
We also plan to classify and describe the clones 
depending on their effect on changeability indicators.  
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