29,714 research outputs found

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Fear Classification using Affective Computing with Physiological Information and Smart-Wearables

    Get PDF
    Mención Internacional en el título de doctorAmong the 17 Sustainable Development Goals proposed within the 2030 Agenda and adopted by all of the United Nations member states, the fifth SDG is a call for action to effectively turn gender equality into a fundamental human right and an essential foundation for a better world. It includes the eradication of all types of violence against women. Focusing on the technological perspective, the range of available solutions intended to prevent this social problem is very limited. Moreover, most of the solutions are based on a panic button approach, leaving aside the usage and integration of current state-of-the-art technologies, such as the Internet of Things (IoT), affective computing, cyber-physical systems, and smart-sensors. Thus, the main purpose of this research is to provide new insight into the design and development of tools to prevent and combat Gender-based Violence risky situations and, even, aggressions, from a technological perspective, but without leaving aside the different sociological considerations directly related to the problem. To achieve such an objective, we rely on the application of affective computing from a realist point of view, i.e. targeting the generation of systems and tools capable of being implemented and used nowadays or within an achievable time-frame. This pragmatic vision is channelled through: 1) an exhaustive study of the existing technological tools and mechanisms oriented to the fight Gender-based Violence, 2) the proposal of a new smart-wearable system intended to deal with some of the current technological encountered limitations, 3) a novel fear-related emotion classification approach to disentangle the relation between emotions and physiology, and 4) the definition and release of a new multi-modal dataset for emotion recognition in women. Firstly, different fear classification systems using a reduced set of physiological signals are explored and designed. This is done by employing open datasets together with the combination of time, frequency and non-linear domain techniques. This design process is encompassed by trade-offs between both physiological considerations and embedded capabilities. The latter is of paramount importance due to the edge-computing focus of this research. Two results are highlighted in this first task, the designed fear classification system that employed the DEAP dataset data and achieved an AUC of 81.60% and a Gmean of 81.55% on average for a subjectindependent approach, and only two physiological signals; and the designed fear classification system that employed the MAHNOB dataset data achieving an AUC of 86.00% and a Gmean of 73.78% on average for a subject-independent approach, only three physiological signals, and a Leave-One-Subject-Out configuration. A detailed comparison with other emotion recognition systems proposed in the literature is presented, which proves that the obtained metrics are in line with the state-ofthe- art. Secondly, Bindi is presented. This is an end-to-end autonomous multimodal system leveraging affective IoT throughout auditory and physiological commercial off-theshelf smart-sensors, hierarchical multisensorial fusion, and secured server architecture to combat Gender-based Violence by automatically detecting risky situations based on a multimodal intelligence engine and then triggering a protection protocol. Specifically, this research is focused onto the hardware and software design of one of the two edge-computing devices within Bindi. This is a bracelet integrating three physiological sensors, actuators, power monitoring integrated chips, and a System- On-Chip with wireless capabilities. Within this context, different embedded design space explorations are presented: embedded filtering evaluation, online physiological signal quality assessment, feature extraction, and power consumption analysis. The reported results in all these processes are successfully validated and, for some of them, even compared against physiological standard measurement equipment. Amongst the different obtained results regarding the embedded design and implementation within the bracelet of Bindi, it should be highlighted that its low power consumption provides a battery life to be approximately 40 hours when using a 500 mAh battery. Finally, the particularities of our use case and the scarcity of open multimodal datasets dealing with emotional immersive technology, labelling methodology considering the gender perspective, balanced stimuli distribution regarding the target emotions, and recovery processes based on the physiological signals of the volunteers to quantify and isolate the emotional activation between stimuli, led us to the definition and elaboration of Women and Emotion Multi-modal Affective Computing (WEMAC) dataset. This is a multimodal dataset in which 104 women who never experienced Gender-based Violence that performed different emotion-related stimuli visualisations in a laboratory environment. The previous fear binary classification systems were improved and applied to this novel multimodal dataset. For instance, the proposed multimodal fear recognition system using this dataset reports up to 60.20% and 67.59% for ACC and F1-score, respectively. These values represent a competitive result in comparison with the state-of-the-art that deal with similar multi-modal use cases. In general, this PhD thesis has opened a new research line within the research group under which it has been developed. Moreover, this work has established a solid base from which to expand knowledge and continue research targeting the generation of both mechanisms to help vulnerable groups and socially oriented technology.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automåtica por la Universidad Carlos III de MadridPresidente: David Atienza Alonso.- Secretaria: Susana Patón Álvarez.- Vocal: Eduardo de la Torre Arnan

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field
    • 

    corecore