
Open Research Online
The Open University’s repository of research publications
and other research outputs

Assessing the effect of clones on changeability
Conference or Workshop Item

How to cite:

Lozano, Angela and Wermelinger, Michel (2008). Assessing the effect of clones on changeability. In: Proceedings of
the 24th IEEE International Conference on Software Maintenance, 28 Sep - 4 Oct 2008, Beijing, China, IEEE, pp.
227–236.

For guidance on citations see FAQs.

c© 2008 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSM.2008.4658071

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82907828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICSM.2008.4658071
http://oro.open.ac.uk/policies.html

Assessing the effect of clones on changeability

Angela Lozano, Michel Wermelinger
Computing Department and Centre for Research in Computing

The Open University, UK

Abstract

To prioritize software maintenance activities, it

is important to identify which programming flaws
impact most on an application's evolution. Recent
empirical studies on such a flaw, code clones, have
focused on one of the arguments to consider clones
harmful, namely, that related clones are not
updated consistently. We believe that a wider notion
is needed to assess the effect of cloning on
evolution. This paper compares measures of the
maintenance effort on methods with clones against
those without. Statistical and graphical analysis
suggests that having a clone may increase the
maintenance effort of changing a method. The effort
seems to increase depending on the percentage of
the system affected whenever the methods that share
the clone are modified. We also found that some
methods seem to increase significantly their
maintenance effort when a clone was present.
However, the characteristics analyzed in these
methods did not reveal any systematic relation
between cloning and such maintenance effort
increase.

1. Introduction

A clone is a source code fragment whose structure
is identical or very similar to the structure of another
code fragment. Cloned code is a consequence of a
frequent programming practice: copying a piece of
functionality and pasting it in another context where it
is adapted. A clone family (also called clone group or
clone class) is a maximal set of source code fragments
that are similar among themselves. There are many
reasons to believe that clones are harmful for software
maintenance, among others:
1. unawareness of clone families leads to incomplete

updates that generate bugs [1];
2. clones increase the size of code, making it more

complex and difficult to understand [1];
3. clones cause faulty behavior due to the lack of

awareness of the different pre- and post-conditions
of the source and target contexts of the copied
code [2];

4. clones may indicate lack of inheritance or missing
abstractions [1], which affects the flexibility of the
design.

Most of the previous work [3-8] just tackles the issue
of incomplete updates. These empirical experiments
have shown that changes are propagated to the clone
family in less than half of the cases [3, 4, 8], and that in
some cases the lack of consistent changes indeed leads
to bugs [6]. Nevertheless, these findings are not
enough to grasp the extent of the harmfulness of clones
w.r.t. maintainability. In this paper, we aim to account
for the effect of clones as a whole by focusing on how
clones affect the maintenance effort of the methods
they belong to. Sanders and Curran [9] have defined
changeability as the set of "attributes of software that
bear on the effort needed for modification, fault
removal or for environmental change". Our aim is
hence to find whether the existence of clones is a
changeability attribute of methods. Finding supporting
evidence for this would allow us to conclude that, in
general, eliminating clones is a good maintenance
investment.

This paper presents four contributions. First, it
introduces three measures to assess, in a holistic way,
the effect of cloning on a method’s maintenance effort.
Second, it presents a new approach to perform origin
analysis. Third, it presents a methodology to analyze
the effect of a programming flaw in a method on its
changeability. Fourth, it shows that when methods
have clones the change effort may increase, and that
although that increase is not present in half of the
cases, when it happens the effort increases
significantly. The rest of the paper is organized as
follows. Section 2 describes the hypothesis and the
empirical data required to test it. Sections 3, 4 and 5
explain the experiment, its results, and its threats to
validity. Section 6 compares this experiment with the
related work, and the final section presents concluding
remarks and points to future work.

2. Experiment

The harmful effect of clones on changeability could

go beyond incomplete and inappropriate changes. In

978-1-4244-2614-0/08/$25.00 © 2008 IEEE ICSM 2008227

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

fact incomplete changes could be just separate
evolution. An approach that measures cloning effects
from a changeability point of view may reflect in a
better way the four consequences of cloning mentioned
earlier. The rationale is that each of those
consequences leads indirectly, via incomplete updates,
bugs or missing abstractions, to increased
modifications to the code. The purpose of our
experiment is hence to find more general evidence for
the belief that cloning affects the maintenance of an
application, by measuring the overall effect of clones
on changeability, which has not been quantified before
(see Section 6).

2.1 Hypothesis

The hypothesis is:
 If a method has clones, the effort spent in

changing it increases.
The null hypothesis is:

There is no difference on the maintenance effort
spent on a method when it has clones and when it

has none.
We chose two ways of testing the null hypothesis. One
is to consider only those methods that had periods with
and without clones as suitable for analysis. Comparing
the same method in two different periods allows us: (1)
to eliminate noise due to differences in frequency and
type of maintenance that exist between methods, and
(2) to measure accurately the maintenance change due
to clones.

Another way is to assume that methods, in general,
have a typical maintenance effort. This means that
regardless of the nature of the method its maintenance
would lay among some typical values. For testing the
null hypothesis we just compare those methods that
were either always cloned or never cloned.

To reject the null hypothesis, the maintenance
measure must tend to differ between cloned periods (or
methods) and not cloned periods (or methods), and to
support the hypothesis the measure must be higher
during the period with clones.

2.2. Data gathered

Like several other studies on software evolution [4,
6, 10], we see the evolution of a software system as a
sequence s0 c1 s1 c2 s2 … sn, where si is a snapshot (e.g.
a version) of the system's evolving code base and ci is a
set of changes, leading from one snapshot to the next.

A snapshot is a set of uniquely named methods,
where uniqueness is achieved by taking into account
the file, package and class to which the method
belongs, and its signature. For each snapshot we gather

not only the system's set of methods, but also whether
the methods contain clones or not, as identified by an
external clone detection tool (details in Section 3).

As for defining what exactly constitutes a set of
changes ci, we use an approach commonly used in
software evolution studies. We retrieve from the
system's CVS repository the commit transactions, i.e.
those change commits that were done by the same
developer, described by the same message, and within
an interval of 3 minutes [10]. Since CVS repositories
record changes at the file level, we map the lines
changed per file to the set of methods changed.

With these concepts we now define measures to
describe changeability.

2.3. Measures

The measures to be computed are the likelihood and
impact of change: together, they represent the work
required for maintaining a method. Hence, the
independent variable is the fact of having a code clone
or not, while the dependent variable is the maintenance
work spent on a method. Our measures were inspired
by the work of van Belle [11], but ours are normalized
values, taking into account the change rate of the
whole application.

Effort is a common way to assess maintainability.
Usually, it is measured in number of hours invested in
a particular task. Given that we cannot obtain that
value from a CVS repository, our measures
approximate the effort of changing a method by
indicating how much change is required to maintain a
method during a period of time.

To formally define the metrics, we need a predicate
changed(m, c) that indicates if commit transaction c
changed method m. We do not consider method
creation and removal as changes. Finally, a period is a
set of not necessarily consecutive commit transactions.

2.3.1. Likelihood. The likelihood of change of
method m during period P is the ratio between the
number of changes to m and the overall number of
changes in the system, during P. A concise definition
of likelihood is presented in table 1, where
CommitsChanged(m,P)= {c∈ P |changed(c, m)} is the
set of commit transactions that changed m during P.
The numerator of the above fraction is the number of
changes to m during P, while the denominator counts
the total number of changes, at method level, during P.

2.3.2. Impact. The impact of changes to method m
represents the percentage of the system that, on
average, is changed whenever m changes during the
period analyzed, i.e. it is the average percentage of
methods that are changed by the same commit
transactions that change m. The formula of impact is

228

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

shown in table 1, where CochangedMethods(m, ci)
returns the empty set if changed(m, ci) is false,
otherwise returning {m' ∈ ci | changed(m', ci)}, and |si|
is the amount of methods that compose the snapshot i.

2.3.3. Work. Having computed the likelihood and
impact of change of a method m, during the same
period P, we define the effort of maintaining m during
P as the product of those two values (see table 1).

According to this, the work increases whenever the
method requires to be changed more frequently
(likelihood) or when its changes require propagation to
a larger proportion of the system (impact).

Table 1. Measures used

)},(|

)},(|

iii{ (m)NC

iii{ (m)C

cmclonedsmcP

cmclonedsmcP

¬∧∈

∧∈

=

=

otherwise 0,

)
i

cchanged(m, if 1,

|P)Changed(m, Commits |

�
∈

�
∈ ��

�
�
�

=

�
�

�

	

�

�

P
i

c
i

sm

P)(m,likelihood

|P)Changed(m, Commits|

|
i

s|

 |)
i

c(m, ethodsCochangedM |
�
∈

=
P

i
c

P)impact(m,

2.4. Experiment definition

To define the periods of interest for the previous
measures, we consider the sets of commit transactions
when the method has a clone (PC) and when it does not
have a clone (PNC):

where the predicate cloned(m,ci) indicates that the
method m has a clone after the commit transaction ci.

There are three disjoint sets to which a method can
belong, depending on the length of its cloned and not
cloned periods: it always had a clone (AC-methods), it
never had a clone (NC-methods), or sometimes it had a
clone and sometimes it did not (SC-methods).
Formally:

To reject the null hypothesis, we compare the
average behavior of the changeability measures

between AC-methods and NC-methods, and for each
SC-method we compare the measures between its two
periods. To validate the hypothesis, we check if the
measures of SC-methods increase when cloned.

Note that the measures should be affected by the
fact of being cloned. The likelihood should increase
because (1) cloning affects understandability which
may lead to more changes; and (2) incomplete updates
in clone families may require to be fixed. The impact
should increase because (1) changes to clones generate
ripple effects to their clone families, and (2) cloning
may indicate lack of abstractions, which requires more
methods to be modified than usual to achieve a logical
change.

2.5. Case studies

We expect that cloning behaves in the same way
regardless of the application domain. Therefore, we
selected four open source Java projects from
SourceForge, with varying age, size, number of
developers and activity rate (commit transactions per
month), as Table 2 shows. The number of LOCs and
methods reported are for the last version we analyzed.

Table 2. Case studies and their characteristics
),(),(PmlikelihoodPmimpactP)work(m, ×=

Pr
oj

ec
t

K
L

O
C

m
et

ho
ds

co
m

m
its

de
ve

lo
pe

rs

St
ar

t-
E

nd
m

on
th

s :
 m

on
th

s

ganttProj. 44 14469 2701 20 May 03-Dec 06: 45
jEdit 92 7868 1381 13 Sep 01-Jul 06: 58

freecol 54 3928 1087 14 Apr 04-Mar 07: 35
jboss/jboss 10 18781 5225 50 Apr 00-Jul 06: 63

GanttProject is a scheduling application with
facilities for doing Gantt charts, resource management,
calendars, etc. JEdit is a text editor for programmers
that can be configured as an IDE through its plug-in
architecture. FreeCol is a game in which players have
to conquer and colonize new worlds. JBoss is a J2EE
based application server, from which we analyzed the
jboss module.

3. Data collected

}|,

)()(

)()(

)()(

ii{ (m)

NCC

NC

C

smclifetimewhere

mPmP SC m

mlifetimemP NC m

mlifetimemP AC m

∈

∅≠∧∅≠↔∈

=↔∈

=↔∈

=

We have built a tool [12] that gathers the required
data (see section 2.2) and stores it in a MySQL
database. That is, for each snapshot, the tool extracts
from the CVS repository the files that have changed
and, from the lines changed, computes the methods
that were created, deleted and modified. After that, the

229

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

tool identifies which of the methods existing in that
snapshot had clones.

3.1. Elimination of noise from data

To be able to draw accurate conclusions from the
statistical analysis it is necessary to ensure that the data
collected complies with our assumptions: whenever
there is a clone it can be tracked along the versions of
the method where it is located; each method is
identified uniquely along its lifetime; all the
functionality changes are taken into account. In the
following sections we argue the steps required to
ensure each of these assumptions.

3.1.1. Clone identification. Our tool uses CCFinder
[13] to detect the clones of 30 or more consecutive
tokens. Setting 30 tokens as the threshold for the
minimum clone length can increase the number of false
positives because small clone fragments that are
accidentally similar might be identified as clones.
However, choosing that threshold can also increase the
chances of identifying fragmented clones, i.e. those
that are interrupted by a few lines of non-cloned code,
which CCFinder does not find.

We chose CCFinder because, compared with other
clone detection tools, CCFinder has better
performance, scalability, and recall, but a lower
precision [14]. Moreover, CCFinder does not depend
on the correctness of the source code analyzed. This is
an important characteristic given that some snapshots
have syntax errors. Furthermore, CCFinder does not
rely on the syntax of the language, as it is the case with
AST based detection tools. This makes CCFinder
immune to the evolutions of the programming
languages, like those that Java went through in the
timeframe of the selected case studies.

3.1.2. Method identification. Given that we
identify methods by their signature and location
(section 2.2), whenever a method (or its enclosing class
and package) is renamed or moved, the tool assumes it
has been deleted and another one has been created.
This makes the results inaccurate. We therefore
defined an algorithm to perform what is known as
origin analysis [15]. That is, finding if m ∈ si is the
same as method n ∈ si+1. Our algorithm works as
follows:
1. For each method detected as deleted by a commit

transaction, the candidate set of methods contains
those created by the same transaction.

2. The set of candidates is divided into those that
changed the signature but are in the same location
(i.e. same file, package, and class), w.r.t. the
original method that supposedly was deleted, and

those that are in a different location but the
method name and the parameters are the same.

3. The candidates are compared line by line with the
original method. If the similarity between the best
candidate and the original method is above a
certain threshold, then the candidate is identified
as the new version of the original method.

4. Once the whole system evolution has been
processed, we have a set of pairs
a-- X -->b stating that method b seems to be a new
version of method a, and that they have a
similarity X. Nevertheless, several methods may
have the same possible evolution, i.e. a-- X -->b
and p-- Y -->b. Those cases are resolved by
choosing the method that has the highest similarity
with b. If all the possible previous versions of a b
have the same similarity, we assume that b is a
new method and all its possible previous versions
are deleted methods.

5. We have now a set of pairs a->b stating that the
unique method names a and b denote in fact the
same method. We then put together pairs to obtain
chains a->b->c->… that show rename and move
operations on the same method. This step also
ensures that the renaming of methods is stored as a
change to the method.

6. Finally, the information about the PC and PNC
periods of a, b, c, … is merged together.

The similarity (i.e., step 3) between any two
methods a and b is computed as follows, where a
designates the shorter method, i.e. the one with less
lines. First, we remove all layout characters from a and
b. Then, for each line of a, we compute its similarity
with every line of b using the Strike A Match
algorithm1 and we keep the highest similarity value.
Next we compute the average value, over all lines of a,
and this will be the similarity between methods a and
b. Of all candidate methods in the "changed signature",
the one with the highest similarity value is kept. If this
value is above 70%, we consider to have found the new
version of the original method, and proceed with step
4. Otherwise, we go through the same process with the
candidate methods in the "moved" set. If no method
there has a similarity value above the 70% threshold,
we consider the original method to be effectively
deleted from the system.

It might be tempting to use CCFinder to perform
origin analysis, by checking which methods created in
one commit transaction are clones of those deleted in
the same transaction. However, CCFinder cannot find
fragmented clones, i.e. those interrupted by a few lines
of code. That is also the reason to compare the original
and candidate methods line by line: the algorithm

1 www.catalysoft.com/articles/StrikeAMatch.html

230

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

works even if there are new scattered lines from one
version to the next one. In order for CCFinder to detect
such cases, one would have to set a very low minimum
number of similar sequential tokens, but this in turn
would increase the possibility of false positives for the
origin analysis.

Results of the origin analysis filtering are
summarized in table 3. The third row indicates how
many methods were renamed or moved at least once in
their lifetime.

Table 3. Methods filtered with origin analysis
gantt jEdit freec jboss

methods identified initially 14895 8434 4099 18942

number of unique methods 11805 7392 3901 17784

 from those were renamed 1743 858 184 1001

3.1.3. Eliminating atypical changes. The
comparison of metrics can be greatly affected if one of
the periods had atypical changes. An atypical change is
a change that does not aim to modify a single
functionality feature. Examples of atypical changes are
those changes that make several improvements to
functionality, or that restructure the application. When
there is an atypical change in a period, the impact
measure increases greatly, making it difficult to
compare with a 'normal' period. We therefore discarded
for each project the 2.5% largest commit transactions.

3.1.4. Eliminating volatile periods. A volatile
period is a short period and can affect significantly the
comparison of the likelihood. Given that the likelihood
is calculated on the number of overall methods
changed per period, having periods with very different
lengths increases the chances of having very different
denominators in the likelihood of each period. This
results in significantly different likelihoods even if the
ratio of changes per commit is the same in both
periods.

We defined a volatile period as one that lasts less
than 15% of the method’s lifetime. Any method with a
volatile period (whether with or without clones) was
not analyzed.

3.2. Data analyzed

Table 4 has the total number of methods after origin
analysis, divided into the three groups, and the number
of methods actually analyzed. Analyzable methods are
those that have at least one change, so that the impact
measure can be calculated. Note that AC- and NC-
methods require at least one change in their lifetime to
be analyzable, but SC-methods require at least one
change in each period.

As table 4 shows if comparing the NC-methods to
the sum of AC- and SC-methods, there are far more
methods without clones than with clones. As the drop
to analyzable methods indicates, most methods are
never changed. Note also that atypical changes, by
definition, change methods across the whole system
and hence usually affect all sets of methods (NC, AC,
SC).
Table 4. Methods eliminated from the analysis

gantt jEdit freec. jboss
NC 10428 6291 2962 13962

NC analyzable 3681 3659 2578 6177
NC after atypical filter 3312 2263 1310 4558

AC 790 418 363 1841
AC analyzable 91 206 213 802

AC after atypical filter 91 202 169 743
SC 587 683 576 1981

SC analyzable 210 332 330 613
SC after atypical filter 194 329 262 558
SC after volatile filter 130 182 176 352

4. Results

In this section we present the results of the experiment.

4.1. Analysis of null hypotheses

This section presents the distributions of the measures
to test the null hypothesis. Tables 5 and 6 summarize
the p-values obtained from the statistical tests. Table 5
shows the p-value obtained by the Wilcoxon rank sum
test (i.e. paired test) from comparing the distributions
when cloned vs. when not cloned for the SC-methods.
Table 6 shows the p-value obtained by the Mann
Whitney test from comparing the distributions between
AC- and NC-methods. The p-value indicates the
probability that the null hypothesis was discarded by
chance in the statistical test. Having a p-value under
5% is considered to be enough to reject confidently the
null hypothesis, i.e. to say that the distributions
compared are different. The p-values that do not allow
to reject the null hypothesis (>0.05), are highlighted in
bold. These p-values could mean that the distributions
are indeed very similar or that they are different but the
statistical approximation does not show it. As several
p-values were not small enough to reject the null
hypotheses, we decided to check their results
graphically to see if the distributions are indeed similar
or if the statistical test just could not achieve enough
confidence with the data provided. Statistical tests may
produce misleading results if the distributions vary a
lot. The statistical tests work either by obtaining the

231

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

. Impact Likelihood Work
G

an
ttP

ro
je

ct
 0.009 0.9 0.1

JE
di

t

0.01 0.4 0.2

Fr
ee

co
l

0.6 0.4 0.1

JB
os

s

0.00006 0.02 0.1

- - - -Period cloned Period not cloned
Table 5. Distribution of measures PC vs. PNC for SC-methods (x-axis measure, y-axis % of cases)

Impact Likelihood Work

G
an

ttP
ro

je
ct

 0.0000003 0.02 0.0002

JE
di

t

0.004 0.03 0.0002

Fr
ee

co
l

0.01 0.000000001 0.2

JB
os

s

<0.000000001 <0.000000001 <0.000000001

- - - -Always cloned Never not cloned
Table 6. Distribution of measures AC- vs. NC-methods (x-axis measure, y-axis % of cases)

232

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

median of differences between the distributions (t-test
and Wilkinson test) or by computing the difference of
the areas when one curve is above or below the other
(MannWhitney test). However, it can happen by
chance that the sum of the areas in which one curve is
above is the same as the sum of the areas in which that
curve is below the other.

Tables 5 and 6 hence also show graphically the
distribution of the changeability measures when cloned
(dashed line) and when not cloned (solid line). Each
row in tables 5 and 6 represents a case study and each
column represents a changeability measure. The x-axis
of each distribution graph represents the values of the
measurement for that column, and the y-axis represents
the value of the probability density function, i.e. it is a
smooth curve that represents the proportion of methods
that had the measurement value given by x.

Several graphs show differences that statistical tests
miss (bold numbers vs. curves that are different). In
cases like the impact in freecol in table 5, although the
test does not give certainty that the distributions are
different when cloned and not cloned, the graphs show
that there are differences.

According to the p-values of table 5, the likelihood
did not change much for the methods sometimes
cloned. When a method has a clone it is expected to
undergo extra changes, namely those that come from
changes to the clone family. However, the total number
of changes in the system will increase as well. Given
that the likelihood is a ratio between the changes on the
method over the changes of the system, the fact that the
likelihood remains unchanged when cloned and not
cloned means that, in general, the number of extra
changes is proportional in the numerator and
denominator.

According to the information in tables 5 and 6,
impact behaves differently between cloned and not
cloned. However, table 5 may be more accurate than
table 6 because it compares the same methods when
cloned and not cloned, which leaves out inherent
differences on the changeability of each method. In all
cases the main peak of the impact distribution is on the
left end of the x axis: this means that most of the
methods with clones have a low impact value. Given
that the peak of the distribution when cloned is higher
than the peak distribution when not cloned, for most of
the cases, one can say that most of the methods seem to
have a similar impact when cloned. So, most of the
methods with clones have a similar low impact.
Therefore, being cloned seems to standardize the value
of a method’s impact.

Not all impact distributions when cloned follow the
pattern described before i.e. a higher peak than when
not cloned, on the left end of the x-axis. Some of these

distributions have (1) their highest peak slightly to the
right of the peak of the not cloned distribution, or (2) a
wider distribution. The first pattern can be seen in
JEdit in table 6. This means that in general the impact
of those always cloned is higher than those never
cloned in this case study, which supports the
hypothesis. The second pattern appears in freecol in
table 5, and in jBoss in table 6. This pattern means that
there is a significant number of methods with a higher
value in their impact when they have clones,
supporting as well the hypothesis. Besides, jBoss in
table 6 also shows a second peak at the right end of the
x-axis: a significant percentage of always cloned
methods have a much higher impact than those never
cloned.

Summarizing, we have found evidence suggesting
that, in general, cloning does not affect much the
likelihood of changes, although it may increase the
number of changes in a method. While in most of the
cases cloning standardizes the impact of changing a
method to the worst impact of the clone family, in a
few others the impact seems to confirm the hypothesis.

4.2. Support for the hypothesis

We also calculate for each SC-method and for each
measure the effect of being cloned. The effect is
defined as the ratio of the increase or decrease of the
measure between periods w.r.t. to the value of the
measure during the not cloned period:

where M is the measure, and m the method
analyzed.

))(,(
))(,())(,(

)
mPmM

mPmMmPmM
m,increase(M

NC

NCC −
=

Figure 1 shows the increase of work in the cloned
periods. The y axis shows the level of increase of the
measure and the x axis shows the cumulative
percentage of methods in increasing order of y (work
increase). The figure shows that it is inadequate to
assume that all clones are harmful because in all case
studies just half of the analyzed methods lead to an
increase in maintenance effort. However, figure 4
seems to confirm the intuition that clones can be very
harmful for changeability. When the measures are
lower when cloned, and hence the difference between
the measures is negative, the measure decreased by at
most 100% (lowest negative value on the y axis). But
when the measures are higher when cloned, the
difference could be up to 72479% (outside the y-axis
range shown in the figure). Besides, there is a rapid
growth in the difference of the measures as soon as it
becomes positive.

233

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

-100%

100%

300%

500%

700%

900%

0% 20% 40% 60% 80% 100%

% of methods

w
or

k
in

cr
ea

se
ganttProject
jEdit
freecol
jboss

Figure 1. Effect of clones on the work

We decided to evaluate those methods that
presented the highest increase of work to validate that
there are clones that are worse for maintenance. We
selected for each application those SC-methods that
were in the top 10% of work increase when cloned. We
expected to find any common characteristics in these
harmful methods. The characteristics analyzed were
size of the clone, size of the family, similarity in the
name of the methods cloned, and the distance between
methods cloned, i.e. the distance of the closest
common ancestor between two methods in a tree
defined by the package and class hierarchy. If the
cloned methods are in the same class, their distance is
zero, if they are in different classes of the same
package, their distance is one. The distance is inspired
on the clone classification by location proposed by
Kapser [16].

The evaluated characteristics aim to grasp some of
the reasons to consider clones harmful. The size of the
clone could account for the effect on understandability
of the method. The size of the family was looked at
because the larger the family is the more likely it is that
the method will change. The similarity of the method
names show if the methods aim to provide similar
functionality and therefore could be an example of lack
of abstraction. Finally the distance of the methods aims
to grasp the difficulty of modifying a clone family that
does not have its clones close to each other.

However, we could not find any trend in the
characteristics among these clones. Sizes varied from
30 to 99 tokens. The size of the clone families varied
from 2 to 18 methods. The distance among clones also
varied, from 0 to 5. The similarity of the names of the
methods also varied, with pairs like
org.gjt.sp.jedit.textarea.FoldVisibilityM

anager.virtualToPhysical(int) -
org.gjt.sp.jedit.textarea.FoldVisibilityM

anager.physicalToVirtual(int) and pairs like
org.gjt.sp.jedit.browser.VFSFileNameField
.doComplete() -
org.gjt.sp.jedit.gui.PanelWindowContainer

$ButtonLayout.layoutContainer(Container).
Apparently the huge differences in work are due to

atypically small changes that just modified the method

analyzed in the whole application in the period not
cloned, making the value of the work much lower
when not cloned than when cloned. However more
research is needed in order to identify if there are
clones that regardless of the method they belong to
have harmful effects, and what characterizes them.

5. Threats to validity

This section discusses issues that may affect the
results (internal validity) or the boundaries in which
such results apply (external validity).

First, CCFinder’s lack of precision threats the
comparisons of the distributions due to the size of the
compared sets of methods. If one set is much larger
than the other (e.g. NC- vs. AC-methods), false
positives in the smaller set may affect the average
behavior of the measures for that set (in this case the
AC-methods). Therefore, comparing average
measurements would not assess correctly the
difference of the measurements in the sets. However,
as previously mentioned, clone detection tools with
higher precision, based on abstract syntax trees, have
many restrictions to overcome for analyzing long-lived
programs written in an evolving language. False
positives will be tackled in future work.

Second, the selection of case studies could affect
the results obtained. For example, dnsJava has unusual
cloning patterns. There is a considerable amount of
files repeated in several directories (e.g.
org/xbill/DNS/ and org/xbill/DNS/utils/),
during periods varying from 1 commit to 95% of the
application’s lifetime. Moreover, these clones do not
seem to be an experimental variation of the code,
because the files change in the same way. Therefore,
dnsJava might not be a suitable candidate for the
analysis of the nature of cloning. This is a relevant
observation given that dnsJava is a popular case study
for the analysis of source code clones [4, 6]. We could
not find any abnormal cloning patterns in the case
studies we selected.

Third, the case studies selected may not represent
typical applications: they are small open source
systems. Small applications are usually developed by
small groups of developers, so it is likely that they
know very well the code base. In particular, they may
know the location of clone families and consequently
maintain them consistently. This awareness of cloning
may not happen in larger applications. Nevertheless,
our results on jBoss (50 developers) indicate although
that effect can be seen (the impact in table 6 has a
second peak to the right of the x-axis), most of the
methods (i.e. the main peak of the distribution)
behaved like the other case studies. As for being open

234

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

source projects, we think that there is no limitation of
our results given that it has not been proved yet that
OSS applications are essentially different from closed
source applications [17].

Fourth, another potential problem is the diversity of
domains in the case studies because they may present
different types of cloning. However, on one hand,
comparing the changeability of the same method in
two different periods of time makes the nature of the
method irrelevant for the analysis. On the other hand,
given that distribution graphs show general behavior of
the measures, individual differences that may affect the
comparison of AC- and NC-methods have less impact.
Besides, the methods of each application were
compared only against methods of the same
application. Furthermore, the results suggest that even
if the type of cloning among applications is different,
their overall effect in changeability effort is similar
(figure 1).

Fifth, the fact that all case studies are written in
Java might affect the distribution of the types of cloned
methods found, as some of the clones are introduced to
cope with language limitations [18]. This issue might
indeed lead to different results for applications written
in other languages. So, in principle, our results apply
only to Java applications and further research is needed
for other languages.

Sixth, the definition of commit transaction makes
the measurements sensitive to the developer’s commit
style. The assumption for the measurements is that
commit transactions show a relation between methods
that change together. However, if the developer
commits in fixed time intervals regardless of the
completeness of the changes, it is possible that the co-
change relations obtained are by chance.

Seventh, given that the changes are identified at
method level and not at clone level, it is possible that
the changeability obtained has no relation with the fact
of being cloned. However, as mentioned before, the
idea was to assess if methods with clones were more
difficult to change. That means that even if the change
does not affect the cloned tokens it might be that the
fact of being cloned was the cause of such change.

Eighth, the noise reduction was done after finding
that most of the harmful clones either had a very short
cloned period or they were cloned in restructuring
periods. Therefore, in order to find the real harmful
cloned methods, we introduced thresholds for atypical
changes and volatile periods obtained by trial and error
on reducing the amount of false harmful clones. A
more systematic approach with statistical outliers may
improve the results.

Finally, the fact that the NC methods are more
affected by the removal of atypical changes may affect
the comparison between AC and NC methods.

6. Related work

Several studies have addressed the impact of clones.
Most of them have focused on the need for extra
updates to keep the clone family consistent, and on the
effects of not doing so [3-8]. Nevertheless, inconsistent
changes may simply indicate separate evolution of the
clones. These studies therefore do not address the
whole effect of clones on changeability. In fact, some
authors [18, 19] have found that not all cloning is
harmful: it saves programming time, captures paired
operations and crosscutting concerns, helps to identify
which code is worth restructuring [18]. There are even
cases where cloning has been argued a reasonable
design decision [19].

Our work is related to the study presented by Geiger
et al. [5] as they tried to find if files that share a clone
change together. Contrary to theirs, our study takes
into account several details that could have affected
their results, such as the granularity level (files vs.
methods) and the fact that clones do not always span
for the whole method’s lifetime, which means that
Geiger et al. do not compare different periods.

There are a couple of studies that assess the relation
between clones and bugs [20, 21]. In contrast to our
work, they do not analyze if the pasted clones required
more maintenance, or maintenance that required more
effort. Li et al. found that inconsistent renaming of
identifiers where the clone is pasted produces bugs.
They found that 13% of cloning produced errors, and
14% were potentially harmful [20]. Chou et al.
analyzed code with errors, and found that bugs are
correlated with developers that clone code without
validating its pre- and post-conditions in the new
context where the code is pasted, i.e. they are ignorant
of the system’s rules or of the system’s interfaces [21].

The work closest to ours is the attempt by Monden
et al. [22] to measure the impact of clones at module
level. Maintenance is measured in absolute number of
revisions. They found that modules are less
maintainable if they have clones, in particular larger
clones. However, our study is more precise: it is
performed at a finer granularity level (i.e. methods
instead of modules), and it has more accurate
indicators of maintenance impact (measurements per
period instead of number of revisions). Our measures
are more precise since they are independent of the age
of the methods, and of the overall level of activity
(number of changes) on the system.

235

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

7. Conclusions and future work

The software engineering community has increased
its interest in code cloning in recent years, in particular
regarding untested myths about their harmfulness
Nevertheless, most of the studies have focused on
analyzing if related clones are consistently changed or
not, and whether such inconsistent changes lead to
more bugs. Apart from Monden et al., no one seems to
have directly attempted to measure whether cloning
reduces the ease of changing the code, independently
of the reason.

We proposed a methodology to analyze source code
flaws, by measuring the changeability of methods
during periods with or without a particular
characteristic of the method. The methodology is based
on measures that capture the work required to keep the
“consistency’’ of the application after the change.
Given that our measures are not absolute values like
[10, 22], they can be compared regardless of the
lifetime of methods. Furthermore, being ratio values,
the measures have an intuitive meaning: the lower the
measure, the better the changeability.

The results show that change effort may increase
when the method has clones. In at least 50% of the
cases, being cloned does not increase the changeability
measures, but when it increases the difference can be
significant. Such increase seems to be more related to
the percentage of the system affected among the
methods in the clone family, than to the type of clone
that the method has.

In future work we will investigate if the
maintenance effort still increases after cleaning the
data from false positives and atypically small changes.
We also plan to classify and describe the clones
depending on their effect on changeability indicators.

References
[1] S. Ducasse, M. Rieger, and S. Demeyer, "A Language
Independent Approach for Detecting Duplicated Code," in
Proc. Int'l Conf. on Software Maintenance, 1999, pp. 109-
118.
[2] C. Kapser and M. Godfrey, "Aiding Comprehension of
Cloning Through Categorization," in Proc. Int'l Workshop on
Principles of Software Evolution, 2004, pp. 85-94.
[3] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J.
Hudepohl, "Assessing the Benefits of Incorporating Function
Clone Detection in a Development Process," in Proc. Int'l
Conf. on Software Maintenance, 1997, pp. 314-321.
[4] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, "An
empirical study of code clone genealogies," in Proc.
European Softw. Eng. Conf. and symp. on Foundations of
Softw. Eng., 2005, pp. 187-196.
[5] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger, "Relation
of Code Clones and Change Couplings," in Proc. Int'l Conf.

of Fundamental Approaches to Software Engineering, 2006,
pp. 411-425.
[6] L. Aversano, L. Cerulo, and M. D. Penta, "How Clones
are Maintained: An Empirical Study," in Proc. European
Conf. on Software Maintenance and Reengineering, 2007,
pp. 81-90.
[7] T. Bakota, R. Ferenc, and T. Gyimothy, "Clone Smells in
Software Evolution," in Proc. Int'l Conf. on Software
Maintenance (ICSM): IEEE Computer Society, 2007.
[8] J. Krinke, "A Study of Consistent and Inconsistent
Changes to Code Clones," in Proc. Working Conf. on
Reverse Engineering, 2007, pp. 170-178.
[9] J. Sanders and E. Curran, Software Quality, A framework
for success in software development and support: Addison-
Wesley Professional, 1995.
[10] T. Zimmermann and P. Weibgerber, "Preprocessing
CVS data for fine-grained analysis.," in Proc. Int’l workshop
on Mining Software Repositories, 2004, pp. 2-6.
[11] T. B. V. Belle, "Modularity and the Evolution of
Software Evolvability," The University of New Mexico,
2004.
[12] A. Lozano, M. Wermelinger, and B. Nuseibeh,
"Assessing the impact of bad smells using historical
information," in Proc. Int'l Workshop On Principles of
Software Evolution, 2007, pp. 31 - 34.
[13] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code," IEEE Trans. Softw. Eng., vol. 28,
pp. 654-670, 2002.
[14] E. Burd and J. Bailey, "Evaluating Clone Detection
Tools for Use during Preventative Maintenance," in Proc.
Int’l workshop on Source Code Analysis and Manipulation,
2002, pp. 36-43.
[15] L. Zou and M. W. Godfrey, "Detecting merging and
splitting using origin analysis," in Proc. Working Conf. on
Reverse Engineering, 2003, pp. 146-154.
[16] C. Kapser and M. Godfrey, "Improved Tool Support for
the Investigation of Duplication in Software," in Proc. Int'l
Conf. on Software Maintenance, 2005, pp. 305-314.
[17] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and
A. Capiluppi, "Empirical Studies of Open Source Evolution,"
in Software Evolution, T. Mens and S. Demeyer, Eds.:
Springer, 2008.
[18] M. Kim, L. Bergman, T. Lau, and D. Notkin, "An
ethnographic study of copy and paste programming practices
in OOPL," in Proc. Int'l Symp. on Empirical Software
Engineering, 2004, pp. 83-92.
[19] C. Kapser and M. Godfrey, "'Cloning considered
harmful' considered harmful," in Proc. Working Conf. on
Reverse Engineering, 2006, pp. 19-28.
[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale
Software Code," IEEE Trans. Softw. Eng., vol. 32, pp. 176-
192, 2006.
[21] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,
"An empirical study of operating systems errors," in Proc.
symp. on Operating systems principles, 2001, pp. 73-88.
[22] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i.
Matsumoto, "Software Quality Analysis by Code Clones in
Industrial Legacy Software," in Proc. Int’l symp. on Software
Metrics, 2002, pp. 87-94.

236

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 07:25 from IEEE Xplore. Restrictions apply.

