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Abstract

Among the 17 Sustainable Development Goals proposed within the 2030 Agenda

and adopted by all of the United Nations member states, the fifth SDG is a call

for action to effectively turn gender equality into a fundamental human right and

an essential foundation for a better world. It includes the eradication of all types

of violence against women. Focusing on the technological perspective, the range of

available solutions intended to prevent this social problem is very limited. More-

over, most of the solutions are based on a panic button approach, leaving aside

the usage and integration of current state-of-the-art technologies, such as the Inter-

net of Things (IoT), affective computing, cyber-physical systems, and smart-sensors.

Thus, the main purpose of this research is to provide new insight into the design and

development of tools to prevent and combat Gender-based Violence risky situations

and, even, aggressions, from a technological perspective, but without leaving aside

the different sociological considerations directly related to the problem. To achieve

such an objective, we rely on the application of affective computing from a realist

point of view, i.e. targeting the generation of systems and tools capable of being im-

plemented and used nowadays or within an achievable time-frame. This pragmatic

vision is channelled through: 1) an exhaustive study of the existing technological

tools and mechanisms oriented to the fight Gender-based Violence, 2) the proposal

of a new smart-wearable system intended to deal with some of the current technolog-

ical encountered limitations, 3) a novel fear-related emotion classification approach

to disentangle the relation between emotions and physiology, and 4) the definition

and release of a new multi-modal dataset for emotion recognition in women.

Firstly, different fear classification systems using a reduced set of physiological sig-

xxvii



nals are explored and designed. This is done by employing open datasets together

with the combination of time, frequency and non-linear domain techniques. This

design process is encompassed by trade-offs between both physiological consider-

ations and embedded capabilities. The latter is of paramount importance due to

the edge-computing focus of this research. Two results are highlighted in this first

task, the designed fear classification system that employed the DEAP dataset data

and achieved an AUC of 81.60% and a Gmean of 81.55% on average for a subject-

independent approach, and only two physiological signals; and the designed fear

classification system that employed the MAHNOB dataset data achieving an AUC

of 86.00% and a Gmean of 73.78% on average for a subject-independent approach,

only three physiological signals, and a Leave-One-Subject-Out configuration. A de-

tailed comparison with other emotion recognition systems proposed in the literature

is presented, which proves that the obtained metrics are in line with the state-of-

the-art.

Secondly, Bindi is presented. This is an end-to-end autonomous multimodal system

leveraging affective IoT throughout auditory and physiological commercial off-the-

shelf smart-sensors, hierarchical multisensorial fusion, and secured server architec-

ture to combat Gender-based Violence by automatically detecting risky situations

based on a multimodal intelligence engine and then triggering a protection protocol.

Specifically, this research is focused onto the hardware and software design of one of

the two edge-computing devices within Bindi. This is a bracelet integrating three

physiological sensors, actuators, power monitoring integrated chips, and a System-

On-Chip with wireless capabilities. Within this context, different embedded design

space explorations are presented: embedded filtering evaluation, online physiologi-

cal signal quality assessment, feature extraction, and power consumption analysis.

The reported results in all these processes are successfully validated and, for some

of them, even compared against physiological standard measurement equipment.

Amongst the different obtained results regarding the embedded design and imple-

mentation within the bracelet of Bindi, it should be highlighted that its low power

consumption provides a battery life to be approximately 40 hours when using a 500

mAh battery.

Finally, the particularities of our use case and the scarcity of open multimodal
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datasets dealing with emotional immersive technology, labelling methodology con-

sidering the gender perspective, balanced stimuli distribution regarding the target

emotions, and recovery processes based on the physiological signals of the volunteers

to quantify and isolate the emotional activation between stimuli, led us to the def-

inition and elaboration of Women and Emotion Multi-modal Affective Computing

(WEMAC) dataset. This is a multimodal dataset in which 104 women who never

experienced Gender-based Violence that performed different emotion-related stimuli

visualisations in a laboratory environment. The previous fear binary classification

systems were improved and applied to this novel multimodal dataset. For instance,

the proposed multimodal fear recognition system using this dataset reports up to

60.20% and 67.59% for ACC and F1-score, respectively. These values represent a

competitive result in comparison with the state-of-the-art that deal with similar

multi-modal use cases.

In general, this PhD thesis has opened a new research line within the research group

under which it has been developed. Moreover, this work has established a solid base

from which to expand knowledge and continue research targeting the generation of

both mechanisms to help vulnerable groups and socially oriented technology.

xxix



Chapter 1
Introduction

1.1 Context and motivation
Gender-based Violence constitutes a violation of human rights and fundamental

freedoms recognised by the 1993 United Nations Declaration on the Elimination

of Violence against Women [11]. This declaration provides a clear and complete

definition of what this type of violence means, which is stated in its first article

by considering any act of violence, whether it is physical, sexual, or psychological,

based on belonging to the female gender. In 2020, the European Commission ex-

panded such definition and stated that this violence includes the one against women,

men and children [12]. Regarding the specific numbers, from 2000 to 2018, more

than one in four (27%) ever-partnered women aged between 15 and 49 years had

experienced physical or sexual, or both, intimate partner violence since the age of

15 years [13]. This problem is not new, in fact, in the European Union, the first

principle of equal treatment for men and women was introduced in 1975 into the

Treaty of Rome [14]. However, it is in 2007 through the Treaty of Lisbon [15] that

the European Community included this principle among the values and objectives

of the Union. Since then, different territories within Europe have taken these steps

as a base building block for their Gender-based Violence laws. Regardless of such ef-

forts, there was still a need for a set of community standards or rules to be applicable

that targeted this problem. Thus, the Council of Europe Convention on preventing

and combating violence against women and domestic violence, also known as the

Istanbul Convention, was approved in 2011 and entered into force later in 2014 [16].

This convention established a common framework or instrument from which differ-
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Chapter 1. Introduction

ent standards on prevention, protection, prosecution and provision of services to

respond to the needs of victims and those at risk are set out. To date, all members

have signed the convention and 35 out of 47 of them have ratified it, although in July

2021, Turkey became officially the first and only country to withdraw from it. Note

that this country was among the initial precursors of this agreement. Moreover, the

Istanbul Convention created a monitoring mechanism responsible for controlling,

reporting, and evaluating legislative and other measures taken by the ratifier states.

However, the implementation of all the recommendations by the convention is not

always a straightforward task, since it depends on the resources of each state. For

that reason, different European Union funding programs were launched to ease the

implementation of these actions (DAPHNE, PROGRESS, REC), but always taking

a mutual learning approach by leveraging the message within and outside the Euro-

pean Community, as it is conceived as a worldwide problem [17]. Along with these

agreements, conventions, and funding programmes, different pacts and organisations

were also created, such as the European Pact for Gender Equality (2011-2020) and

the European Institute for Gender Equality. These actions have been accompanied

by European regulations, which aim to safeguard the rights of victims from a legal

point of view (EU 606/2013, 2012/29/EU).

Focusing on Spain, where this research has been developed, it must be highlighted

the unanimous approval in 2004 of Organic Law 1/2004 through which this coun-

try became a fundamental reference in the world for the way of facing this prob-

lem. Specifically, it is a comprehensive law against Gender-based Violence, which

also considers this type of violence to be that wielded on persons dependent on a

woman when they are abused to cause harm to her. Moreover, Spain was one of

the first countries to sign the Istanbul Convention in 2011, to be later ratified in

2014. Another key date in the national road map was the ratification of the National

Agreement against Gender-based Violence by the different Groups in the National

Parliament, the Regional Governments and Local Entities in December 2017. As for

many other countries in the European Community, Spain is divided into autonomous

regions which, apart from what refers to national legislative application, have their

own regional laws and regulations. For instance, the Autonomous Community of

Madrid possess a dilated experience regarding Gender-based Violence policies and le-
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gal actions. One of the greatest achievements of this community related to this topic

was the approval of the first regional Organisation Act No. 5/2005 of 20 December

on comprehensive protection measures against Gender-based Violence. Moreover,

this community also created a specific regional institutional body to assess and eval-

uate the integration of such policies, this was conceived as the regional Gender-based

Violence observatory in 2003 (decree 256/2003, 27 November). Lastly, in 2016 they

introduced a comprehensive strategy for preventing and combating Gender-based

Violence, which consisted of a series of measures and actions to be developed from

that year till 2021 and reflected the commitment of the Madrid government to fight

toward the eradication of this problem. Despite all these national and regional mea-

sures, the Government office against Gender-based Violence accounted a total of

1117 women killed since 2003 by October 2021, Fig. 1-1.

Based on the above facts, we can conclude that Gender-based Violence is an emer-

gency problem that leads society to deal with it by using different perspectives and

adopting a multidisciplinary approach. For instance, from a sociological point of

view, education and information awareness regarding the prevention and combat

of violence against women is essential. Moreover, the technological perspective is

also a fundamental aspect related to the development of new emerging technology

that eases the creation of new platforms for preventing and responding to gender

violence [18]. In fact, these and other perspectives as legal, psychological, and med-

ical, amongst others, are linked and work together toward day-to-day solutions to

combat this problem. This multidisciplinary claim is strongly supported by a wide

range of professionals that work closely and personally with victims (law enforcement

agents, judges, and psychologists) [19]. However, they identify two main drawbacks

of the current public instruments by agreeing that more and better-organised efforts

should be invested into the prevention mechanisms or tools and into the training for

the professionals who deal directly with the victims towards avoiding more harmful

re-victimisation.

Despite the institutional effort, developing solutions by applying a multidisciplinary

focus to create safer communities is a challenging task. However, all the mentioned

perspectives need to be engaged and cooperate in a narrower way to combat Gender-

based Violence efficiently. Due to the digital transformation that some countries in
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Figure 1-1: Total Gender-based Violence victims killed from 2003 to October 2021.
Data provided by [1].

Europe are undergoing, they are trying to take advantage of the development of

new technologies to provide services to communities, from which, some of them are

intended to deal with this problem in question. For instance, in Spain, different ser-

vices have been launched, such as VioGen [20], ATENPRO [21], and COMETA [7].

First, VioGen allows to estimate the risk level faced by a Gender-based Violence

victim and determines the adequate type and degree of protection for her. This risk

level is updated continuously according to her legal and social situation. This tool is

the result of intensive research by the Spanish Home Affairs Department with various

Spanish university research groups with experts in psychology, criminology, and soci-

ology. Second, ATENPRO is a service that provides a direct and 24-7 hotline to the

Spanish law enforcement agencies through a panic button. Specifically, the victim

is given a mobile device that allows continuous communication at any moment and

circumstance. Such communication is handle by a specialised telephonic assistance

centre, where specifically trained attendants give an adequate response to handle

this type of situations in real-time. Finally, COMETA is a system conceived as a set

of telematic control devices adopted when a restraining order is issued against the

aggressor. In this case, both the victim and the aggressor are given a geolocation de-

vice with basic voice and data telecommunication capabilities to communicate with
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the control centre. The aggressor must also wear a lightweight bracelet-like radio-

frequency device that connects to the geolocation devices. Although COMETA

offers a technological solution for combating Gender-based Violence, its limited bat-

tery life and outdated technology present a high false-positive rate [22, 23], apart

from the risk of harassment for the victims.

In addition to the public government organisations efforts, the private sector is

also encouraged worldwide to bring a solution to the Gender-based Violence prob-

lem. In fact, different private initiatives continually come out with ideas to prevent

and avoid this problem. For instance, the XPrize Foundation launched in 2018 a

$1 million worldwide competition to challenge teams around the world to leverage

technology for empowering women to respond to sexual aggression. The goal of

this competition was to develop a technological solution capable of triggering emer-

gency alerts autonomously, transmitting information to a network of community

responders, and being as affordable as possible, all within 90 seconds. The seven

finalists used wearable technology with the latest wireless communication protocols

linked with different responders or even with law enforcement agencies. Only one of

them included affective computing capabilities to their devices to seamlessly track

emotional threat levels by using cardiac physiological information. Monitoring such

information is proven as a solid emotional indicator [24].

Considering all the reviewed information and targeting the generation of new pre-

vention and combating mechanisms, a new autonomous, smart, inconspicuous, con-

nected, edge-computing, and wearable-ready tool able to detect and alert when a

user is under a Gender-based Violence situation, might be exploited. On this ba-

sis, the research work described in this document is focused on providing a smart

technological solution to help dealing with the stated problem. This system will be

hereinafter referred to as BINDI along the entire document, and it has been devel-

oped by the UC3M4Safety group at University Carlos III of Madrid. Specifically,

this research is focused on the design, development, and implementation of one of

three devices that make up the system, which is a smart bracelet using embed-

ded affective computing based on physiological monitoring for detecting fear-related

emotional states. The other two devices are a smart pendant and a smartphone

application. The former captures audio-on-demand, while the latter performs phys-
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iological and physical data fusion and handles the emergency alarms to be sent to

a trusted responders network or even to the law enforcement agencies. The nature

of the problem to be addressed made this work be derived by a multidisciplinary

approach, gathering knowledge from Gender Studies, Electronics, Telematics, Phys-

iology, Speech and Audio Technologies, and Affective Computing.

1.2 Scope of this dissertation
This research aims to provide new insight into the development of tools to prevent

and avoid Gender-based Violence risky situations and, even, aggressions, from a

technological perspective, but without leaving aside the different sociological con-

siderations related to the problem.

From a theoretical point of view, this work proposes a new way of using physiologi-

cal signals and emotion recognition to provide autonomous, wearable, and inconspic-

uous solutions to protect vulnerable people. The goal in that aspect is to disentangle

the relationship between physiological signals and fear-related emotions, providing

alternatives to emotion recognition classification systems already proposed in the

literature, new physiological monitoring wearable-ready system architectures, new

sensor integration and embedded implementation into wearable devices, new tech-

niques to mitigate physiological motion artifacts noise, and performing an analytical

study of the entire proposed solution.

From a practical point of view, different fear binary emotion recognition systems

were provided based on openly available databases that contain non-acted evoked

emotions for a set of volunteers. Moreover, a new wearable hardware solution for gen-

der violence detection was developed and implemented based on the ARM Cortex-

M® processor family, using three of the most inconspicuous physiological sensors,

Photoplethysmography (PPG), EDA, and SKT, and low power wireless communi-

cations. This device forms part of the BINDI system, which has been developed

along with the UC3M4Safety group. The requirements for the complete system are

the lowest power consumption possible, an inconspicuous and wearable integration

of all devices and components, and the lowest computational time for the different

digital processing architectures to achieve the fastest response time possible. Fi-

nally, a new database using immersive stimuli and specific stimuli oriented to the
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Gender-based Violence use case was generated. The latter is particularly relevant

as the generated database is unique in the literature.

Specifically, the goals of this research are the following:

• Proposing a new approach to detect fear-related emotions making use of the

different emotional theories and physiological affective indicators.

• Deriving new wearable-ready fear-related detection systems by using open

databases that have used physiological signals for emotion recognition.

• Dealing with the physiological behaviour (quasi-stationary, non-stationary and

non-linearity) and proposing new digital processing techniques to take it into

account for rapid-inference fear-related systems.

• Analysing and studying different integration constraints to be considered in

wearable affective computing systems.

• Designing a new wearable hardware solution to deploy the fear-related detec-

tion system architectures proposed. At this point, we would face the hard-

ware and embedded software implementation toward an inconspicuous, au-

tonomous, low power, wireless and connected solution.

• Comparing the obtained results with similar published architectures and com-

mercial solutions for gender violence prevention.

• Generating a new database focused on the specific targeted Gender-based Vi-

olence use case that gathers physiological, physical and emotional responses

to immersive stimuli.

1.3 Document outline
The document is divided into three parts. The first part reviews the relation-

ship between emotions and physiological signals by researching the different emo-

tional theories and physiological affective indicators. The general framework of the

databases used in the literature, which deal with emotion recognition by using phys-

iological signals, are also analysed. In the second part, we present the application

of the theory reviewed in the first part to the proposal and analysis of a new fear-

related emotion recognition system. The third part presents both hardware and

embedded software results of the edge-computing system developed for fear binary

recognition. Finally, the new database for emotion recognition focused on fear de-
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tection is also presented in the last part. Moreover, wearable integration constraints

and physiological dynamics to be considered are given and analysed along the entire

document.

Thus, the outline of the document is the following:

Part I

Chapter 2 describes basic and advanced notions needed to get a good understand-

ing of the topics of this research. Specifically, emotional theories, human emotion

classification methodologies, tools for emotion elicitation, and physiological affective

indicators quantification are studied. All of these topics are supported by references

from the state-of-the-art that will help understand the original content provided in

the following Chapters.

Chapter 3 concentrates on providing an in-depth analysis regarding the structure

and experimental procedures used for the generation of databases designed for emo-

tion recognition. Moreover, each part of the whole data processing chain for the

affective computing system design task using such databases is also detailed and

explained.

Part II

Chapter 4 deals with one of the main purposes of the dissertation. This is the

design and validation of novel fear recognition systems based on a reduced set of

physiological signals. Different public available databases are selected to design

two main fear binary emotion recognition systems. The encountered limitations of

such databases are spotted and taken into consideration for the work presented in

Chapter 6. Moreover, the reported results on this Chapter are compared against

the current state-of-the-art.

Part III

Chapter 5 details the design and integration process for a new wearable hardware

solution to deploy parts of the fear-related detection system architectures proposed

in Chapter 4. On the one hand, this new wearable solution is contextualised by

analysing current technology being applied towards Gender-based Violence preven-

tion and combat. On the other hand, the design and integration challenges are

comprehensively detailed and explained for both hardware and software perspec-

tives.
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Chapter 6 elaborates upon one of the main contributions of this research. This is

the generation of a novel multi-modal dataset, WEMAC consisting of experiments

performed in a laboratory environment with only women volunteers. Moreover, the

different affective computing architectures proposed and presented in Chapter 4 are

employed using the data gathered throughout this dataset. Finally, a multi-modal

approximation by means of physiological and speech data fusion is also reported to

provide a first baseline to be considered for future works.

Part IV

Chapter 7 concludes this research and provides some suggestions regarding the

possible extension of this work in the near future.
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Human emotions, physiological

signals and affective computing

10



Chapter 2
Emotion classification and physiological

quantification

This Chapter is based on four essential topics, which are needed for the development

of this research: emotional theories, human emotion classification methodologies,

tools for emotion elicitation, and physiological affective indicators quantification.

First off, the main emotional theories are chronologically analysed and evaluated

targeting the specific use case of this research. This is done by linking their emo-

tional order of activation with the effects regarding the elaboration of affective com-

puting systems. The different human emotions classification methodologies are also

presented and analysed by reviewing their advantages and disadvantages and ex-

ploiting their relationship to the previous emotional theories. This is followed by

a comprehensive analysis into the effects in emotion modulation by intrapersonal

factors such as personality traits, cognition, attention and gender bias, which delves

into providing personal contextualisation within the human emotion classification

methodologies. Subsequently, a new pragmatic approach to merge those human

emotion classification methods is presented to be later applied into the generated

models towards narrowing the identification or recognition of fear emotion. Sec-

ondly, the different tools to evoke emotions are compared. Finally, a reduced set

of physiological signals and their relation with emotions and emotional models are

presented and analysed. Although it has been proven that many other physiological

signals ensure specific emotion-related characteristics, they cannot be acquired by

inconspicuous sensors to be used daily. Thus, the emotional-related information

11
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that each of the most inconspicuous physiological sensors can provide, as well as

their current wearable development and integration status and current challenges,

is thoroughly studied.

2.1 Assumptions and Definitions
Before going into details about the different topics to be tackled within this Chap-

ter, some assumptions and definitions must be provided.

• First of all, emotions are a compound of behavioural reactions, subjective

cognitive processes, and physiological changes, mostly triggered by emotional

stimuli [25].

• Emotional stimulus is referred to as any type of material or process through

which specific emotion is elicited to a person. They derive into specific emo-

tional responses.

• Emotional responses can be quantified or measured using subjective self-reports,

physical and/or physiological information, and any type of data coming from

the person being under the emotion elicitation and gathered during such pro-

cess.

• Emotion recognition databases are those that use emotional stimuli under

a specific presentation or interaction method to gather different emotional

responses. All that information can be further used to train intelligent affective

computing systems.

• The affective computing systems use all the elements above to generate a

trained emotion recognition system.

2.2 Emotional Theories
Despite the emotional theory considered, it is agreed that emotions intervene di-

rectly in the adjustment of our response to an external stimulus. However, there is

not a common agreement regarding the order in which the compounds of emotions

are triggered upon the reception of such stimulus. Different emotional theories along

the history have been postulated trying to tackle this process, some based on and

some refuting the previous ones or predecessors. For instance, the emotional theo-

ries of Darwin [26], James-Lange [27], and Cannon-Bard [28], which are respectively
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preceding one another, were the three leading theories of emotion before 1950 and

each of them follow a different activation order. Darwin was the first one to try

figuring out the origin of emotions and their triggering mechanisms. Although his

work did not consider the physiological information within the emotional reaction

process, he proposed three different principles which were profoundly linked to the

cognitive process of emotions. Amongst those principles, the first one (principle

of serviceable habits), which is based on the association between different actions

and specific states of mind, is highlighted as it served as a building block for some

of the following cognitive-emotional theories. The James-Lange theory states that

emotions become conscious to the person once all the physiological information has

been processed within the neocortex, Fig.2-1. On the other hand, the Cannon-

Bard theory refutes James-Lange’s claiming that physiological response occurs at

the same time than emotion reaction and independently of one another.

Stimulus
Emotional

Reaction

Physiological

Processing

Figure 2-1: Order of activation for the James-Lange emotional theory.

These three theories were highly criticised, as the first two have a lack of empirical

evidence and the one from Bard imposes the complete independence of physiological

and emotional reactions. Thus, this led to the birth of cognitive emotional theories,

in which the context of the situation and our previous experience also directly affects

that behavioural response. For instance, the appraisal theory of emotions, mainly

developed by Magda Arnold and Richard Lazarus [29], amongst others, was one of

the first cognitive emotional theories. It is based on the assumption that emotions

are directly determined by our appraisals or evaluations of stimuli, which can cause

specific simultaneous physiological and emotional reactions in different people, Fig.2-

2. One of the most controversial claims of this theory states that emotions could

be originated directly from our own appraisals without the need for physiological
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Stimulus
Emotional 

Reaction

Physiological 

Reaction
Stimulus 

Evaluation

Figure 2-2: Order of activation for the appraisal theory of emotions.

arousal. This fact implies the possible uncorrelated physiological response with

respect to the specific external stimulus. Along with the appearance of the appraisal

theory of emotions, Albert Ellis introduced the rational-emotive theory [30], which

includes the appraisal or evaluation process by claiming that emotions are directly

affected by our thoughts or beliefs but it does not neglect the physiological response

to a stimulus. Moreover, the latter is preceded by the emotional reaction in contrast

to the other theories, Fig. 2-3. Although cognitive theories are widely accepted,

much variation is observed within them. Nowadays, the complete role of cognition

over emotions is still an open question [31].

Notwithstanding the enormous effort to disentangle the emotion origin paradigm

throughout the years, there is still neither an agreed definition for emotion nor an

order of activation regarding the different elements involved within. Specifically, in

our case, the theory to build this research work on is the rational-emotive theory.

This theory allows for the emotional quantification through physiological monitoring

and admits the thoughts and beliefs repercussions over the felt emotion. The later is

indeed a key factor when dealing with the development of emotion recognition tools

to prevent and avoid gender-based violence situations. The life experiences of every

gender-based violence victim are different, and the need of not just considering the

actual inter-differences between the victims but also the individual intra-differences

along the time is essential to provide a better and smarter socially and technologi-

cally integrated solution.
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Stimulus
Physiological 

Response

Emotional 

Reaction

Thoughts 

and Beliefs

Figure 2-3: Order of activation for the rational-emotive theory.

2.3 Human Emotions Classifications
Within the context of unequivocally categorising and identifying emotions, the

literature presents a vast effort to come up with standardised labelling or mod-

elling regarding them [32]. In the affective computing scientific community, this is

translated into the identification of the experimented emotion by a person through

different data such as facial gestures, voice, posture, and physiological signals. On

this bases, mappings between affective states and patterns or variations observed

in these modalities have been proposed by different authors. Note that the term

modality refers to sources of information. Thus, emotion detection could be defined

as a pattern recognition problem [33]. However, as in any recognition problem, the

system needs to be taught. The most common learning process in emotion recogni-

tion is by using a supervised classifier, which is defined as an oversee learning process

through tagged information. This methodology requires to have different samples of

information labelled or assigned to the correct emotion. The information gathered

from all modalities will be distributed based on the labels or classes assigned to

each sample acquired. Therefore, having accurate labels or emotional models will

strongly affect the performance of the system designed.

In the next sections, the main human emotion classification methodologies, as well

as their advantages and disadvantages, are reviewed. Moreover, some key factors

when dealing with emotional experience and personality and how they can affect

the emotion labelling process are summarised and analysed. Lastly, the fear-related

emotions using the different human emotion classifications methods are connected,

which provides a new approach to deal with fear recognition under gender-based

violence situations.

15 Jose A. Miranda, PhD Thesis



Chapter 2. Emotions and Physiology

2.3.1 Discrete classifications of human emotions
As early as the 19th century, Darwin proposed that emotions were discrete or cat-

egorical, i.e. they can be divided into modules such as fear, disgust, anger, and

so forth [26]. Although, he did not provide any specification regarding the exact

number of those emotions. Since then, different psychologists and physiologists has

used the same or similar categorical approach to deal with emotions. This approach

is based on the concept of basic emotions, which are universally recognisable and

cross-cultural. Thus, it is claimed that each of these basic emotions has different

physiological patterns associated, as well as different effects in voice, facial gestures,

posture, etc. However, throughout the years, there have been different psychologi-

cal and physiological theorists who provide lists of primary emotions, each of them

based on different criteria to define which are basic emotions and which are not.

For instance, Ekman and Friesen [34, 35] provided data to reaffirm the theory ex-

posed by Darwin, and they based most of their early research for basic emotions

into unequivocally facial expressions across cultures. Based on this criterion, they

claimed the existence of six basic emotions: anger, disgust, fear, surprise, sadness,

and joy. In 1972, they travelled to Papua New Guinea and met the Fori tribe. They

presented different pictures to the tribe, who were able to identify the six different

emotions. Afterwards, they showed images of facial expressions of the people from

the Fori tribe, with the same emotions, to people of other nationalities and cultures.

They concluded that emotions were correctly interpreted and claimed that emotions

are universally recognisable by facial expressions.

Chronologically right after Darwin, some of the main contributions to this human

emotion classification approach are summarised in Table 2.1. Among these authors,

Robert Plutchik is known for having created the wheel of emotions [37], which was

one of the first graphical representations that tried to illustrate how emotions were

related from a categorical point of view. Some of the key aspects of Plutchik’s model

have influenced later proposal for discrete classifications of human emotions. For

instance, he introduced the concept of opposite emotions, which can not be experi-

enced at the same time, and even proposed that emotions can be felt with different

intensity, which leads up to transforming the wheel into a multidimensional discrete

model of emotions. Actually, the most discussed aspect of Plutchik’s approach is
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Table 2.1: Main categorical models of emotions developed since 19th century.
Author(s) Claims Based on

Ekman & Friesen [35] Six basic emotions: anger, disgust, fear, Universal facial
joy, sadness, and surprise expression

Carroll Izard [36]
Ten basic emotions: anger, contempt, Motivation of
disgust, distress, fear, guilt, interest, behavior
joy, shame, and surprise

Robert Plutchik [37]
Eight basic emotions: anger, acceptance, Biological
joy, anticipation, fear, disgust, sadness, evolution
and surprise and survival

Nico Frijda [38] Six basic emotions: desire, happiness, Change in
interest, surprise, wonder, and sorrow action

Oatley & Laird [39] Five basic emotions: anger, disgust, Cognitively based
anxiety, happiness, and sadness states

the former concept, as many scientists disagree by citing different examples in which

opposite emotions can be triggered at the same time. It should be noted that the

contributors cited within Table 2.1 do not agree on the number and nature of basic

emotions, even some of these authors along the years have modified their stated

number of basic emotions. In the case of Ekman, who is considered a pioneer within

the emotional research field in the current century, his research was based on the

existent evidence of seven basic emotions to which later were included another ten

additional enjoyable emotions [40]. Another well-known and influencing psychol-

ogist is Nico Frijda, who identified eighteen basic emotions at his early proposed

emotional model [38], which afterwards evolved into a total of six [41]. In addition

to the number of basic emotions, these proposals differ also with respect to the emo-

tional theory they are based on. As it can be observed, the motivation started by a

Darwinian point of view (universal facial expression), which evolved by introducing

behavioural and biological factors. Finally, Oatley and Laird introduced the cog-

nitive concept by claiming that emotions are cognitively based states in charge of

coordinating quasi-autonomous processes within the nervous system [39]. Note that

this latter fact is in line with some of the claims of the appraisal theory of emotions

explained in Section 2.2, which admits the possibility of uncorrelated physiological

response with respect to the felt emotion.

Regardless of the categorical models’ diversity, most of these models include anger,

happiness, sadness and fear. However, due to the cultural background of each of

the authors, some postulates anger and some postulates rage to refer to the same
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emotion, as well when using fear and anxiety. Despite these disagreements, the

literature used to refer to these emotions as primary or basic and universal responses

to stimuli. Note that there are more categorical models than the ones cited in

Table 2.1. Regarding these facts, a survey realised by Ekman in 2015 [42] supposed

a clarifying breakthrough advance towards the standardisation of basic emotions.

Specifically, 248 scientists into the field were asked, using the same survey, with

the goal to obtain any evidence of universality in any facet of emotional theories

and categorical models. The highest agreement was retrieved with only five out of

eighteen emotions proposed: anger (91%), fear (90%), disgust (86%), sadness (80%),

and happiness (76%). The survey is concluded by claiming that, although there is

a need for working toward reducing disagreements, there exist an agreement about

basic emotions.

2.3.2 Dimensional Classifications of Human Emotions
To alleviate the problem derived from the different categorical terms being applied

to the same emotional concept and the analysis of complex emotions by using the

combination of different basic emotions lead toward the need for other scales and

quantification methods rather than just categorical models. Thus, different authors

have introduced what is known as affective state dimensions. For instance, Wundt

was the first to introduce the use of two dimensions to classify and identify emo-

tions already in 1896 [43]. He introduced pleasant-unpleasant and low-high intensity,

which were used by many other researchers in the next years. Other early relevant

author was Osgood [44], who used three different factors to evaluate affective states.

These factors were defined as evaluation, activity and potency. Moreover, as com-

mented in the previous section, Plutchik claimed that emotions are felt with different

intensity. This fact implies that even authors, who have contributed to the devel-

opment of categorical models of emotions, needed to assume the existence of some

type of dimension to distinguish complex from basic emotions. In this sense, the

inclusion of quantitative dimensions allows the creation of a multidimensional space,

in which the categorical bias is diminished and basic and complex emotions can be

equally identified. Moreover, the self-rating or self-reports of these dimensions after

each stimulus presented to the person, as for the self-report when using discrete

emotions, takes into account both the cultural differences and previous experiences
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of the same stimulus. However, in this multidimensional case, the perfect under-

standing of the different dimensions and the emotional auto-assessment presents an

arduous task.

One of the most used dimensional models is the circumplex model, postulated by

Russel [45]. This model is based on two different dimensions, valence or pleasure

(P) and arousal (A), which can be interpreted as the modern dimensions of those

proposed by Wundt. Specifically, both are conceived to measure different key aspects

of the current affective state. Thereby, the valence dimension represents the positive

or negative nature of the affective state, while the arousal indicates the excitement or

activation given by that affective state. Despite the fact that the circumplex model

has been one of the most used dimensional models, the addition of further orthogonal

axes leads to a more complete multidimensional space. For instance, Mehrabian [46]

introduced dominance as a new emotional dimension and so proposed the pleasure,

arousal, and dominance model PAD. Afterwards, this model has proven to be

useful for disentangling emotions which are located into the same quadrant for a two-

dimensional emotion space (PA). In this regard, Demaree et al. in [47] affirmed that

a three-dimensional emotion classification (PAD) is required to identify an affective

state properly. They compared the fear-anger distinction using the PA model and

the PAD model. As a result, Demaree et al. assured that only dominance can

disentangle emotions like fear and anger, associated with submission and dominance

respectively.

Although in the last decades, dimensional classifications of human emotions have

gained attention, there is still a profound debate going on about the interpretation

of these dimensions and how that interpretation is explained and applied. This lat-

ter fact is key when trying to compare studies from different researchers who have

used the same dimensions but explained them to the volunteers in different ways.

Within this context and trying to provide clarity regarding the definition, under-

standing and explanation of the different dimensions, Bakker et al. [2] linked the

PAD model to affective, cognitive and conative responses or the affect, cognition and

behaviour model (ABC model of attitudes), Fig. 2-4. They concluded that pleasure,

arousal, and dominance can be used together with the ABC model and the distinc-

tion between feeling, thinking, and acting respectively, to better understand the
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relationships between the original three dimensions of Mehrabian and Russell
(1974), the three factors of Osgood et al. (1957), the ABC psychology and the
three functions of the souls according to Plato.

Conclusion

This paper demonstrated that the original ideas of Mehrabian and Russell
(1974) about pleasure, arousal and dominance can be connected to the ABC
psychology and the distinction between feeling, thinking and acting that is used
since ages and are still useful to describe environmental experiences. Both
tripartite views bring us back to the first models in environmental psychology
that included the dominance dimension as well, but now based on a better
understanding of all three dimensions. For this reason it is suggested to replace
the often used two dimensional model with pleasure on the horizontal axe and
arousal on the vertical axe (see Fig. 1) by a three dimensional model with
dominance on the third axe (see Fig. 4).

Table 5 Connections between the three dimensions of Mehrabian & Russell, the three factors of Osgood, the
tripartite ABC-psychology and the triad mentioned by Plato

Three dimensions mentioned by Mehrabian &
Russell to describe human responses

Three factors mentioned by
Osgood to describe stimuli

ABC-
psychology

Plato

Pleasure Evaluation Affect Feeling

Arousal Activity Cognition Thinking

Dominance Potency Behaviour
(Conation)

Acting

unpleasure

arousal

no 
dominance

dominance

pleasure

Affective axe: feelings

Conative axe: behavior

Cognitive axe: thoughts

no arousal
Fig. 4 Three dimensional model of pleasure, arousal and dominance as tripartite view of experience (Bakker
and de Boon 2012)

416 Curr Psychol (2014) 33:405–421

Figure 2-4: Linking between PAD model and ABC model of attitudes by Bakker et
al. trying to provide a more clear vision of the original PAD dimensions [2].

original dimensions and describe the subsequent environmental experiences. This

last conclusion is key for this research work, as it highlights the need for including

the appraisal or evaluation process of the emotion by considering the effects of the

external environment. They also indicated the need for additional research focusing

on the PAD model to conceive it as a solid and proven dimensional emotion model.

Unlike qualitative emotional information provided by discrete classifications, di-

mensional classifications give specific quantitative metrics regarding affective states.

This can be considered as an advantage at the time to design any automatic emotion

recognition system, as self-reported dimensional labels are more specific and more

likely to be used for affective computing. However, locating into dimensional coor-

dinates both basic and complex emotions is not an easy task. Different authors have

performed studies with a relatively large population with the goal of defining the

exact dimensional positions for emotions within dimensional models. For instance,

Fontaine et al. [3] used four dimensions to locate the exact space of 24 discrete emo-

tions by using more than 600 participants, 9-point Likert scales for each dimension,

and considering three different cultural backgrounds. These emotions were taken

form the well known GRID instrument1, which comprises 144 emotion characteris-

tics representative of the different components of emotions. They achieved to map

the 24 emotional terms into their proposed four dimensional schema, Figure 2-5, and

pointed out that the optimal number of dimensions depend on what the researchers

1unige.ch/cisa/files/7214/9371/2318/Grid_questionnaire_Aug_2013.pdf
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are asking or interested in. Nevertheless, they concluded that their study cannot

be taken as an emotional experience dimensional representation, assured that two-

dimensional models are missing key emotional variation sources such as emotion

domain, and encouraged the research community to apply three or more dimensions

to properly disentangle the emotion complexity.

The four-dimensional structure of emotion derived in the

present research can be considered important because it is

based not only on a representative sample of prototypical

emotion labels, but also on a representative sample of features of

emotional experience. This is the first study that has included all

six of the major components of emotion identified by emotion

researchers. The explanations as to why the same two or three

emotion dimensions emerged in previous research were spec-

ulative. A major contribution of the present study is that it re-

covered the same three dimensions from a very precise analysis

of the meaning of emotion terms, as rated on 144 specific criteria

that most current emotion theorists explicitly assume are cen-

trally relevant to the domain of emotions. Moreover, basing a

dimensional analysis on comprehensive feature profiles for

Fig. 1. The four-dimensional solution representing the 24 emotion terms. Midpoints of the circles represent the mean coordinates across the three
languages. The diameter of each circle represents the mean euclidean distance among the coordinates for the three languages; the smaller the circle,
the more similar the respective terms across the languages. The three panels show plots of coordinates for (a) Evaluation-Pleasantness � Potency-
Control, (b) Evaluation-Pleasantness � Activation-Arousal, and (c) Evaluation-Pleasantness � Unpredictability.

Volume 18—Number 12 1055

J.R.J. Fontaine et al.

Figure 2-5: The 24 emotional terms mapped into the proposed four dimensional
schema by Fontaine et al. in [3].

Disregarding the profound debate taking into consideration both discrete and di-

mensional meta-theoretical perspectives, there are already researchers proposing to

link them together. In fact, the authors in [48] stated that both models exist but

each is intended to explain different features of emotions. For instance, they claimed
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that the supremacy of one classification method over another will never be assured

by the psychology of emotions, which even turns into an advantage when disen-

tangling the behaviour of emotions as it leads to increasing the understanding of

emotions by not excluding any emotional perspective or information. Throughout

a detailed review, they also affirmed that discrete emotions can be decomposed by

including dimensions within them. Although this specific fact was already initially

proposed by Plutchik [37] with his multidimensional wheel of emotions and the inten-

sity variation within basic emotions, the combination of these two main classification

approaches might be exploited by the literature toward a better psycho-physiology

understanding of emotions. Regarding the effect of this issue when designing emo-

tion recognition tools to prevent and avoid gender-based violence situations, the

combination of both approaches could leverage a more consistent detection and a

better understanding of any kind of fear-related emotion. The specific combination

followed in this research is detailed in Section 2.3.4.

2.3.3 Personal traits, cognitive processes, attention and gen-

der bias
In addition to the human emotional theories and emotions classifications mentioned

and reviewed in the previous section, the individual thoughts and beliefs are com-

ponents playing an essential role within the emotional and physiological responses

that might be also considered when dealing with the design of any emotion recogni-

tion system. Actually, these elements became relevant with the acceptance and rise

of cognitive psychology after 1950. However, despite of this fact, the unanswered

question that still surrounds many of the human emotional theories is the specific

effect that cognition has over the different emotions [49]. This is even fuzzier when

cognition converges with appraisal. The latter is based on an automatic associa-

tion of an affective state (emotional association) either with low or high valence,

and it is the core of different human emotional theories as previously commented.

From a psychological perspective, the path between a cognitive or evaluation pro-

cess and an appraisal reaction can derive one from the other and viceversa, as an

evaluation can be a rationale from a previous emotional association, and the lat-

ter can be also the product of an emotional posterior evaluation [50]. Within this
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subjective context, personal traits and stimuli attention and interpretation might

strongly affect the affective responses. In the last years some studies tried to link

the different main personality five-factors grade (extraversion, neuroticism, open-

ness to experience, agreeableness, and conscientiousness) with respect to daily life

emotional processes and changes. For instance, Emma Komulainen et. al. in [51]

performed an into-the-wild experiment with 104 university students (18 males, 86

females) following an experience sampling method in which the students reportted

different affective metrics by about 10 times per day at semi-random intervals. They

observed and concluded that personality features can influence different emotional

processes. Specifically, they emphasised that those features strongly affect depres-

sive, anxiety and stress disorders which are linked to the negative affective response

to daily life contexts. This fact keeps a deep relationship with different neurophysi-

ological concepts which are directly related to the amount of negative affective load

each individual can handle [52]. Such load is known as allostatic load and it is a

crucial factor to start understanding the physiological and emotional Gender-based

Violence victims profile particularities, as they are subjected to chronic negative

situations (fear, panic, stress) which lead up to affective restriction in traumatic

contexts with the aim of recovering physiological homeostasis and behavioural bal-

ance and protecting her psychological integrity. Moreover, gender differences should

be considered and accounted when adding the gender bias to the emotion recognition

problem. For instance, it is proven that women are more sensitive to interpersonal

expressions during social interactions than men, which is accompanied by a diathesis

of mood and even Post-Traumatic Stress Disorder (PTSD) [53–55].

All these components raise different uncertainties that make the design of an intel-

ligent emotion recognition system a task in which the different individual emotional

subjective factors might be considered for achieving an optimal performance. There-

fore, if an emotion recognition system is developed by using physiological and phys-

ical information, the use of the reviewed human emotions classifications methods

should be accompanied by different tests or questionnaires to ease the elucidation

of the effects produced by cognition, appraisal, attention, personality traits, gender,

and age. Although this research work does not directly deal with, quantify or take

into consideration such individual subjective factors, a set of questionnaires have
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been gathered during the realisation of the UC3M4Safety database. More details

are given in Chapter 6.

2.3.4 Fear Mapping within the Human Emotion Classifica-

tion Methods
The fear emotion is one of the basic emotions that are common throughout most of

the different categorical classifications of emotions and even represents a key distin-

guished emotion for the dimensional classifications when explaining the advantages

of such models to deal with dominance-based emotion disentanglement. Due to the

targeted application of this research work, the proper understanding of the discrete

and dimensional fear bounding is essential. In this sense, Figure 2-6 illustrates an in-

sight regarding this fact. The easiest way to look at fear is by adopting a discrete-like

Low 

Fear

High 

Fear

𝑑1

𝑑2

𝑑1

𝑑2

𝑑3

𝑑4

Figure 2-6: From left to right: one-dimensional fear concept (discrete intensity lev-
els), fear contained into two-dimensional space (PA model), three (PAD model) and
four (PAD model plus any individually intrinsic dimension) dimensional concepts.

one-dimensional factor form. This method is determined by the number of divisions

or levels of fear intensity wanted. Moving onto more dimensions, we have more in-

formation to unequivocally determine and characterise the exact sector of fear. For

instance, a two-dimensional perception, which can be related to arousal and valence,

can define a specific quadrant in which the negative emotions are located. In this

case, the number of levels or divisions in the different dimensions directly impact

into the exact fear location uncertainty within such quadrant. Thus, the more di-

visions, the more limited or bounded is the area in which fear can be found. The

latter fact presents also a challenging task when the levels of those dimensions are

gathered directly from volunteers by using self-reported metrics, as it is not feasible

or pragmatic to offer the possibility of choosing a high number of levels. Finally, as

commented in Section 2.3.2, the use of three dimensions can benefit the separation
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of different emotions that share two of them. Note that adding more dimensions

leads to a multidimensional search space, which is translated into a more complex

optimisation problem to find the sweet fear spot.

Specifically for this research work, a new merge between discrete and dimensional

models for fear detection is used. Thus, taking as a reference the PAD model,

we define fear to be located into low valence, high arousal and low dominance.

From that specific multidimensional location, a discrete emotional binary mapping

is performed by labelling that location as fear and the others as no fear. This

relationship is given by the following Heaviside function,

H(𝑥𝑖) = Θ(𝜀𝑖 − 𝑥𝑖) (2.1)

where Θ : H→ (0, 1) and 𝜀𝑖 is the specified fear threshold of dimension 𝑖. Note that

the final binary mapping output for proposed model is obtained by performing the

following logical operation,

H(𝑃, 𝐴, 𝐷) = H(𝑃 ) ∧H(𝐴) ∧H(𝐷). (2.2)

During this research work, all the conducted experiments gathered self-reported

emotional labels which were used for the fear binary mapping. In this case, and

following the literature [49], the same 1-9 Likert scale was used to rate each of the

three dimensions. Therefore, the distinction between low and high levels was done

based on half of the scale. Although a limitation is found regarding that this new

approach assumes that the entire cube space formed by high arousal, low valence and

low dominance, is directly related to the categorical fear emotion, it is the first time

that a merge between discrete and dimensional models is done and applied using real

data and non-acted emotions. Considering this research as a foundation regarding

this aspect, further research might be developed toward a better multidimensional

and categorical bounding of the targeted emotion. On this wise, more dimensions

could be added to consider individual factors such as personality traits, cognition

effect, attention processes, and gender bias. Such dimensions would produce a mul-

tidimensional shift of the fear-cube, which can lead to better disentanglement and

fear detection.
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2.4 Tools and Elements for Scientific Analysis of

Human Emotion Responses
One of the main objectives within the affective computing community is the gener-

ation of new databases to ease and boost the emotion recognition task. An affective

computing or emotion recognition database can be defined as an emotion elicitation

experiment with a set of volunteers, who self-report the emotions felt for a specific set

of stimuli. Moreover, amongst these essential components, the distinct physiological

and physical signals sets gathered during such specific controlled, laboratory-based,

experiments are fundamental to further generate emotion recognition models using

that information as data. Note that the underlying goal is to disentangle the physio-

logical and physical data patterns and variations observed within those experiments

aided by the different labels recollected. On this basis, different tools, elements and

methods have been presented and proposed in the literature to provide an effec-

tive emotion elicitation within those experiments. In this section, these factors are

presented and detailed towards understanding the current state-of-the-art status in

this regard. Note that the ones analysed here are applied and used in controlled

or laboratory conditions, which constraints the straightforward application of the

resultant intelligent systems to in-the-field validation. This latter fact also leads to

the need for into-the-wild databases generation. More details are given in Chap-

ter 3 regarding these latter considerations and providing a detailed description and

analysis of every component involved into the generation of an emotion recognition

database. Moreover, in this section, the different challenges to provide a reliable

stimuli labelling ground truth are also addressed and discussed.

As analysed in the previous sections, individual factors are key in emotions. This

fact makes it difficult to elicit the same emotion for a group of people being under the

same experiment of the database. Although, this is commonly tackled by well defined

experimental protocols within a controlled laboratory environment, such personality

uncertainties always present a subjective bias introduced by the volunteers when,

for example, self-reporting the emotion felt. Generally, we can divide the type

of stimuli used in such protocols into two main groups: acted and non-acted. The

former is mostly performed by trained actors and actresses, who follow an "emotional
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Table 2.2: Review of stimuli type used in controlled laboratory environments.
Stimuli Type Main Features Examples

Images
Static stimulus, cognitive-driven, [58], [59], [60]

display duration is key, easier emotional [61], [62], [63]
identification than others

Videos
Static stimulus, cognitive and behavioural, [64], [65], [66]

display duration is key, can provide [67], [68], [10]
more emotional content than images

Gaming
Dynamic stimulus, cognitive and behavioural,

latency between the input of the user [69], [70], [71]
and the game reaction is key

Stress Static and dynamic stimulus, cognitive, [72], [73], [74]
Tests behavioural, and physical, strong agreement [75], [76]

in the literature for some of the tests

VR
Dynamic stimulus, cognitive and behavioural, [77], [78], [79]
close to real world scenarios, offers the best [80]

ecological validity

elicitation script" [56]. Regardless of the actors and actresses ability to go deeply

into the emotional state requested, this results into a synthetic way of generating

affective states that leads to a not fully emotional autonomous response. Thus,

non-acted type of stimuli are preferred in the literature. These and their main

characteristics are summarised in Table 2.2. There are mainly six different types

of non-acted stimuli, which range from imagery up to Virtual Reality (VR). Some

of these provide a static feeling by not completely involving the person into the

desired emotional environment, while others provide such possibility. Differences

with respect to the cognitive, behavioural and physical processes triggered by such

stimuli are also found. Amongst all the different stimuli, VR is highlighted as it can

offer the closer feeling to real world scenarios which is translated into a high degree

of correlation between the research conditions and the emotional phenomenon under

study (ecological validity). These facts led the UC3M4Safety team develop a VR

environment with 2D and 3D stimuli to be used during the realisation of the different

datasets [57]. More details are given in Chapter 6.

Despite the range of the different types of stimuli, one of the biggest challenges

involving emotion elicitation toward the design of emotion recognition systems is

obtaining a reliable ground truth, i.e. to properly determine what emotions (labels)

evoke what stimulus. The assessment of the ground truth is actually one of the

most critical parts within the design of those systems [81]. In fact, that process is
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Figure 2-7: Original SAM [4].

of utmost importance which will strongly affect the training and posterior inference

performance of the affect-aware system. For instance, when training a machine

learning algorithm using the gathered ground truth labels, the information that is

fed to such algorithm inherits such label’s distribution, which can strongly bias the

underlying original data patterns. In order to deal with these type of problems, there

are different strategies or methodologies to collect the ground truth that are even

used together within the experiment. Thus,the literature has come up with different

methods to report reliable emotional self-evaluation data. One of the most used and

reliable methodologies to gather ground truth is based on a well-known non-verbal

pictorial technique, this are the SAM [4]. The original representation can be seen

in Figure 2-7. It is based on the PAD (valence, arousal and dominance, respectively

from the first to the third row) space and an 1-9 Likert-scale, in which the middle of

the scale is related to a neutral affective state. However, it can be observed that this

original depiction shows mostly straight lines and a very masculine-based attitude

that can affect the labelling for women. Therefore, the SAM was modified by the

UC3M4Safety team in order to provide less gender-bias. Note that this modification

was performed based on a panel of gender-based violence experts [82]. The resultant

new SAM is shown in Figure 2-8.

To summarise this section, we can state that the emotion recognition databases are

needed to generate affective computing systems, but also they are essential to study

emotional responses differences based on physical, physiological, gender, personal,

and other types of factors of interest. Moreover, there is a wide range of tools

and methods that ease such affective computing system generation process and,
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Figure 2-8: Modified SAM by the UC3M4Safety team.

although they can be improved upon avoiding possible bias (e.g.: gender bias), the

state-of-the-art in this respect is solid and reliable.

2.5 Physiological indicators for Human Emotions

Responses
As detailed in Section 1.2, one of the main objectives of this research work is to

disentangle the relationships between physiological signals and negative emotions,

e.g. fear-like, to provide the first steps towards an automatic detection of risky

situations in a Gender-based Violence and/or sexual harassment context. To achieve

this, a deep knowledge on physiological activity on human body under emotional

responses needs to be gathered, comprehended, and applied to any technology to be

developed.

First of all, the physiological signals are handled by the Autonomous Nervous Sys-

tem (ANS) and so they cannot be manipulated by human will [83,84]. This fact has

led the literature to propose and provide different reliable affect-aware system archi-

tectures using solely physiological information [85]. However, as for emotional mod-

els and theories, there are contrary positions regarding the specific activation and

behaviour of the ANS to the different emotions [86, 87]. For this research work, we

follow one of the latest emotion-related ANS activation claims [88], which is based on

the differentiated ANS activity for behaviour preparation and body protection with
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respect to the different emotions, which is essential for human adaptation. This is

deeply intertwined with the functioning of the brain when receiving external stimuli.

In fact, the activation of the ANS is a consequence of the internal circuitry between

different parts of the brain which are in charge of decoding those stimuli and trig-

gering the necessary mechanisms to properly adapt to them. Two of the main parts

are the amygdala and the hypothalamus, Figure 2-9. The former is the one respon-

sible for emotional processing, while the latter works like a command centre. Thus,

in case of a threatening external stimuli, the amygdala sends a distress signal to

the hypothalamus, which activates the Sympathetic Nervous System (SNS) through

the adrenal glands. Note that the SNS is the branch of the ANS responsible for the

known fight-or-flight response. Finally, those glands release different catecholamines

(e.g. epinephrine) that brings on a number of physiological changes and reactions.

Once the threat is gone, the Parasympathetic Nervous System (PNS) takes the lead

by acting as a break for the previous physiological reactions (homeostasis). Note

that the PNS is the branch of the ANS responsible for the known rest-and-digest re-

sponse. Although these biological behaviours and characteristics are mostly agreed

in the literature, there is still a high research interest upon providing empirical ex-

periments regarding any of the commented facts [89]. As a consequence of that,

the study of the emotional-physiological disentanglement in the literature has been

done intensively since 1950, as different researchers were trying to cope with the

emotional theories and understand the changes in the physiological variables due to

emotional responses [90].

Amygdala

and 

Hipothalamus zone

Figure 2-9: Location of the two main parts, amygdala and hypothalamus, involved
in the emotional processing and autonomous nervous system regulation.
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This section provides a detailed review concerning the nexus between physiological

variations and negative emotions, being specifically highlighted those systems in

the literature targeting for fear detection. Moreover, due to the wearable nature of

the system presented in this work, just the three physiological variables that can

be nowadays more wearable-ready (inconspicuous aspect) are covered. Despite of

this study, there are still many factors, such as those inherent to the individual,

that can directly affect the physiological signal morphology and so the underlying

patterns associated with negative emotions. These components, such as age, gender,

cardiovascular conditions, allostatic load, and others, used to be not considered in

the literature when designing emotion recognition systems. Thus, in this section

and following chapters, we analyse and tackle the influence that those elements can

have on the morphology of the signals and give some insights to deal with them

from a digital systems perspective.

Before going into details for each of the physiological signals to be analysed and

studied, the nature of the physiological information must be highlighted, as it

strongly affects the techniques applied to extract the physiological affective in-

dicators or physiological emotional metrics. As for any other complex biological

system, the human physiological signals posses a non-linear and non-stationary be-

haviour [91]. However, as they are intended to be digitally processed within a specific

embedded platform, fixed-length processing windows are used to extract the different

indicators or metrics, which leads up to the physiological quasi-stationary consider-

ation when dealing with short processing windows. Lately, although the latter fact

can restrict to the use of linear processing techniques, the application of non-linear

techniques is becoming a very successful part of current emotion recognition sys-

tems based on physiological information [24] and it is boosting the understanding of

complex biological systems in both health and disease [92]. Thus, in the following

sections, as well as in the following chapters, the non-linear physiological behaviour

is considered essential.

2.5.1 Heart Activity
The cardiac activity is one of the most used physiological information to generate

emotion recognition systems [24, 49]. The different phases of the heartbeats, which

is translated into different blood pressures within the muscular walls of the blood
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vessels, allows for monitoring both sympathetic and parasympathetic variations or

changes [6]. From a purely physiological perspective, on the one hand, the highest

blood pressure is achieve during the systolic phase, in which the heart contracts to

force blood through the arteries. On the other hand, the lowest pressure is achieve

during the diastolic phase, in which the heart refills with blood again. This infor-

mation is strongly affected by the diet of the individual, the age, and possible heart

diseases [93,94]. Regardless of the type of these intra-subject factors, all of them lead

to morphological modifications from an ideal expected waveform. These modifica-

tions are mainly due to peripheral blood vessel resistance changes, which range from

different levels of vasoconstriction to different levels of vasodilation [95]. For this

research work, being fear the targeted emotion to be detected, the understanding of

these physiological principles is necessary, as it is proven that fear stimuli increases

the total peripheral resistance leading up to a vasoconstriction increase. The latter

is essential to properly distinguish fear-based physiological patterns against those

based on any other emotion [85,96].

The acquisition of this physiological information can be done by different sensors in

a non-invasive manner as ECG, photoplethysmography (PPG), and in a invasive one

as arterial catheter. Due to the wearable, low power, and inconspicuous requirements

of the proposed system, we focus into PPG sensors. They are based on a optical

measurement method that employs a light source (a single Light Emitting Diode

(LED) or an array of LEDs) and a photodetector which are located at the surface

of the skin to measure BVP. There are two types of PPG sensors, reflection and

transmission. Figure 2-10 shows an example of these methods by illustrating what is

the difference with respect to the path they have through the different layers of the

skin. For the reflection mode, the photodector receives the emitting light that has

been back-scattered or reflected by the banana effect from the inner layers [97, 98],

while in the transmission mode, the photodetector is completely oposed to the LED

and it receives the transmitted light passing through all the skin layers. The main

difference when getting the signal out of both methods is the inverted behaviour

that reflection PPG presents due to the backward direction of the received reflected

light. For this research work, we focus mainly in reflection mode due to the wearable

aspect and to the fact that most of the PPG sensors available are of this type.

Jose A. Miranda, PhD Thesis 32



2.5. Physiological indicators for Human Emotions Responses
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Figure 2-10: Illustration of both PPG measurement techniques, reflection and trans-
mission. Note that the obtained signal is inverted in one method with respect the
other.

Therefore, focusing on the reflection mode, it should be noted that the light inten-

sity going throughout all the different layers decays exponentially. Specifically, this

assertion is explained by the Lamberts-Beer’s Law [99], which is applied to properly

model the light intensity received by the photodetector as follows:

𝐼 = 𝐼𝑖𝑛𝑒−𝜆𝑡, (2.3)

where 𝜆 is the wavelength of a specific light, 𝐼 is the total light detected by the

photodetector and 𝐼𝑖𝑛 is the transmitted or incident light. By knowing that 𝜆 can

be expressed as a direct relation between the absorption coefficient of the medium

and the path length, and that the former can be divided into non-pulsatile (DC

component) and pulsatile (AC component) tissue contribution, equation 2.3 can

also be expressed as

𝐼 = 𝐼𝑖𝑛𝑒−(𝜇𝐴𝐶𝑑(𝑡)+𝜇𝐷𝐶𝑚), (2.4)

where 𝜇𝐴𝐶 and 𝜇𝐷𝐶 are the absorption coefficients for the pulsatile and non-pulsatile

tissues respectively, and 𝑑(𝑡) and 𝑚 are the lengths of the light path through such

components. Moreover, the incident light intensity can also be separated into the
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static reflected intensity, 𝐼𝑟𝑓 , and the banana effect intensity, 𝐼𝑏, as following:

𝐼 = 𝐼𝑟𝑓 + 𝐼𝑏𝑒
−(𝜇𝐴𝐶𝑑(𝑡)+𝜇𝐷𝐶𝑚). (2.5)

Thus, from equation 2.5, the relation between the DC and AC component is giving

by:
𝐴𝐶

𝐷𝐶
= 𝐼𝑏𝑒

−(𝜇𝐷𝐶𝑚)𝜇𝐴𝐶𝑑(𝑡)

𝐼𝑟𝑓 + 𝐼𝑏𝑒−(𝜇𝐷𝐶𝑚) . (2.6)

In case of assuming that the reflected light is negligible, the amplitude of the nor-

malised AC component would be directly proportional to the dynamic arterial light

path length. This assumption is the ideal case scenario, in which the AC/DC ratio

is maximised, however, in real applications, the spatial gap between the LED and

the photodetector and between the sensor and the skin (air gap) will affect the DC

component and minimise the AC contribution. This problem used to be tackled

by applying light-blocking structures into the PPG sensors and minimising the air

gap [100, 101]. Note that the location of the sensor is equally important on this

matter [102]. These reviewed concepts and basics for PPG measurement are essen-

tial to properly design efficient wearable systems subjected to integrate such sensor

technology. More details in order to deal with the noise of the PPG signals are given

in Chapter 5.

From a signal processing perspective, a PPG signal contains different features or

metrics that can be extracted and analysed towards decoding their entanglement

with emotions. In this work, we distinguish between temporal, frequential and

non-linear features. Regardless of the specific type of features to be extracted,

the morphological analysis of the signal is required to obtain the necessary PPG

characteristic points. Figure 2-11 shows a morphological example of two heart rate

periods in which the two previously commented cardiac activity phases appear:

systolic and diastolic. Apart from the systolic and the diastolic peaks, there are

other characteristic points that will affect the delineation process of this signal. For

instance, the predicrotic or incisura, which is the product of the reflections of arterial

wall, can be seen in the PPG signal as well right before the dicrotic notch. This

sensitive and varying morphology makes the PPG monitoring a challenging task. In

fact, recently in [103], the authors presented a comparative study with a group of
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Figure 2-11: Exemplification of the different characteristic points to be extracted
within the morphology of the PPG signal.

53 individuals gathering PPG data from six different consumer and research grade

wearables. They compared the heart rate given by those wearables with a ground

truth heart rate obtained by ECG. The experiment resulted into a maximum mean

average error of 15.9± 8.1 Beats Per Minute (BPM), being the device type and the

exercise activity the factors affecting the most to the estimated heart rate. Note that

this error is relevant if wanting to approach an analogous medical equipment norm

such as the UNE-EN 60601-2-27, which states that the maximal error for clinical

equipment is 5 BPM. This observed problem is due to different aspects:

• Most of the wearables, either consumer or research grade, are neither thought

nor designed to acquire clinical or diagnostic PPG data (where morphology is

totally preserved), but they get basic PPG quality data. This fact is translated

into a highly varying morphology that even depends on the device due to

specific electro-mechanical considerations.

• Each wearable is using a proprietary algorithm to extract the characteristic

points and calculate the heart rate. This fact is translated into variability

between the measurements from the different devices.

• Motion artifacts strongly modify the morphology of the PPG signal. Some of

these devices implement techniques to deal with that, while others do not.

Therefore, despite of the proliferation of PPG sensors and their acceptance from

the private sector due to the better integrability and cost-effective than ECG, there

is still a methodological need for delineation and Motion Artifact Removal (MAR)
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standards. Generally, when wanting to extract the heart rate or the period of the

PPG signal, the systolic peaks or the end diastolic valleys are a valid option to

obtain that periodicity. Note that the maximum bandwidth of the heart rate is

approximately 0.6 − 3.5 Hz, which is equivalent to 36 − 210 BPMs. Thus, in the

worst case scenario for the slowest cardiac activity frequency when having digital

constraint resources, i.e. constrained wearable devices, using a processing window of

two seconds assure to find at least either two systolic or two end diastolic peaks. As

already commented, most of the features are calculated from these points. For this

research work, more details regarding the specific delineation algorithms, feature

extraction and MAR techniques used are given in Chapters 4 and 5.

Regarding the relationship between cardiac activity and the emotion of fear, there

is a wide range of publications in the literature [104–110]. Some of the publications

tried to differentiate between positive and negative emotions solely based on heart

rate extracted information, while others considered more physiological affective indi-

cators from different physiological variables, e.g. electrodermal or cardiorespiratoty

indicators. On the one hand, most of them agreed on the emotion of fear pro-

vokes an increase in cardiac acceleration, vasoconstriction, a decrease in blood flow,

and an increase in both systolic and diastolic blood pressure. On the other hand,

those including more physiological variables claimed the need of considering more

information than just the cardiac activity due to the observed direct relation be-

tween specific heart rate metrics, such as the variability of the heart rate, and the

increase of the respiratory rate or the different electrodermal activity levels. Note

that, although there is a well established knowledge in the literature with respect

to the cardiac activity effects produced by fear, the experiments are performed in

laboratory, where conditions are under control.

2.5.2 Electrodermal Activity
Electrodermal Activity (EDA) or Galvanic Skin Response (GSR) is, along with

the cardiac activity, one of the most studied physiological signals that, also, has

received an important advance on its comprehension and connection with emotional

responses [111, 112]. Although there are more than one type of glands involved

in this process, the main responsible ones for the EDA are the eccrine sweat or

merocrine glands, which are controlled by the SNS. These are located into the skin
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and they are innervated only by sympathetic branch axons (long nerve sudomotor

fibers). Note that each axon innervates about 1.28 𝑐𝑚2 of skin [113]. Figure 2-12

shows an illustrative example of such entities distributed inside the different layers

of the skin. The fact that the these glands are only innervated by the SNS makes

the EDA the perfect candidate for quantifying SNS activity (fight-and-flight) and,

although sweating also plays a major role into thermoregulation to achieve a proper

homeostasis, it is proven that the different changes in the skin conductivity are

strongly and directly correlated to the intensity of the emotion evoked by external

stimuli. Many authors assure that such changes are related to the level of arousal

[85,112,114]. Specifically to the evolution of the shape of those changes with respect

time, the EDA is formed by a tonic and a phasic component. The former is a slowly

varying component, the Skin Conductance Level (SCL), while the latter is the fast

Skin Conductance Response (SCR) over time. Note that the physiological theory

behind these EDA changes or variations is based on the diffusion and pore opening

stated in the poral valve model of Edelberg [115].

Stratum Corneum

Epidermis

Dermis

Sudomotor Nerve Fibers

Eccrine Gland

Diffusion + Pore opening

Figure 2-12: Illustration of the merocrine glands behaviour and the diffusion process
through the different skin layers.

The acquisition of this physiological information can be done mainly by two differ-

ent techniques: endosomatic and exosomatic. On the one hand, the former is based

on measuring the electrodermal potential using two electrodes without applying nei-

ther current nor voltage between them. On the other hand, the latter is based on

measuring the electrodermal resistance or conductance using two electrodes apply-

ing a small voltage or current between them. Over the years, both methods have

been studied, although the wave complexity and challenging interpretation of the
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endosomatic methodology have led to a wide acceptance and use of exosomatic mea-

surements [116]. Thus, the exosomatic techniques are characterised by using either

a direct or alternating source of electricity through active or passive circuits [117].

First of all, due to the electromotive force at the surface of the electrodes, using DC

can lead to electrode polarisation. This problem can be mitigated with AC. How-

ever, the application of a source voltage higher than 100 mV and using Ag/AgCl

electrodes also minimise the polarisation issues when using DC. Secondly, AC tech-

niques lead to a more complex circuitry implementation, which is mainly due to

the fact that both the frequency-independent and dependant information must be

preserved as well as the application of posterior digital techniques to recover the

real and imaginary parts of such measurements. Note that the frequency-dependent

term is actually referred as to the susceptance behaviour of the skin [118]. Finally,

it should be noted that the amount of research results considering exosomatic DC

techniques is outstanding in comparison with AC and, although AC could undertake

DC, more research needs to be done to prove this dominance. In fact, nowadays DC

techniques are established as a de facto standard for EDA acquisition [119]. Table

2.3 summarises the main differences analysed between both exosomatic techniques.

Table 2.3: Main differences between DC and AC exosomatic measurements.
Property DC AC

Electrode Polarization ≈ 3

Simpler Circuitry 3 7

Conductance Information 3 3

Susceptance Information 7 3

Frequency independence 3 7

Amount of research 3 ≈

Therefore, focusing on exosomatic DC measurements, different active and passive

electronic circuitry can be used. One of the simplest implementations is done by

using single voltage dividers composed by a fixed and a variable resistor. Note that

the latter is the human skin. However, this technique is prone to high percepti-

ble measurement errors due to the difference between the voltage source and the

voltage to be measured, which causes the latter not to be constant. In fact, active

circuitry is widely used instead for EDA monitoring as it mitigates these problems

and provides greater control on the measurement. Conventionally, quasi-constant
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current and voltage methods are employed by taking advantage of the inverting

and non-inverting operational amplifier configurations. For instance, Figure 2-13

depicts an inverting configuration as a possible example of such layouts. In case

the electrodes are placed leaving the input resistor 𝑅𝑖 as the skin, a quasi-constant

voltage is applied which produces the conductance value of the skin be proportional

to the output voltage of the circuit. Conversely, if the feedback resistor 𝑅𝑓 is the

skin, a quasi-constant current is applied over it and the resultant output voltage

is proportional to the resistance value. Note that for both configurations, the cur-

rent limit must be adjusted whether tuning the input and reference voltages or the

input resistor, respectively. These adjustments must assure a current throughout

the body not higher than 10𝜇𝐴/𝑐𝑚2, which is the current density recommended

level for EDA measurements [120]. Additionally, it should be highlighted also the

reference common to output and input, which is intended to avoid any endosomatic

contamination of the exosomatic measurement to be performed. In the literature,

different proposed EDA circuitry can be found based on inverting active circuitry op-

amp configurations [121–123]. Note that these circuits used to be followed by other

op-amp conditioning circuitry to adjust the signal and filter it before acquisition.

+

-

𝑅𝑓

𝑅𝑖

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡

𝑉𝑟𝑒𝑓
+

−

+

−

𝐼𝑠𝑘𝑖𝑛

𝐼𝑠𝑘𝑖𝑛
𝑉𝑐𝑐

−𝑉𝑐𝑐

Figure 2-13: Inverting operational amplifier configuration example for exosomatic
DC EDA acquisition.

Regardless of the active circuitry used, and besides the tuning trade-off to assure a

safety current limit, the relation between range and sensitivity is especially relevant

when measuring this physiological signal due to the relatively wide range (0 µS to

25 µS) and the 0.01 µS sensitivity that needs to be satisfied to properly record all
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the SCR within the tonic and phasic components of the EDA signal [112]. To deal

with this problem, a Wheatstone bridge circuitry can be applied. In that case, by

reaching the bridge calibration between the two branches, i.e. by means of adjusting

a potentiometer in the opposite bridge branch of the human skin resistance, so that

the potential difference is zero or a specific desired voltage [124]. Once the circuit is

in that state, the potential difference disturbances are the SCR, and the SCL can be

obtained based on the bridge calibration. Although, this method can in fact provide

a reliable measurement and assure proper range and sensitivity by adjusting in run-

time some of the resistors (potentiometer), it has not been fully adopted neither

extensively used in the literature. For this research work, DC exosomatic active

circuitry is adopted. More details are given in Chapter 5. Note that there are

other options for the DC exosomatic acquisition, such as AC-coupled amplifiers and

backing-off circuits, however, they offer a higher circuitry complexity.

From a signal processing perspective, one of the first tasks to do after acquisi-

tion is to apply basic low pass filtering and to properly separate tonic and phasic

components (SCL and SCR). Both are equally important regarding emotion disen-

tanglement, thus their preservation throughout the analog acquisition and digital

manipulation is desired. However, the phasic component is the one containing the

ERSCR, which translates into different EDA bursts that are emotionally related with

external stimuli and characterised by different metrics based on the actual level of

excitement evoked. Thus, the tonic and phasic decomposition is mainly intended to

the proper identification and analysis of the ERSCRs. Note that the phasic com-

ponent can also present a Nonspecific Skin Conductance Response (NSSCR), which

occur in the absence of an identifiable eliciting stimuli. Different thresholds for the

metrics of each detected SCR peak can be assumed to determine the distinction

between ERSCRs and NSSCRs [125]. Figure 2-14 shows an example of one ERSCR

and some of the metrics that can be extracted from it. For this research work,

more details regarding the specific features extracted are given along the following

Chapters.

One of the simplest methods to overcome the tonic and phasic decomposition from

the EDA signal is by assuming a linear combination of these two, as given by the
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Figure 2-14: An illustrative example of one ERSCR and some of the metrics that
can be extracted from it.

following approximation:

𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 ≈ 𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 + 𝐸𝐷𝐴𝑝ℎ𝑎𝑠𝑖𝑐, (2.7)

where 𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 is the filtered signal, 𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 is the low frequency component or

the trend associated with the SCL, and 𝐸𝐷𝐴𝑝ℎ𝑎𝑠𝑖𝑐 is the resultant signal contain-

ing the different SCRs. Thus, by subtracting the trend of the filtered signal and

applying a trough-to-peak technique, all the relevant peaks of the signal can be

extracted. Note that by such subtraction, a pseudo-phasic signal component is ob-

tained. Specifically, 𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 can be obtained by applying a low-pass FIR filter with

1.5Hz cut-off frequency, which is selected based on the fact that EDA information

remains bellow it [112]. Later, getting the 𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 can be done by implementing

a moving-median filter using a wide enough window to capture the trend bellow

0.05Hz [125]. Although this technique can be implemented in a straightforward

manner and does not have a negative effect on any storage nor resource constraint,

it is just an approximation and faces different problems. On the one hand, the re-

sultant phasic component can be negative, which is never supposed to happen from

a physiological perspective. On the other hand, this method does neither consid-

ers nor deals with overlapping SCRs, which can lead to an underestimation of the

different response peak amplitudes. Thus, this method is recommended as a start-

ing point. Further developments have appeared in the literature along recent years

accompanied by automated tools, such as Ledalab [126], that gather the different

most used algorithms to boost their applicability on EDA research. On top of those
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algorithms we find cvxEDA [127] and SparsEDA [128]. The former is motivated

by the deconvolution method introduced by Alexander et. al. [129], in which they

stated that Sudomotor Nerve Activity (SMNA) posses a shorter time-constant than

the EDA signal itself and produces bursts (pore diffusion) that arrive as separated

and discrete events. They applied a deconvolution technique by means of a biexpo-

nential function that tackled the SCR overlapping problem. Thus, considering that

basis and handling the negative rationale problem of the phasic component, cvxEDA

uses a convex optimization that is constrained by the sparsity and non-negativity

of the SMNA, which modifies equation 2.7 as following:

𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑅𝐹 * (𝐷𝑟𝑖𝑣𝑒𝑟𝑡𝑜𝑛𝑖𝑐 + 𝐷𝑟𝑖𝑣𝑒𝑟𝑝ℎ𝑎𝑠𝑖𝑐), (2.8)

where 𝐼𝑅𝐹 is identified as the biexponential Bateman impulse response function,

and the 𝐷𝑟𝑖𝑣𝑒𝑟𝑠 are the information coming from the SMNA. This algorithm has

actually been applied succesfully to different EDA research use cases. However, al-

though the convolution operation by itself needs low computational resources, the

convex optimisation procedure needs to tune different hyperparameters which leads

to a high computational time. Regarding the SparsEDA algorithm, which is one

of the latest EDA decomposition methods recently published in 2017, it is based

on the previous deconvolution works but introduced different features, such as the

application of the least absolute shrinkage and selection operator non-negative ver-

sion by using the least-angle regression algorithm, which make the deconvolution

faster, more efficient and more interpretable than its predecessors. Despite of these

advantages, its applicability and performance for small EDA segments (shorter than

70 seconds) is still on debate. Thus, although these two algorithms provide different

advantages mainly related to the physiological EDA interpretation, their applica-

bility into multimodal constrained wearable devices, such as the bracelet of Bindi,

is a challenging task due to the high computational resources derived from specific

operations, such as the convex optimisation. Therefore, alternatives that are placed

between the trough-to-peak and the convex methods are needed. For instance,

some authors [130,131] have used a Regularized Least-Squares Detrending (RLSD)

method [132] in which the tonic component is approximated to a low-frequency
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aperiodic trend component by

𝐸𝐷𝐴𝑡𝑜𝑛𝑖𝑐 = 𝐸𝐷𝐴𝑡𝑜𝑡𝑎𝑙

(𝐼 + 𝜆𝐷𝑇
2 𝐷2)

, (2.9)

where 𝜆𝐷𝑇
2 𝐷2 is the regularisation term that biases the SCL to a smooth trend,

𝐼 is the identity matrix, and 𝐷2 is a discrete approximation of the 2nd derivative

operator. Note that the greater the 𝜆, the smoother the SCL component. After

getting this approximate tonic component, the same subtraction to the original

EDA signal applies to obtain the phasic component. For this research work, all the

reviewed methods have been used, although just the trough-to-peak and the RLSD

methods have been embedded. More details regarding the obtained results are given

in Chapter 5 and Chapter 6.

As for any physiological signal, noise artefacts due to motion, rapid transients, and

even loose electrodes can be observed during its acquisition. Figure 2-15 depicts a

real example of the different noise sources that can be found within measurements.

This image shows the difference between dry and wet electrodes, as the latter are

more affected by the noise due to the nonexistence of Ag/AgCl which makes the

skin-electrode interface less robust and being effective just through sweat. Note

that this problem is specially relevant for Bindi, as it is based on dry-electrodes.

To combat these type of noise sources and mitigate their possible negative effects

during the EDA processing, different preprocessing steps used to be applied such

as moving mean and median filters. More details regarding the implementation of

such techniques are given in Chapters 4.

43 Jose A. Miranda, PhD Thesis



Chapter 2. Emotions and Physiology

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Samples 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
 

S

dry electrodes wet electrodes

Figure 2-15: Difference between dry and wet electrodes measuring in the ventral side
over the right (wet) and left (dry) part of the wrist. Note that units are normalised
𝜇 S and wet electrodes contain 0.5% chloride salt.

Regarding the relation that EDA has with the fear emotion, different research

groups studied this aspect [85,133]. As previously explained, the changes observed in

the EDA signal can be directly linked to the intensity of the emotion, but not to the

type of it. In fact, the studies considering solely this signal targeted stress detection,

arousal quantification or even sympathetic function assessment, but not emotion

identification. Briefly, fear emotion cannot be detected by using only the EDA

information. In any case, the information extracted from this signal can provide an

excellent insight regarding changes of the sympathetic activation. For instance, when

facing very stressful situations, the SNS secretes different catecholamine hormones

(adrenaline and noradrenaline) that produces the EDA signal to be characterised

by an increase of SCL and an increase of the different metrics to be extracted from

the SCR except for the latency which tends to be decreased. Note that is such

situations the perspiration increases which is directly related to homeostasis rather
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than to the emotional process. The interpretation of this information regarding its

emotional entanglement in case of gender-based violence victims is more complex

due to the possible allostatic overload, which refers to the cumulative effects of

stressful situations in daily life experienced by the individuals and can even inhibit

the sympathetic activation switch-off [134]. Although addressing this latter specific

fact is out of the scope of this research work, details and basis are given in Chapters

5 and 6.

2.5.3 Skin Temperature
The body skin temperature is not so popular in comparison with the two already

detailed physiological signals. However, there exist several researchers dealing with

emotional identification by using this information as well [24, 135, 136]. The phys-

iological foundations for this signal are strongly interlinked with the blood flow

and the electrodermal responses of the body. In fact, skin temperature is strongly

related to the vasomotion changes by means of sympathetic noradrenergic fibers

which regulate such process. As stated previously, the ANS does not only provides

mechanisms to deal with threatening external stimuli, but it is also the main re-

sponsible for the different homeostasis processes. Specifically, in the case of the

body temperature, the hypothalamus is referred to as the main thermoregulatory

controller [137]. Throughout the body, we have different temperature receptors that

allow the hypothalamus to continuously sense and analyse the body temperature.

Once this part of our brain gathers the needed information, the subsequent actions

vary depending on that negative feedback, as for any physiological control system.

Thus, as for a home thermostat, based on a preset normal value, the different ther-

moregulatory defences will be triggered to preserve, in the case of our body, 37°C.

For instance, due to such defences, the body temperature does not deviate more

than a few tenths of a degree from the preset value. Moreover, there is even a called

interthreshold range, over which no thermoregulatory action is activated, that is

known to be around 0.2°C. Actually, those thermoregulatory defences are as follows:

• Sweating and vasodilation are the defences triggered when a heating situation

is undergoing.

• Conversely, vasoconstriction is triggered to diminish the heat loss by mainly

lowering skin surface radiation.
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Therefore, the autonomic thermoregulatory process operates in a synchronised fash-

ion together with other physiological negative feedback control systems, such as the

blood flow and electrodermal autonomous handling. Moreover, it must be high-

lighted that there exists an internal source of temperature variability marked by

physical, mental and behavioural changes that follow a daily cycle known as circa-

dian rhythm. The comprehension and understanding of these physiological factors

are essential to evaluate and assess properly the information to be recollected.

From a signal processing perspective, this signal does not present the same com-

plexity as the previous ones. Conversely, its information is contained within very

low frequencies, below 0.5Hz. Thus, using an ordinary FIR filter is sufficient to

obtain a clean signal. After that, the literature tends to extract standard features

from it, such as mean, median, standard deviation, and other high order statistics.

Moreover, its extracted frequency information is divided commonly into different

bands as any other physiological signal [10,138]. However, as well as the processing

is one of the easiest among physiological signals, its integration is not. In order to

implement a temperature sensor within a wearable constrained device some consid-

erations need to be addressed. For instance, the authors in [139] elaborated a survey

considering 172 studies from 1960 to 2016, in which they reviewed all the factors

that affect the temperature measurement when dealing with contact thermometry.

They concluded with a set of recommendations and trade-offs between all these fac-

tors (skin-sensor interface, attachment, environmental protection and bias, sensor

pressure into the skin, etc.) that can strongly affect the body skin temperature to

be measured. These technical requirements make the integration of skin tempera-

ture sensors a challenging task. In fact, no commercially available wearable device

(smartwatch like) integrates a body skin temperature sensor. There are research

grade wearable devices that integrates infrared thermopile sensors, such as the E4

by Empatica®2 [140]. However, nowadays the latter have a high cost, making its

integration not as straightforward as contact thermometry.

Regarding the relation between the fear emotion and body temperature variations,

different studies in the literature dealt with it. Early research on this topic can be

found in [141–143], in which, although the experiments were performed with dif-

2https://www.empatica.com/en-eu/research/e4/
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ferent experimental procedures, they agreed that the body temperature decreases

under fear elicitation. Note that for the three studies, the temperature sensors were

placed in the palm. Recently, the research targeting body temperature variations

with respect to emotions is more focused on facial thermal mapping using func-

tional infrared thermal imaging. For instance, the authors in [135] used 60 pictures

from [58] and asked twenty four student (19 females) to rate the pictures based on

the SAM scales while measuring the facial skin temperature and the EDA. They ob-

served that the highest decrease in temperature was produced for the pictures with

the highest arousal. Thus, they stated that the autonomous regulation of arousal

is actually carried out by two sympathetic cutaneous responses, thermal and elec-

trodermal. However, one of the main disadvantages of body skin temperature in

comparison with other physiological information is the large latency of the signal.

This causes a limitation when using solely this information to infer the emotional

state. Thus, its integration used to be accompanied together, i.e. compensated,

with other physiological signals, such as EDA and BVP [133].

Despite these thermal-emotional patterns and characteristics observed, up to my

knowledge, there is no research dealing with the body skin temperature variations

in the wrist neither with its behaviour under fear-related gender-based violence

situations. These facts are essential for this research work considering the proposed

bracelet within the Bindi system, as the temperature sensor is directly attached to

the wrist due to the factor-form itself. More details regarding the obtained results

are given in Chapters 5 and 6.

2.6 Conclusion
In this Chapter, we have provided the foundations needed to raise an emotion

recognition system. Note that technical aspects related to the specific design for the

training of such system are provided in the following Chapter.

Thus, the different emotional theories and human emotion classification techniques

have been reviewed and detailed. Specifically and targeting the particular use case

of this research, a new pragmatic approach to merge discrete and dimensional clas-

sifications of human emotions towards the identification of the fear emotion is pro-

posed. Moreover, a comprehensive analysis into the intrapersonal factors affecting
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emotion modulation such as personal traits, attention and gender bias, is provided

to establish future research possibilities to be further developed as an extension of

this research work. Additionally, the different emotion elicitation tools used within

the affective computing community are presented and compared, highlighting the

recent inclusion of VR, which is overtaking emotion elicitation experiments. On the

other hand, the physiological signals of interest for this research work have been

reviewed and analysed by detailing their behaviour and characteristics and studying

their relationship with the fear emotion. Note that the understanding of such phys-

iological information is essential to properly quantify and distinguish the different

physiological patterns that are product of an emotional reaction.

On this basis, we can conclude that, although felt emotions are biased by different

intrapersonal factors, the physiological information can be used as an indirect quan-

tification or measurement of those affective states, as these signals are controlled by

the ANS, together with their subjective self-reported evaluations. In this context,

the conjunction of different physiological signals, rather than the use of just one

of them, can be used to give rise to an intelligent affective computing system able

to distinguish different affective states. In the pursuit of such an emotion recogni-

tion system, which can be further extended to be used on a daily basis, two main

factors are highlighted and taken as essential for the development of Bindi in this

case. First, the need for accounting for both human emotion classifications, discrete

and dimensional, can be an advantage to explain different features of emotions.

Secondly, the analysis of multiple physiological sources of information in real-time

is a complex task as, from a wearable perspective, they are subjected to different

noise sources which directly affects the quality of the signals and so the emotion

recognition inference. More details on the application of all the detailed aspects

regarding human emotion classifications, emotion elicitation tools and physiological

and emotion disentanglement are provided in the following Chapters.
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Databases and Machine Learning for

emotion recognition

In this chapter, on the one hand, we provide a complete analysis regarding the struc-

ture and experimental procedures used for the generation of databases designed for

emotion recognition. Note that, as specified in Chapter 2, these databases are essen-

tial to gather emotional responses and train emotion recognition systems. Besides

that, each part of the whole data processing chain for the affective computing sys-

tem using such databases is also explained. Note that the understanding of the

current database generation state-of-the-art has been essential to properly design

the database presented in this work. Moreover, a critical review is made along

the different sections, providing recommendations on what should be considered for

the generation of an emotion recognition database and insights into what has been

finally applied for the generation of ours, which is fully detailed in Chapter 6.

Before going into details for each part involved within both the database generation

and the affective computing system design, a general representation of such elements

and actions is shown in Figure 3-1. As stated in Chapter 2, a database for training an

affective computing system is composed of the following main elements: 1) stimuli, 2)

physical and physiological signals, 3) labels, and 4) volunteers. The second and third

elements will be used for training and validating the affective computing system,

while the first is required to provoke emotional reactions on volunteers. Within this

context, the process of building a database implies the following tasks regarding

these elements:
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a) Prior to the database generation:

• A pool of stimuli are recollected.

• In case of facing a time-limited experiment, different methods are applied

to reduced the number of stimuli from the previous pool.

• The final set of stimuli are arranged to be used during the database

generation.

• The different sensors are selected validated to collect all information dur-

ing emotion elicitation.

b) During the database generation:

• The different variables to be measured during stimuli reception are rec-

ollected and stored.

• Self-reported data (emotion labels) is gathered and stored to identify the

physiological and physical information with respect to the specific stimuli.

c) After the database generation:

• Digital filtering and conditioning is used to clean the different signals.

• Exploratory data analysis is performed to identify abnormalities and even

physical or physiological problems.

• Extraction of different synthetic metrics and/or features from the data.

From those, reduction, selection and optimisation is applied.

• In case of being under a multimodal use case, different alternatives can

be approached toward the data fusion.

• Application of an iterative process among the data fusion architecture

itself, the classification algorithm and hyper-parameter fine tuning pro-

cesses.

• Releasing of the model with the best performance.

This chapter is structured as follows. Within the first Section, the common ele-

ments, processes, and actions required for the generation of an emotion recognition

database are explained and reviewed one by one. The next Section provides a de-

tailed summary for the different emotion recognition multimodal databases that

are openly available in literature. This Section also details how such databases

have addressed the different points explained in the previous Section, as well as

their limitations and applicability to our use case. For the third Section, the dif-
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Figure 3-1: Common elements, processes, and actions required for the generation of
an emotion recognition database.

ferences between laboratory and in-the-field setups for the database generation are

highlighted. Note that for this research work, the only database presented in this

document is based on laboratory setup settings. However, the conclusions from this

last Section can be used for the near future in-the-field databases generation.

3.1 General database methodology
The elements and processes involved in the generation of an emotion recognition

database are outlined in Figure 3-1. The following subsections explain their partic-

ularities, advantages and disadvantages. Note that the final output is a fully trained

operational model based on offline processes that are performed after the database

generation. Therefore, this chapter does not deal with any embedded digital op-

timisation for each process. Embedded integration and optimisation for real-time

wearable devices is detailed in Chapter 5.

3.1.1 Stimuli analysis and selection
The generation of a set of adequate stimuli is the first stage for any database

focused on emotion recognition. This step is essential, as the better is your stimuli

pre-labelled the better the research-ground truth of the experiment will be. The
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latter can be even an useful tool to be compared and analysed with self-reported

annotations for every volunteer within the database, as detailed in Section 2.4.

Thus, the ideal situation is that the labelling methodology were the same during

the stimuli selection and during the database experiment. Note that within these

type of experiments, we actually have two types of labels (ground truth), those

coming from the stimuli selection and those coming from the self-reported ratings

of the volunteers.

There are already a wide range of stimuli databases options in the literature. For

instance, in 1997 the National Institute of Mental Health launched the international

affective picture system as a database containing hundreds of labelled pictures [58].

This system has grown since then, leading up to more than 1000 labelled images, and

even being adapted to other cultures, such as Spanish [144]. The labels contained

within this database are characterised by the mean and standard deviation of the

three dimensions of the PAD space. Apart from public available image stimuli pools,

video-based databases are found as well [10, 138, 145]. Regardless of the stimuli

type, the stimuli analysis and selection are essential, as some of those databases are

not practical to be entirely (all the stimuli) applied within one experiment. Thus,

different approaches can be observed in the literature to filter and select smaller sets

of stimuli. Some of them [138] used the called emotional highlight score based on

the PA space and given by

| 𝑒 |=
√

𝑎2 + 𝑣2, (3.1)

where 𝑎 and 𝑣 are the arousal and valence values obtained from the gathered labels

respectively. Thus, the stimuli with higher | 𝑒 | will result into the ones providing

the stronger emotional intensity in terms of dimensions 𝑎 and 𝑣. Note that this

equation can be expanded to be valid and applicable for further dimensions. The

obtained scores for all the stimuli can be ranked to further select a smaller group

with the highest values. Others, such as [10], performed a pre-labelled experiment

in which they started from a big stimuli pool and asked people to label those stimuli

by using an online affective annotation system. They assured a minimum number

of labels per video, and finally selected the ones that obtained the highest degree

of agreement. The evolution of the latter method includes higher order statistics

applied to the pre-labelled experiments to assess the agreement between different
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annotators. For instance, the authors in [145] computed Jaccard distances for each

pair of annotators and calculated the mean absolute deviation of the cumulative

distance distribution to finally consider as outliers those that deviated more than a

specific threshold. Nevertheless, one of the steps followed together with the stimuli

selection is the stimuli balance assessment. This process assures that the selected

stimuli are equally distributed along all the different emotions to be detected or

classified. For instance, one common approach is to deal with the PA model, just

for the sake of simplicity in comparison with the PAD model, and normalise the

ratings using the mean and standard deviation (𝜇/𝜎), to later plot the normalised

arousal versus the normalised valence and proceed to assess the balance stimuli

status.

In reality, this step is strongly conditioned by the goal of the experimentation.

Most of the open available stimuli databases for emotion recognition are thought

and designed from a general emotional perspective, i.e. with the goal of identifying

emotions in general without targeting binary specialised emotional models. Even the

pre-labelled procedures are usually done by the general public, without considering

any expert evaluation. This approach is totally understandable from a general and

massive use perspective, however, for research works like the one being addressed in

this document may not be suitable. Considering that the main goal of this research

work is based on generating affective computing systems for fear detection in gender-

based violence situations, the stimuli selection must be done with special care and

such databases may not be adequate to fulfil the requirements in terms of specific

emotion elicitation. More specific details on how we addressed the stimuli selection

and analysis for the generation of our database are given in Chapter 6.

3.1.2 Sensors acquisition and processing
During the experiment of any database, different sensors are acquiring physiological

and/or physical signals from the volunteer while stimuli are applied. These sensory

systems need to be properly designed by considering the following aspects:

• As the generation of a database is just a huge recollection of data to further

create intelligent systems from that, it is recommended to have relatively high

sampling frequencies. This allows experimenting with any lower sampling

frequency at the training stage to observe how that constraints and affect the
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different classification models.

• Regardless of the sampling frequency, the synchronisation between all the dif-

ferent sensors during the experiment must be guaranteed. However, to allevi-

ate this process, another option is to store global timestamps from each sensor

data received to further ensure that they correspond to the same time-slot of

the experiment.

• The use of an approved or standard sensing toolkit is recommended, to be used

as golden measurement system. This will allow further comparison with other

databases as well as detecting malfunctioning in the proposed sensor system.

• The sensors should be preferably located in the best measuring position as

close as possible to the final body location and, in case a further wearable

integration of the resultant affective computing system is expected, where

been intended.

These factors are recommendations based on the state-of-the-art [24] and the knowl-

edge gathered along the development of this research work.

Regarding the data processing, the first task is to apply basic filtering by using

digital low and high band pass filters. For signals that possess a high sensitivity

to noise, such as PPG, specific Signal Quality Assessment (SQA) procedures can

be applied as well as MAR algorithms [146, 147]. The same applies for signals that

need special component separation algorithms, such as EDA, as explained in Section

2-14. Chapter 5 provides more details on the different techniques and algorithms

designed and applied in this work. Note that nowadays there already exist in the

literature open available tools designed for physiological processing. For instance,

Soleymani et. al. in [148] designed an open toolbox for processing a complete set

of physiological signals processing and emotional related feature extraction. Besides

that, different physiological signal processing toolboxes are found, being specialised

in just one physiological signal [149,150]. However, these toolboxes are intended and

oriented for a PC-based or offline system design process, leaving aside the embedded

wearable constraints.

Together with the data processing, data segmentation used also to be applied over

the different signals. In fact, most of the emotion recognition systems in the litera-

ture use segmented processing windows to treat and analyse the acquired physiolog-
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ical data. When dealing with data segmentation, window-related aspects, such as

their temporal and frequency resolution and emotional latency, should be considered.

On the one hand, the temporal resolution has a direct relationship with frequency

resolution. This is due to a specific frequency resolution needing to be guaranteed

to extract useful emotional information for some physiological features [6]. On the

other hand, emotional latency is related to the fact that a person does not experience

the same physiological response (emotion) during the entire reception of a stimu-

lus [151,152]. The latter aspect can definitively affect the system performance, as it

is related to the possible incorrect labelling of the samples.

3.1.3 Exploratory data analysis
Once the signals have gone through all the needed data processing, it is recom-

mended to perform an exploratory data analysis. This process can be done by using

the filtered data and/or the extracted features. this process can provide excellent

insights into what is actually, at first glance, happening during the experiment.

Moreover, it can also give insights into those cases in which the sensor is malfunc-

tioning and the filtering or processing stages could not fix it. This type of exploratory

data analysis allows us to determine some of the physiological behaviour during the

different stages of the experiments and to carry out specific actions to deal with

some problems, such as physiological recovery not working as expected or lengthen

stimuli since emotional latency was affecting some of the physiological responses.

More details regarding these facts are given in Chapter 6.

The different and public available emotion recognition databases are not reporting

this exploratory data analysis, the papers published are focused on the generation of

the database (the gathering data process). Exploratory data analysis is a very time

consuming task, but the physiological effect of the experiment is very useful from

the point of view of emotion detection. Therefore, other researches have performed

this analysis after the release of the different databases. For instance, the authors

in [153] used one of the open public databases in the literature [138], seven years

after its release, and concluded that induced emotions were stronger in the final part

of the stimuli based on an exploratory data analysis over the filtered physiological

data. That conclusion led them to train their proposed system using only the

last 20 seconds of each stimulus. Thus, these and other technical considerations
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resulted into a significantly increase of the accuracy of emotion recognition rate as

compared to the existing state-of-the-art emotion classification techniques. However,

despite the advantages that this process can bring related to the effectiveness of

the generated affective computing systems, it involves a considerable amount of

time as well as the need for a good knowledge in physiological signals. The latter

consideration is actually the most challenging factor, as the different physiological

patterns may largely vary across subjects and experimental sessions. In fact, the

recent emotion recognition reviews in the literature do not even address anything

related to this topic [24, 49,133,154,155].

3.1.4 Feature engineering
Feature engineering involves the utilisation of different mechanisms to improve the

emotion recognition model performance. Note that it is only applied for conventional

machine learning strategies and deep learning strategies in which the inputs are the

extracted features. Thus, an essential distinction must be done before going into

details for feature engineering. On the one hand, conventional machine learning and

deep learning using feature extraction require ad hoc extraction techniques as well

as optimisation, Figure 3-2. On the other hand, there are deep learning methods

that do not need a feature extraction stage, as they can learn patterns and inherent

principles directly from the processed data to extract already optimised features

automatically. These latter methods are known as end-to-end solutions, and they

seem to be very promising for emotion recognition in physiological and multimodal

problems [156–158]. However, deep learning methodologies, whether they depend

on hand-crafted or learned features, still require a considerable amount of resources.

For instance, TensorFlow Lite, which is nowadays one of the most used open-source

machine learning frameworks for low power and very constraint devices, can deploy

deep learning models with a footprint from 300KB to 1MB1. Unfortunately, when

considering the design of ultra-low-power wearable devices using current System on

Chip (SoC) technology, these memory sizes can impair other critical tasks to be per-

formed within such devices. Even though, it is worth mentioning that a tremendous

effort is being applied to boosting deep learning into edge computing systems, such

1https://www.tensorflow.org/lite/guide (Accessed: 01/03/2022)
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as the TinyML foundation2 or the Subthreshold Power Optimised Technology® by

Ambiq Micro Inc.3. Thus, for this research work, we are focused on the conventional

machine learning architecture, leaving embedded deep learning and/or end-to-end

deep systems to further research. The following subsections discuss the different

processes that can be performed for the feature engineering strategy. Note that

these are carried out just once during the training of the system, posterior to the

database generation, but prior to the deployment of the system.

Data
Feature 

Extraction

Dimensionality 

Reduction

Feature 

Selection

Learning 

Algorithm
Performance

Filter techniques
Wrapper techniques

Embedded techniques

Figure 3-2: Conventional feature engineering processes for supervised feature selec-
tion.

3.1.4.1 Feature Extraction

The first task within the feature engineering process is the extraction of synthetic

metrics from the previous filtered data. Regardless of the vast amount of feature

extraction techniques that can be found in the literature for emotion recognition

[24,49,154], they can be divided into three categories:

• Temporal domain. These features possess the lowest computational complexity

amongst the different types of feature extraction techniques. Note that most of

the temporal domain features can be implemented in a linear fashion (𝒪(𝑛)).

Specifically, they provide information regarding the stationary and linear as-

pects of the time series being analysed. Most of them are extracted through

higher-order statistics computations. One of the biggest disadvantages of these

features is the inability to capture the non-stationary physiological behaviour.

• Frequency domain. The goal of these features is to obtain the PSD in specific

frequency bands for the different physiological signals. The common method

to get the PSD is based on the Discrete Fourier Transform (DFT) by using

2https://www.tinyml.org/ (Accessed: 01/03/2022)
3https://ambiq.com/ (Accessed: 01/03/2022)
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the Fast Fourier Transform (FFT) algorithm. For that specific case, the time

complexity generally levels up to 𝒪(𝑛 log 𝑛) in comparison with the temporal

features. Moreover, dealing with the frequency domain is synonymous with

the time-frequency resolution problem. The latter fact is of special relevance

in the case of physiological information, as some of them are slow-changing

signals, such as the EDA, which is known to have time-varying responses from

1 to 30 s based on the type of stimulus [119]. Apart from this problem, there

is physiological information that is an unevenly or non-uniformed sampled

signal, which makes the application of the FFT algorithm impossible. This

problem is tackled in the literature by employing different techniques such as

prior-interpolation or the Lomb-Scargle periodogram [159]. Thus, although

the frequency content is proven to be a reliable measure to track emotions,

different trade-offs must be considered regarding the optimisation of these

techniques as well as the frequency resolution needs (temporal window storage

size and processing capabilities).

• Non-linear methods. To disentangle the dynamic and non-stationary proper-

ties of the physiological signals, different methods are used. Note that these

types of features are also referred to as chaotic features. In fact, the works

that have contemplated, used, and even compared non-linear against tempo-

ral or frequency features obtained a considerable performance improvement in

their specific emotion recognition objective [160,161]. Besides that, in the last

years, the applicability of deep learning to emotion recognition problems has

increased due to the promising obtained results [153,162,163], which is an in-

dicative of the physiological non-linear emotional component as well. Within

this context and in line with the non-linear importance, different studies and

reviews recollected and analysed the non-linear physiological behavior [91,92],

as noted in Section 2.5. The main and biggest disadvantage of these techniques

is the time complexity they have, as it can be up to 𝒪(𝑛2).

Most emotion recognition systems based on physiological signals and using well

known emotional labels are based on conventional temporal and frequency feature

extraction. Thus, the combination of the three domains (temporal, frequency and

non-linear) should be extended in the literature. This approach might be exploited
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to gain a better understanding of the physiological variations and changes concern-

ing the self-reported metrics used as labels within these types of systems. It should

be noted that, the categorisation provided by this research work is based on the

different commented reviews in the literature. However, there can be more specific

feature extraction techniques or even different names for the proposed categories.

For instance, morphological features [164], being those referring to specific physio-

logical signal properties (amplitudes, times, number of peaks, etc.), used to be also

employed interchangeably to the temporal domain techniques. In the case of this

research work, we have elaborated a compendium of the most relevant and successful

features considering the three categories reviewed. More details are given in Chapter

4 for their specific implementation.

Once features have been successfully extracted, it is time to optimise them. Such

optimisation can be done by feature selection and/or feature reduction [165]. The

former is based on identifying the most relevant features and creating new subsets of

features with those, whereas the latter deals with the dimensionality reduction of the

problem by means of different types of basis transformation. Note that the basis

transformation process refers to the conversion of the high-dimensional extracted

features, i.e. high number of features, into a low dimensional space with a minimal

loss of information. Both of these feature optimisation methods are essential to

simplify the model (less storage, improved visualisation, data reduction, Occam’s

razor), to avoid the curse of dimensionality, and to reduce training time.

3.1.4.2 Feature Selection

For the feature selection procedure, we differentiate three common techniques,

which are outlined in Figure 3-2 and applied for emotion recognition according

to the relationship with the learning methods [166]. In the first place, we can find

the simplest techniques known as filter methods. These are based on general sta-

tistical metrics, such as the correlation with the dependent variable, by which the

different features are ranked to further select the new subset. Although they possess

the lowest computational complexity, they are more prone to fail to select the best

features, as neither the interaction between them nor the effect of the new subset

on the classifier performance is considered. Secondly, towards the avoidance of the

filter methods problems, we find the wrapper methods. These use the classifier to
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verify the performance effect of the new subsets iteratively generated. Two of the

most known and used wrapper methods are Sequential Forward Selection (SFS) and

Sequential Backward Elimination (SBE). Specifically, the former is initialised with

an empty subset of features and starts combining them till no improvement is ob-

served, while the latter performs the same operation backwards by starting with all

the features and eliminating them one by one. The wrapper methods are known to

provide better performance at the expense of: (1) high computational needs when

the number of features is relatively high, and (2) over-fitting risk when the number

of input samples is relatively low. Moreover, they are strongly conditioned to the

type of classifier used during the different wrapping iterations. Lastly, the third type

of these methods is known as embedded methods. These were created to deal with

the different disadvantages of the previous two techniques and to keep their advan-

tages. In this case, the feature selection mechanism is integrated into the core of the

classification algorithm and it takes advantage of its feature selection and classifi-

cation at the same time. This provides computational complexity and speeds even

compared with the filter techniques and being much less prone to over-fitting. Note

that the commented techniques use the labels or target variable, which is known as

supervised feature selection. However, there are also methods which do not need the

target variable, such as correlation-based techniques. These latter techniques can

provide insights regarding the relationship among the different features to further

discard redundant information.

3.1.4.3 Dimensionality Reduction

As already commented, another possibility to optimise the feature space is to apply

feature reduction. This method is based on an unsupervised transformation of the

extracted features into an entirely new feature space. For instance, one of the most

common techniques is Principal Component Analysis (PCA), in which each new

feature is obtained by a linear combination of the original features. Specifically,

PCA calculates the covariance matrices of the original features to later extract their

eigenvectors and each corresponding eigenvalue. Then, the eigenvectors are sorted

by the eigen values in descending order (from more to less carried information) and

only kept those of interest. Such stored eigenvectors are putted together giving place

to the projection matrix, which will be used for the original data projection. One of
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the main disadvantages is that PCA can produce independent variables to be less

interpretable, as the original features become principal components. This method

has been extensively used for feature reduction in emotion recognition and other

machine learning problems [155, 167, 168]. Note that, besides PCA, a wide variety

of methods exist in the literature regarding feature reduction, such as t-Distributed

stochastic neighbour embedding, generalised discriminant analysis, or independent

component analysis [169].

Taking into account that the search for the ideal subset of features, whether it is

done by selection or reduction, is an NP-hard problem, the only way to obtain an

optimal solution is by performing an exhaustive search within the space of the so-

lution or within the application of different feature reduction techniques. However,

even considering that this process can be done during the training of the system

without involving any digital embedded constraint, this is a challenging task. More-

over, the wide variety of techniques and active research on this field introduce even

more complexity to the problem. Thus, the proposal, development and/or imple-

mentation of new dimensionality reduction techniques are out of the scope of this

document. Instead, along the development of this research work, different commonly

used feature selection methods have been applied for our specific use case. More

details regarding their implementation are given in Chapters 4 and 6.

3.1.5 Hyper-parameter optimisation
The term hyperparameter is referred to the values involved within the learning

process of the different machine learning algorithms that can not be estimated from

data. When dealing with conventional machine learning, the hyperparameter adjust-

ment process can strongly enhance the classification model during training. How-

ever, as for the feature selection, this process is also an NP-hard problem, as the

perfect hyperparameters are obtained after all the different and possible combina-

tions have been verified. For the sake of simplicity, just imagine a least-squares

approximation problem (a linear regression problem), in which the fitting of the

model is evaluated by the residual of every point given by

𝑟 = 𝑦 − 𝑓(𝑥), (3.2)
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where 𝑟 is the obtained residual for the observed sample 𝑦 when considering the

model defined by 𝑓(𝑥). Assuming that the approximation of the model is a straight

line, the previous equation results into

𝑟 = 𝑦 − (𝑏 + 𝑚𝑥), (3.3)

where 𝑏 is the interception with the dependent variable and 𝑚 is the slope of the

straight line model. In fact, these are the parameters of the model directly affecting

the adjustment to the observed data points. However, in order to find the optimal

adjustment, a loss function must be evaluated for all the possible combinations.

For instance, least-squares techniques use quadratic loss functions to minimise the

residuals. Since running all the possible combinations is a very time consuming task,

different techniques are used in the literature to optimise this search and provide

a well optimised machine, i.e. algorithm [170]. One of the simplest methods to

do this is by setting a maximum number of iterations to verify such loss function

based on a specific step size or learning rate while moving toward the minimum of

such loss function. These latter values are set before running the model and are

external to it, being identified as hyperparameters. Although, there are a plenty of

hyperparameter optimisation techniques, we have reviewed three of them:

• Grid search. This technique is based on a predefined grid of hyperparameters

combinations, i.e. a preset space of possible combinations, which are sequen-

tially run and tested. This method used to be very exhaustive but very time-

consuming at the same time. For instance, if we take three hyperparameters

and check 50 values for each, that results in a total of 125,000 combinations

to be tested. Thus, grid search can be used for a first approximation of the

problem, knowing that it is going to be neither the best nor the cheapest in

terms of resource and time consumption [171].

• Random search. This technique follows the same concept as the grid search,

i.e. a search is performed over a preset space of possible combinations. How-

ever, instead of evaluating those combinations sequentially, the technique uses

random combinations within such space. The amount of iterations is limited

explicitly by the designer. Overall, this method was proven to provide better

models in most cases and required less computational time [172].
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• Bayesian optimisation. One of the weaknesses of the previous two techniques

is that the evaluation of new points or hyperparameter combinations within

the grid does not consider any information regarding the score evolution along

the optimisation process. Thus, Bayesian hyperparameter tuning is known

as a Sequential Model-Based Optimisation (SMBO) technique that uses the

previous iterations knowledge to concentrate on better function loss scores,

i.e. it is based on a continuously updated probabilistic Gaussian model that

allows choosing the next hyperparameter combination in an informed manner

to boost the evaluation of more promising values [173].

More details regarding the specific use of these techniques for this research work

are provided in Chapters 4 and 6.

3.1.6 Data fusion
The interdisciplinary nature of the affective computing problems aiming to recog-

nise emotions together with the technology advancements open endless possibilities

in terms of modality observation. Note that the term modality is referred to as

multi-sensor data acquisition, in which each sensor is intended to capture data from

totally different sources of information (e.g. audio, physiological, text, visual). For

instance, our brain is already working on a multi-sensor information basis and mak-

ing decisions based on data fusion. In fact, the authors in [174] performed a detailed

and exhaustive review of multi-modal experiments in the literature in comparison

with uni-modal. Through that survey, they confirmed that multi-modal systems

outperform uni-modal systems. Moreover, they also point out that deep learning

techniques are gaining ground to conventional machine learning by using end-to-end

deep learning models, which do not need the feature extraction steps as they can be

fed directly using the raw data [158].

Within this context, we can categorise Bindi as a multi-modal system, in which

we have two different modalities: physiological and audio. These can be fused by

employing different data fusion methodologies, which are described as following:

• Early fusion. This method is based on performing or applying the fusion task

on the early stage of the problem, i.e. by using the data or even the features.

The former can be done by removing correlated information between modali-

ties, whereas the latter fuses the different features (from different modalities)

63 Jose A. Miranda, PhD Thesis



Chapter 3. Databases and Machine Learning for emotion recognition

into just one single feature vector. For instance, Figure 3-3 depicts a possible

example of early fusion, in which feature extraction is applied independently

over both modalities and the resultant feature vector is just the concatena-

tion of such. The latter process is one of the fastest methods to fuse feature,

however, it can be done applying other techniques such as point-wise addition.

One of the main advantages of this fusion method is that only one classification

model is required to be trained.

• Late fusion. In this case, the sources of information follow totally independent

paths, which may not even have the same components or processes, until a

classification output is given by different and independent classification models

based on the modality. Figure 3-3 depicts a possible example of late fusion, in

which both modalities have independent classification models and the output

of those is fused. Whether the model is providing a soft label (any output

metric providing information on the predicted probability of class membership,

e.g. 50% probability belonging to the positive class) or a hard label (predicted

class without any probability information, e.g. label ’1’ and ’0’ for positive

and negative class), different techniques can be used to perform such data

fusion. For instance, one of the common techniques is performing a weighting

scheme [155] given by

𝑐 = 𝑎𝑟𝑔 𝑚𝑎𝑥

⎧⎨⎩
𝑀∏︁

𝑚=1
𝑃𝑖(𝑋|𝐶𝑚)𝛼𝑚

⎫⎬⎭, (3.4)

where 𝑀 is the total amount of modalities, 𝑋 is the data input, 𝑃𝑖(𝑋|𝐶𝑚)

is the probability of 𝑋 belonging to the 𝑖 class and provided by the classifier

of a specific modality 𝐶𝑚. The different weights for each modality 𝛼𝑚 are

determined during the training stage and they only need to satisfy Σ𝑀
𝑚=1𝛼𝑚 =

1. The main advantage of the late fusion is the ad-hoc design that can be

performed for the different modalities independently, however, that fact also

leads to the need for more than one classifier.

• Intermediate fusion. This data fusion implies the transformation of the ex-

tracted features into a new representation of the original data, i.e. basis

change. It is used to be mostly applied when dealing with deep learning
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models, in which the data fusion can occur anywhere along the inner layers of

the neural network. This fusion is more flexible in comparison with the other

two in which the information is fused whether at the beginning or at the end.

However, there are very few examples of this technique in the literature, on

the contrary as the previous one.
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Figure 3-3: Early and late data fusion techniques for physiological and audio/speech
extracted features, with dimensions 𝑁 and 𝑀 respectively.

More details regarding the specific use of these techniques for this research work

are provided in Chapter 6.

3.1.7 Emotion Classification
This stage, together with the data fusion, is one of the last to be performed towards

the achievement of a fully trained and tested affective computing model, see Figure

3-1.

3.1.7.1 Bias-Variance Trade-off

Before describing different models that are of interest for this work, the Bias-

Variance trade-off might be explained and properly addressed to understand all the

concepts associated within this stage.

The performance of the machine learning algorithms are mainly defined by their

bias and variance. The relationship between these metrics is directly related to
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under-fitting and over-fitting issues. For instance, let us consider Equation 3.2, but

assuming that 𝑓(𝑥) defines the true relationship between 𝑦 and 𝑥. In that case

and assuming that we create or design a function 𝑓 ′(𝑥) that corresponds to our

machine learning model, the quality of such algorithm under unseen test points can

be measured by the Mean Square Error (MSE) as

𝑀𝑆𝐸𝑓 ′ = 𝐸[(𝑦 − 𝑓 ′(𝑥))2], (3.5)

which can be further decomposed into

𝑀𝑆𝐸𝑓 ′ = 𝐸[(𝑓(𝑥) + 𝑟 − 𝑓 ′(𝑥))2]

= 𝐸[(𝑓(𝑥) + 𝑟 − 𝑓 ′(𝑥) + 𝐸[𝑓 ′(𝑥)]− 𝐸[𝑓 ′(𝑥)])2]

= 𝐸[(𝑓(𝑥)− 𝐸[𝑓 ′(𝑥)])2] + 𝐸[(𝐸[𝑓 ′(𝑥)− 𝑓 ′(𝑥))2] + 𝐸[𝑟2]+

+ 2𝐸[(𝐸[𝑓 ′(𝑥)]− 𝑓 ′(𝑥))(𝑓(𝑥)− 𝐸[𝑓 ′(𝑥)])]

𝑁𝑜𝑡𝑒 : 𝐸[𝐸[𝑓 ′(𝑥)]] = 𝑓 ′(𝑥)

: The last term cancels to zero.

= 𝐸[(𝑓(𝑥)− 𝐸[𝑓 ′(𝑥)])2] + 𝐸[(𝐸[𝑓 ′(𝑥)− 𝑓 ′(𝑥))2] + 𝐸[𝑟2]

= 𝑏𝑖𝑎𝑠[𝑓 ′(𝑥)]2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑓 ′(𝑥)] + 𝜎2
𝑟 ,

(3.6)

where 𝑟 is the residual or random noise with zero mean and 𝜎2
𝑟 variance (𝐸[𝑟2]),

𝑏𝑖𝑎𝑠 is the difference between the average expected value of prediction and the

actual value, and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 quantifies the consistency of the output prediction value

based on the variation of the training data points. An illustrative example of these

concepts is shown in Figure 3-4, from which different conclusions can be obtained:

• A model with high bias and low variance is within the under-fitting zone, being

unable to adjust itself to the training data. This fact leads to high training

and testing errors.

• A model with low bias and high variance is withing the over-fitting zone, being

adjusted to much to the training data that is unable to generalise or fit new

unseen test data. This fact leads to the lowest training error at the expense

of a high test error.

• The best model is the one that minimises errors from wrong predicted values
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Figure 3-4: Bias-Variance trade-off with underfitting, overfitting and optimal zones.

(low bias) and presents robust consistency to the variations of the training

data (low variance). This is identified as the optimal zone, in which the model

achieves the perfect trade-off between the training and test error.

• Even when achieving the lowest bias and variance within the optimal zone,

the quality of the model will be determined by the irreducible error, which is

irrelevant to the model and related to the inherent noise within the data.

Note that considering the usual bias and variance behaviour for the different ma-

chine learning algorithms to be evaluated is essential. In fact, traditional machine

learning algorithms suffer from this trade-off problem as their complexity increases.

3.1.7.2 Machine Learning Algorithms

For this research work, different well-known machine learning models are used

based on current reviews focusing on emotion recognition [24]. They are described

as follows:

• Support Vector Machines (SVM) [175]. This supervised classification algo-

rithm is one of the most popular machine learning algorithms. Although

originally was proposed solely for binary classification problems, it has been

extended and applied for multi-class problems as well along the years. The

main idea behind this classifier is based on finding a hyper-plane that best

separates the data into the different classes. Note that the data are the dif-

ferent extracted features being fed to the classifier. In this context, two main
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elements need to be defined to understand the hyper-plane concept: support

vectors and margins. As depicted in Figure 3-5, assuming a binary classifica-

tion with two features, the support vectors or support vector points are the

ones closest to the hyper-plane (mid part of the margin). From a 2D perspec-

tive, the hyper-plane can be conceptualised as the line separating both classes

given by equation 3.3.

Feature #2

F
ea

tu
re

 #
1

Support vector points

Positive class
Negative class

Figure 3-5: Hyper-plane illustration for the SVM classifier for binary classification
(black dots are positive class, and grey dots are negative class).

However, to define the entire hyper-plane, such equation is expanded into or

generalised to the 𝑀 dimensions of the problem as following,

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤1𝑥1 + ... + 𝑤𝑀𝑥𝑀

= 𝑤0 +
𝑀∑︁

𝑛=1
𝑤𝑛𝑥𝑛

= 𝑏 + 𝑤𝑇 𝑋,

(3.7)

where 𝑤𝑇 are the support vector points, 𝑋 are the provided training points,

𝑏 is the biased term or the offset of such hyper-plane, and 𝑦 is the class label

(positive or negative for a binary problem). Thus, we can define any hyper-

plane as the set of points satisfying

𝑤𝑇 𝑋 + 𝑏 = 0. (3.8)

Note that, considering such equations, the optimisation problem to get the

optimal hyper-plane is based on maximising the margin to best separate the

data into the different classes, as already remarked before. Therefore, such
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optimisation problem is actually selecting two initial hyper-planes that meet

the following constraints:

𝑤𝑇 𝑋 + 𝑏 ≥ 1, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 −→ 𝑦 = 1, (3.9)

𝑤𝑇 𝑋 + 𝑏 ≤ −1, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 −→ 𝑦 = −1. (3.10)

These constraints can be rearranged and expressed by the following,

𝑦 * (𝑤𝑇 𝑋 + 𝑏) ≥ 1. (3.11)

Nevertheless, the above equations and assumptions are only valid if the data

are linearly separable, which is not the case when dealing with physiological

information due to the non-linear nature of it. In these cases, the previous

equation is modified by adding an extra parameter, 𝜁, allowing or accounting

for classification error during training. This leads up to soft-margins, rather

than hard-margins, with the following formulation:

𝑦𝑖 * (𝑤𝑇 𝑋 + 𝑏) ≥ 1− 𝜁. (3.12)

Additionally, a hyper-parameter 𝐶 is used to handle such miss-classification

cost and keep control of the soft-margins. However, in most of the cases

when the data are not linearly separable, the application of soft-margins is

not enough, and different kernels need to be applied. The application of a

kernel can be thought as mapping the data into higher dimensions, so they

can be linearly separable in a new higher dimensional feature space, Figure 3-6.

Moreover, these kernels use the called kernel-trick through which there is not

need to know or worry about these higher dimensional transformations, as

the kernel functions allow inputs in the original lower dimensional space and

give back the dot product of the transformed vectors in the higher dimen-

sional space. For instance, one of the commonly employed kernels in emotion

recognition systems and also used in this research work is the Gaussian or
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kernel

Figure 3-6: Kernel trick illustration for a binary problem.

Radial-Basis Function (RBF) kernel, which is given by

𝐾(𝑋1, 𝑋2) = 𝑒𝑥𝑝(−||𝑋1 −𝑋2||
2𝜎2 ), (3.13)

where ||𝑋1 − 𝑋2|| is the Euclidean distance (L2-norm) between data points

(feature data points) 𝑋1 and 𝑋2, and 𝜎 is the hyper-parameter to be tuned

to consider that two points are similar (they belong to the same class). Note

that this kernel is bounded superiorly by 1, as the distance between two points

that are extremely similar is zero. Based on the value of 𝜎, the region of

similarity (zone where 𝐾(𝑋1, 𝑋2) is higher than zero) between points will

change, Figure 3-7. This algorithm is a discriminative classifier whose bias

and variance are determined by the 𝐶 and 𝜎 hyper-parameters for the soft-

margins and the RBF kernel respectively. The main advantage is that it

presents a higher memory efficiency in comparison with other classifiers (just

need to store the support vectors, not all the training data points), but it

does not perform well when leading with too much overlapping between the

different classes.

• K-Nearest Neighbours (KNN) [176]. This is also a supervised classification

algorithm, however, it is called a lazy classifier. From a mathematical point

of view, there is not an actual learning process involved within the algorithm.

Instead, it seeks the best distance 𝑑 and the number of neighbours 𝑘 that
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𝐾(𝑋1, 𝑋2)

1

||𝑋1 − 𝑋2||𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 σ1

𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 σ2

𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑜𝑟 σ3

𝜎1 < 𝜎2 < 𝜎3

Figure 3-7: RBF kernel values based on the distance between the two points being
evaluated for different 𝜎.

maximises the separation of the classes. Thus, performing predictions upon

new data arrival requires the calculation of such distance with each of the

training data points and further comparison with the 𝑘 surrounding neighbours

to determine the belonging class. This algorithm assumes that similar things

exist in close proximity. Note that different type of distances can be used

(Euclidean, Minkowski, City block, Mahalanobis etc.), as well as different

sorting algorithms to find the 𝑘 closest neighbours after distances calculations.

From a practical point of view, KNN is one of the simplest algorithms to imple-

ment. Thus, it is a right choice for a first proof-of-concept approach. However,

it gets significantly slower as the number of training samples increases, as well

as it affects memory efficiency.

• Ensemble Methods (ENS) [177]. These methods are actually a set of machine

learning techniques, rather than a classifier. They are based on the combi-

nation of different base models or weak classifiers to produce one optimal or

strong classifier. Such combination is commonly performed in a bagging or

boosting manner. In bagging, each model is trained independently on the

same training set, while in boosting, each weak classifier is trained considering

the previous classifier performance by applying a weighting data mechanism

(higher weights assign to incorrectly classified instances).

71 Jose A. Miranda, PhD Thesis



Chapter 3. Databases and Machine Learning for emotion recognition

For this research work, boosting ensemble methods are used and, specifically,

the Adaptive Boosting classifier or AdaBoost is applied. This classifier is

very popular for binary classification and the weak classifiers employed to

implement it used to be decision stumps (trees with just one node or one-level

decision trees) or shallow trees (trees with very limited depth). Note that

such specific type of trees enhances comprehensibility. Thus, for every weak

learner (𝑚) and all for the instances within the training set (𝑁), this classifier

computes the weighted classification error as

𝜖𝑚 =
∑︀𝑁

𝑖=1 𝑤
(𝑚)
𝑖 𝐼(𝑓𝑚(𝑥𝑖) ̸= 𝑦𝑖)∑︀

𝑖=1 𝑤
(𝑚)
𝑖

, (3.14)

where 𝑤
(𝑚)
𝑖 is the weight of instance 𝑖 for the learner 𝑚, and 𝐼 is the loss

function defined by

𝐼(𝑓𝑚(𝑥), 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑓𝑚(𝑥𝑖) = 𝑦𝑖

1, if 𝑓𝑚(𝑥𝑖) ̸= 𝑦𝑖

(3.15)

After training, this classifier predicts the label of new unseen information

following a weighted linear combination of all the considered weak classifiers

(𝑀), which is given as following:

𝑔(𝑥) = 𝑠𝑖𝑔𝑛

(︃
𝑀∑︁

𝑚=1
𝛼𝑚𝑓𝑚(𝑥)

)︃
, (3.16)

where 𝛼𝑚 is the total weight assigned to each weak learner given by

𝛼𝑚 = 1
2 𝑙𝑜𝑔

(1− 𝜖𝑚)
𝜖𝑚

. (3.17)

From a practical perspective, the inference stage of this machine learning al-

gorithm requires less storage and possess a lower computational and tempo-

ral complexity in comparison with the two previously algorithms reviewed.

However, it is more sensitive to noisy data and outliers, which requires data

properly filtered and noise-free before feeding them to the machine.
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3.1.7.3 Cross-Validation Techniques

Besides the specific model to be applied, the split of the data into train, valida-

tion and test sets must be performed prior to the training process. Although the

separation of such datasets is used to be embedded within the tasks of the clas-

sification procedure, it can be also conceptualised as an additional operation, see

"Performance Assessment" in Figure 3-1. Within this context, the training set can

be defined as the set from which the model is going to learn the underlying pat-

terns and adjust its hyperparameters. The validation set is the one affected by the

cross-validation techniques, through which an estimation of the model performance

can be obtained. Note that this set is actually part of the training set (the model

sees this sets in training). Finally, the test part is the one that is not seen by

the model during training and provides the final and unbiased evaluation of a fully

trained model. However, there are different methods to separate these sets, and the

selection of one technique or another depends mainly on the amount of data and

the need to hyper-parameter tuning. These splitting techniques are grouped under

the CV term. For this research work, different CV techniques adapted to emotion

recognition databases have been used. They are described as follows:

• Hold-Out. This is the simplest CV method in which the data is divided into

two sets (train and validation). During this CV, the model is fitted with

the first one and evaluated using the data within the second one. Note that

the final trained model is obtained by using the whole dataset (train and

validation). Although, a third dataset can also be obtained to be considered

as the test dataset, unseen data not used at all during the training stage.

A typical split ratio is 80% for training and 20% for testing, although this

ratio depends on the dataset. The main disadvantage of this method is the

risk of over-fitting (high variance), as different sets (different distributions of

the split) can even affect to the obtained results. Note that, as the training

dataset is reduced when using this technique, it can even lead to the risk of

losing inherent patterns of the signals or data.

• 𝑘 − 𝑓𝑜𝑙𝑑. To overcome the limitations of the previous technique and decrease

training variance, this method is based on splitting the training set into 𝑘

partitions, which can provide up to 𝑘 different possibilities to train and validate
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the system. Comparing to the previous technique, this method is usually

preferred as it can give a more realistic (less overoptimistic) measurement

for the model performance. The main disadvantage of this method is the

computational time needed to run 𝑘 times the training of the model.

• Leave-One-Trial-Out (LOTO). In this method, a sample is left out of the

training process to later test the model with it. However, for the emotion

recognition use case, this technique can be modified to identify a sample as a

trial of the experiment. For instance, in an experiment based on the physiolog-

ical recording while visualising different images, a trial would be identified as

the physiological data captured during one of the images visualisation. More-

over, the fact that the number of possible training combinations is defined

by the number of trials, brings this technique to the same advantages and

disadvantages as for the 𝑘 − 𝑓𝑜𝑙𝑑 CV with 𝑘 equal the number of trials.

• Leave-One-Subject-Out (LOSO). This technique follows the same concept as

LOTO, but in this case the sample that is left out of the training is an entire

subject or volunteer. As previously stated, considering the same image emotion

recognition example, all the data recollected from one subject is used for testing

purposes while training with the rest of the subjects or volunteers. The main

difference of this technique in comparison to LOTO is the data variability

observed within the test set. In fact, the test set in LOTO is based on just

one trial, which used to be identified with one label, whereas the test set in

LOSO is based on different trials from the same volunteers. Thus, while LOSO

can assure, at least for a subject, a representative test distribution, LOTO is

always subjected to the uncertainty of having a test set represented by just

one label.

For this research work, some of these techniques are implemented to handle the

generation of the different sets (training, validation and test) for the machine learn-

ing models. Specifically, the emotion recognition problem requires these strategies

to be applied to generate two type of models: subject dependent and independent

models. The former are trained, validated and tested using the data from one single

volunteer, while the latter use the data from all volunteers to create a global model.

The main difference between these models is the personalization. In fact, most of
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the variability between subjects lie in the dynamic nature of their affective states

and their previous experience. This fact can be proven by the superiority of the sub-

ject dependent models over the subject independent models in the literature [154].

Hence, in line with Chapter 2, stimuli interpretation and physiological changes are

strongly volunteer-dependent. Thus, personalization emerges, as it was done in [24],

in which the authors concluded that an emotion recognition subject-independent

model could be deployed but, at some point, user customisation will be necessary

to improve the system. For these reasons, there is a need in the literature, when

facing emotion recognition using conventional machine learning, to come up with

new CV techniques which provide some type of personalisation. In fact, looking at

other fields that use as well human information, it can be observed the application

of hybrid CV techniques which basically combine subject independent and subject

dependent models [5]. Within this context and, up to my knowledge, there is no

emotion recognition research work applying hybrid CV techniques. Thus, besides

applying some of the reviewed techniques, this research work proposes the utilisation

of the called Leave-hAlf-Subject-Out (LASO) CV technique as well. Note that a

graphical depiction for LOSO, LOTO, and LASO CV techniques is shown in Figure

3-8.

A. Ferrari et al.: On the Personalization of Classification Models for HAR

FIGURE 1. A graphical representation of the three main classification models.

proves to be the most prevalent monitoring technology for
activity recognition [33]. For this reason, in recent years,
several HAR approaches have been designed to recognize
ADLs by processing signals acquired from smartphones and
smartwatches [34]–[37].

B. PERSONALIZATION IN HAR
Although research on activity recognition techniques from
wearable devices is very active, the resulting systems are
limited in their ability to generalize to new users and/or new
environments, and require considerable effort and customiza-
tion to achieve good performance in a real-context [14], [15].

One of the most relevant difficulty to face with new situ-
ations is due to the population diversity problem [17], that
is, the natural differences between users’ activity patterns,
which implies that different executions of the same activity
are different.

According to Zunino et al. [38], two factors influence why
the same activity is carried out in a different way: the inter-
subject variability, which either refers to anthropometric dif-
ferences of body parts or to personal styles in accomplishing
the activity (in other words, different subjects may differently
perform the same activity); and the intra-subject variability,
which represents the random nature of each class of activity
due to pathological conditions or environmental factors (in
other words, a subject never performs the same activity in the
same exact way).

Thus, as users of mobile sensing applications increase in
size, the differences between people cause the accuracy of
classification to degrade quickly [17].

To face this problem, activity classification models should
be able to generalize as much as possible with respect to the
final user and the real execution context.

In order to achieve generalizable activity recognition mod-
els, three approaches aremainly adopted in literature: subject-
independent, subject-dependent, and hybrid.

The subject-independent (also called impersonal) model
does not use the end user data for the development of the
activity recognition model. It is based on the definition of a
single activity recognitionmodel that must be flexible enough
to be able to generalize the diversity between users and it

should be able to have good performance once a new user
is to be classified.

The subject-dependent (also called personal) model only
uses the end user data for the development of the activ-
ity recognition model. The specific model, being built with
the data of the final user, is able to capture her/his pecu-
liarities, thus it should well generalize in the real context.
The flaw is that it must be implemented for each end
user [39].

The hybrid model uses the end user data and the data of
the other users for the development of the activity recognition
model. In other words the classification model is trained both
on the data of the users and on a part of the data of the final
user. The idea is that the classifier should recognize easier the
activity performed by the final user.

Figure 1 shows a graphical depiction of the three models
to better clarify their differences.

Tapia et al. [40] introduced the subject-independent and
subject-dependent models, and later Weiss and Lockhart [18]
the hybrid model.

The models were compared by different researchers and
also extended in order to achieve better performance.

Medrano et al. [5] demonstrated that the subject-
dependent approach achieves higher performance then
subject-independent approach for falls detection, called
respectively personal and generic fall detector.
Shen et al. [41] achieved similar results for activity recog-
nition and come to the conclusion that the subject-dependent
(termed personalized) model tends to perform better than the
subject-independent (termed generalized) one because user
training data carries her/his personalized activity information.
Lara et al. [42] consider subject-independent approach more
challenging because in practice, a real-time activity recog-
nition system should be able to fit any individual and they
consider not convenient in many cases to train the activity
model for each subject.

Weiss and Lockhart [18] and Lockhart and Weiss [43]
compared the subject-independent and the subject-dependent
(termed impersonal and personal respectively) with the
hybrid model. They concluded that the models built on the
subject-dependent and the hybrid approaches achieve same
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Figure 3-8: Graphical depiction for LOSO, LOTO, and LASO CV techniques [5].

Regardless of the type of model and as stated in Section 3.1.2, the physiological

data collected during the experiments is segmented into processing windows. These

are subjected to overlapping to increase physiological delineation performance, which

can strongly affect the interpretation of the results obtained when using the detailed

CV techniques. For instance, in case of applying a 𝑘− 𝑓𝑜𝑙𝑑 CV over a vector of fea-

tures extracted from filtered, windowed and overlapped physiological signals, there

could exist folds, i.e. processing windows, that contains some of the information of

the previous fold. This fact can lead to an overoptimistic interpretation of the results
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and, although it depends on the overlapping length, it should be avoided. Thus, fo-

cusing on emotion recognition by using physiological signals, strategies that do not

inquire into this problem, such as LOTO, LOSO, and LASO, might be preferred.

Note that the latter recommendation can be affected by the amount of available

data for training, which can make it impossible to apply some techniques such as

LOTO for subject dependent models.

3.2 Open available databases
Within the affective computing community, different datasets deal with emotion

recognition using physiological signals. The most common are MIT [178], DEAP

[138], MAHNOB [10], DECAF [145], ASCERTAIN [179], and WESAD [180]. Ta-

ble 3.1 summarises the main details of such databases. These open databases are

considered as a solid benchmark by the scientific community. In this Section, the

emotion recognition databases of interest for this research work are reviewed. Note

that previously, in [181] and [182], we performed a detailed analysis of some of these

open available databases and provided conclusions about their methodologies and

emotional recognition approaches. Due to the similarity with respect to some of the

emotional elicitation mechanisms, experimental methodologies, and, above all, the

physiological information of interest for this work, only two of them are chosen to

further perform fear detection proof of concepts based on their signals and stimuli,

which is detailed in Chapter 4.
Table 3.1: The most common emotion recognition databases with a laboratory set-
up used within the affective computing scientific community.

Database Subjects (M/F) Labels Use Case Accuracy Year
MIT [178] 1 (0/1) Discrete General 81.00% 2005

DEAP [138] 32 (16/16) Arousal/Valence General 57.00/62.70% 2012
MAHNOB-HCI [10] 30 (13/17) Arousal/Valence General 46.20/45.50% 2012

DECAF [145] 30 (16/14) PAD General 55.00/60.00/50.00% 2015
ASCERTAIN [179] 58 (37/21) Arousal/Valence General 66.00/68.00% 2017

WESAD [180] 15 (12/3) Research-based Stress 86.46% 2018

On the one hand, the first proofs of concept of this research work were developed

using DEAP [138]. This database contains physiological information of 32 volunteers

(16 female). The experiment consists of a total of 40 video-clips of one minute dura-

tion each. The stimuli were selected from a larger pool or pre-tagging stage based on

valence, arousal, and dominance ratings gathered by SAM. The included peripheral
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(physiological) sensors are electroencephalogram, electromyogram, respiration am-

plitude, GSR, electrooculogram, PPG and SKT. Regarding some of the limitations

of this dataset, due to the laboratory setup, the volunteers were very limited in

terms of movement, and so the trained models are not valid for real-life conditions.

It should be noted that a five second baseline recording was done between stimuli

by using a fixation cross in the screen. Finally, the authors of the database created

three binary systems, each of them inferring low or high level of arousal, valence

and liking, in which they used the self-reported ratings as ground truth (labels).

They presented these results as a benchmarking and obtained the following aver-

age Accuracy (ACC) and F1-score metrics: 57.00% (ACC) and 53.30% (F1-score)

for arousal, 62.70% (ACC) and 60.80% (F1-score) for valence, and 59.10% (ACC)

and 53.80% (F1-score) for liking. This database is of special interest mainly due

to two factors. First, it contains the same physiological information as the bracelet

of Bindi. Second, the self-reported labels gathered during the experiments contain

PAD space. More technical details about the DEAP affective computing system

and the ones proposed after its publication are provided in Chapter 4.

On the other hand, the MAHNOB-HCI dataset includes physiological data from

30 study participants (17 female) [10]. This lab-based emotion recognition dataset

contains data for a total of 20 video clips per volunteer, which were selected based on

a larger pool or pre-tagging stage as DEAP and were approximately 81 seconds long

on average .The recorded physiological responses were acquired using the Biosemi

active II system, and they included ECG, GSR, respiration amplitude, SKT, elec-

troencephalogram, eye gaze and face and body videos. As for the DEAP dataset, the

laboratory setup makes the trained models no valid for real-life conditions. However,

one of the main differences with DEAP is that in MAHNOB the authors considered

the emotional recoveries of volunteers between stimuli, rather than just waiting five

seconds between them. In fact, before watching any emotional video, different neu-

tral clips were shown to the participants. This process was used to recover a basal

physiological level, decrease the emotional bias after experiencing an emotion and,

ultimately, handle physiological intra-subject differences. Finally, the authors of the

database created two non-binary emotion recognition systems, each of them infer-

ring low, medium and high level of arousal and valence, respectively. To obtain the
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ground truth, they used a mapping between the self-reported discrete emotion rat-

ings and the emotional dimensions based on [3]. They achieved an average ACC and

F1-score metrics of up to 46.20% and 38.00% for arousal and 45.50% and 39.00%

for valence, respectively. This database is of special interest mainly due to three

factors: it contains the same physiological information as the bracelet of Bindi, the

self-reported labels contain PAD space information, and recovery between stimuli

was considered during the protocol experiment.

Despite the benefits that these databases bring to this research work, they are

not intended to elicit specifically fear to further detect risky situation in Gender-

based Violence contexts. Thus, they can be used to generate and to study proofs of

concepts for the fear machine learning engine that this research work is focused on

and even provide preliminary conclusions for the wide casuistry within this complex

task. However, as commented in previous Chapters, being the disentanglement

between physiological reactions and fear under Gender-based Violence situations one

of the main goals of this work, a new database might be created to actually target

for our specific use case. Moreover, such database might use VR to provide stronger

emotion elicitation immersive experiments. More details regarding the database

created during this research work and its particularities are given in Chapter 6.

3.3 Conclusion
In this Chapter, we have provided a complete review and analysis for the emotion

recognition databases generation and processing from an experimental point of view

to the data processing procedures that can be applied after the database is finished.

First of all, we concluded that there is not an standard protocol for stimuli analysis

and selection. All the public available datasets are thought from a general emotional

perspective, i.e. with the goal of identifying emotions in general without targeting

binary specialised emotional models. This fact makes the evaluation of the stimuli

by experts not so critical. But, for research works like the one being addressed in this

document, this strategy can not be applied and may not be suitable. The stimuli-

conditioned situation of Gender-based Violence Victims, as well as their possible

PTSD episodes, make neccesary the help of experst to adjust and select the stimuli

to be presented during our experiments. Secondly, an exploratory data analysis
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is strongly recommended to determine some of the physiological behaviour and to

carry out specific actions to deal with some problems, such as physiological recovery

from emotion elicitation. Third, we have detailed different recommendations for

the CV techniques to be applied when dealing with emotion recognition problems.

This fact is of special relevance due to the inter and intra variability that can exist

between the different volunteers in such experiments. Thus, new CV techniques

that consider intra and inter variability, such as LASO, are preferably selected to

be used an applied over common techniques.

The research work presented in this document deals with the proposal, study, design

and implementation of a new emotion recognition database, fear machine learning

design, and wearable edge device development. This makes the knowledge of this

Chapter essential to understand the topics in the following Chapters.
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Chapter 4
Fear classification Proof-Of-Concept

Once reviewed the whole state of the art regarding emotions, physiological informa-

tion, databases for emotion recognition, and the different post-processing procedures

to design a fully tested machine learning model, we will apply such knowledge to

design different fear binary emotion recognition systems using the two databases

detailed in Section 3.2. Specifically, in this chapter, the proposed architectures are

solely based on the physiological uni-modal part of Bindi, considering the descrip-

tion of Bindi in Section 5.2. Thus, these proposals are intended to boost the first

embedded implementations of the whole data processing chain, including the ma-

chine learning engine, within the smart bracelet of Bindi. Note that the multi-modal

casuistry and possibilities are dealt and detailed in Chapter 6.

In the following sections we will start by approaching three initial systems de-

veloped upon the DEAP database. Thereafter, due to some limitations observed

in DEAP, the MAHNOB database will be used to design another two fear binary

emotion recognition systems. Finally, all the generated performance metrics will

be compared with respect to the current state-of-the-art regarding emotion recogni-

tion and, more specifically, fear detection. Moreover, to contextualise the scope of

the obtained results, key aspects such as class balance, feature selection, and other

processes are dealt and discussed. Note that the different systems presented in this

Chapter were designed and validated on a personal computer. Specifically, Mat-

lab® was used as the software platform and all the developed code took Toolbox for

Emotional feAture extraction from Physiological signals (TEAP) [148] as a reference,

which is a current available open source toolbox for physiological data processing and
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feature extraction. In fact, we have been in contact with the developers of TEAP

and contributed with fixes to their repository. Finally, a new fully automatised tool-

box from that basis has been developed, which accounts from signal pre-processing

to machine learning training and testing. This tool has been applied to design the

systems presented in this Chapter as well as for different experiments with other

datasets and projects within the department under which this research work has

been carried out.

The proposed emotion recognition systems are ordered from lower to higher com-

plexity within this Chapter. In such a way, the research and development strategies

followed along this work have fed in an incremental manner the different implemen-

tations carried out with Bindi. Thus, regardless of the architecture complexity, most

of them are based on the components shown in Figure 4-1, which depicts an overall

and general description of the training for the proposed fear recognition system.

It includes the typical steps in the processing chain discussed in Chapter 3, from

the analysis of the physiological signals dataset to raw data pre-processing, feature

extraction and emotion classification. In fact, most emotion recognition systems

in the literature follow this architecture but focusing on classifying emotions from

a general-purpose point of view by detecting a set of emotions without consider-

ing if the user is male or female [133]. However, targeting the identification of a

single emotion that could be related to a specific situation and considering gender-

related particularities might be exploited towards a more accurate system. This last

assertion is based on the idea that women recognise nonverbal communication or

emotional prosody more accurately [54], as reviewed in Section 2.3.3. These concepts

are not considered in any current emotion recognition system using physiological sig-

nals presented in the literature. Currently, up to my knowledge, there is no affective

computing detection system developed to identify different critical social situations,

such as Gender-based Violence episodes. Within this context, a specialised fear de-

tection system could be designed to trigger a protection protocol that could include

a connection to a trusted circle or even to law enforcement agencies, in order to pro-

vide immediately the necessary help. The latter is one of the main goals of Bindi,

as stated in Chapter 1. Thus, the added value of the proposed architecture in this

Chapter is twofold: (1) the generation of a first proof of concept for a specialised
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fear binary recognition system by using solely physiological information (so far the

state-of-the-art approaches deal with several emotions), and (2) the consideration of

digital processing constraints to further properly adapt such system to be integrated

into a wearable edge-device platform for allowing protection of vulnerable people.
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…Trial 2 Trial 𝑛

w #1 … w #𝑛
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(SAM – PAD)
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Processing
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Data Processing
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Figure 4-1: Overview of the training process for the proposed fear recognition sys-
tem employing physiological sensor data and PAD dimensional approach emotion
labelling. The latter is fed into the fear binary mapping procedure. Note that 𝑤#𝑛
denotes the different windows obtained after data segmentation if applicable.

It is noteworthy to highlight two specific design considerations regarding the type

of generated models and the specific embedding constraints of Bindi. On the one

hand, throughout the design of these initial proof of concepts, the need for a robust

and reliable subject-independent model has been something tackled and chased. The

design of a fully subject-independent model would allow boosting the initial deploy-

ment process of any technological tool able to detect any emotion using machine

learning. This fact can be specified in Bindi for fear detection under Gender-based

Violence situations. This consideration is essential to understand some of the de-

cisions made and parameters studied within this and the following Chapters. Note

that such subject-independent system, which is deployed at an initial configuration
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process, is subjected to be later customised and personalised for the specific subject

to improve performance, as stated in Section 3.1.7.2. On the other hand, the design

process of all the different fear binary emotion recognition systems presented in this

research was also biased by specific embedded resources and capabilities constraints.

These were fixed as 64 kB of RAM and 512 kB of Flash. Note that such resources

were imposed by the research team to narrow down the design to a lightweight im-

plementation, however, different limitations can be set considering the respective

performance improvement or worsening. More specific details for the embedded

implementation are given in Chapter 5.

4.1 Fear classification using DEAP
As detailed in Section 3.2, the DEAP database is one of the most used databases in

the literature regarding emotion recognition with peripheral or physiological signals.

Although it is not a fear specialised dataset, i.e. the different stimuli were selected

from a general emotional perspective without focusing specifically on any particular

emotion, it contains the necessary elements for us to design the first proof of concept

for the fear detection system based exactly on the same physiological signals of our

interest, i.e. PPG, GSR, and SKT. DEAP contains data of 32 participants for a

total of 40 video clips, which were selected based on a pre-tagging stage following

arousal, valence and dominance ratings. However, it should be highlighted that the

measurement equipment of this database was Biosemi ActiveTwo system1, which

is a professional measurement kit thought to be employed in laboratory conditions.

This fact makes the acquired signals to be far from real measurements obtained with

wearable devices. Thus, the proposed systems presented here serve as initial proof

of concepts and allowed us to identify different key aspects to be considered when

both designing a database and training a machine learning model from such data.

Regarding the specific methodology followed during the DEAP experiments, Figure

4-2 shows a simplified diagram for the experimentation applied for every volunteer

and each stimulus. Note that the 2-minute baseline was applied just at the be-

ginning of the experiment. From this figure, a very short transition is appreciated

between consecutive stimuli and, therefore, between two elicited emotions. This

1http://www.biosemi.com
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fact can strongly affect the emotional state of a volunteer, and hence the physi-

ological recovery, before the next video clip. Moreover, a mandatory break was

performed at the half of the experiment (stimulus number 20), during which cookies

and non-caffeinated, non-alcoholic beverages were offered to the volunteer. This ex-

perimental methodology may introduce a very harmful bias depending on the order

of the stimuli and their targeted emotion. In the following subsections, we analyse,

from a physiological point of view, the possible effects detected in the collected data

and labels. Regardless of these facts, up to my knowledge, DEAP was the first

database that proposed well-documented selection stimuli and experimental labora-

tory methodology, together with a relatively high number of volunteers, and made

everything fully open access.

2-minute 

baseline

2-second 

display 

#trial

5-second 

baseline

1-minute

video

Self-

Assessment

Figure 4-2: Simplified diagram for the experimentation applied for every volunteer
and each stimulus for DEAP database.

Before going into details for the analysis performed and systems designed using

the DEAP data in this research work, a review of the data processing and machine

learning techniques applied by the original work of the database, and by subsequent

research using it, might be provided. The authors of the original work of the DEAP

database applied basic pre-processing procedures to remove the temporal low fre-

quency drifts of some signals and smooth them by using moving average filters.

They extracted 106 physiological features and employed a filter feature selection

method to use only the highest-ranked ones. Specifically, they applied the Fisher

linear discriminant score given by equation 4.1,

𝐽𝑓 = |𝜇1 − 𝜇2|
𝜎2

1 + 𝜎2
2

, (4.1)

where 𝜇𝑘 and 𝜎𝑘 represent the mean and variance of the class 𝑘 for each feature 𝑓 .

Note that this equation is valid for 𝑘 = 2, i.e. a binary classification problem. The

bigger this score, the more important that specific feature will be. Thus, the goal

is to maximise the score to obtain a large between-class variance (numerator) and

a small within-class variance (denominator). However, this methodology neglects
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the combination of features and neither handle redundant ones, which leads to a

sub-optimal selected feature space with empirical threshold discrimination. For the

classification, they used a Gaussian naïve Bayes classifier for a two-class problem

and three different use cases, low and high levels for arousal, valence and liking.

This specific classifier is characterised by being a generative model, i.e. it has a high

bias and a low variance derived by the assumed Gaussian distributions learnt from

the features, which can produce under-fitting issues. The output of such classifier

considering 𝑁 classes is provided by equation 4.2,

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 (𝑦)
𝑁∏︁

𝑖=1
𝑃 (𝑥𝑖|𝑦), (4.2)

where we can obtain the inferred class 𝑦 for a given set of features or feature vector

𝑥𝑖. Note that this classifier makes two key assumptions by considering that features

are independent and normally distributed. Being the latter given by

𝑃 (𝑥𝑖|𝑦) = 1√︁
2𝜋𝜎2

𝑦

𝑒𝑥𝑝

⎛⎝− (𝑥𝑖 − 𝜇𝑦)2

2𝜎2
𝑦

⎞⎠, (4.3)

where 𝜇𝑦 and 𝜎2
𝑦 are the mean and the variance of the values in 𝑥 associated with

class 𝑖. Lastly, the CV applied was LOTO considering the 40 audiovisual stimuli

used during the experiments. By employing all the peripheral signals, they provided

average Accuracy (ACC) and F1-score metrics and obtained 57.00% (ACC) and

53.30% (F1-score) for arousal, 62.70% (ACC) and 60.80% (F1-score) for valence,

and 59.10% (ACC) and 53.80% (F1-score) for liking. Note that they did not provide

the associated standard deviations of such average values.

Since the release of the DEAP database, different machine learning systems have

been proposed in the literature using its data. Some publications studied the fea-

ture importance by applying different methods and improving such process. For

instance, the authors in [183] considered the same classification problem as the au-

thors of DEAP, but used recursive feature elimination to tackle the mutual and

redundant information. They applied a SVM classifier and obtained 66.36% (ACC)

and 63.99% (F1-score) for arousal, and 68.71% (ACC) and 63.25% (F1-score) for

valence, which surpassed the original DEAP work. They used all the features from

all modalities including those extracted from non-wearable-ready sensors. In fact,
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they concluded that the electroencephalogram signals were playing a key role into

the classes separation (distinction between classes). Although their use case can not

be directly extrapolated to ours, as we are just based on three peripheral signals

and towards a fear binary detection system. The improvement of the results in

comparison with the original work due to the application of less restrictive feature

selection techniques and a discriminative classifier is valuable and can help in our

research.

There are also other publications that did not consider the whole set of signals

and, instead, they reduced their number towards a more wearable-ready concept.

For instance, [153] is one of the latest emotion recognition systems based on DEAP.

The authors designed a five class (Happy, Relaxed, Disgust, Sad, Neutral) emotion

recognition system using the PA model. They applied a feature fusion level tech-

nique by leveraging a deep belief network architecture together with conventional

statistical feature extraction over only three physiological signals (PPG, EDA, and

EMG). Finally, they trained a SVM classifier and obtained up to 89.53% average

accuracy for a subject-independent model following a LOSO configuration, which

outperformed the state-of-the-art. In their work, they did not consider any real

implementation constraint related to the data segmentation, frequency resolution,

storage and complexity applied or needed. Also, they only took the physiological

data recorded during the last 20-seconds of every stimulus based on their hypothesis

that the emotional immersion was greater at the end of the video clip. This hy-

pothesis has not been demonstrated with a statistical, objective and/or quantifiable

method, but just assessed by physiological visual exploration.

Among the rest of the research conducted on the DEAP database and regarding

specifically the fear recognition use case, four systems are found in the literature.

On the one hand, the first two [182,184] are our publications and they are detailed

in the following subsections. These will be hereinafter referred to as DEAP-b1 and

DEAP-b2 for this and the following Chapters. On the other hand, the authors

in [185] and in [186] employed the same binary fear paradigm that is described in

Section 2.3.4. In [185], they used all the DEAP volunteers and all the available

physiological signals, including the ones providing electrooculogram and electroen-

cephalogram data. By performing a Design Space Exploration (DSE) for different
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feature selection techniques, as well as for nine different classification machines, in-

cluding deep neural networks, they achieved up to 90.07% average accuracy for a

subject-independent model without feature selection, just by using the filtered data,

and following a Hold-Out strategy with a 70/30 train-test split ratio. Note that [185]

was published after our fear binary emotion recognition work, DEAP-b1 [184], which,

up to my knowledge, was the first research that applied such fear labelling paradigm

to emotion recognition through physiological signals. In [186], they took our research

from [182,187] as main reference and elaborated a comprehensive analysis that com-

prised a detailed study of the effects for fear binary emotion recognition when using

different machine learning elements methods, and techniques. In contrast with the

research in [185], in this one they applied filtering stages, data segmentation with

and without overlapping, feature selection, dimensionality reduction, and imbal-

anced adjustment with Synthetic Minority Over-sampling TEchnique (SMOTE).

They also relied upon the DEAP volunteers data, but discarded most of the signals

and just employed GSR and PPG. Finally, they used 20 second data processing

windows and achieved a maximum fear recognition accuracy rate of up to 93.50%

for a SVM classifier together with PCA by considering a non-overlapping strategy

and 5 𝑘− 𝑓𝑜𝑙𝑑 CV. Although this latter research is a valuable work towards explor-

ing the wide DSE regarding the fear recognition, their main limitation is the CV

technique applied as there could exist folds, i.e. processing windows, that contains

some of the information of the previous fold, see Section 3.1.7.3. Thus, this fact

may lead to overoptimistic results.

4.1.1 Stimuli balance and labels considerations
As stated in Section 3.1.1, one of the common approaches followed during the

generation of a database is related to the stimuli balance assessment. This is referred

as to the statistical representation of the different classes. For instance, in any

classification problem is desirable to have the same amount of instances for all

the classes. Otherwise, the classification algorithm could derive into favouring the

learning of the class with greater representation compared to the rest of the classes.

Thus, the analysis of the labels during the whole generation and processing of the

database is essential to contextualise and understand both the emotion elicitation

and the obtained results.
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In DEAP, the 40 video clips used during the experiment were chosen from a larger

stimuli pool. A pre-tagging stage started with 120 video clips and gathered around

14 ratings per video. After that process and by using equation 3.1, the authors

selected the videos that were located on the extreme corners of the normalised

quadrants within the PA space, which resulted in a set of 40 video clips with ex-

treme labelling and used for provoking emotions on the volunteers while measuring

their physiological signal. After visualising these video clips, the volunteers labelled

the emotion felt by them. Thus, this methodology led to the generation of two dif-

ferent sets of labels, the ones from the pre-tagging stage and those self-reported and

recollected during the experiment. Generally, the latter are the preferred ground

truth for training machine learning models that are based upon the gathered phys-

iological and/or physical data. However, the distribution of the self-reported labels

can be very different with respect to the pre-tagging stage labels. For instance, Fig-

ure 4-3 depicts the differences in pre-tagging and self-reported labels for the DEAP

database and the selected video clips. For the pre-tagging stimuli, the obtained

labels are categorised with a different symbol based on the normalised quadrant

location (Q1 - positive arousal, positive valence -, Q2 - positive arousal, negative

valence -, Q3 - negative arousal, negative valence -, Q4 - negative arousal, posi-

tive valence). On the contrary, the self-reported labels are represented using the

same symbol and colour. Note that the authors of DEAP selected the stimuli that

achieved the highest means and smallest variations among the different ratings. As

it can be observed, the pre-tagging ratings do not follow the same distribution as

the self-reported ratings, which even results into the same stimuli being located in

different emotional quadrants, for instance the stimulus 83.

Table 4.1 presents the videos that are in a different quadrant. Without even con-

sidering those with different locations within the same quadrant and those that are

right on the frontier lines, 20% of the stimuli are not evoking the targeted or pre-

tagged emotion during the realisation of the experiments. This is translated into

distinct label distribution and so can lead to system performance differences when

training with pre-tagging or self-reported labels. However, the stimuli related to the

second quadrant (Q2), based on pre-tagging ratings, are the only ones presenting

a complete agreement in comparison with the self-reported labels. Thus, it can be

89 Jose A. Miranda, PhD Thesis



Chapter 4. Fear classification Proof-Of-Concept

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Arousal  (

a
/

a
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

V
al

en
ce

 (
v/

v)

 63

 84

118

  2

 88

 62

  3

 12  72

 15

83

 9

80

37

76

27

90

17

29
85

96
41

33

97

45 44

98

95

42

31

112

113

111

 51115

 53

 56

107

116 57

  2

  7

 15

 62

 63

 70

 72

 84  88

118

  9

 17  24

 27

 29

 37

 76

 80

 83

 85

108

 31

 33

 41
 44

 45

 95

 96

 97

 98

 51

 53
 56

107

111

112

113

115

116

120

Q1

Q4

Q3

Q2

Self-Reported

Figure 4-3: Labelling differences for the DEAP database and the original numbering
for the selected video clips.

concluded that the stimuli intending to evoke negative emotions (high arousal, nega-

tive valence), such as fear-related emotions, are less prone to be confused with other

quadrants. Although this conclusion strongly supports an approach for a 2D-based

labelling strategy when facing the development of a fear binary recognition system,

the consideration of more dimensions might be considered and explored as well.

From a 3D perspective and considering the PAD model, the self-reported ratings

and the Fear mapping proposed in Section 2.3.4, only five stimuli are located within

the fear-related emotional cube (51, 98, 111, 115), Figure 4-4. This fact is specially

relevant due to disentanglement of the stimuli contained within Q2 in Figure 4-3.

Thus, from a subjective-rating point of view, the expansion to one more dimension

(dominance) can benefit the emotional location of stimuli and so their posterior label

assignment. However, such benefit is overshadowed in this specific case by knowing

that those five stimuli represent just 12.5% of the total amount of video clips. This

latter consideration represents a very imbalanced situation in the case of a fear
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Table 4.1: video clips that are in a different quadrant regarding the pre-tagging
versus the self-reported labels.

Stimuli ID Pre-tagging Quadrant Self-Reported Quadrant
9 4 1
27 4 1
45 3 4
83 4 1
85 4 1
95 3 4
98 3 2
118 1 2

Table 4.2: Self-reported imbalanced ratios for the DEAP database.
Low:High Class Arousal Valence Dominance Liking
Imbalance Ratio 1.4:1 1.2:1 1:1.6 2:1

binary emotion recognition system, but it can be mitigated by using oversampling

techniques over the minority class, as explained in the following subsections.

To provide a specific quantification for the self-reported imbalanced distribution,

Table 4.2 shows the self-reported imbalanced ratios for every collected type of label.

On the one hand, these imbalance ratios are calculated based on a two-class problem

by dividing each dimension into two levels (High and Low), which is equivalent to

what was done in the original publication of DEAP. On the other hand, as the stimuli

selection in DEAP was done exclusively based on arousal and valence, the resultant

imbalance for the other two gathered ratings (dominance and liking) is higher. For

instance, as this database was not focused on eliciting negative emotions, the im-

balance ratio observed in dominance indicates the presence of more positive stimuli

in which the volunteers rated a high degree of control over the evoked emotion.

Nevertheless, in the case of dealing with the design of a fear binary emotion recog-

nition system, in which a binary transformation from the PA or the PAD spaces is

performed rather than targeting multiple-level classification using one-dimensional

models, the imbalance ratios are detailed in Table 4.3. Such imbalance ratios must

be contextualised based on the individual balance obtained through the specific self-

reported ratings. For instance, Figure 4-5 shows the class balance for each volunteer

after having applied the fear binary mapping from a PA space, which resulted in ’1’

or the positive class for the Q2 (high arousal and low valence) and ’0’ or the negative

class for the rest of the quadrants. Note that a 25% threshold is highlighted as a
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Figure 4-4: PAD model for the self-reported labels of the volunteers. Fear mapping
proposed in Section 2.3.4 is marked with coloured cube.

reference mark indicating that, based on the original ground truth expected from

researchers, this amount of stimuli should evoke an emotion located into Q2. As it

can be observed, 17 out of the total volunteers (32) present less than the expected

threshold within the positive class, which strongly affects the imbalance ratio for

this binary mapping. Moreover, there is even a volunteer (23) that did not report

any rating into the positive class. These facts, besides explaining the high imbal-

ance ratio obtained, give an understanding of the complexity of the inter-individual

differences. Nonetheless, the average class percentages considering the 32 volunteers

are up to 76.50% and 23.50% for the negative and positive classes respectively. Note

that the average positive class percentage is close to the expected 25%. This latter

fact supports the conclusions obtained with Figure 4-3, by which we claimed that

a 2D-based labelling strategy can be approached to design a fear binary emotion

recognition system using DEAP. For the applied binary mapping when considering a

PAD space, the positive class is determined by low dominance, high arousal and low

valence, whereas the negative is given by the other possible combinations. Figure

4-6 shows the class balance per subject in such case. Note that in this graph there is
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Table 4.3: PA and PAD imbalance ratios for the DEAP database.
NoFear:Fear Class PA PAD
Imbalance Ratio 3.2:1 6.3:1

not expected threshold to be achieved as the pre-tagging stimuli selection stage was

solely based on arousal and valence. In this case, there are three volunteers (23, 27,

28) that did not exhibit any positive class rating and the average class percentages

are 86.33% and 13.67% for the negative and positive classes respectively. These

facts clearly explain the higher imbalance ratio with respect to the PA binarization

and indicate that for this database the balance of the dominance dimension was not

crucial. The latter is essential for our use case due to the need for distinguishing

between specific emotions that only differ in the dominance dimension, such as fear

and anger, as commented in Chapter 2. Nonetheless, despite this problem, a fear

binary emotion recognition system using this database might be explored as a proof

of concept. Moreover, as already pointed out previously, different oversampling

techniques can be applied to deal with such extreme imbalance conditions.
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Figure 4-5: Class balance per volunteer after having applied the fear binary mapping
from a PA space.

Another essential process when assessing the labelling consistency over the different
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Figure 4-6: Class balance per volunteer after having applied the fear binary mapping
from a PAD space.

volunteers is to observe the label inter-individual correlations. Such a task provides

information that can be directly and further related to the obtained results from

the different machine learning models. For instance, considering both fear binary

mappings performed, i.e. from PA and from PAD, the results obtained after a Lev-

ene’s test and a Kruskal-Wallis test rejected the null hypothesis that the variances

are equal across all volunteers (𝑝 < 0.001). Note that both sets of binarized labels

exhibit a non-normal distribution and that the significance level was set at 𝑝 < 0.05.

These facts lead to the evaluation and application of correlation and independence

tests to study the labelling behaviour of the different volunteers. Thus, Figure 4-7a

and Figure 4-7b show the averaged 𝑝− 𝑣𝑎𝑙𝑢𝑒𝑠 for the Spearman correlation and the

Chi-square test of independence for the PA fear binary based mapping, respectively.

Note that both are non-parametric methods to assess the different associations be-

tween variables. However, the former responds to monotonic associations, while the

latter provides information related to the independence of the variables consider-

ing any type of association. The results given by both processes are close, in fact,
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both of them fail to reject the null hypothesis. This indicates that no statistical

difference exists between the different groups, i.e. the correlation is considered not

significant and the different variables are independent. Therefore, we can conclude

that there is not enough evidence to suggest that an association between the binary

label of the volunteers exist. Moreover, some volunteers (4, 8, 16, 21, 26) show high

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 in comparison with the others, which can be interpreted as a stronger

decorrelation and independence of their labels. Figures 4-8a and 4-8b present the

averaged 𝑝− 𝑣𝑎𝑙𝑢𝑒𝑠 for the PAD fear binary based mapping and the same correla-

tion and independence tests. In this case, we can observe a stronger decorrelation

and independence for the different volunteers in comparison with the previous tests.

This gives insight into the label dataset distribution and can even guide the design

process. Thus, two main conclusions can be extracted from the comparison of these

figures and from the consistency study of the labels: (1) these processes allow iden-

tifying the volunteers that provided very distinct labelling during the experiments,

and (2) although the PAD space provides more information in terms of emotional

modelling, the more dimensions added the lesser agreement could be obtained from

the self-reported ratings of the volunteers.
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Figure 4-7: Averaged 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 for all considered volunteers and their labels apply-
ing: a) the Spearman correlation, and b) for the Chi-square test of independence.
In this case, the labels are binarized using the PA fear binary based mapping.

Despite the balance and agreement differences observed when applying the fear

binary transformation from both emotional models, the usage of the dominance

dimension to properly distinguish the fear emotion, led us to design DEAP-b1 by

using the fear binary transformation from the PAD space. The results obtained
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Figure 4-8: Averaged 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 for all considered volunteers and their labels apply-
ing: a) the Spearman correlation, and b) for the Chi-square test of independence.
In this case, the labels are binarized using the PAD fear binary based mapping.

from that system, when considering a subject-independent perspective, were not

promising [184]. Thus, we decided to simplify the problem by designing a system

using a fear binary mapping from the PA space [182], DEAP-b2. The latter improved

the first results and proved that a fear-related binary emotion recognition system

was feasible using solely physiological information. Specific details of each of these

systems are given in Section 4.1.4. Moreover, it should be noted that the different

results gathered from the stimuli balance and label consideration study provided in

this section were always present during the design of such systems.

4.1.2 Exploratory data analysis and filtering processing
During the generation of the DEAP database, the researchers incurred some issues

affecting the sensor acquisition for some volunteers and the designed physiological

recovery. In this Section, we generated different plots synchronised with the ex-

perimental methodology to perform and exploratory data analysis and assess the

behaviour from both a physiological and a sensor functioning perspective. For in-

stance, Figure 4-9 shows an example of one of the graphical representations for the

physiological visual assessment performed during this step. Specifically, the plots

are the full experiment for volunteer number 22. The represented signals are GSR,

BVP, and SKT, from high to low order respectively. The Synch Signal indicates the

different states of the experiment: 20 stimuli represented by each saw tooth and 20

labelling assignment tasks in each decay of those, which are followed by a break and
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the final 20 stimuli with their respective labelling. It should be noted that the dis-

played data was obtained directly from the ".bdf" (BioSemi’s data format generated

by the Actiview recording software) files provided by the database. Note that they

also uploaded a preprocessed version of the data, however, only applying a down-

sampling with no other additional filtering stage. Thus, from the visual exploratory

analysis of all the participants raw data, we got three main conclusions:

• While GSR and SKT showed an acceptable quality, BVP needed to be filtered

to remove not just the high frequency noises but also the baseline wander, i.e.

the very low frequency trend that is produced by the respiration effect on the

PPG acquisition.

• The expectation for a non-controlled physiological break (after stimulus 20th)

stated during the analysis of the database methodology in Section 4.1 is con-

firmed at first glance at least by the GSR. Note the tonic level increment

during the break and that this behaviour is repeated along with all the volun-

teers. From a laboratory database perspective in which the conditions should

be properly controlled, this type of recovery can lead to unknown effects for the

emotion recognition systems to be trained. Thus, in case of performing a phys-

iological recovery or break, other strategies might be applied which accounted

for an actual stabilisation or detrending of the physiological signals.

• Physiological skin temperature inconsistencies were observed for different vol-

unteers. Those were referred to very low skin temperature values. For instance,

the SKT signal in Figure 4-9 presents a variation from 29 ºC to 25 ºC, which

is not within the normal and/or valid SKT ranges under controlled labora-

tory conditions. This problem can be due to different factors, such as sensor

acquisition malfunctioning or wrong sensor attachment to the body.

To tackle the different noise problems observed in the BVP, different filters can

be designed. On the one hand, the high-frequency noise can be filtered out by a

direct-form low-pass Finite Impulse Response (FIR) filter. On the other hand, the

residual baseline wander or low frequency drift effect presented in the signal can be

removed using a forward-backwards low-pass Butterworth Infinite Impulse Response

(IIR) filtering stage [188]. Specifically, the forward-backwards technique handles the

nonlinear phase of such filters. For instance, an example of the application of these
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Figure 4-9: Example of one of the graphical representations for the physiological
visual assessment performed.

different filtering processes for one specific fragment of the previous signal is shown

in Figure 4-10. It should be noted that these two detailed filtering stages can be

independent, i.e. they do not have to be strictly applied one after another. In fact,

we only employed the FIR filter for DEAP-b1 and DEAP-b2. This consideration

was based on the fact of observing low-frequency drifts within the signal during the

feature extraction. The designed FIR filter resulted into a 3.5 Hz cut-off frequency

with -6 dB attenuation. Note that at Hamming window was used during the design

process to properly minimise the first side lobe.

Regarding the SKT problem with some of the volunteers, 11 out of 32 volunteers

were affected. Thus, only 21 valid volunteers were considered for DEAP-b1. How-

ever, after that, the need for increasing the dataset led to considering the complete

set of volunteers for DEAP-b2 at expense of omitting SKT and using just GSR and

BVP.

As already highlighted in Chapter 3, most of the public available emotion recogni-

tion databases do not deal with exhaustive exploratory data analysis during or after

the dataset generation. This fact can lead to unexpected behaviours when designing

emotion recognition systems. Thus, this step is needed to guarantee the quality of

the provided data.

4.1.3 Feature extraction
The design of DEAP-b1 was our first fear binary emotion recognition system [184],

which followed an approximate computing approach by applying no feature ex-
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Figure 4-10: Filtering example for baseline wander extraction and removal through
IIR filtering, and high noise removal using .

traction procedure, i.e., reducing the system complexity in exchange for decreasing

accuracy [189]. Instead, we only considered the filtered value of each physiological

variable. This brute-force-like focus is opposite to other approaches, which employed

more than a hundred features extracted from physiological signals, such as DEAP

original work [138]. The decision of such a bare-metal feature extraction system was

led by an initial exploration of the design possibilities when dealing directly with

filtered and/or raw data, and by the limited embedded resources that the first ver-

sion of Bindi presented (64KB of RAM). Note that other recent publications, such

as [185], also used directly the raw data to generate fear machine learning engines.

On the contrary to DEAP-b1, our second proposed fear binary recognition system,

DEAP-b2 [182], implemented conventional feature extraction techniques usually em-

ployed in the literature. They were extracted using the entire video clip duration,

i.e., 60 seconds processing windows. Table 4.4 presents the complete list of fea-

tures for the two physiological signals considered in this system. Specific details and

features rationales are provided in the following subsections.

Different delineation processes needs to be applied to obtain specific physiological
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Table 4.4: Features extracted for DEAP-b2 system.
Sensor Domain Features

PPG/BVP Time-domain: Average of filtered signal
(13) (3) Mean of Inter-Beat-Interval

Heart Rate Variability
Frequency-domain: Power spectral density of four bands

(5) (0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz and 0.3–0.4 Hz)
Inter-Beat-Interval spectral density ratio between

0–0.08 Hz and 0.15–0.5 Hz bands
Non-linear domain: Inter-Beat-Interval Multi Scale Entropy

(5) (five levels)
GSR Time-domain: Average of filtered signal
(7) (7) Number of ERSCR peaks per second

Average relative amplitude of ERSCR peaks per second
Average rise time of ERSCR peaks per second

Standard deviation of filtered signal
25th percentile value
75th percentile value

points for every signal before extracting the features of the signals, as explained in

Section 2.5. For instance, the BVP signal requires peak and valleys identification.

For the DEAP-b2 system, this is done by implementing the same BVP delineation

algorithm that is proposed in [148]. For the GSR signal, the tonic and phasic

components, SCL and SCR, must be extracted as well. In this case, we assumed

a linear combination of these two components represented in equation 2.7. The

trend of the GSR signal is obtained by a moving median filter with a +/− four

seconds sliding window, which is based on replacing each entry with the median of

neighbouring entries for such window. After that, the trend is directly subtracted

to the GSR signal, which gives the SCR component.

4.1.3.1 Time-domain

Time domain features can be divided into two main groups: higher-order statistics

and morphological features.

Within the first group, the main block is the calculation of the average signal

within a processing window, in which a total of 𝑁 samples are acquired at a specific

sampling frequency 𝑓𝑠. The average follows

𝜇𝑋 = 1
𝑁

𝑁∑︁
𝑛=1

𝑋𝑛, (4.4)
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where 𝑋 represents the BVP or GSR signals. For the BVP case, the mean value

is related to the peripheral resistance, which is responsible for the vascular tone,

as stated in Chapter 2. Moreover, when no Baseline Wander removal method is

applied, this information is mixed together with respiration amplitude effects, which

can affect the DC and very low frequency parts of the signal (equation 2.6). For

the GSR case, the signal average contains information of the stationary part from

the tonic level of the signal or SCL. Thus, it is strongly related to the arousal

quantification. To account for variability of such information, the standard deviation

of the GSR is also considered given by the square root of the variance, equation 4.5

𝑠𝑋 =

⎯⎸⎸⎷ 1
𝑁 − 1

𝑁∑︁
𝑛=1
|𝑋𝑛 − 𝜇𝑋 |2. (4.5)

Finally, the remaining higher-order statistics procedures are the 25th and 75th quar-

tiles of the current window processing elements. These are also applied only to the

GSR signal and obtained using a sorting-based algorithm.

Regarding the morphological features, they are characterised by the identification

of the delineation physiological points within the current processing window. The

BVP signal is subjected to the extraction of two morphological features: the average

and the variability of the IBI. This metric is the temporal difference between the

different systolic peaks identified. Its average and variability are related to the

ANS response. Specifically, they indicate cardiac variability changes in response to

acute stressors (videos). Note that this information allows to track the response of

the cardiovascular system, and this variability is expected from a healthy person.

Conversely, it could happen that for persons with a chronic stress condition, such

as PTSD, it presents minimum or no variability. The IBI time series is given by

equation 4.6

𝐼𝐵𝐼𝑛 = 𝑡𝑠𝑦𝑠𝑛+1 − 𝑡𝑠𝑦𝑠𝑛
, (4.6)

where 𝑡𝑠𝑦𝑠𝑛+1 and 𝑡𝑠𝑦𝑠𝑛
are the temporal positions for the 𝑛 + 1 and 𝑛 systolic peaks,

respectively. It is usually expressed in milliseconds and it ranges from 1000 ms to

600 ms (60-100 BPM) when being under resting conditions. The IBI variability or

Heart Rate Variability (HRV) is calculated as the standard deviation of the recol-

lected IBIs along the processing window, which is also known as SDNN. Note that
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this is one out of different possible options to calculate the HRV. When dealing

with the GSR signal, the number, amplitude and rise time of the different ERSCR

peaks are extracted using the SCR component obtained after the trending subtrac-

tion. Thus, to extract such three features, a trough-to-peak method is run over the

SCR. For this implementation, we assumed that the normally accepted amplitude

criterion to discern ERSCRs over an external stimulus is 0.01 µS [112]. Note that

these three features are expressed in 𝜇𝑆/𝑠𝑒𝑐, i.e. they are calculated and normalised

by the window processing time, in this case the video duration.

Although the time-domain based features can not deal with the non-stationary

physiological information, they provide a strongly supported and validated starting

point for any emotion recognition system.

4.1.3.2 Frequency-domain

Before dealing with any frequency information extraction, the frequency resolution

must be set accordingly to be able to obtain all the established Power Spectral

Density (PSD) bands. In fact, such resolution only depends on the temporal length

of the processing window. For instance, in this case, a 60 seconds window size results

into a frequency resolution of 0.016 Hz/bin given by equation 4.7

𝑓𝑟𝑒𝑠 = 𝑓𝑠

𝑓𝑠 * 𝑇𝑙𝑒𝑛

= 1
𝑇𝑙𝑒𝑛

, (4.7)

where 𝑇𝑙𝑒𝑛 is the window size in seconds, 𝑓𝑠 is the sampling frequency of the dis-

crete signal, and 𝑓𝑟𝑒𝑠 is the frequency resolution in 𝐻𝑧/𝑏𝑖𝑛. Note that the latter

is referred as the difference in frequency between each bin, i.e. the results or bins

of a FFT algorithm indicate the frequency magnitude response for specific centred

frequencies separated by 𝑓𝑟𝑒𝑠, Figure 4-11. In our case, the first frequency bin is

centred at 0.016 Hz, the second is centred at 0.033 Hz, and so is done for the follow-

ing consecutive bins. Thus, considering that the lowest PSD band to be extracted is

bounded from 0 to 0.1 Hz for the BVP signal, using this temporal window length is

enough to deal with all the needed PSD bands and get a proper separation between

them.

The frequency-domain features for DEAP-b2 were only contemplated using the

BVP signal. Four low-frequency PSD bands from the filtered signal were extracted
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Frequency𝑓𝑟𝑒𝑠

1 2 … 𝑘

𝑘
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𝑇

Figure 4-11: Frequency resolution illustration and frequency bins location based on
a 𝑇 seconds processing window.

together with the PSD ratio of the low-frequency and the high-frequency contribu-

tion from the extracted IBIs. On the one hand, the four low-frequency bands go

from 0 to 0.4 Hz in 0.1 Hz step. Such information allows to recollect information

regarding the low-frequency components within the BVP, i.e. mainly the respira-

tory effects. On the other hand, the PSD ratio of the low and high frequency bands

for the extracted IBIs is based on the sympathetic and parasympathetic activation.

For instance, in case the IBI variance observed were very low, the cardiac activity

would be stable or constant, which from a frequency point of view implies the very

low-frequency bands have more power than the high-frequency bands. Note this

physiological state could be triggered by acute stressors, i.e. in our case negative

emotions leading to sympathetic activation. Nevertheless, when being under rest-

ing conditions, the IBI variance will be high, which leads to high-frequency bands

activation. This is depicted by Figure 4-12, which shows an ideal representation

and relationship between the low-frequency (LF) and high-frequency (HF) parts of

the IBI PSD, given by the Task Force of The European Society of Cardiology [6].

As it can be observed, although the HF part occupies a greater spectral range in

comparison to the LF part, an evident increment is obtained in LF when not be-

ing under resting conditions and normalising both factors. Note that they can be

divided into more internal bands, providing information relative to ultra-low, very-

low, very-high, and ultra-high frequencies. In this case, we used a thick distinction

by grouping them into two main bands: from 0 to 0.08 Hz for LF and from 0.15 to

0.5 Hz for HF.

The PSD was calculated using Welch’s overlapped segment averaging estimator.

It should be noted that the frequency resolution for the IBI is not the same as

for the filtered BVP signal, as the IBI is an unevenly sampled or acquired signal.

This implies that for a fixed temporal window, the number of gathered IBIs may
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The problem of ‘stationarity’ is frequently dis-
cussed with long-term recordings. If mechanisms
responsible for heart period modulations of a certain
frequency remain unchanged during the whole period of
recording, the corresponding frequency component of
HRV may be used as a measure of these modulations. If
the modulations are not stable, interpretation of the
results of frequency analysis is less well defined. In
particular, physiological mechanisms of heart period
modulations responsible for LF and HF power compo-
nents cannot be considered stationary during the 24-h
period[25]. Thus, spectral analysis performed in the entire
24-h period as well as spectral results obtained from
shorter segments (e.g. 5 min) averaged over the entire
24-h period (the LF and HF results of these two
computations are not different[26,27]) provide averages of
the modulations attributable to the LF and HF compo-
nents (Fig. 4). Such averages obscure detailed informa-
tion about autonomic modulation of RR intervals
available in shorter recordings[25]. It should be remem-
bered that the components of HRV provide measure-
ments of the degree of autonomic modulations rather

than of the level of autonomic tone[28] and averages of
modulations do not represent an averaged level of tone.

Technical requirements and recommendations
Because of the important differences in the interpreta-
tion of the results, the spectral analyses of short- and
long-term electrocardiograms should always be strictly
distinguished, as reported in Table 2.

The analysed ECG signal should satisfy several
requirements in order to obtain a reliable spectral esti-
mation. Any departure from the following requirements
may lead to unreproducible results that are difficult to
interpret.

In order to attribute individual spectral compo-
nents to well defined physiological mechanisms, such
mechanisms modulating the heart rate should not
change during the recording. Transient physiological
phenomena may perhaps be analysed by specific meth-
ods which currently constitute a challenging research
topic, but which are not yet ready to be used in applied
research. To check the stability of the signal in terms of
certain spectral components, traditional statistical tests
may be employed[29].

The sampling rate has to be properly chosen. A
low sampling rate may produce a jitter in the estimation
of the R wave fiducial point which alters the spectrum
considerably. The optimal range is 250–500 Mz or per-
haps even higher[30], while a lower sampling rate (in any
case §100 Hz) may behave satisfactorily only if an
algorithm of interpolation (e.g. parabolic) is used to
refine the R wave fiducial point[31,32].

Baseline and trend removal (if used) may affect
the lower components in the spectrum. It is advisable to
check the frequency response of the filter or the behav-
iour of the regression algorithm and to verify that the
spectral components of interest are not significantly
affected.
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Figure 3 Spectral analysis (autoregressive model, order
12) of RR interval variability in a healthy subject at rest
and during 90) head-up tilt. At rest, two major components
of similar power are detectable at low and high frequen-
cies. During tilt, the LF component becomes dominant
but, as total variance is reduced, the absolute power of LF
appears unchanged compared to rest. Normalization pro-
cedure leads to predominant LF and smaller HF compo-
nents, which express the alteration of spectral components
due to tilt. The pie charts show the relative distribution
together with the absolute power of the two components
represented by the area. During rest, the total variance of
the spectrum was 1201 ms2, and its VLF, LF, and HF
components were 586 ms2, 310 ms2, and 302 ms2, respec-
tively. Expressed in normalized units, the LF and HF were
48·95 n.u. and 47·78 n.u., respectively. The LF/HF ratio
was 1·02. During tilt, the total variance was 671 ms2, and
its VLF, LF, and HF components were 265 ms2, 308 ms2,
and 95 ms2, respectively. Expressed in normalized units,
the LF and HF were 75·96 n.u. and 23·48 n.u., respec-
tively. The LF/HF ratio was 3·34. Thus note that, for
instance, the absolute power of the LF component was
slightly decreased during tilt whilst the normalized units of
LF were substantially increased
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Figure 4 Example of an estimate of power spectral
density obtained from the entire 24-h interval of a long-
term Holter recording. Only the LF and HF components
correspond to peaks of the spectrum while the VLF and
ULF can be approximated by a line in this plot with
logarithmic scales on both axes. The slope of such a line
is the á measure of HRV.
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Figure 4-12: Ideal representation and relationship between the low-frequency (LF)
and high-frequency (HF) parts of the IBI PSD [6].

not been the same for different processing windows. For instance, considering a

fixed processing window of 60 second, a stable 40 BPM would lead to a frequency

resolution of 0.025 Hz/bin, while a stable 100 BPM would reach up to 0.01 Hz/bin.

Note that the worst case scenario will be the lowest cardiac frequency. To keep

a fixed frequency resolution regardless of the BPMs variability, the obtained IBI

points are interpolated and resampled at 8 Hz, which achieves 0.031 Hz/bin. The

latter is sufficient to deal with all the needed PSD bands and get a proper separation

between them.

4.1.3.3 Non-linear domain

The last set of features to be extracted are based on non-linear information. For the

DEAP-b2 system, these are solely applied to the extracted IBI signal. Just as the

information provided by the GSR signal is more directly related to the SNS activa-

tion due to the eccrine sweat glands, the information obtained from the BVP signal

can present a wide range of behaviours that are produced by different physiological

(SNS and PNS) and physical combinations or non-linearities. These can be iden-

tified as vascular or haemodynamic factors being modified by external stressors or

even by homeostasis towards thermoregulation under different physical conditions.

Thus, non-linear features can provide information that linear methods are losing. In

fact, the superiority of the non-linear methods when applied to emotion recognition

using physiological information is a hot topic nowadays [190].

It is known that the physiological non-linear behaviour can be seen in different

timescales, such as circadian rhythms. Therefore, for this system we used the Multi-
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Scale Entropy (MSE) introduced in [191] to consider the non-linear aspect of the

IBI time series and a time scale dependency. This metric extends sample entropy

to different timescales to provide an additional perspective when the time scale of

relevance is unknown, which is our case. All the calculations are based on the

statistical entropy given by equation 4.8

𝐻(𝑋) = −
∑︁

𝑖

𝑝(𝑋𝑖)𝑙𝑜𝑔(𝑝(𝑋𝑖)), (4.8)

where 𝑝(𝑋𝑖) is the probability mass function for the data block 𝑖. Note that this is a

measure for the average uncertainty of the signal under test, i.e. a time series with

non-periodic fluctuations will generate higher values than a pure sinusoidal (not

chaotic) signal. Thus, the calculation of the sample entropy starts by segmenting

the 𝑁 point time series by an embedding dimension 𝑚, where 𝑚 < 𝑁 . This leads

up to 𝑁 − 𝑚 + 1 such segments. After that, the distance 𝑑 between the different

m-dimensional points is calculated and compared to a predefined threshold 𝑟. In

case 𝑑 < 𝑟, the two segments are considered similar and a positive ranking of ’1’

is stored 𝑚, otherwise a null ranking of ’0’ is annotated. This is equally done for

𝑚 + 1. Finally, the results are expressed by the matrices: expressed in equations 4.9

and 4.10

𝐴(𝑚, 𝑟) = 1
𝑁 −𝑚

𝑁−𝑚∑︁
𝑖=1

Θ(𝑟 − 𝑑𝑖), (4.9)

𝐵(𝑚 + 1, 𝑟) = 1
𝑁 −𝑚 + 1

𝑁−𝑚∑︁
𝑖=1

Θ(𝑟 − 𝑑𝑖+1), (4.10)

which are used to provided the final sample entropy expressed in equation 4.11

𝑆𝑎𝑚𝑝𝐸𝑛(𝑋) = − log
(︃

𝐴(𝑚, 𝑟)
𝐵(𝑚 + 1, 𝑟)

)︃
. (4.11)

The extension that MSE introduces within the sample entropy is the coarse graining

or down-sampling of the time series at different time scales. Thus, at every level

(time scale), the coarse-grained time series is obtained by averaging the respective

time series points. This is illustrated in Figure 4-13 and mathematically expressed

by the equation:

𝑦𝜏
𝑗 = 1

𝜏

𝑗𝜏∑︁
𝑖=(𝑗−1)𝜏

𝑥𝑖, 1 ≤ 𝑗 ≤ 𝑁𝜏, (4.12)
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where 𝜏 is the time scale or level. Finally, the sample entropy is calculated over the

obtained 𝑦𝜏
𝑗 . In our analysis, we employed a five level (𝜏 = 5) MSE, set 𝑚 = 2,

and 𝑟 = 0.2𝜎, where 𝜎 is the standard deviation of the IBI time series. Note that

these parameters were chosen based on previous works in the literature dealing with

emotion recognition and this type of non-linear features [192].

…

Time scale 1:    𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 … 𝑥𝑁−1 𝑥𝑁

𝑦1 𝑦2 𝑦3 𝑦4 … 𝑦𝑁

Time scale 2:    𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 … 𝑥𝑁−2 𝑥𝑁−1 𝑥𝑁

𝑦1 𝑦2 𝑦3 … 𝑦𝑁

Time scale 5:    𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 … 𝑥𝑁−2 𝑥𝑁−1 𝑥𝑁

𝑦1 𝑦2 … 𝑦𝑁
Figure 4-13: Every coarse-grained time series obtained for every level of the MSE
feature extraction technique or algorithm.

4.1.4 Fear classification systems
In the following sections, the results obtained with the DEAP-b1 and DEAP-b2

systems are detailed and explained. Note that all specifications regarding labelling

mapping transformation, exploratory data analysis, data processing and feature

extraction have already been detailed in the previous sections of this Chapter.

4.1.4.1 DEAP-b1 system

This system [184] was, up to my knowledge, the first in the literature to propose

and validate the specific fear binary mapping using the PAD space and only three

physiological variables. As already stated in previous sections, only 21 out of 32

volunteers from DEAP were employed, and no feature extraction as such was ap-

plied, instead, the filtered value of each physiological variable was considered. Every

volunteer was subjected to 0− 1 scaling for the complete set of physiological values

gathered during the experiment. For the classification, towards a first embedded

implementation proof of concept of the system, we consider a lazy algorithm, specif-

ically, a KNN. Note that the value of 𝑘 was fixed to the square root of the size
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of the training set, which is a commonly applied practice. For simplicity in the

computation, the Euclidean distance is considered to compare two samples. To be

fair in this comparison and avoid problems related to values in different units and

scales, every of the three values in a sample is normalised as stated previously (0−1

scaling). Finally, for the validation, we implemented a Hold-Out CV strategy and

performed an experimental parameter sweep for the Hold-Out ratio. Moreover, to

deal with the strong imbalance labelling situation, we decided to apply cost-sensitive

learning by tuning a miss-classification cost parameter. This practice is commonly

used in imbalance binary classification problems. In this case, such parameter de-

fines a penalty that gives more importance (weight) to the false negatives produced.

Thus, the usage of this penalty is useful to reduce the false negative rate in our

system, which is critical for the Gender-based Violence application. For instance,

when considering Bindi, the bracelet is actually at the bottom of a cascade of more

powerful devices, and so this constrained wearable device could act as a trigger for

running more complex algorithms in upper layers if needed. Hence, it is essential to

reduce the number of false negatives in this first step, although it penalises accuracy.

As a first step in the evaluation of DEAP-b1, we focus on the data from one ar-

bitrary volunteer, number 18 (𝑝18). For this specific volunteer, there are a total

of 256,358 samples or instances of each physiological variable collected during the

entire experiment (40 clips). The KNN algorithm is trained using different values

of Hold-Out and miss-classification costs. For each combination of Hold-Out and

miss-classification, 30 independent intelligence systems are randomly generated to

have statistical validity in the results obtained. Different metrics such as accuracy,

specificity (or true negative rate), sensitivity (or true positive rate), and geometric

mean between sensitivity and specificity are analysed and compared. It is notewor-

thy to mention that the memory usage is strongly affected by the Hold-Out ratio,

as the complete training space needs to be stored to process further samples and

provide future inferences. Thus, the design space for the Hold-Out ratio goes from

0.7 to 0.9999, which leads up to a training set size from 30% to 0.01%.

Figure 4-14 shows accuracy vs. miss-classification cost for the different values

of Hold-Out in 𝑝18. Analysing this figure, we check that i) accuracy is better

for lower values of Hold-Out (the training set is bigger and then, the system is
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Figure 4-14: Accuracy vs. miss-classification cost for 𝑝18.

Figure 4-15: Sensitivity vs. miss-classification cost for 𝑝18.

better characterised) and ii) accuracy usually decreases as miss-classification penalty

increases (the number of false negatives is reduced, but also increases the number

of false positives). Figure 4-15 shows sensitivity vs. miss-classification cost for the

different values of Hold-Out in 𝑝18. Analysing this figure, we check that sensitivity

increases with the miss-classification cost based on the mechanism of this penalty.

Figure 4-16 shows specificity vs. miss-classification cost for the different values of

Hold-Out in 𝑝18. In this figure, specificity decreases with the miss-classification cost

based on this penalty. Note that the legend of the two last figures is the same as

the first one.

Applying this analysis to the rest of the volunteers and observing similar be-

haviours, we determined that a miss-classification cost of 8 units can be adequate for
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Figure 4-16: Specificity vs. miss-classification cost for 𝑝18.

Hold-Out training set size memory used (kB) operations

0.7 76907 976.36 375767
0.8 51272 650.91 241483
0.9 25636 325.45 113024
0.99 2564 32.54 8739
0.999 256 3.25 618
0.9999 26 0.32 36

Table 4.5: Impact of the size of the training set on memory and computation for
𝑝18. Subject-dependent approach.

the current dataset. However, for the Hold-Out ratio, this decision is not immediate

or purely based on performance, as it is needed to study the impact in memory and

computation of this parameter. Thus, Table 4.5 shows, for each value of Hold-Out

for volunteer 𝑝18, the size of the training set, the required memory needed consider-

ing such training set allocation and the memory consumed by the KNN algorithm,

as well as an estimation for the number of operations. Note that the memory used

in KB is based on a 32-bit integer data type, and the number of operations are

based on the average computational complexity of the quick-sort method usually

found in KNN implementations. This complexity is 𝒪(𝑛 log 𝑛), where 𝑛 is the

number of elements to sort, i.e., the size of the training dataset. Analysing this

table, we check that the Hold-Out value has an important impact on the memory

used and the number of operations to compute. In fact, going from 0.999 to 0.99

leads up to more than 13x times more operations. These aspects are critical for an

edge-computing system as Bindi. As a consequence, after analysing the trends in

Figures 4-14, 4-15 and 4-16, the Hold-Out value is fixed to 0.99.
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Accuracy Sensitivity Specificity Geometric Mean Volunteer

0.71 0.97 0.67 0.81 𝑝1
0.93 1.00 0.85 0.92 𝑝2
0.80 0.97 0.77 0.86 𝑝3
0.79 0.97 0.85 0.90 𝑝4
0.96 0.97 0.97 0.97 𝑝5
0.91 0.99 0.94 0.96 𝑝6
0.99 1.00 0.97 0.98 𝑝7
0.86 0.97 0.89 0.92 𝑝8
0.86 1.00 0.80 0.89 𝑝9
0.83 0.98 0.88 0.92 𝑝10
0.94 1.00 0.87 0.93 𝑝11
0.69 1.00 0.52 0.72 𝑝12
0.84 1.00 0.73 0.85 𝑝13
0.76 0.99 0.70 0.83 𝑝14
0.79 1.00 0.66 0.81 𝑝15
0.71 0.99 0.74 0.85 𝑝16
0.87 1.00 0.86 0.92 𝑝17
0.93 1.00 0.94 0.96 𝑝18
0.82 0.99 0.79 0.88 𝑝19
0.84 1.00 0.81 0.90 𝑝20
0.77 0.99 0.74 0.85 𝑝21

0.84 (0.08) 0.99 (0.01) 0.81 (0.11) 0.88 (0.06) 𝜇(𝜎)
Table 4.6: Accuracy, sensitivity, specificity and geometric mean metrics for each vol-
unteer by assuming hold-out and miss-classification cost of 0.99 and 8, respectively.
Subject-dependent approach.

Based on the previously defined values for Hold-Out and miss-classification cost,

Table 4.6 shows accuracy, sensitivity, specificity, and geometric mean metrics for all

the volunteers considered in the dataset. Note that all the volunteers have compa-

rable size to 𝑝18, and so we fixed the same Hold-Out value. In this case, also 30

independent systems have been trained for each model to have statistical validity.

Analysing this table, we check that, on average, accuracy, sensitivity, specificity, and

geometric mean were 0.85, 0.99, 0.81, and 0.81 respectively. Note that the higher

average and lower variance for the sensitivity in comparison to the other metrics

is due to the miss-classification cost, i.e. the system is more biased towards the

positive class.

In case of considering a subject-independent approach and applying the same miss-

classification cost, the Hold-Out might be re-evaluated in terms of memory consump-

tion. Thus, Table 4.7 shows, for each value of Hold-Out, the size of the training set
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when mixing data from all the considered volunteers in the dataset, the memory used

in kB is based on a 32-bit integer data type, and the number of operations follow the

same calculation approach as for the subject-dependent case. Analysing this table,

we check that, for this system, a value of Hold-Out equal to 0.999 is comparable to

a value of 0.99 for the subject-dependent case in Table 4.5, i.e., we need to reduce

the Hold-Out ratio to achieve similiar number of points in the training dataset. Ta-

ble 4.8 shows accuracy, sensitivity, specificity and geometric mean metrics for the

subject-independent case by assuming different Hold-Out values while considering

the miss-classification cost of 8 from before. Specifically the obtained metrics for the

0.999 Hold-Out are significantly lower than for the subject-dependent case. More-

over, we check that the three metrics are improved when considering lower values

of holdout, as for the subject-dependent case. However, their high impact in space

and time complexity makes their implementation into constrained edge-devices not

feasible.

Thus, based on these experiments, we can conclude that a subject-dependent imple-

mentation can significantly improve the performance of the emotional state inference

in a tiny constrained wearable device. Specifically, the subject-dependent approach

provides up to 0.84, 0.99, 0.81, and 0.88 of accuracy, sensitivity, specificity, and

geometric mean on average while the subject-independent approach provides up to

0.54, 0.88, 0.47, and 0.62, for the chosen configurations. For this latter approach,

in the case of Bindi, which intends to provide a fear machine learning engine to be

deployed in real-life, the sensitivity should be close to 1.00 to maximise the true

positive detection, as occurs with the subject-dependent approach.

Notwithstanding the evidence of the results, the Hold-Out strategy used for both

models, subject-dependent and subject-independent, can lead towards overopti-

mistic results. This is due to the fact that the inputs of the system are the filtered

physiological values and the applied Hold-Out did not take into account if they be-

long to the same video. Thus, the training and the testing processes could be using

information from the same physiological data set collected during a given video clip

visualisation.
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Hold-Out training set size memory used (kB) operations

0.98 76555 971.89 373892

0.99 38277 485.94 175423

0.999 3828 48.59 13715

0.9999 383 4.86 989

Table 4.7: Impact of the size of the training set on memory and computation.
Subject-independent approach.

Accuracy Sensitivity Specificity Geometric Mean Hold-Out

0.66 0.96 0.52 0.71 0.980

0.64 0.95 0.50 0.69 0.990

0.54 0.88 0.47 0.62 0.999

0.50 0.81 0.45 0.60 0.9999
Table 4.8: Accuracy, sensitivity, specificity, and geometric mean metrics for each
tested hold-out assuming a miss-classification cost of 8. Subject-independent ap-
proach.

4.1.4.2 DEAP-b2 system

During the research and development of the DEAP-b1 system, we identified five

different drawbacks:

1. The low number of volunteers could be affecting to the data variability.

2. The complexity and imbalance of the fear binary mapping from PAD was

particularly high for this database.

3. The fact that we did not consider feature extraction could be leading to loosing

physiological information of interest.

4. The application of a Hold-Out strategy over the filtered physiological values

could be resulting into overoptimistic metrics.

5. The space complexity for such lazy KNN algorithm was considerably high

when considering lower Hold-Out values.

The first drawback can be fixed by considering the complete set of volunteers at the

expense to skip the SKT signal from all of them. Note that SKT inaccuracies were

found during the exploratory data analysis for a total of 11 volunteers. The second

shortcoming can be alleviated by applying the fear binary mapping from PA, which

showed a lower imbalance ratio. The third reason is one of the most sensitive from
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a physiological point of view, as by considering just the raw filtered values, we are

loosing all temporal, morphological, frequency-based and non-linear information.

The fourth drawback needs to be solved to properly assess the system performance

and assure that no testing or even testing-related information is provided to the

training stage. Finally, the fifth drawback affects to the training set size and mo-

tivates the evaluation of different classification algorithms that provide less space

requirements. Based on these identified problems, the DEAP-b2 system [182] tried

to overcome them by considering the 32 volunteers from DEAP, only data from PPG

and GSR sensors, a fear binary mapping using the PA space, and a complete set of

20 features including temporal, frequency and non-linear domain, (enumerated in

Table 4.4 and detailed in Section 4.1.3). Moreover, the feature extraction process

was applied considering a 60 seconds window processing, which corresponded to the

stimulus duration and provided a set of 20 features per video. Thus, in this way

we assure that no information within the same video is given to both training and

testing when performing the Hold-Out strategy.

In addition to simplifying the labelling problem and reducing the imbalance ratio

by choosing a fear binary mapping based on the PA space, an oversampling tech-

nique was applied over the minority class data (fear). Specifically, SMOTE was

implemented to deal with the observed balance problems [193]. This technique is

based on an over-sampling approach of the minority class generating new samples

by considering the closest 𝑘 neighbours, rather than by over-sampling with replace-

ment. Thus, instead of having 1280 instances (32 volunteers x 40 videos) with a

class balance ratio of about 76/24% (negative/positive), we achieve a class balance

ratio of up to 50/50% with a total of 1800 instances. Note that the 𝑘 value for the

SMOTE was set to 5.

Regarding the specific classifiers used in this system, Gaussian naïve Bayes (equa-

tion 4.2) and SVM with RBF kernel were used. This decision was based taking into

consideration two main facts:

• We decided to use the same classifier used by DEAP (Gaussian naïve Bayes)

to provide a fair comparison with respect to the original dataset.

• To overcome the space complexity of KNN, a SVM classifier with RBF kernel

is applied, as it preserves all the advantages of the KNN algorithm, storing
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only the support vectors during training rather than the entire training space.

In addition to the 0 − 1 scaling performed in the previous system, z-score was

applied per volunteer to normalise the data in this case. For the testing methodology

of DEAP-b2 system, the Hold-Out strategy was run from 0.01 (1%) to 0.9 (90%) for

100 iterations every 0.01 step. Furthermore, for the validation of the SVM classifier

during training, a 𝑘 − 𝑓𝑜𝑙𝑑 is implemented with 𝑘 = 5.

The system topology, in this case, is based on a subject-independent approach, as

a subject-dependent was not feasible due to the small amount of data (40 sets of 20

features per volunteer). Moreover, besides the classification metrics used for DEAP-

b1, the Area Under the Curve (AUC) is also given in this case, which provides a

measurement of performance across all possible classification thresholds and presents

the probability of the model ranking a random positive more highly than a random

negative.

All these DEAP-b2 considerations are structured and combined into six differ-

ent configurations to provide a bounded DSE for the subject-independent use case.

These are given as follows:

• Case 1. The system is implemented without using any feature selection and

applying the Gaussian naïve Bayes classifier.

• Case 2. The system uses the same filter feature selection method as DEAP

(Fisher linear discriminant score, equation 4.1), but implements a SVM clas-

sifier with RBF kernel. The latter is taken from [148] with 𝛾 = 0.15 and

𝐶 = 1.

• Case 3. This system configuration follows the same structure as Case 2, but

without employing feature selection.

• Case 4. It implements SMOTE to deal with the balance problem, uses Fisher

linear discriminant score to select the relevant features and runs the Gaussian

naïve Bayes classifier.

• Case 5. It presents the same configuration as Case 4, but using the SVM

classifier of Case 2.

• Case 6. It employs SMOTE, Fisher linear discriminant score to select the

relevant features and a SVM classifier with RBF kernel. Moreover, a grid

search is applied to find the optimal hyperparameters for such classifier.
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Case Accuracy Sensitivity Specificity Geometric Mean AUC
(𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎))

1 52.48 (0.34) 50.84 (2.14) 53.36 (0.90) 52.08 (1.38) 52.55 (1.13)
2 76.47 (0.34) 0.12 (0.12) 99.87 (0.11) 3.46 (0.11) 50.00 (0.10)
3 76.54 (0.37) 0.03 (0.07) 99.96 (0.07) 1.73 (0.07) 50.00 (0.10)
4 51.80 (0.54) 52.73 (0.94) 50.86 (0.90) 51.78 (0.91) 52.24 (0.80)
5 53.27 (0.73) 58.80 (2.83) 47.72 (1.77) 52.97 (2.23) 53.50 (2.20)
6 62.80 (4.75) 62.27 (4.14) 66.99 (5.79) 62.62 (4.73) 62.79 (4.72)

Table 4.9: Accuracy, sensitivity, specificity, and AUC metrics for each case by as-
suming the specified conditions, respectively. Subject-independent approach.

Table 4.9 provides a comparative analysis of these six different implementations,

in which random -like results can be appreciated by the obtained AUCs for all the

cases except case number six. Note that some of the values of this table have been

modified in comparison with the ones obtained in [182], as more tuning of the models

was performed after such publication. First of all, the Gaussian naïve Bayes classifier

in Case 1 achieves a poor performance. This can be affected by the independence

of the extracted features, as it is known that this type of classifier provides a good

performance when the features are independent of each other. Then, it is striking

that a high accuracy score does not mean the model is appropriately performing. For

instance, Case 2 and 3 have the highest classification rate, but there is no sensitivity,

however specificity is close to 100%. Thus, accuracy paradox is happening, so the

accuracy is only reflecting the underlying class distribution. Also for these two cases,

the specific feature selection technique by itself, i.e. Fisher linear discriminant score,

is not providing any advantage. This can be due to the non-suboptimal feature set

that this technique generates, as previously stated in Section 4.1.4. Cases 4 and 5 in

comparison with 6 demonstrates that finding the right hyperparameters is essential

in order to achieve the best Bias-Variance trade-off. Thus, by applying a grid search,

the performance of the classification scheme improves. Finally, Case 6 combines a

synthetic oversamplig method, ranked feature selection, a non-linear based classifier

and a grid search hyperparameter tuning process, achieving up to 62.79% AUC,

which overpass the rest of the Cases.

Although the average geometric mean of the latter Case is lower than the one

obtained for the subject-dependent model of DEAP-b1, it must be highlighted again

the validation drawback observed when applying the Hold-Out strategy directly over

the filtered physiological values. Moreover, when comparing the DEAP-b2 with the
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DEAP-b1 results for the subject-independent, we can observe that both systems

achieve similar geometric mean, but the DEAP-b2 outperforms the DEAP-b1 in

specificity by more than 15% and in accuracy by more than 8%. This indicates

that DEAP-b2 presents a better balance between false positives and false negatives,

leading to a better performing system. Finally, from a time and space complexity

balance, the SVM clearly outperforms the previous KNN implemented. The latter

presents 𝒪(𝑛 log 𝑛) and 𝒪(𝑛) for the time and space complexity respectively, where

𝑛 is the training set size. Conversely, the SVM with the RBF kernel achieves𝒪(𝑛𝑠𝑣𝑑)

and 𝒪(𝑛𝑠𝑣) for the time and space complexity respectively, where 𝑛𝑠𝑣 is the size or

number of the support vectors and 𝑑 is the number of attributes or features to be

employed. For the worst case scenario, considering the 20 features and a thousand

of support vectors chosen over the complete set of 1,800 instances, there will be a

total of 20,000 operations per prediction, which is considerably higher than both

subject-dependent and subject-independent from DEAP-b1. However, due to the

feature selection that DEAP-b2 is doing, most of the iterations ended up with half

of the features, which is translated into 10,000 operations. This measurement is in

between both DEAP-b1 subject-dependent and subject-independent models using

KNN. Concerning the space complexity, the SVM in this case requires up to 39.06 kB

(1000 𝑠𝑣 per each feature), which also lies between the two DEAP-b1 models. Note

that the memory used in kB is based on a 32-bit integer data type for all the support

vectors to be stored.

It is noteworthy that further SVM algorithmic optimisations, as well as other fea-

ture selection alternatives, can be implemented and applied to achieve a smaller

amount of support vectors, which would reduce both time and space requirements

for this system leading even in some cases to better recognition performance. In fact,

Table 4.10 shows the results for the same training configuration, validation and test-

ing as Case number six but changing the feature selection method to mrMR. This

technique [194] is based on the assumption that within the given entire feature set

there is a minimal-optimal set in which such features are mutually as dissimilar to

each other as possible, but also marginally as similar to the classification variable as

possible. With this technique, we want to select the features that have maximum rel-

evance for the classification variable (target) and present a minimum redundancy in
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comparison to the rest of the other features being evaluated. Thus, to measure such

properties between two variables (𝑋 and 𝑌 ), the mutual information is employed,

which is given by equation 4.13

𝐼(𝑋, 𝑌 ) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝(𝑋,𝑌 )(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑋,𝑌 )(𝑥, 𝑦)
𝑝𝑋(𝑥)𝑝𝑌 (𝑦) , (4.13)

where 𝑝(𝑥, 𝑦) is the joint probabilistic distribution, and 𝑝(𝑥) and 𝑝(𝑦) are the

marginal probability density functions for each variable respectively. From this

information, the level of similarity (or dissimilarity) between two features (𝑖 and 𝑗)

is encoded by the minimum condition; stated in equation 4.14

𝑚𝑖𝑛 𝑊𝐼 , 𝑊𝐼 = 1
|𝑆|2

∑︁
𝑖,𝑗∈𝑆

𝐼(𝑖, 𝑗), (4.14)

where 𝑆 is the subset of minimal-optimal features. In the same way, the discriminant

power of features or relevance for the classification variable ℎ (target) is provided

by the maximum condition stated in equation 4.15

𝑚𝑎𝑥 𝑉𝐼 , 𝑉𝐼 = 1
|𝑆|

∑︁
𝑖∈𝑆

𝐼(ℎ, 𝑖). (4.15)

From equations 4.14 and 4.15, the minimal-optimal feature set can be obtained by

optimising them in a simultaneous way and by applying different criterion functions.

Specifically, the particular mrMR implementation for this system applied the Mutual

Information Difference (MDI) criterion to perform the ranking process. Equation

4.16

𝑚𝑎𝑥(𝑉𝐼 −𝑊𝐼). (4.16)

As this feature selection technique is a filter feature selection method which ranks

the existent features based on such premises, the number of final features, 𝐾, to

be considered after such ranking should be indicated. In this case, the selection

is done based on a performed experimental parameter sweep taking into account

performance and storage requirements. Finally, 𝐾 is fixed to 10. Therefore, the

obtained results using this specific feature selection technique outperforms by more

than 18% the AUC of the subject-independent model of DEAP-b2, while maintaining

the same storage requirements. This last experiment demonstrates the possibilities
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of optimisation are high in this complex problem.

Case Accuracy Sensitivity Specificity Geometric Mean AUC

(𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎)) (𝜇(𝜎))

6+ 81.54 (8.69) 70.93 (14.92) 94.59 (3.89) 81.55 (10.21) 81.60 (8.70)

Table 4.10: Accuracy, sensitivity, specificity, and AUC metrics for mrMR feature
selection and SVM with RBF kernel. Subject-independent approach.

4.2 Fear classification using MAHNOB
After having presented the results for three different fear detection systems (one

subject-dependent and two subject-independent) using the DEAP dataset and being

aware of the limitations found, the need for a new dataset, in which these problems

are solved or alleviated, was strongly required. Some of these identified problems

were referred to the physiological recovery between stimuli, the skin temperature

data inaccuracies, and the class imbalance of fear mapping and binarization.

As already reviewed in Section 3.2, the MAHNOB database overcomes the physio-

logical recovery limitations of DEAP, keeps the same recollected physiological infor-

mation, and presents even more self-reported labels from volunteers. Moreover, no

measurement problems are observed for the SKT, or any other physiological variable,

with any of the valid volunteers. These claims are even reinforced by the literature;

for instance, the authors in [195] conducted a DSE for the feature vectors of DEAP

and MAHNOB to investigate the relevance of the physiological features within both

datasets. One of their experiments concluded that the stimuli in MAHNOB were

more emotionally immersive than the ones in DEAP. In fact, such work has mo-

tivated the realisation of further and recent research such as [196]. On this basis,

in this section, the results obtained for a subject-dependent and subject indepen-

dent fear binary recognition systems based on the MAHNOB dataset are detailed.

Specifically, and trying to design a more specialised system towards the long term

goal of this research work, two design key aspects are fixed:

• Only women volunteers are employed. This design constraint allows for the

development of very specialised emotion recognition systems due to the emo-

tional particularities between men and women, as reviewed in Chapter 2.

• Fear binarization only from the PAD space is contemplated. The dominance
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factor, as reviewed in Chapter 2, is essential to distinguish between some of

the main negative emotions (fear and anger).

Moreover, the data segmentation and other processes such as the feature extraction

are modified or extended to improve the systems presented in the previous Section.

For the specific methodology followed during the MAHNOB database experiments,

Figure 4-17 shows a simplified diagram of the experimentation applied for every

volunteer and each stimulus. Unlike DEAP, MAHNOB did take into account the

reduction of the emotional bias after every stimulus visualisation and, therefore,

emotion responses. In fact, the neutral clips used were randomly selected from

a larger pool provided by the Stanford psychophysiology laboratory [197]. This

consideration together with the 30-second pre and after trial recording provided a

physiological recovery intended to isolate the emotional activation between stimuli.

30-second 

pre-stimulus 

recording 

15-second 

neutral 

#trial

35 to 117-

seconds 

Video

Self-

Assessment

30-second 

post-stimulus 

recording 

Figure 4-17: Methodology followed during the MAHNOB database experiments.

Regarding the specific technical differences between the systems presented in this

Chapter and the one that could be actually integrated into Bindi, two of them must

be highlighted. On the one hand, the MAHNOB dataset includes the cardiac ac-

tivity information measured with an ECG sensor. Thus, the different delineation or

peak detection algorithms, which are used to extract the morphological information

to calculate the different features or metrics, need to be designed specifically for the

ECG morphology rather than the PPG reviewed in Section 2.5.1. This fact directly

affects any possible option of pre-processing integration to leveraging that algorith-

mic part into the embedded platform of the smart bracelet of Bindi. However, it is

proven in the literature that PPG is a valid surrogate of ECG for different metrics

or features such as HRV [198–200]. Therefore, the feature extraction and further

processes can be applied in the same way regardless of whether the sensor is ECG

or PPG. On the other hand, the equipment used during the MAHNOB experiment

was the same as in DEAP. Moreover, even in case of having PPG sensor data and

being able to get morphological features when using such equipment, due to the

extremely challenging task of obtaining clinical quality PPG signals (morphology

is totally preserved) with wearable devices, that would be worthless because of the
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very high noise in real life. Thus, as in the previous section, the proposed systems

here serve as a proof of concept and eases the different DSE processes that need

to be performed towards an optimal fear binary emotion recognition system design

and integration on the edge.

Preceding the presentation of the methods employed and results obtained, a review

of the state-of-the-art, regarding the utilisation of MAHNOB for the generation

of emotion recognition systems is detailed. First of all, as already described in

Section 3.2, the original work of the MAHNOB dataset comprises the acquisition

of different physiological signals at a sampling frequency rate of 256 Hz during the

visualisation of different audiovisual stimuli (20 emotional clips interspersed with 20

neutral clips). First of all, they used basic pre-processing procedures to remove the

temporal low frequency drifts of some signals and smooth them by using moving

average filters. They extracted a total of 102 features from all the collected signals

and applied a filter feature selection method to use only the highest-ranked ones.

Specifically, they used one-way Analysis of Variance (ANOVA) and rejected any

non-significant feature (𝑝 > 0.05). For the classification task, they provided two

emotion recognition systems based upon low, medium and high levels of arousal and

valence detection to be used as a benchmark for further investigations using such

data. The levels resulted from the mapping between emotional keywords and classes

following [3]. Regarding the classifier, they employed a SVM with RBF kernel and

adjusted 𝛾 using a 20-fold CV. Lastly, the testing strategy applied was LOSO.

By employing all the peripheral signals, they provided average ACC and F1-score

metrics and obtained 46.20% and 38.00% for arousal and 45.50% and 39.00% for

valence, respectively. It should be noted that they also performed multimodal data

fusion by using EEG and eye gaze recollected data and achieved better results,

67.70% and 62.00% for arousal and 76.10% and 74.00% for valence.

Since its release, different machine learning systems have been proposed in the

literature using its data. For instance, the work in [196] is highlighted due to its

similarity with our research. They used multidimensional dynamic time warping as

a non-linear technique to deal with physiological dynamics followed by a stacking

classifier. Their results achieved up to 94.00% and 93.60% accuracy for a three

emotional class subject-independent model by using all physiological signals from
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MAHNOB database and a 𝑘 − 𝑓𝑜𝑙𝑑 CV strategy. Although they tried to diminish

the possible bias effect by combining both labelling methodologies, mapping arousal

and valence dimensional space into a specific discrete emotion, their model was not

able to capture the difference between fear and anger. This fact is essential for our

use case.

Among the rest of the state-of-the-art based on the MAHNOB database and re-

garding specifically the fear recognition use case, the only system proposed in the

literature is our publication [187]. This is the one being detailed in the following

subsections.

4.2.1 Stimuli balance and labels considerations
As for the DEAP database, MAHNOB stimuli were based on a previous larger

stimuli pool. Specifically, the preliminary study contains 155 video clips from dif-

ferent movies [201]. Each video clip received 10 annotations on average using a

9-point Likert scale for arousal and valence dimensions by means of the SAM and

discrete emotional tags. Based on the accumulative agreement of the latter, the

researchers selected up to 14 stimuli from this previous study. For instance, the

clip with highest number of fear tags was selected to elicit fear. The remaining six

videos until reaching the 20 videos of the experiment were chosen based on popular

online audiovisual content. Thus, most of the stimuli selected for this database were

chosen following a discrete-like emotional criterion. Note that, as noted before, the

20 neutral videos used for physiological recovery where validated by the Stanford

psycho-physiology laboratory.

Within this labelling context, the researchers of MAHNOB did not consider the

emotional dimension aspects (arousal, valence and dominance) and so the set of

generated ground truth labels were based on discrete emotions. However, they

provided and used a discrete-dimensional mapping for arousal and valence based

on [3] as shown in Table 4.11. Unfortunately, as the preliminary study in [201] is

not publicly accessible, we cannot realise the same exploratory labelling analysis

(ground truth reports vs self-reports of volunteers during the experiment) as with

DEAP. Thus, the self-reports of the volunteers can be compared to the ground truth

just by means of fear binarization of the latter based on the emotional discrete tags.

After performing the fear label binarization in MAHNOB using the provided self-
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Table 4.11: Discrete-dimensional mapping for arousal and valence based on [3] and
adopted by MAHNOB [10].

arousal and (M ¼ 0:71; SD ¼ 0:12) for valence. The key-
word-based feedbacks were used to generate each partici-

pant’s ground truth. The histograms of emotional self-

reports’ keywords and ratings given to all videos are shown

in Fig. 5. In Fig. 5, it is visible that the emotions which were
not initially targeted (see Table 3) have the least frequencies.

5.4 Emotion Recognition Results

In order to give the reader some baseline classification results,

emotion recognition results from three modalities and fusion

of ebest modalities are presented. Two classification schemes

were defined: first, along the arousal dimension, three classes

of calm, medium aroused, and excited, and second along the
valence dimension, unpleasant, neutral valence and pleasant.

The mapping between emotional keyword and classes which

are based on [14] and are given in Table 6.
A participant independent approach was taken to check

whether we can estimate a new participant’s felt emotion
based on others. For each video from the data set, the ground

truth was thus defined by the feedback given by each
participant individually. The keyword-based feedback was
then translated into the defined classes. According to this
definition, we can name these classes calm, medium
aroused, and excited/activated for arousal and unpleasant,
neutral valence, and pleasant for valence (see Table 6).

To reduce the between participant differences, it is
necessary to normalize the features. Each feature was
separately normalized by mapping to the range ½0; 1� on
each participant’s signals. In this normalization the mini-
mum value for any given feature is subtracted from the same
feature of a participant and the results were divided by the
difference between the maximum and minimum values.

A leave-one-participant-out cross validation technique
was used to validate the user independent classification
performance. At each step of cross validation, the samples of
one participant were taken out as test set and the classifier
was trained on the samples from the rest of the participants.
This process was repeated for all participants’ data. An
implementation of the SVM classifier from libSVM [40] with
RBF kernel was employed to classify the samples using
features from each of the three modalities. For the SVM
classifier, the size of the kernel, �, was selected between
½0:01; 10�, based on the average F1 score using a 20-fold cross
validation on the training set. TheC parameter that regulates
the tradeoff between error minimization and margin
maximization is empirically set to 1. Prior to classification,
a feature selection was used to select discriminative features
as follows: First, a one-way ANOVA test was done on the
training set for each feature with the class as the independent
variable. Then, any feature for which the ANOVA test was
not significant (p > 0:05) was rejected.

Here, we used three modalities which are peripheral
physiological signals, EEG, and eye gaze data. From these
three modalities, the results of the classification over the two
best modalities were fused to obtain the multimodal fusion
results. If the classifiers provide confidence measures on their
decisions, combining decisions of classifiers can be done
using a summation rule. The confidence measure summation
fusion was used due to its simplicity and its proven
performance for emotion recognition according to [34].

The data from the 27 participants which had enough
completed trials was used. Five hundred thirty-two samples
of physiological responses and gaze responses were
gathered over a potential data set of 27� 20 ¼ 540 samples;
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Fig. 5. This bar chart shows the frequency of the emotional keywords
assigned to all videos.

TABLE 6
The Emotional Keywords Are Mapped into Three Classes

on Arousal and Valence

TABLE 5
This Table Lists the Features Extracted

from Eye Gaze Data for Emotion Recognition

Number of features extracted from each channel is given in brackets.

reports for arousal, valence and dominance and following the fear mapping proposed

in Section 2.3.4, the obtained distribution was analysed for all the considered female

volunteers, resulting in asymmetry. That meant that the appearance of fear labels

was not uniform for all of the participants. Thus, Figure 4-18 shows that 60% of

the volunteers reported more than 30% of binary-fear labels, whereas the rest of the

volunteers were below that amount. Note that, in this figure, the notation 𝑉 𝑥 means

volunteer 𝑥, with 𝑥 ∈ 1 . . . 12, and the notation 𝐺 refers to the original binary-fear

distribution of the experiment (the actual number of stimuli intended to elicit fear;

i.e., only 20% of the total amount of videos). This unbalanced situation is especially

relevant for V11, with only 5% of fear data. This analysis supports assumptions

already highlighted in previous chapters, such as that the interpretation of stimuli

is strongly volunteer-dependent.
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Figure 4-18: Class distribution for binary fear mapping over the subjective self-
reports in MANHOB for all the different considered female volunteers, and the
original intended class distribution of the experiment.
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Nevertheless, in the case of assessing the average balance or average class percent-

ages of the 12 female volunteers, the imbalance ratio is 1:2.6 (NoFear:Fear Class)

and the consequent class percentages are up to 72.50% and 27.50% for the negative

and positive classes respectively. On this basis, two conclusions can be obtained.

On the one hand, the average positive class in this case is even higher than the

expected to be achieved following the ground truth. Although the difference is

less than 10%, this fact needs to be contextualised with respect to the male volun-

teers. For instance, the average class percentages for the nine valid male volunteers

is 81.11% and 18.89% for the negative and positive classes respectively. Without

considering the realisation of any statistical test to assess if the difference between

men and women is significant, from a emotional point of view and considering the

women emotional processing differences stated in Section 2.3.3, this could be one

of the factors being influencing. On the other hand, the obtained balance for this

database using the fear binary mapping from the PAD space is smaller than the im-

balance ratio observed when performing the fear binary mapping from the PA space

with DEAP. This conclusion can not be directly interpreted as that MAHNOB is

better than DEAP, but it provides insights of the differences regarding the stimuli

perception or efficacy from both databases, which is in line to previous research

works [195].

Following the same schema analysis for this database as the one applied to DEAP,

the label inter-individual correlations are assessed. In this case, the results obtained

after a Levene’s test and a Kruskal-Wallis test rejected the null hypothesis that the

variances are equal across all volunteers (p<0.001). Note that the set of binarized

labels exhibit a non-normal distribution and that the significance level was set at

p<0.05. After these processes, Spearman correlation and the Chi-square test of

independence are applied, Figures 4-19a and 4-19b. The obtained results are close

to each other and fail to reject the null hypothesis on average for each of the 12

volunteers, which indicates that the average correlation is considered not significant

and the different variables are independent. Thus, it can be conclude that there is

not enough evidence to suggest that an association between the fear binary labels of

the volunteers exist. Moreover, when comparing these graphs with the ones obtained

for the correlation and independence study of the previous systems using DEAP and
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the fear binary as well from PAD, we can observe a stronger agreement in this case.
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Figure 4-19: Averaged 𝑝− 𝑣𝑎𝑙𝑢𝑒𝑠 for all considered MAHNOB volunteers and their
labels applying: a) the Spearman correlation, and b) for the Chi-square test of
independence. In this case, the labels are binarized using the PAD fear binary
based mapping.

Based on the analysis provided in this section, it is demonstrated that the fear

binary mapping from PAD with MAHNOB is equivalent to the one done from PA

using DEAP, which benefits the objectives of this research work as the same or

similar techniques used for the emotion recognition paradigm of the latter can be

applied for the current. It should be noted that the different results gathered from

the stimuli balance and label consideration study provided in this section were always

present during the design of such systems.

4.2.2 Exploratory Data Analysis, Data Segmentation and

Filtering
The exploratory data analysis performed with MAHNOB followed the same proce-

dure as with DEAP. Different plots synchronised with the experimental methodology

were generated to check the physiological recoveries or neutral pre-stimulus clip as

well as the normal physiological ranges for all the considered volunteers. After this

analysis, it was concluded that, on average, the 30 seconds of data at the beginning

and at the end of the video clip slot together with the neutral clips were actually

behaving as expected leading towards the stabilisation of physiological signals and

targeting the emotional isolation between stimulus. Thus, the 60 second periods

corresponding to the 30 seconds before and after the stimulus in this specific exper-

imentation were eliminated.
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As stated in Section 3.1.2, data segmentation or window-based methods are used to

extract emotion-related information concerning time instants. Unlike the previously

presented system in this Chapter, this system operates on a data segmentation basis

following the typical data segmentation procedures in the literature [85]. Regard-

ing the DSE faced in this stage, an appropriate window length must be chosen to

ensure: that (1) the frequency resolution is sufficient to deal with all the frequency-

based features, and (2) the length of each window is the minimum as possible to

ease the host processing tasks. For our specific use case and based on the features

to be extracted, which are later described and detailed, the minimum required fre-

quency distinction between bands is 0.05 Hz, which can be assured by using a 20

seconds window size. With this window duration, those two conditions are satisfied.

Moreover, a 50% overlap is employed. To select the optimal window length and

overlapping, different considerations must be assessed:

• Both the time (the bigger the window, the longer the processing) and com-

putational complexity (the bigger the overlapping, the more operations are

needed within the same time).

• Physiological facts. They are related to the non-stationary nature of these

signals, which can be blurred for very large windows.

• Machine learning training size. This is referred to the final number of samples

or instances provided after windowing, as the feature vector is extracted from

each window and so the number of training and test points varies based on

the number of windows obtained from the data.

In our case, some physiological limitations are assumed when dealing with 20 seconds

windows. For instance, an ERSCR duration greater than 20 seconds cannot be

captured in one single window. Note that, as stated in Section 2.5, the ERSCRs

may vary between 1 to 30 seconds, although the initial configuration of a 50% overlap

allows for a balanced trade-off between the amount of ERSCR information lost and

memory requirements. Based on our window duration and overlapping, the average

segmentation per video resulted into five windows or instances, which had the same

class or label.

Concerning the storage of the acquired signals into an embedded platform, for

instance assuming a maximum width of 32-bits for each data point, the parameters
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set would lead to a 60 KB memory requirement (256 samples per second × 20

s × 3 sensors for 32-bit samples). This storage space could be provided by the

current system-on-chips that are used for many wearable devices. Nevertheless,

these requirements are application-driven and can be modified and ajusted based on

the embedded platform capabilities.

Regardless of the window length, data are encapsulated in fixed time slots to be

processed when filled, Figure 4-20. These segmented data (windows) obtained are

pre-processed to eliminate noise and other non-useful components for the next steps.

Thus, the overall signal quality is improved by denoising filters, focusing on their

specific physiological characteristics. Specifically, the raw ECG signal is subjected

to a band-pass FIR filter through a low and high pass filtering cascade to ease

complexity. Moreover, the residual baseline wander is removed using a Butterworth

IIR filtering stage, which resulted into a third-order IIR filter with -6 dB at 0.5 Hz.

Note that we used a bilinear transformation with frequency prewarping to generate

the digital coefficients. Afterwards, Automatic Gain Control (AGC) is applied to

limit the signal and enhance the peak detection. For the GSR and SKT signals,

low-pass FIR filters are employed to remove high-frequency noises.

window #1

window #2

window #(𝑛 − 1)

window #𝑛

…

timeline𝑥𝑡𝑥𝑜 𝑥𝑤

processing

Figure 4-20: Typical data segmentation process in emotion recognition systems
based on machine learning.

4.2.3 Feature extraction
In order to improve the results obtained from DEAP-b1 and DEAP-b2, the proposal

presented in this Chapter considers and extends the features from the three main

groups: time-domain, frequency-domain and non-linear features. This set of features

comprises a total of 48 features detailed in Tables 4.12, 4.13, and 4.14, for the three
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physiological sensors respectively. Specifically, 25 features for ECG (two in the time

domain, nine in the frequency domain and 14 non-linear features), 17 features for

GSR (six in the time-domain, three in the frequency-domain, and eight non-linear

features) and six features for SKT (four in the time-domain and two in the frequency

domain) are included. Note that all considered features are based on accepted, well-

known physiological literature dealing with emotional-related features [6, 202, 203]

as well as the previous implemented features (DEAP-b1 and DEAP-b2). Moreover,

for this system, we have considerably increased the non-linear features considered

in our model, which are based on recent publications that included these synthetic

metrics in emotion recognition systems as well [160,161]. The following subsections

detail the specific different features extracted for the three different domains and

signals.
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Table 4.12: Features extracted for the ECG signal and the proposed fear binary
emotion recognition using MAHNOB dataset.

Sensor Domain Features

ECG Time-domain: Mean of Inter-Beat-Interval

(25) (2) Heart rate variability

Frequency-domain: Power spectral density of four bands

(9) (0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz and 0.3–0.4 Hz)

Inter-Beat-Interval Power spectral density for

Low frequency (LF) (<0.08 Hz)

Medium frequency (MF) (0.08–0.15 Hz)

High frequency (HF) (0.15–0.5 Hz)

Total energy ratio for MF

Spectral density ratio between

LF and HF band

Non-linear: Multiscale entropy at five levels

(14) Detrended fluctuation for filtered data

Detrended fluctuation for Inter-Beat-Interval

Recurrence rate

Determinism

Laminarity

Longest RP diagonal line

Diagonal lines entropy

Trapping time

Correlation dimension
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Table 4.13: Features extracted for the GSR signal and the proposed fear binary
emotion recognition using MAHNOB dataset.

Sensor Domain Features

GSR Time-domain: Filtered data mean value

(17) (6) ERSCR including number of peaks

ERSCR Amplitude and rise time

Standard deviation

First quartile

Third quartile

Frequency-domain: Power spectral density of two bands

(3) for SCL and SCR components

(0–0.05 Hz, 0.05–1.5 Hz)

Spectral density ratio for 0–0.05 Hz

Non-linear: Detrended fluctuation for filtered data

(8) Recurrence rate

Determinism

Laminarity

Longest RP diagonal line

Diagonal lines entropy

Trapping time

Correlation dimension

Table 4.14: Features extracted for the SKT signal and the proposed fear binary
emotion recognition using MAHNOB dataset.

Sensor Domain Features

SKT Time-domain: Filtered data mean value

(6) (4) Standard deviation

Skewness

Kurtosis

Frequency-domain: Power spectral density of two bands

(2) (0–0.1 Hz, 0.1–0.2 Hz)

Previous to the feature extraction process, the physiological delineation tasks take

place. For this system, the raw ECG signal is subjected to peak identification to

determine the IBI and extract a valid heart rate estimation and heart rate variability-

related parameters. Specifically, a ECG peak detector based on the algorithm devel-
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oped by Pan and Tompkins in [204] was applied. Figure 4-21 shows the architecture

of such algorithm, which is fed from the ECG filtered signal. The different stages

are described as following:

• Differentiator. This is usually conceived as a derivative filter that is responsible

to provide information regarding the slope of the morphological ECG wave

pattern. It also attenuates low frequency components, which are referred as

to the atrial depolarisation and ventricular repolarization. For our case, this

process is done based on the first difference of the input filtered ECG signal.

• Squaring. This is a non-linear operation that emphasises the ECG peaks by

amplifying the previous derivative result.

• Integrator. As the output of the squared derivative could present multiple

peaks within the duration of a single ECG period, a moving window integration

filter is used to smooth such signal. The width of this filter is usually set to

150 ms.The output signal of this process is known as integrated signal.

• Threshold Check and Search-Back. These last procedures are intended to

identified and corroborate the proper location of the local peaks within the

integrated signal. Different physiological constraints are applied to ensure the

physiological detection of the ECG peaks, such as 200 ms lockout time between

identified peaks. After all the peaks have been identified from the integrated

signal, a search-back process is applied to discard and correct those peak to

peak or RR intervals causing potential problems. For instance, in our case,

we performed a double iteration looking five peaks ahead and assessing the

median evolution of the peak to peak vector.
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Raw ECG

Band-pass 

Filter
Differentiator IntegratorSquaring 

Threshold 
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Back
RR-Peaks

QRS-Detector

Figure 4-21: Architecture outline of the ECG peak identification algorithm applied
in this work.

For the GSR signal, the applied FIR is designed to preserve information below

1.5 Hz, which is the maximum frequency for SCR activity. Such filter is also used

with the SKT signal to make profit of storing only one set of filter coefficients.

Regarding the GSR delineation, we applied the same processes as done with DEAP

data base. Thus, a linear combination followed by equation 2.7 is used, through

which the trend of the GSR signal (SCL) is obtained by a moving median filter with

a four seconds sliding window. That output is subtracted to the GSR filtered signal,

obtaining the SCR component. Both components, as well as the filtered GSR signal,

are used to extract synthetic metrics or features detailed in the following sections.

4.2.3.1 Time and Frequency domain

For the time domain features to be extracted in this system, they follow the same

distinction or grouping as the ones presented and detailed in Section 4.1.3, as they

can be divided between higher-order statistics and morphological features. However,

the system proposed in this section extends the higher-order statistics features into

two additional metrics: skewness and kurtosis. Specifically, these are applied to

the SKT signal. On the one hand, the former is referred as an indicative of the

asymmetry, positive or negative, deviating from a normal distribution and it is

given by

𝑠 = 1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥)3

𝜎3 , (4.17)

where 𝑥 is the filtered SKT with 𝑁 samples in this case, and 𝑥 and 𝜎 are the mean

and the standard deviation for the current processing window. On the other hand,
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kurtosis is the statistical metric related to the shape of a probability distribution

by measuring degree of concentration presented around the mean of the frequency

distribution for a real-value random variable, also described as the measure of the

tailedness. This higher-order statistic measurement is given by,

𝑘 = 1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥)4

𝜎4 . (4.18)

These statistical moments allow characterising the temporal distribution of the SKT

along the visualised stimulus.

4.2.3.2 Non-linear domain

For this system, the set of non-linear features is expanded adding up to eight new

features. Most of them are based on chaos theory and time series analysis techniques.

These are described and detailed as follows.

• Detrended Fluctuation Analysis (DFA). This is a powerful technique subjected

to be applicable if non-stationaries signals are either suspected or known to

exist. It allows the estimation of the power law (fractal) scaling or Hurst

exponent of a signal coming from a system that is exposed to such non-

stationaries [205]. In fact, in this case, this metric gives a measurement re-

garding the physiological self-similarity at different resolutions (window sizes),

which can be translated into physiological complexity assessment. Thus, the

time series of length 𝑁 is first integrated, 𝑦, and encapsulated into boxes or

windows of length 𝑛. These non-overlapped segments are fitted to a polyno-

mial from which the local trend is obtained 𝑦𝑛. Finally, the integrated time

series is detrended by subtracting such local trend. The root-mean-square

fluctuation 𝐹 (𝑛) is provided by the following equation:

𝐹 (𝑛) =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑘=1

[𝑦(𝑘)− 𝑦𝑛(𝑘)]2, (4.19)

which is repeated for all the window sizes to be evaluated. Note that in our case

the polynomial fitting is linear (first order) and the number of window sizes at

which to evaluate the fluctuations is empirically set that 𝑛 ∈ 𝑡𝑤/10 . . . 𝑡𝑤 with

10 samples steps, where 𝑡𝑤 is the sample size of the processing window.
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• Recurrence rate. This and the following features rely on the mathematical

interpretation of the Recurrence Plot (RP)s. These are conceptualised as

bi-dimensional plots in which the states of the phase space trajectory of a

dynamical system can be represented and quantified. Such states are referred

as the recurrences that the system or signal presents over a specific temporal

processing window. Such bi-dimensional representation is obtained by the

computation of the distances between two states and the comparison with

respect a predefined threshold, following

𝑅𝑖,𝑗 = Θ(𝜖𝑖 − ||𝑥𝑖 − 𝑥𝑗||), 𝑥𝑖 ∈ 𝑅𝑚, 𝑖, 𝑗 = 1, ..., 𝑁, (4.20)

where 𝑖 and 𝑗 are two arbitrary states, 𝜖𝑖 is the used threshold for the recurrence

evaluation, 𝑥𝑖 and 𝑥𝑗 are the respective modulus for each state, and 𝑚 is the

embedded dimension to be considered. Note that the separation 𝑡 between

spaces 𝑖 and 𝑗 can be adjusted as desired and needed as well. For our system,

we estimated 𝑡 and 𝑚 using mutual information [206] and false nearest neighbor

[207], respectively, and define 𝜖 as 10% of the average phase space diameter of

observations [208]. Once the RP is obtained, the recurrence rate ratio can be

derived from

𝑅𝑅 = 1
𝑁2

𝑁∑︁
𝑖,𝑗=1

𝑅𝑖,𝑗, (4.21)

which corresponds to the correlation sum and it quantifies the amount of

detected recurrence states.

• Correlation dimension. This technique is commonly used in time series anal-

ysis to characterise the attractor of a dynamical system, i.e. in this case to

measure the complexity of a physiological system. An approximated correla-

tion dimension or 𝐷2 can be computed as

𝐷2 ≈ 𝑙𝑜𝑔(𝑅𝑅)
𝑙𝑜𝑔(𝜖) . (4.22)

• Determinism. Based on the RP plot, the diagonal lines provide information

about the repetitive physiological patterns of the time series being analysed.
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This is quantified by the following equation:

𝐷𝐸𝑇 =
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝐷(𝑙)∑︀𝑁

𝑖,𝑗=1 𝑅𝑖,𝑗

=
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝐷(𝑙)∑︀𝑁

𝑙=1 𝑙𝐷(𝑙)
, (4.23)

where 𝐷(𝑙) is the histogram of the different diagonal line lengths. Note that

a minimum diagonal line parameter 𝑙𝑚𝑖𝑛 must be provided, which in our case

is empirically set to 2.

• Laminarity. This feature counts the percentage of recurrence points that form

vertical lines within the RP. Those are referred as the chaotic states of the

system or non-periodic ones. It is given by

𝐿𝐴𝑀 =
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝑉 (𝑙)∑︀𝑁

𝑖,𝑗=1 𝑅𝑖,𝑗

=
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝑉 (𝑙)∑︀𝑁

𝑙=1 𝑙𝑉 𝑙
, (4.24)

where 𝑉 (𝑙) is the histogram of the different vertical line lengths.

• Longest RP diagonal line. The quantification of the longest diagonal line

within the RP plot allows to characterise the maximum amount of periodic

time within the system. This is given by

𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑙𝑖; 𝑖 = 1, ..., 𝑁𝑙), (4.25)

where 𝑁𝑙 is referred as the total number of diagonal lines within the RP plot.

In our case, the implementation is done by employing a quick-sorting algorithm

using the diagonal lines previously identified.

• Trapping time. As the previous feature is intended to characterise the period-

icity of the signal, the trapping time provides information about the amount

of non-stationaries states recurred within the RP plot. It is calculated as

following:

𝑇𝑇 =
∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑙𝑉 (𝑙)∑︀𝑁

𝑙=𝑙𝑚𝑖𝑛
𝑉 𝑙

. (4.26)

• Diagonal lines entropy. Finally, to consider the periodicity uncertainty of the

signal, the Shannon entropy is applied to the probability distribution of the
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diagonal line lengths 𝑝(𝑙). This is calculated as:

𝐸𝑁𝑇𝑅 = −
𝑁∑︁

𝑙=𝑙𝑚𝑖𝑛

𝑝(𝑙)𝑙𝑜𝑔(𝑝(𝑙)). (4.27)

4.2.4 Fear classification systems
In the following sections, the results obtained with the proposed system using

MAHNOB are detailed and explained. Specifically, two systems are presented:

subject-dependent and subject-independent. Both use the fear binary mapping from

the PAD space analysed in Section 4.2.1. Moreover, unlike the previous DEAP sys-

tems, some particularities might be highlighted. First of all, three different classifiers

are applied. Two of them are the same classifiers employed for the DEAP systems,

SVM and KNN. The third classifier is actually a set of classifiers following an en-

semble learning approach. For this purpose, an AdaBoost algorithm is used. Note

that the latter has been also reviewed in Section 3.1.7.

In this case and leading towards a better tuning, the hyperparameter optimisation

is done through Bayesian optimisation. This technique is intended to minimise the

miss-classification rate over iterations, supported by a CV strategy. Specifically,

a SMBO technique is included. Thus, the generation of new hyperparameters to

evaluate is subjected to Gaussian processes, which approximate the distribution of

the cost function 𝑓(𝑥) ∼ 𝐺𝑃 (Gaussian Process). This distribution is updated

as it is iterated with the new known values for the new hyperparameters. In this

way, the final distribution function 𝑝(𝑓(𝑥)|𝑓(𝑥*)) is built where 𝑥* refers to the

historical values. With this estimation, the point that could be a potential candidate

is calculated in the next step. For this, a function 𝛼(·) called acquisition is used.

For the definition of this acquisition function, there are different options. In this

case, the probability of improvement strategy has been used, which tries to estimate

the probability of an improvement with the next sample.

Regarding the validation procedure, the subject-dependent and subject-independent

models were validated based on a stratified 𝑘−𝑓𝑜𝑙𝑑 CV schema (𝑘 = 5). On the one

hand, for the subject-dependent models, the mean of all metrics for all volunteers

and the mean absolute deviation (MAD) were calculated based on the obtained CV

values. On the other hand, the subject-independent models were divided into train-
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ing, validation, and testing sets, employing a LOSO strategy. The latter allowed

us to study the performance of various subject-independent systems trained with

different subject combinations and tested with a single volunteer about whom the

system had no information.

The presented results and system were published in [187]. Note that in this case,

we did not implement a feature selection or reduction process nor applied any miss-

classification cost methodology (cost-sensitive learning). The rationale of the latter

decision was based on obtaining baseline results to be compared against future

system improvements when adding and applying different techniques.

4.2.4.1 User-dependent results

Table 4.15 shows the validation performance metrics and dispersion for the differ-

ent light-weight classification algorithms selected for the generation of each subject-

dependent model for all volunteers. After analysing the results, it can be observed

that there was no strict dependence relationship between the class distribution and

performance. Nonetheless, the performance of the models was directly affected by

the type of classifier used. Moreover, another key factor that could have influ-

enced performance was related to the alignment of subject-dependent physiological

patterns and the binary fear mapped labels obtained. Furthermore, the usage of

Gmean and F1 scores allowed us to distinguish the low-performance models from

the higher-performing models more robustly.
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Table 4.15: Performance metrics for each generated subject-dependent model and average performance metrics and dispersion for each
classification algorithm.

SVM KNN ENS

Training Trained ACC AUC Gmean F1 ACC AUC Gmean F1 ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

V1 89.00% 90.30% 87.73% 85.71% 88.00% 88.67% 87.90% 85.37% 88.00% 79.32% 85.12% 83.33%
V2 88.00% 92.43% 76.41% 71.43% 99.00% 99.89% 99.23% 87.72% 91.00% 97.47% 85.41% 80.85%
V3 91.00% 94.44% 71.20% 74.29% 94.00% 96.19% 90.47% 85.00% 97.00% 95.31% 98.13% 93.02%
V4 93.00% 95.29% 84.06% 75.86% 99.00% 96.67% 96.59% 96.55% 96.00% 99.69% 85.62% 84.62%
V5 76.00% 84.97% 75.01% 72.09% 81.00% 91.47% 85.62% 84.62% 98.00% 99.88% 97.95% 97.78%

Subject V6 90.00% 93.67% 87.92% 83.33% 98.00% 98.60% 84.08% 82.86% 99.00% 99.90% 99.23% 98.36%
dependent V7 93.00% 98.54% 92.47% 91.14% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

V8 85.00% 90.57% 81.22% 74.58% 94.00% 92.24% 90.58% 89.29% 93.00% 86.05% 92.12% 88.52%
V9 96.00% 98.44% 83.16% 77.78% 99.00% 99.44% 99.40% 95.24% 100.00% 100.00% 100.00% 100.00%
V10 89.00% 91.31% 87.73% 85.71% 94.00% 94.15% 93.24% 92.31% 100.00% 100.00% 100.00% 100.00%
V11 95.00% 50.00% 00.00% 00.00% 99.00% 90.00% 89.44% 88.89% 100.00% 100.00% 100.00% 100.00%
V12 77.00% 83.48% 62.91% 53.06% 91.00% 85.95% 84.97% 83.02% 94.00% 93.33% 90.58% 89.29%

88.50% 88.62% 74.15% 70.42% 94.66% 94.44% 91.80% 89.24% 96.33% 95.91% 95.51% 92.98%
(4.66%) (7.90%) (14.72%) 14.62% (4.33%) (4.02%) (4.92%) (4.53%) (3.28%) (4.94%) (5.62%) (6.38%)
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However, the presented results could be biased due to the reduced amount of data

available (100 samples per volunteer, five windows on average per video), as well

as due to the asymmetry detected (imbalanced data). Focusing on asymmetry, this

problem is especially relevant in V11. The effect on performance due to asymmetry

for this volunteer is shown in Figure 4-22, which provides the confusion matrices

for V11 after applying all three algorithms. Conversely, the confusion matrices of

the volunteer V7 are also shown in Figure 4-23. This volunteer showed the best

performance overall; i.e., considering the different metrics for the three classifiers

applied. In these figures, the positive class (fear) is represented by the number

two, and the negative class (no fear) is represented by the number one. The rows

correspond to the predicted class and the columns correspond to the true class or

ground truth. From left to right and from top to bottom, each confusion matrix

shows the true-negatives, false-positives and false omission rates. The next row

shows the false-negatives, true-positives and precision rate. The last row shows

the false-negative rate, specificity and overall accuracy. Note that the rest of the

confusion matrices for each subject-dependent model generated are shown in [187].

After analysing these confusion matrices, the performance of the algorithms for V11

was also found to be asymmetric. Thus, for instance, SVM provided a high accuracy,

at up to 95.00%, but this metric was biased by the reduced number of samples of this

volunteer within the positive class (only five samples). In this case, the calculated

Gmean and F1 metrics results were 0.00% due to the zero positive predicted rate,

and the AUC was 50.00%, showing that this classification model performed no better

than random guessing. The behaviour shown by SVM in this case matched the usual

unreliable performance of this algorithm for extremely imbalanced distributions;

that is, SVM is oriented towards the majority class to optimise the error rate during

the training stage. On the contrary, boosting algorithms usually provide a better

behaviour for imbalanced distributions, as shown by ENS for this case. Nevertheless,

this imbalanced situation should be avoided during the database generation, and

the quality and diversity of the stimuli considered should be improved. In the

case that this situation were not addressed during the database generation, the

bias generated in performance could be partially solved by selecting an adequate

classification technique, as discussed above. However, the lack of information from
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(c) ENS classifier
Figure 4-22: Confusion matrices for a subject-dependent model in V11, detected as
a problem in asymmetry.
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Figure 4-23: Confusion matrices for a subject-dependent model in V7.
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one of the two classes cannot be solved, resulting in a possible incorrect classification

for future samples [209]. Another possible approach to deal with this problem is

based on the application of data augmentation techniques or weighted classes, as

previously applied for DEAP-b1 and DEAP-b2. Conversely, in the case of V7,

the system showed 40.00% positive class information, which translates into a better

SVM performance. KNN and ENS continued to outperform SVM due to the reasons

stated above for the error rate optimisation of this classifier.

4.2.4.2 User-independent results

Focusing on the subject-independent use case, the combination of all individual

samples resulted in a bigger dataset with 1200 samples (100 samples per volunteer

× 12 volunteers). The physiological signal ranges differed for different individuals

due to the nature of each individual and the differences in the measurement set-up

(e.g., ambient temperature). Therefore, the data (features) from every volunteer

should be normalised. To this end, we considered the Z-score method. Once the

database was normalised, the binary-fear recognition system was generated using a

𝑘 − 𝑓𝑜𝑙𝑑 CV schema for the validation partition and a LOSO testing methodology.

Table 4.16 shows the performance metrics for each classification algorithm in the

generation of the subject-independent model. Note that the training of these models

was performed using all volunteers except the one used for testing in each iteration

(unseen test data); i.e., a total of 12 subject-independent models were generated

and tested.
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Table 4.16: Performance metrics for each generated subject-independent model and average performance metrics and dispersion for each
classification algorithm. The training stage is performed using all the volunteers except the tested volunteer in each model generated
(unseen test data).

SVM KNN ENS

Training Tested ACC AUC Gmean F1 ACC AUC Gmean F1 ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

V1 65.00% 60.83% 57.15% 47.76% 75.00% 71.25% 68.74% 62.69% 71.00% 65.83% 60.55% 52.46%
V2 70.00% 61.33% 58.83% 42.31% 81.00% 74.00% 72.66% 61.22% 82.00% 86.72% 71.26% 60.87%
V3 64.00% 66.00% 62.44% 40.00% 72.00% 61.88% 59.53% 39.13% 62.00% 61.19% 45.82% 24.00%
V4 82.00% 71.01% 83.88% 59.09% 84.00% 87.84% 87.67% 63.64% 85.00% 91.61% 90.75% 66.67%
V5 64.00% 70.55% 61.10% 55.00% 70.00% 71.74% 65.32% 59.46% 73.00% 75.58% 68.16% 63.01%

Subject V6 84.00% 88.57% 85.61% 77.14% 71.00% 68.81% 68.59% 56.72% 79.00% 87.86% 76.16% 66.67%
independent V7 75.00% 90.54% 65.38% 59.02% 76.00% 91.83% 69.37% 63.63% 87.00% 99.46% 82.16% 80.60%

V8 76.00% 81.90% 70.51% 60.00% 78.00% 72.86% 71.71% 62.07% 80.00% 85.00% 75.59% 66.67%
V9 67.00% 69.67% 63.77% 21.82% 67.00% 59.44% 58.69% 18.87% 78.00% 84.78% 78.88% 42.11%
V10 76.00% 79.63% 65.95% 60.00% 78.00% 72.92% 68.34% 63.33% 77.00% 82.30% 72.80% 67.61%
V11 74.00% 90.53% 76.78% 23.53% 80.00% 89.47% 88.85% 40.00% 74.00% 86.32% 85.22% 27.78%
V12 70.00% 72.05% 64.14% 51.61% 71.00% 66.90% 66.12% 53.97% 72.00% 67.72% 66.73% 54.84%

72.25% 75.22% 67.96% 49.77% 75.25% 74.07% 70.47% 53.73% 76.67% 81.20% 72.84% 56.11%
(5.58) (9.18) (7.48) (12.24) (4.25) (7.82) (6.50) (10.53) (5.22) (9.07) (8.62) (13.22)
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After analysing this table, the best results were also provided by ENS, with the

highest averaged performance metrics (81.20%, 72.84%, 56.11%) for the AUC, Gmean

and F1-score. On the contrary, SVM also provided the worst performance in gen-

eral. The differences between all the subject-independent models generated should

be highlighted. For instance, the best model achieved a Gmean of up to 90.75%

when testing with V4 and training with the rest of the volunteers, and the worst

model provided a Gmean of up to 45.82% when testing with V3 and training with the

rest of the volunteers. This fact emphasises the need for a larger and more balanced

data set to deal with these problems. Regarding the F1-score, a high variability

can be observed among the different models. By definition, this score is a weighted

harmonic mean between precision and recall, which leaves true-negatives out of the

equation. This fact is key when presented with a very low positive incidence, but a

high F1-score does not necessarily imply a better performance of the system. For in-

stance, the confusion matrices of two subject-independent tested models for the ENS

classifiers are shown in Figure 4-24 for V4 and V7 with F1-scores of up to 66.67%

and 80.60% respectively. Based on the pursued fear recognition application, it could

be more convenient to have a miss-classification for the false-positive than over the

false-negative. Therefore, comparing the F1-score for different subject-independent

models should be accompanied by the requirements and needs of the application.

Note that both of the explained examples did not show a perfect classification per-

formance. The rest of the confusion matrices for each subject-independent model

generated are provided in [187].
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Figure 4-24: Confusion matrices for ENS classifiers and tested volunteers (unseen
data) over their respective subject-independent models: (a) tested V4, (b) tested
V7.

Regarding the time and space complexity of the employed models, SVM and KNN

were already discussed in previous sections. The remaining model, ENS, is actually

an AdaBoost classifier, which is based on a single composite strong learner. The lat-

ter is made up of different weak learners that, in this case, are shallow trees. Thus,

two parameters are essential to estimate the time and space complexity: the number

of trees, and the maximum number of splits per tree. On the one hand, the time

complexity used to be defined by 𝒪(𝑓𝑒𝑎𝑡𝑠 * 𝑛𝑡𝑟𝑒𝑒𝑠) for this type of classifier, where

𝑓𝑒𝑎𝑡𝑠 is the number of features and 𝑛𝑡𝑟𝑒𝑒𝑠 is the total number of trees. Note that

the time complexity of the trees is not included within the total time complexity

of AdaBoost, as it is negligible in comparison to the total amount of time. On the

other hand, the space complexity is determined by the amount of the trained shallow

trees and the maximum number of allowed splits within each of those. Additionally,

the trained weights for the weak learners must be also stored. For the worst case

scenario, when dealing with the subject-independent models which are more com-

plex than the subject-dependent, the number of trees used to be one quarter of the

training data set, i.e., approximately 300 trees on average (1,200 training instances),

and the maximum number of allowed splits per weak learner on average is ten. Con-

sidering these values and the total set of 48 features, the estimated time complexity

achieves up to 14400 operations, while the space complexity reaches approximately

13 kB (300 trees × 10 splits maximum + 300 trained weights). Note that the mem-
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ory used in kB is based on a 32-bit integer data type for all the parameters to be

stored.

It is noteworthy that further AdaBoost and tree algorithmic optimisations, as well

as other feature selection alternatives, can be implemented and applied to achieve

a smaller time complexity, which can even lead in some cases to better recogni-

tion performance. Although redundant information does not affect AdaBoost as

negatively as for other classifiers, such as SVM, the elimination of irrelevant in-

formation does affect and can yield up to less computational time. In fact, Table

4.17 shows the results for the same training configuration, validation and testing as

the subject-independent case employing the AdaBoost classifier, but changing the

feature selection method to mrMR with 𝐾 = 10. Note that this technique was

also applied to DEAP-b2 system. It can be observed that the obtained metrics

are similar to the ones presented without feature selection. However, the reduction

from 48 up to 10 features directly affects the inference time complexity. Thus, with

this configuration and considering the same number of trees on average, just 3000

operations need to be done.

Table 4.17: Performance metrics for each generated subject-independent model and
average performance metrics and dispersion for ENS after mrMR feature selection.
The training stage is performed using all the volunteers except the tested volunteer
in each model generated (unseen test data).

ENS

Training Tested ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD)

V1 90.00% 68.42% 59.37% 50.70%
V2 87.27% 87.25% 76.18% 64.15%
V3 87.73% 65.63% 45.00% 23.08%
V4 88.64% 84.55% 84.48% 57.14%
V5 90.45% 86.83% 61.50% 54.55%

Subject V6 92.27% 90.57% 85.22% 78.13%
independent V7 87.27% 95.71% 78.58% 87.02%

(mrMR) V8 90.91% 94.90% 92.38% 87.50%
V9 88.18% 91.56% 81.10% 47.06%
V10 85.00% 97.17% 79.06% 88.89%
V11 85.00% 99.79% 88.85% 33.33%
V12 93.64% 69.62% 53.67% 39.29%

88.86% 86.00% 73.78% 59.24%
(2.16) (9.30) (12.60) (18.25)
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4.3 Discussion and Conclusion
This Chapter presented the work realised towards a fear detection system by using

publicly available datasets. Part of the presented work is also contained in pub-

lished articles [182, 184, 187]. Throughout the design of the different systems, the

essential processes to be considered critical for an embedded implementation have

been identified and initially addressed. For instance, the main focus of discussion

is the time and space complexity of the resultant models in comparison with their

performance metrics. As stated at the beginning of the Chapter, the design of a fully

subject-independent model would allow the first generation of a technological tool

able to detect any emotion based on machine learning. This tool can be customised

during the operation with subject data collected. For example, in the UC3M4Safety

team, the fear detection under Gender-based Violence situations has been the seed

of this research work. Subject-dependent models requires having enough data to

make different training, validation and testing sets statistically significant. In case

of having sufficient information of a particular subject, then a subject-dependent

model can be generated and even pursued, as it archives better performance than

a subject-independent model. However, in most of the cases, when dealing with

real-life applications, in which during the first deployment moment there is no or

little amount of data of that particular subject, then it is necessary to implement a

subject-independent model.

Table 4.18 summarises the best results obtained along this part of the work for the

fear binary emotion recognition when dealing with a subject-independent model. As

it can be observed, different hyper-parameter optimisation techniques, classifiers and

system configuration (with and without feature selection) were explored. First of

all, the DEAP-b1 system used 21 subjects, employed a KNN by using a specific ex-

treme Hold-Out strategy, and achieved a Gmean of up to 62.00%. The particularity

of such system was that the filtered signals were considered as inputs, as no feature

extraction was applied. Thus, as already commented in previous sections, that fact

could lead to overoptimistic results. Note that no hyper-parameter optimisation

as such was applied to this system, as the values obtained during the parameter

sweeping for the subject-dependent models were used. Due to the observed limita-

tions for DEAP-b1 in terms of space complexity, DEAP-b2 was developed targeting
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a lighter classifier. The latter considered the whole set of volunteers from DEAP

at the expense of omitting one of the physiological signals (SKT). In this case,

the singularity was based on the fear binary mapping origin, which was directly

obtained from the PA space rather than using the PAD space. Towards increasing

the performance of the DEAP-b2 system, the elimination of the redundant features

and the maximisation of the relevant ones throughout mrMR led to the DEAP-b2+

system, which provided a better performance than DEAP-b2 and DEAP-b1. Thus,

in this case, the application of feature selection techniques resulted into a vital step

for the improvement of the system. However, the space complexity remained the

same. Finally, the limitations faced with DEAP were fixed by using the MAHNOB

database. Focusing on the tree-based classifier, we developed two systems, with

and without feature selection. In this case, the testing CV technique applied was

LOSO, which offers a non-overoptimistic view of the system performance. Thus,

due to the specific characteristics of the classifier, when applying feature selection

we achieved similar metrics for Gmean and AUC, and obtained the smallest storage

for the model.
Table 4.18: The best results obtained along Chapter 4 for the fear binary emotion
recognition when dealing with a subject-independent model.

System DEAP-b1 DEAP-b2 DEAP-b2+ MAHNOB-fear MAHNOB-fear+

Subjects 21 32 32 12 12

Signals PPG, GSR, SKT PPG, GSR PPG, GSR ECG, GSR, SKT ECG, GSR, SKT

Hyp.Opt. - Grid Search Grid Search SMBO SMBO

Classifier KNN SVM-RBF SVM-RBF ENS-AdaBoost ENS-AdaBoost

CV Technique 𝐻𝑜𝑙𝑑−𝑂𝑢𝑡 𝑘 − 𝑓𝑜𝑙𝑑 𝑘 − 𝑓𝑜𝑙𝑑 LOSO LOSO

Space (kB) 48.59 39.06 39.06 13 13

AUC (MAD) - 62.79 (4.72)% 81.60 (8.70)% 81.20 (9.07)% 86.00 (9.30)%

Gmean (MAD) 62.00% 62.62 (4.73)% 81.55 (10.21)% 72.84 (8.62)% 73.78 (12.60)%

Focusing on the last proposed systems, MAHNOB-fear and MAHNOB-fear+, cer-

tain limitations must be considered. On the one hand, the data segmentation ap-

proach used presents some disadvantages when dealing with slow-changing physio-

logical signals. Different techniques should be applied to take into account all the

different physiological particularities without wasting information. For instance,

specifically for the GSR, the use of dynamic data segmentation and overlapping

could be a valid solution. However, when dealing with resource-constrained devices,
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a better solution might be to keep track of the onsets of the ERSCRs and, when

detecting the offsets for the successive processing windows, calculate all the ER-

SCRs metrics. The main advantage of this latter method is the independence of

the processing window length at the expense of storing the ERSCR tracking infor-

mation until the completion of the ERSCR (offset). On the other hand, despite

using a specific normalisation technique (Z-score), other approaches might be ex-

ploited. For instance, we are already working on applying different normalisation

techniques, such as using recovery time-slots to normalise the data of the emotion-

related stimulus and study the effect for the analysed fear use case. Finally, it should

be noted that the results shown are limited by the size of the dataset considered

(12 subjects), which is the weakest point of such models. As no other dataset ex-

ists that fits our use case, a larger and better dataset is required to create a more

reliable system. Therefore, the limitations identified while developing these systems

confirm the relevance of creating a novel dataset focused on fear detection. This

dataset should include some key facts, such as the usage of emotional immersive

technology, the modification of the labelling methodology to consider the gender

perspective, a properly balanced stimuli distribution regarding the target emotions

and a greater number of participants. More details regarding the latter fact and the

new UC3M4Safety database are given in Chapter 6.

Regarding the comparison with other research works, the wide casuistry of the

emotion recognition problem is a challenging task. This is due to the high amount

of different techniques that can be applied within the data processing chain and the

generation of the machine learning model. However, we can make a clear distinction

by using five factors: a) CV used for validation and/or testing, b) the number of

subjects accounted for, c) emotion classification paradigm (binary, discrete and /or

dimensional multi-emotion detection), d) the amount and type of used signals, and e)

usage of publicly available datasets. The latter is of tremendous importance, as those

works based on open databases can be further directly compared without digging

into experimental methodology differences discussions. Table 4.19 lists the above

factors with respect to some of the main state-of-the-art works that are directly

linked to and have influenced this one. At first glance, we observe a wide variety

of techniques, which makes it difficult to compare. First of all, only research works
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that are directly related to the fear detection or to emotion classification have been

selected. In fact, two works are based on discrete emotion classification, seven of

them are focused on arousal and valence classification (different levels) using the PA

model, and three research works classify emotions by means of the PAD model. From

the latter, two of them [185,186] are the ones already reviewed in Section 4.1 that use

our proposed fear binarization paradigm. Secondly, only six of the works employed

a Leave-One-Out (subject or trial) CV technique. The others applied 𝑘 − 𝑓𝑜𝑙𝑑

and Hold-Out, which, based on the data arrangement, can lead to overoptimistic

results. Moreover, regardless of the emotion classification paradigm and the applied

CV technique, most of the works did not report many machine learning performance

metrics, apart from accuracy. Finally, considering these contextualisation aspects,

we can conclude that the obtained metrics are in line with the state-of-the-art.
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Table 4.19: Most recent and main state-of-the-art works that are directly linked to and have influenced this research in terms of affective
computing using physiological information.

Subjects Signals Classifier CV Emotion Dataset Metrics

Lisetti and Nasoz [210] 14 ECG,GSR,SKT KNN LOO Sadness, anger, fear,
surprise, frustration, amusement own ACC(fear): 85.6%

Chanel et al. [211] 10 BP,EEG,GSR,
PPG,RESP SVM LOSO PA space calm-neutral

vs. positive-excited own ACC: 66.00%

Valenza et al. [167] 35 ECG,GSR,RESP QDA 40-fold CV Five arousal and valence levels own ACC > 90%

Valenza et al. [161] 30 ECG SVM-RBF LOO Two levels arousal and valence own ACC(V):79.00%
ACC(A): 84%

Abadi et al. [145] 30 ECG,EOG,EMG SVM LOTO Two levels arousal,
valence, dominance DECAF ACC(A,V,D):50-60%

Rubin et al. [160] 10 ECG SVM 𝑘 − 𝑓𝑜𝑙𝑑 Binary Panic detection own ACC:73-97%

Rathod et al. [212] 6 GSR,PPG SVM Hold-Out Normal, happy, sad,
fear, anger own ACC < 87.00%

Zhao et al. [213] 15 PPG,GSR,SKT NB,RF,SVM LOSO Four PA quadrant own ACC:76.00%
Marín Morales et al. [79] 60 EEG,ECG SVM LOSO Two levels arousal and valence own ACC:75-82%

Santa Maria Granados et al. [163] 40 ECG,GSR CNN Hold-Out Two levels arousal and valence AMIGOS ACC:71-75%
Miranda et al. [184] 15 PPG,GSR,SKT RF Hold-Out Fear (PAD binarized) DEAP ACC:54.00%

Amani Albraikan et al. [196] 25 GSR,ECG,EEG,
RESP,SKT ENS 𝑘 − 𝑓𝑜𝑙𝑑 Three levels arousal and valence MAHNOB ACC:94.00%

Miranda et al. [182] 32 PPG,GSR SVM 𝑘 − 𝑓𝑜𝑙𝑑 Fear (PA binarized) DEAP ACC:62.80%
Oana Balan et al. [185] 32 EEG and peripheral RF 𝑘 − 𝑓𝑜𝑙𝑑 Fear (our paradigm) DEAP ACC:89.96%

Miranda et al. [187] 12 ECG,GSR,SKT ENS LOSO Fear (PAD binarized) MAHNOB ACC:76.67%
Oana Balan et al. [186] 32 PPG,GSR Boosting 𝑘 − 𝑓𝑜𝑙𝑑 Fear (our paradigm) DEAP ACC:91.70%
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Chapter 5
A new autonomous system for emotion

recognition: Bindi

As stated in Chapter 1, one of the main goals of this research is focused on pro-

viding a smart technological solution to prevent and fight against the Gender-based

Violence. On this basis, the Bindi system is proposed, Figure 5-1. This is an au-

tonomous multimodal system that considers Internet of Things (IoT) technologies

towards the detection of risky situations under Gender-based Violence contexts.

Specifically, the edge-computing part of the system is conceived as a smart cyber-

physical network able to detect fear-related emotions. This is accomplished by

means of physiological and physical (audio and/or speech) smart sensors continu-

ously monitoring the user. Such task is completed by a fog-based multimodal data

fusion within an ad-hoc smartphone application. Finally, in case of confirming a

risky situation, an alarm is triggered to a predefined protection network. More-

over, the information is sent to specific computing servers in the cloud, which are

responsible to store the collected data for further legal actions. The design of such a

system boosts the generation of new mechanisms for the prevention and fight against

Gender-based Violence.

In this Chapter, in first place, we carry out a detailed study regarding the current

systems and tools to prevent gender-based violent aggresions. This is done consid-

ering different perspectives such as commercially available devices, research-grade

systems, and institutional tools. Note that the latter focuses on Spanish institu-

tions, due to Spain’s global leadership in this respect, as detailed in Chapter 1.
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Figure 5-1: Simplified Bindi system architecture based upon the different IoT tech-
nologies.

Moreover, the different technological competitive advantages of Bindi are compared

and highlighted. This analysis is followed by a comprehensive description of the

Bindi system. Thus, we tackle-down the different hardware and software designs

within Bindi’s bracelet. First of all, the system architecture is detailed in terms

of both design and integration. This is accompanied with different physiological

wearable integration recommendations to be considered for the following versions

of the system. Secondly, the current embedded implementation is reported and

explained. Note that the results provided in this Chapter have been presented in

different publications [9, 159,184,214].

5.1 Current technology to fight against Gender-

based Violence
The development of technology over the years has made the generation and ap-

plication of new tools to prevent Gender-based Violence a reality [7, 20, 21]. The

advantages of using technological tools to help combat this problem are manifold:

• Protection accessibility. Technology can make access to victim protection eas-

ier and closer.

• Information centralisation. Different institutions and/or forces can cooperate

towards a joint monitoring of the circumstances surrounding the Gender-based

Violence Victims.

• Multi-modal information gathering. The collection of diverse sources of infor-

mation can be further used for prediction and prevention analysis. Moreover,

this allows for a better understanding of the specific situation of the victim.
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• Action response times. The previous points directly affect to the time in-

volved within the decision making regarding the activation of the respective

institutional mechanisms.

• Security reinforcement. From the user perspective, the inclusion of reliable and

robust technology can provide an stronger security feeling in the Gender-based

Violence Victims.

However, such advantages are also accompanied by different requirements, consid-

erations and open questions, which can be summarised in:

• The pseudo-anonymisation of the stored data is crucial. Any technology must

ensure that all sensitive or identifiable data is protected and secured. The

management and ownership of such information needs to be carefully con-

sidered. Thus, strict compliance with data protection laws must be ensured.

Moreover, any technological solution should ensure the chain of custody of the

information collected so that it can be used later in any judicial process.

• The technological tools candidates are expected to directly connect the victims

with specialised professionals. This advocate for: 1) the need for more trained

professionals to deal adequately with Gender-based Violence Victims, and 2)

the elaboration of new protocols aiming to avoid re-victimisation.

• An alignment amongst the proposed technological solutions, the government,

and private stakeholders is of paramount importance. Note that the latter play

a key role in terms of technologically-based solution developing and integration.

• Technological personalisation must be considered as an essential aspect, as

there is a strong need for the technological solution to be tailored and per-

sonalised to each person. This is due to the adaptation to different contexts

and heterogeneous settings. However, this might face the current limitations

of technology to achieve such an adaptation.

• Accessibility to the proposed technologically-based solutions. It is known that

there exists an approximately 7% mobile gender gap in mobile ownership in

low- and middle-income countries [215]. This fact, accompanied by the less

perceived income by women, makes the target price and the technology plat-

form critical factors. The former is related to the affordability of the solution,

while the latter refers to the fact that solutions with no need for mobile-phone
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technology would help make the solution more inclusive.

All these stated points justify and foster the multidisciplinary approach claimed

in Chapter 1 that is needed towards the design, development, and integration of

technology that deals with Gender-based Violence contexts. Although this is a

challenging task, one of the main goals of this research is to provide the necessary

technological basis to start solving these stated problems and open questions. It is

noteworthy to highlight that any technologically-based solution designed and ori-

ented towards the Gender-based Violence casuistry might help prevent and combat,

but it will never solve the whole problem. That, is an educational matter.

One of the most common employed technologies are the mobile-phone based ap-

plications. Nowadays, this technology is one of the most widely accepted despite

the considerations described above. Recently, the authors in [216] provided a sys-

tematic review of up to 171 applications whose goal was to address Gender-based

Violence throughout different mechanisms. Regardless of the specific application,

the authors concluded that most of them were mainly focused and designed for

short-term or one-time emergency solutions. This fact leaves aside the preven-

tion perspective and provides the possibility of identifying solely isolated events of

Gender-based Violence rather than offering a continuous monitoring and the self-

empowerment of Gender-based Violence Victims, which should be one of the main

goals. Although the authors stated that educational features are being increasingly

included in recent applications, further investigations related to the data security,

personal safety and efficacy of such solutions need to be carried out. An example

of one of these applications is AlertCops [217]. This application is specifically pro-

moted by the Spanish Home Office and it allows instant notifications of any type

of incident with the law enforcement agencies. As a differentiating feature with

respect to other existing applications, in the last year, the "SOS Button" has been

added to this application, which allows reinforced protection for vulnerable groups.

This button sends an urgent alert to the nearest police centre along with its Global

Positioning System (GPS) location and a 10-second audio recording of what is hap-

pening. Moreover, this application also includes the "Guardian" feature, which has

been lately included by many other applications. Specifically, it allows to share the

real-time location with user-selected contacts. Although these applications can suc-
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cessfully exploit the diverse mobile technology capabilities, the decision making in

any case is based solely environmental or relative measures, but never to measures

of the user herself.

Within this context, private stakeholders have also developed technological tools

that could potentially be used to deal with the discussed use case. However, most of

these solutions are included in the category of panic buttons. Even in some countries,

such as India, a directive was issued related to the mandatory inclusion of a panic

button on every mobile phone sold from 2017 onward. One of the highlighted panic

button solutions that is specifically intended to deal with Gender-based Violence

situations is SaferPro by LeafWearables, an Indian company. This is a bracelet

device that comes with a low power subscriber identity module card, which makes

it independent from the mobile-phone. Specifically, once the button is pressed by

the user, an alarm is sent to a selected circle of responders and an audio recording is

started. However, panic buttons present significant limitations regarding women’s

safety: 1) the requirement of an active role in their self-protection, which is certainly

not possible under some types of aggression and/or blocking emotional reactions,

2) their lack of inconspicuous design that can lead to users’ stigmas, and 3) the

lack of infrastructure support [218]. Despite the technological efforts, this type of

approach is questioned by several Gender-based Violence experts [19], who demand,

among other things, more advanced research and technology in these solutions that

are regarded as outdated and a higher degree of attention to the role of the victims.

Apart from panic buttons, there are also commercial available devices that, although

they are not exactly oriented to the use case of Gender-based Violence, allow to

generate alarms automatically regarding internal and external detected abnormal

events to the user. For instance, the Apple® Watch Series 4 and on-wards provide

fall detection and send a SOS to predefined emergency contacts in case no action

is performed by the user. The Embrace2 bracelet from Empatica is the only FDA-

cleared wrist-worn wearable in epilepsy, which triggers an alarm in case of seizure

detection. This is done by means of GSR monitoring. Moreover, it is equipped with

other three sensors (SKT, accelerometer, and gyroscope) that can be also acquired

and stored for medical purposes. This latter system also opens up the possibility

to consider the use of similar sensing technology to tackle Gender-based Violence.

157 Jose A. Miranda, PhD Thesis



Chapter 5. A new autonomous system for emotion recognition: Bindi

Amongst the recently launched advanced physiological sensing devices, Fitbit® with

FitbitSense and Oura with OuraRing stand out. The former is the only commercial

smart-bracelet offering more than two integrated physiological sensors: GSR, ECG,

PPG, and SKT. However, the current electromechanical integration of some of these

sensors hampers the application of this device to other use cases. This is mainly

due to the fact that acquiring a measurement from GSR and/or ECG requires the

free-hand to be on top of the bracelet, as this provides a close loop circuit. The

latter system is based on a smart-ring and provides PPG and SKT acquisition with

a relatively high accuracy. However, note that the niche market for these devices

is focused on generic wellness, rather than any other specific use case. Up to my

knowledge, the only commercially available device oriented towards providing a tool

for preventing a specific physiological-related condition is the mentioned Embrace2.

Nevertheless, the proliferation of commercial wearable devices with physiological

sensing capabilities has been booming in recent years and it could benefit the design

and development of tools oriented towards the target application of this research.

The public sector has not been oblivious to technological developments. When

dealing with electronic monitoring to help prevent Gender-based Violence, Spain

turns out to be one of the pioneering countries in the world promoting this type of

technology. In fact, as already reviewed in Chapter 1, in 2013 an agreement was

signed between the Spanish Home Office, Justice, Health and Social Services and

Equality General Council of the Judiciary and the State Attorney General’s Office

approving the "Protocol of action of the monitoring system by telematic means of the

measures and sentences of restraint in matters of gender violence". These measures

compel the aggressor and the victim to carry different devices, Figure 5-2. Moreover,

all the different alarms generated by the system are monitored and centralised by

a specialised centre called Cometa, which is run by a private company (Securitas

Direct) subcontracted by the Spanish government. The considered stakeholders as

well as the information centralisation that this system provides is in line with the

previous stated advantages and requirements. However, particularly for this system,

the employed technology is outdated and solely based on GPS monitoring, which

in some cases results in the aggressor harassing the victim even more. Although

this protocol and technological solution have aided in the combat of Gender-based
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Violence during the last years, its GPS-based sensing technology added to its low

battery and intermittent reported failures, makes this solution very limited.

DLI DLV

Figure 5-2: Devices considered for the electronic monitoring system within the "Pro-
tocol of action of the monitoring system by telematic means of the measures and
sentences of restraint in matters of gender violence". DLI: Device worn by the ag-
gressor; DLV: Device worn by the victim [7].

In case of looking for proposals in the academia regarding the design of systems

and tools towards the avoidance of Gender-based Violence, there is literature [219].

However, as for most of the commercially devices, these are focused on the design

and optimisation of panic button based systems. It is worth mentioning that when

leaving aside the wearable physical final output, there is also literature that directly

deals with the Gender-based Violence issue by means of machine learning applied

to centralised information. For instance, the authors in [220] used machine learning

to design models that accurately predict the recidivism risk of a gender-violence of-

fender. They employed 40,000 reports of gender violence extracted from VioGen and

outperformed the preexisting risk assessment algorithm based on classical statistical

techniques. Apart from that, there is a lack of system proposals in the literature

targeting the prevention and combat against Gender-based Violence.

From this analysis, we can conclude that none of the public, research, or private

technological solutions to combat Gender-based Violence benefit from key current

state-of-the-art and consumer electronics progress, such as physiological and physical

analytics and affective computing. These advancements can be exploited towards a

better, autonomous, and more inconspicuous technological Gender-based Violence

preventing tool, which is the goal of the UC3M4Safety team by means of the Bindi

system. Moreover, the design of such a tool towards women’s safety requires them
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to be co-creators of the solution, which this team is strongly considering by a close

collaboration with different women’s associations and focus groups of professional

women experts in the field. Up to my knowledge, Bindi is the only system that

proposes a technological tool to help prevent and combat Gender-based Violence by

means of affective computing [9, 184,221,222].

5.2 Bindi
Chronologically, Bindi has gone through several phases of design and development,

Figure 5-3. The first proof of concept was the iGlove, which was a co-supervised

Master thesis [223]. The idea behind this system was to design and implement

an initial continuous physiological wearable monitoring system. Specifically, it was

equipped with three physiological sensors (BVP, GSR, and SKT) and allowed con-

tinuous data transmission using Bluetooth Low Energy (BLE) to a mobile phone.

This device was based in [224]. Moreover, the integrated SoC within the iGlove

was an ARM®Cortex-M0 32-bit with 32KB RAM and 256KB Flash. This device

successfully fulfilled its goal to create the first tool to boost affective computing

research within the UC3M4Safety team. Thereafter, the first formal version of

Bindi, Bindi 1.0, was designed using most of the iGlove hardware as a solid start-

ing point. As already introduced at the beginning of this Chapter, Bindi 1.0 is a

personal-area-network system formed by three devices: a bracelet, a pendant, and

a smartphone application. In particular, the integrated SoC within Bindi 1.0 was

an ARM®Cortex-M4 32-bit with 64KB RAM and 256KB Flash. Specifically for this

system, I was responsible for some of the main tasks related to the bracelet such

as: 1) the supervision of the schematics, Printed Circuit Board (PCB), and layout

design, 2) the firmware design and system integration, and 3) the coordination of the

different validation and test-bench application to assure functionality. It should be

highlighted that, regardless of these specific tasks, most of the design, integration,

implementation, and validation were jointly carried out in an orderly and organised

manner by a group of people belonging to the UC3M4Safety team. This first ver-

sion of Bindi is the one addressed in this Chapter. Moreover, Bindi 1.0 is one of

the sensory systems employed during the recording of the WEMAC dataset, which

is explained in Chapter 6. Following the different limitations identified during the
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development and usage of Bindi 1.0, the UC3M4Safety designed Bindi 2.0 during

the last two years. This new system suffered a drastic miniaturisation process which

leveraged the hardware integration of Bindi 1.0. Additionally, new sensors and dif-

ferent hardware improvements have been included in this new version, as well as

new firmware functionalities. In this case, the integrated SoC within Bindi 2.0 was

an ARM®Cortex-M4 32-bit with 256KB RAM and 1MB Flash. It should be noted

that, as Bindi’s technology has been improved, its computational needs have also

increased, which has led to more storage capacity requirements in particular. Never-

theless, this fact has not led to a considerable increase in power consumption when

comparing specifically Bindi 1.0 and Bindi 2.0 [9, 225].

Sensor de temperatura

Sensor de frecuencia cardiaca

2016-2017 2017-2019 2019-2022

iGlove Bindi 1.0 Bindi 2.0

Figure 5-3: Bindi technology evolution since 2016 until 2022.

Once the state-of-the-art for technology applied towards combating Gender-based

Violence and Bindi’s technological context have been addressed, the following sec-

tions focus on providing an embedded perspective regarding the different digital

signal processes, techniques and methods designed and implemented into Bindi’s

bracelet during the evolution of this research. First of all, a detailed analysis of

the bracelet architecture, from both perspectives hardware and software, is pre-

sented. Secondly, different digital embedded filtering architectures are evaluated

and analysed keeping a trade-off between resource requirements and physiological

information preservation. Thirdly, a novel proposed SQA system for PPG signals,

implemented and evaluated by using public and own datasets is detailed. This SQA

161 Jose A. Miranda, PhD Thesis



Chapter 5. A new autonomous system for emotion recognition: Bindi

system also reports time and power consumption metrics for different extracted fea-

tures. Afterwards, a complete embedded feature extraction design space exploration

for a HRV use case is presented. Here, frequency and temporal data processing tech-

niques are analysed and discussed. This is done to provide an in-depth perspective

regarding the feature extraction design considerations and limitations. Moreover,

a comparison between the HRV-based features obtained with the bracelet and the

ones obtained with a research toolkit is reported and discussed. Finally, power con-

sumption metrics are reported, which provides a comprehensive analysis regarding

the battery lifetime of the Bracelet.

5.2.1 System architecture
As shown in Figure 5-4, the bracelet is made up of different hardware and soft-

ware elements. These can be classified into four groups: the SoC, actuators, power

management elements, and physiological sensors. They are described as following:

• Microprocessor Unit. Bindi 1.0 is equipped with the nRF52832 SoC that

includes ARM® Cortex®-M4, an ultra-low power consumption microcontroller

unit with 512KB memory flash and 64KB RAM, single-precision floating-point

unit, Thumb®-2 instruction set, 64MHz clock, and some integrated peripherals

(USB, UART, SPI, I2C, I2S, ADC, PDM, and AES) [226]. Note that the radio-

frequency module through Bluetooth Low Energy® (BLE) communication is

also integrated within this host unit. Moreover, the different employed digital

signal processes were embedded into this SoC.

• Actuators. The Bracelet is equipped with a conventional electro-mechanical

button for manual user activation, acting as the panic button. Additionally, a

buzzer is also included to provide a physical response for the different alarms

of the system [227].

• Power Management Elements. In this case, the BQ2019 and MCP73831 com-

ponents by Texas Instruments® and Microchip® are used [228, 229]. These

two integrated circuits are responsible for monitoring and charging the bat-

tery, respectively. For Bindi 1.0 a 500 𝑚𝐴ℎ Lythium Ion Polymer Battery of

3.7V was employed.

• Physiological sensors. Three different physiological sensors are present in the

Bracelet: PPG, GSR, and SKT. Specific details are provided in the following
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Section, together with found limitations regarding the hardware implementa-

tion. Note that the latter were addressed in the following versions of Bindi

(Bindi 2.0).

BINDI BRACELET

Power Manager

Battery 
Charger

Battery

HR
Sensor

Panic
Button

Buzzer

Wireless Comm 

BLE®
Digital Signal Processing

Battery 
Monitor

GSR 
Sensor

SKT
Sensor Pre-

processing
Feature 

extraction
Machine 
Learning

Microprocessor Circuit

Figure 5-4: Simplified Bracelet architecture.

From a hardware perspective, most of the different elements within the Bracelet

are based on commercially available smart sensors, microcontrollers, and actuators.

This decision was based on three main facts: 1) easing all the design and integration

processes, 2) creating the first wearable version of Bindi with commercially available

parts whenever possible, and 3) reducing costs by not having to design many of the

elements from scratch. Afterwards, this design decision allowed us to identify cur-

rent drawbacks and limitations of the employed Commercial-Off-The-Shell (COTS).

These will appear along the following subsections.

5.2.1.1 Physiological sensors design and integration

This Section provides an in-depth analysis of the sensors integrated within Bindi

1.0, as well as the limitations encountered during this process. Note that the body-

locations of the sensors were directly affected by the factor form of the Bracelet, as

well as by previous literature that tested physiological differences [102,230,231].

Heart-Rate sensor

The integrated heart-rate sensor is based on a photoplethysmographic sensor that

detects BVP changes by measuring the absorption of light emitted through the skin,

as studied in Chapter 2. This sensor is the MAX30101 High-Sensitivity reflective

pulse-oximeter, with 18-bit ADC, I2C communication, digital noise cancellation, and
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different integrated LEDs (red -660𝑛𝑚-, green -527𝑛𝑚-, and infrared -880𝑛𝑚-), [8].

Considering the quantum efficiency of the photodiode of the sensor, Figure 5-5,

and the forward voltage required by the different LEDs, the red LED was finally

selected. Note that the quantum efficiency of any photodiode or photodetector

refers to the percentage or fraction of absorbed or incident photons that contribute

to the actual photocurrent, i.e. the photodiode expected sensitivity divided by the

maximum photosensitivity in case every photon generates an electron. Additionally,

we decided to use just one of the LEDs due to reduce the power consumption and

to open a new research line regarding PPG motion artefacts removal by means of

blind source separation techniques. The latter resulted into a supervised Master

Thesis [232], in which the foundations for the usage of motion artefact removal

algorithms were established. Note that, although the latter is not within the scope

of this document, it will serve as the basis to future research. Amongst the reviewed

capabilities of this smart sensor, it also offers configurable sampling frequency from

50 Hz up to 3.24 kHz, and programmable LED current control. In our case, for the

embedded implementations presented in this Chapter, we employed the maximum

LED current (50mA with 411𝜇𝑠 pulse-width) and 100 Hz sampling frequency. The

former was decided to provide a deeper penetration, which derived into a stronger

cycle difference between the systolic and diastolic phases. The sampling frequency

was chosen as it is the one available in the sensor that allows proper temporal

resolution to further extract the wanted features [233]. One of the main limitations

of this sensor is actually its main advantage, as it provides an end-to-end solution

by integration different LEDs, but this does not provide flexibility in testing other

LED configurations. This led the UC3M4Safety team to investigate in different

LED settings by modifying the skin-sensor air-gap or even testing multi-wavelength

set-ups [234]. Regardless of such latter research, this sensor has been maintained

for the integration of Bindi 2.0.
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Figure 5-5: MAX30101 photodiode quantum efficiency [8]

GSR sensor

For the GSR sensor, a DC exosomatic measurement applying a constant voltage

across the skin has been implemented. Moreover, dry steel electrodes were used.

Note that, in this case, this is the only sensor, out of the three integrated in

the Bracelet, that was designed rather than acquiring a COTS analog-front-end

or smart-sensor. The design of this sensor was based upon the first circuit inte-

grated within the iGlove [223]. Figure 5-6 shows the analog-front-end schematic for

the current GSR sensor in Bindi 1.0. Specifically, the electrodes are connected to

𝐽7, by which a skin-potential measurement is performed. This is realised due to

the voltage divider between the skin and 𝑅14. Towards the avoidance of endoso-

matic disturbances, a reference common to output and input is considered to make

the voltage difference independent of the reference electrode position. Based on the

output voltage of the sensor to be measured, a reference voltage is applied to avoid

saturation by using a variable resistor (𝑅7). Note that voltage followers are applied

on both branches as buffers to avoid impedance related issues. Finally, a differential

amplifier is employed to get the difference between the known voltage reference and

the skin voltage divider. The amplification between these two voltages is given by

equation 5.1:

𝑉𝑂𝑈𝑇 3 = ((𝑅𝑠𝑘𝑖𝑛 −𝑅7) * 2 * 𝑉 𝐶𝐶1.8𝐵 * 2 * 105)
((𝑅7 + 2 * 105) * (𝑅𝑠𝑘𝑖𝑛 + 2 * 105)) . (5.1)
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This output voltage is followed by a low pass filter (𝑅11 and 𝐶11) to avoid high-

frequency noise with a cut-off frequency of up to 1.5 Hz. Note that the GSR infor-

mation remains bellow such frequency, as studied in Chapter 2. Regarding power

consumption, the sensor itself consumes around 0.7mA.5
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Figure 5-6: GSR analog-front-end implementation in Bindi’s 1.0 bracelet.

One of the main limitations of the implemented GSR acquisition circuitry is the

nonlinear behaviour. Figure 5-7 and 5-8 show the output voltage (𝑉𝑂𝑈𝑇 3) and the

injected current into the skin, respectively. Note that the voltage is depicted using

different 𝑅7 values, and 𝑅14 is fixed to 200 𝑘Ω. The latter was set to that value in

order to limit the injected current bellow the recommended limits of 10𝜇𝐴/𝑐𝑚2 for

safety requirements [120]. Following a trade-off between sensitivity and a desired

range of up to 0-20 𝜇𝑆, we decided to fix the variable resistor to 50𝑘Ω. Thus,

considering a sampling resolution of 14 bits (ADC), the LSB is up to 219𝜇𝑉 , and

the worst conductance resolution of the sensor is 0.007𝜇𝑆. This resolution is enough

to capture 0.01 𝜇𝑆 changes to properly record all the SCRs. Note that, assuming a

maximum quantization error of LSB/2, for this case that leads up to ± 0.003𝜇𝑆.
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Figure 5-7: Bindi 1.0 GSR response considering different skin resistances.
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Figure 5-8: Non-linear response of the skin current given by voltage divider between
𝑅14 and 𝑅𝑠𝑘𝑖𝑛.

This sensor was successfully empirically validated using passive components (re-

sistances) in [223]. Moreover, due to the complexity towards the generation of a

proper skin model [235], we decided to use a research-grade GSR sensor and a re-

duced set of volunteers to validate an actual GSR measurement [236]. In these

experiments, our GSR sensor was placed on the distal forearm due to the Bracelet

form factor, whereas the validation GSR sensor was located on the palm. The latter

location is known to have the highest sweat gland density in the body [112], which

implies a more affective-sensitive signal. Moreover, Bindi was working based on dry

electrodes, whereas the validation sensor was using hydrogel electrodes, see Figure
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2-15. This fact is key when comparing the signals, as the hydrogel improves the

signal quality by lowering the impedance that exists at the electrode-skin interface.

Figure 5-9 shows the normalized raw GSR signals obtained by both devices for a

volunteer during two different trials. The vertical dash line in the figure marks the

stimuli separation, where the first and second stimuli are joy and fear, respectively.

Analysing the correlation for the signals acquired by both sensors, a Pearson metric

of 0.85 is obtained, which denotes a strong direct positive correlation. Similar corre-

lation coefficients were obtained for the rest of the volunteers. Differences between

both signals are appreciated, which can be due to sensor motion artefacts, hydrogel

effects, and sensor location. Moreover, most of the SCRs captured by the validation

sensor are present in the signal of Bindi. Hence, we concluded that the validation

of the sensor was successful.
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Figure 5-9: Normalized filtered GSR signals obtained by Bindi and the validation
sensor for a volunteer in two stimuli. The dash vertical line denotes the stimulus
separation.

The limitations found during the development and integration of this GSR sensor

made the UC3M4Safety team work towards a new sensor that tackles the non-linear

response and possesses adjustable and subject-independent hardware. This makes

the new sensor system to be able to adjust its hardware based on the current baseline

sensed or any other GSR-based individual parameter to assure the recommended

sensitivity without exceeding the current density recommendation limits. This is

currently being under testing and a publication is in progress [237].
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SKT sensor

Finally, the MAX30205 component is proposed to acquire a reliable skin tempera-

ture measurement [238]. This integrated circuit is defined as a clinical-grade sensor

for wearable applications, providing a ±0.1 ∘C accuracy over a 30 ∘C to 50 ∘C tem-

perature range. It integrates I2C communication and a high resolution, sigma-delta,

16-bit ADC. Moreover, when being in active mode, it consumes around 0.6𝑚𝐴.

As stated in Chapter 2, the skin temperature measurement is a robust indica-

tor to characterise the homeostasis process of the body. Although using contact-

temperature sensors is simple as long as the contact surface (skin) is available,

acquiring accurate measurements of such variable is a challenging task due to the

different setup variables and conditions. This is referred to considerations as the ho-

mogeneity of the skin, the thermal contact resistance, and the attachment effective-

ness, amongst others [139]. Specifically, the MAX30205 measures the temperature

of its own die by the thermal path between it and the PCB. Thus, the measured

temperature is acquired throughout the leads and the exposed pad. Within this

context, and considering the factor form of the Bracelet, we decided to integrate

this sensor within the PCB, just right bellow the PPG sensor, Figure 5-10. Despite

the fact that the manufacturer in the data-sheet states that temperature errors due

to self-heating are low because of the minimal low supply current, it is also specified

that a sampling period ≥ 10-seconds is required to avoid such effects completely.

Thus, the measurement principle of the sensor together with the PCB implementa-

tion did not result in the most accurate to acquire the skin body temperature nor

the most efficient way to avoid self-heating, thermal mass, and/or thermal conduc-

tivity problems. The consequence of this problem was an initial thermal gradient

that lasts around 200-seconds until the thermal-mass of the PCB is at equilibrium.

For instance, Figure 5-11 shows the filtered output of the sensor after placing a

finger on top of the integrated chip under controlled room temperature conditions.

This problem was solved for the following versions of Bindi (Bindi 2.0), as well

as for the experiments carried out and explained in Chapter 6, by considering the

integration of the MAX30208 temperature sensor [239]. This sensor was the next

version of the MAX30205, including the same digital capabilities, but changing the

measurement principal and the power consumption in operating mode. Specifically,
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it measures throughout the top package contact instead of using a thermal pad,

and it consumes around 70𝜇𝐴 when acquiring. Note that the power consumption

is considerably lower in comparison with the previous sensor. Figure 5-12 shows

the modification performed to the Bracelet to include the new temperature sensor

and an experiment comparison for both of them. Note that we used part of the

evaluation board of the MAX30208 [240]. The performed experiment consisted into

three phases: 1) the sensors were left outside for 1 hour (November, 14ºC), 2) the

system was switch-on and started measuring right after getting into the room, 3)

skin contact was performed for both sensors after being three minutes measuring at

room temperature, and 4) skin contact was released after one minute. Thus, we can

observe how the MAX30208 response is faster than the MAX30205, two times faster

specifically, and how the measurement principle and thermal mass of the PCB are

affecting towards reaching an accurate measurement. Moreover, there can be also

observed an offset between both of them, which is also due to the commented factors.

Notwithstanding the encountered problems with the integration of the MAX30205

and although there is an offset with respect to the MAX30208, the measurements

obtained from the former are valid once the initial PCB thermal transient is over.

Figure 5-10: Skin temperature (yellow/bellow circle) and heart-rate sensors layouts
integration into the Bracelet. The grey area determines the ground plane.
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Figure 5-11: MAX30205 filtered output after placing a finger on top of the integrated
chip under controlled room temperature conditions.
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Figure 5-12: Modification performed to the Bracelet to include the MAX30208 and
experiment comparison for both of the temperature sensors. On the right is part of
the evaluation board of the MAX30208.
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5.2.1.2 Digital signal processing design

The designed firmware for Bindi took advantage of the functionalities or Software-

Development-Kit (SDK) provided by the microcontroller manufacturer, in this case

Nordic Semiconductors®. Figure 5-13 depicts a simplified structure for the stack

embedded into the Bracelet. Each part is described as follows:

• nRF HAL. This is part of the Nordic SDK. Specifically, it is the Hardware

Abstraction Layer (HAL) for the different low-level functionalities of the sys-

tem including direct interface with the ARM® core, peripherals, and radio,

among others.

• BINDI BLE. This is an ad-hoc BLE manager system that handles the different

radio transmission and reception queues, performs the formatting of Bindi-

BLE packets, and manages the direct interaction with the softdevice. Note

that the latter is the BLE stack being employed, which in Bindi 1.0 is the

S132 [241] that builds upon BLE 5.1 qualified.

• SYSTEM INIT. This is the part responsible for managing all the initialisation

processes regarding the set-up request for the required peripherals, as well as

for general GPIO initial configuration.

• BINDI HAL. This is one of the main parts of the stack. It is an ad-hoc

peripheral-level HAL, which is specifically intended to manage all the differ-

ent Bindi-related interactions with the peripherals, performs the raw acquisi-

tion management, carries out the first initial filtering stages, and proceeds to

segment the data and store the processed buffers to further being processed

by the BINDI APP layer. Moreover, it also deals with the actuators interac-

tion, i.e. switch on and off the vibrator motor and receiving the panic button

interruptions.

• BINDI APP. This layer is in charge of the main system-level functionalities

such as physiological processed data management, feature extraction, main

digital signal processing (DSP), and classification.

• User Application. The previous system-level functionalities are handled and

synchronised by a finite state machine (FSM) that resides in this layer and is

modified accordingly to the specific user application.

• CMS Task Handler. This is a cross-functionality that can interact with the
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whole stack. It is mostly used to decode all the received (BLE) packets and

trigger the respective required action regarding specific parts of the stack. This

tool is also used to debug when being in developing mode.

User Application

BINDI BLE (Rx/Tx)

Classifier Features 

physioHandlerDSP

BINDI 

APP

BVP

BINDI HAL

GSR SKT

timers I2C ADC UART

Panic Button Vibrator Motor

GPIOs

SYSTEM INIT

nRF HAL

CMD_Task

Handler

Figure 5-13: Current firmware stack of the Bracelet of Bindi.

Considering the data processing chains and following the data segmentation adopted

when dealing with the last proposed fear detection system in Section 4.2, Figure 5-14

shows the different timing processes being performed within the Bracelet. Towards

reducing the host operations and internal peripheral usage, rather than employing

independent timers for each of the physiological signals, we make use of the timings

provided by the PPG smart-sensor. This is done as this sensor is the one having the

highest sampling frequency, 100𝐻𝑧, whereas the GSR and the SKT working at 10𝐻𝑧

and 5𝐻𝑧 respectively. Thus, every time that a new sample from the PPG sensor

is written to the BVP buffer, we check whether it is time to sample the rest of the

sensor in a synchronised manner. This physiological acquisition schema is repeated

every second and allows to avoid any complex timing or temporal drift calculation.

Moreover, the acquired samples for every signal are evenly separated. Note that the

latter is crucial to properly apply different DSP processes such as FFTs. The data

being acquired is filtered and stored in 20 seconds buffers, which are further fed to

the feature extraction and classification modules. Figure 5-14 also shows the over-

lapping process outline. One of the main limitations of this acquisition schema is
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the fully dependence on the PPG smart-sensor, since, in the event of sensor failure,

the entire system is compromised. Different works are currently being performed to

implement and provide a flexible measuring schema able to deal with malfunctioning

events. Additionally, research regarding the integration of embedding online testing

within the Bracelet to assess such cases is being in progress [242].
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Figure 5-14: Current physiological synchronisation and data processing timings in
the Bracelet.

In case of specifying each of the different digital embedded processes being done

within every temporal window (20 second) and for every sensor, Figure 5-15 shows

part of the current system architecture of the Bracelet focusing on the data-flow

throughout such main processes. As already stated, every data processing chain

starts by gathering the respective sensor data using I2C or ADC acquisition. After

that, the data is filtered and segmentation (windowing) takes place. Some of the

evaluated and implemented embedded filtering architectures are explained in Sec-

tion 5.2.2. At this point, the sensors follow different paths. For instance, the current

implementation regarding the BVP data is subjected to a quality assessment process
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employing a SQA system, which is detailed in Section 5.2.3. At this point, different

motion artefact removal algorithms are applied to recover most of the signal infor-

mation if needed. Note that such algorithms are currently being developed and,

although it is depicted in this architecture, it is not fully implemented yet. There-

after, features are extracted from filtered and segmented data. Focusing on the PPG

data processing chain, Section 5.2.4 details some of the processes involved during

the feature extraction for BVP related metrics. Finally, the obtained features are

fed to the inference engine and the resultant label is wirelesses transmitted to the

Bindi APP. It should be noted here that, although the following Sections provide

different in-depth analysis regarding some of these digital processes, the embedded

implementation of the whole data processing chains, including the inference block,

is a work currently in progress. For instance, in [184], we proposed a fully embedded

data processing chain, from acquisition to embedded classification, by considering

the average value of each variable for a temporary window of 10 seconds as both

filtering and feature extraction stages. We implemented a lightweight KNN and ap-

plied cost-sensitive learning to train and deployed a subject-dependent system. That

system was an initial embedded proof-of-concept and served as a base building block

to start designing and improving the following version. For this reason, the discus-

sion of any embedded classifier integration is out of the scope of this document and

will be the subject of research arising from this work. Likewise, the motion artefact

removal embedded integration is also left out of the scope of this research.
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Figure 5-15: Current system architecture for the main digital processing tasks of
the Bracelet.
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5.2.2 Embedded Filtering Evaluation
In this Section, an embedded filtering evaluation for a PPG-based filtering stage

is performed. This analysis is extracted from [159]. Considering the constrained

resources of Bindi, five crucial parameters have been assessed for the different fil-

tering architectures considered: memory usage, window computation time, settling

time, stop-band mean attenuation, and bandpass ripple. The two first parameters

are the ones directly related to the embedded filter implementation. The computa-

tion time is also constrained by the timing defined by the application. The rest of

the parameters are related to filtering characteristics. For instance, settling time is

especially relevant denoting the filter stabilisation time, which could be linked with

waste in time and memory. The stop-band mean attenuation is related to the mean

attenuation level with the designated rejection band, while band-pass ripple is the

amount of variation in the gain within the designated bandwidth of the filter.

From an embedded or a digital perspective, as already reviewed in Chapter 4,

there are two commonly applied filtering techniques: IIRs and FIRs. IIRs are

computationally fast, although they do not have a linear phase response, which could

lead to not preserving the wave-shape or physiological morphology. For instance,

this fact can result in wrong delineated points to be identified by the BVP peak

detection algorithms. Such disadvantage is alleviated by using a forward-backwards

IIR filtering technique, which requires double filtering and double time-reversal of

the signal. This latter technique leads up to a high computational time at the

expense to obtain a zero-phase transfer function. On the contrary, FIR filters can be

designed to have a linear phase response, so preserving the physiological morphology

and not affecting possible patterns. However, they require more coefficients and

memory than IIRs. These and other digital techniques are used to deal with out-

of-band noises, such as baseline wander and high-frequency noise. In case of a BVP

signal, the rejection of these noises is key to properly minimise the changes in their

morphology that does not have a cardiac origin.

The four filter design options considered are: three band-pass FIR filters with

different orders and a two-stage filter based on moving averaging. The design of such

band-pass filters was conducted by Matlab® according to the equiripple method. On

the one hand, the resulting coefficients were quantified to a 14-bit integer to reduce
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memory usage and boost processing time. This number of bits is the maximum

precision that ensures no overflow in our system, with 18 𝑏𝑖𝑡/𝑠𝑎𝑚𝑝𝑙𝑒 BVP signals

and 32-bit registers. The frequency response impact is minimal and the root means

square deviation of the output compared with 64-bit floating-point coefficients is

negligible. On the other hand, the two-stage filter is composed of two moving

averaging steps. The first one is a low pass 4-sample filter, while the second one is

the signal subtraction of the 100 values, centred moving average.

Table 5.1 shows the results obtained for the evaluated embedded filtering architec-

tures. Analysing this table, we can observe that, for the band-pass filters, increasing

the filter order (the number of coefficients) increases mean stop-band attenuation

but also ROM memory usage, computation time, and settling time. The compu-

tation time for these band-pass filters could be reduced if coefficients are stored in

RAM at the expense of memory usage. Note that the computation time for the

two-stage filter is significantly lower than for the band-pass filters.

Regarding stop-band attenuation, this parameter benefits band-pass filters, pro-

viding a higher attenuation across all the stop-band. Note that the most efficient

stop-band attenuation vs. ROM memory usage relationship is reached by the 400-

coefficient band-pass filter, because of the constant code size effect. Focusing on the

band-pass ripple, a low value is desired to avoid deformation of the signal. In the

case of the proposed filtering architectures, the band-pass ripple of the filters do not

provoke any distortion in the signal. Regarding settling time, the difference between

two-stage and band-pass filters is large, benefiting the latter.

Table 5.1: Results obtained for the evaluated embedded filtering architectures.
Desing Compt. RAM ROM Set. Time Mean stopband bandpass
options Time [ms] [bytes] [bytes] [samples] att. [dB] ripple [dB]
400-coef 0.2474 10 626 400 -38.8 0.09
200-coef 0.1240 10 426 200 -25 0.64
100-coef 0.0623 10 326 100 -14.9 3.09
2-stage 0.0048 20 470 4 -9.3 1.93

Overall, from all this analysis, the two-stage filter is recommended. This posses

a good trade-off between computation time, attenuation, and memory usage for a

wearable constrained system as Bindi. Apart from such design decisions supported

by those metrics, it should be noted that from a physiological point of view, the

number of coefficients associated with the settling time can negatively affect physio-

logical monitoring. This fact is motivated by the number of samples that need to be
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removed for every considered architecture, which affects negatively the final amount

of physiological information from which to extract the different features. Note that,

although we focus solely in this signal, some of the extracted conclusions can be

extrapolated for the other two filtering stages to be addressed within the system

(GSR and SKT).

5.2.3 Signal Quality Assessment
SQA is a key process for continuous and reliable physiological monitoring [243].

Specifically, this type of processes strongly benefit Bindi as they are focused on

assessing the quality of the signal using different features extracted from it and de-

cision rule. Thus, these systems provide a quality measurement of the segmented

signal being processed. Note that this system does not deal with any motion arte-

fact removal task or similar. This signal quality output can be further used by the

different feature extraction algorithms or even by the fear machine learning to prop-

erly adjust or weight the quality of such temporal instance. Regarding its different

stages, it is formed by up to three main processes:

• The first one is the feature or Signal Quality Indicator (SQI) extraction stage.

Different SQIs are extracted from the segment of the signal to properly charac-

terise it. Note that appropriate features or SQIs are those that change between

clean and noisy segments of the signal.

• Following the previous process, the extracted features are evaluated based on

different decision rules to quantify the noise level.

• The output of the latter stage is the signal quality index (SQi), which is binary-

based in most of the cases. When using different sources of the same signal or

even different signals, a third data fusion stage is performed. In such stage,

individual SQis are combined to give the final quality metric.

Note that the filtering process and the data segmentation of the signal are not

within the scope of the tasks of the SQA; however, the signal needs to be filtered

and segmented before the SQA application. As for the previous embedded filtering

evaluation, the presented SQA system, [214], is also focused on PPG signals due

to their wearable relevance and importance within Bindi. It should be highlighted

that the work presented in this Section is the result of an international collaboration

with the University of Essex [214].
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In the literature, most of the PPG SQA proposed embedding low-resource methods

share the following characteristics:

• They are based on hard thresholded decision rules to assess the SQi. This

methodology obviates the high uncertainty as a result of inter-subject differ-

ences or intra-subject ones, such as variable noise levels across time.

• They consider a high amount of training or threshold-adjustment data using

a combination of different datasets. However, the actual number of public

datasets containing signal quality annotations is scarce, which forces the re-

searchers to label the used data.

• The proposed systems are tailored to the specifically labelled dataset, which

results into an experiment-dependent system that hinders achieving enough

generalisation to cope with different experimental settings.

Being aware that the generation of annotated datasets is a challenging task, a few-

shot consideration validation or adjustment together with a posterior online self-

tuning might be exploited towards the design of heterogeneous systems that can

deal with the low amount of annotated data available. Note that such type of design

perspective can be also applied to systems that are expected to be trained or adjusted

based on into-the-wild data and daily volunteer annotations, as in such experiments

the gathered annotations are expected to be sparse. Moreover, previous research

that performed SQA embedded implementation and presented different trade-offs to

consider at design is scarce. On this basis, in this Section, a novel embedded subject-

invariant SQA system using a reduced set of features combined with an interval fuzzy

rule-based system (FRBS) is presented. This system is the current SQA runing into

the Bracelet. Specifically, to deal with the SQA generalisation and tailoring coming

from the PPG signal wide casuistry, a type-2 fuzzy system is implemented, as it

provides a better uncertainty framework for harnessing uncertainty. Moreover, an

adaptive fine-tuning stage is also proposed and applied to self-adjust the FRBS in

an online manner, which provides an agnostic user adaptation.

Focusing into the SQI extraction stage for PPG sensors, there is a clear division

between time-domain and frequency-domain methodologies. The former represents

the most common techniques used in the PPG-SQA systems in the literature. For in-

stance, the statistical behaviour of different trend-based SQIs were studied in [244].
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Specifically, seven indicators were tested (perfusion, Kurtosis, skewness, relative

power, signal-to-noise ratio, zero crossings and entropy) using 160 recordings of 60

seconds each, a total of 9600 seconds. In the results presented, skewness outper-

formed the other SQIs by achieving an F1-score up to 87.20% on detecting accept-

able and unfit pulses. This publication defined three different levels of quality rather

than the usual binary classification. Regardless of the advantage given by the low

computational complexity of these trend-based SQIs, designing an SQA purely and

solely based on these metrics is exposed to the heuristic decision rules with hard-

thresholds. Regarding SQA systems based on frequency-domain feature extraction,

Krishnan et al. in [245] used the spectrum of the signal skewness (bi-spectrum)

to exploit the phase relations that exist in a clean PPG signal. These methods

imply high computational effort in comparison to some others time-domain based

which do not require performing either Fast Fourier Transform (FFT) algorithms or

any basis transformation. Moreover, the development of deep and machine learn-

ing algorithms led to classification systems that automatically detect the different

anomalies within the PPG signal in a more robust way [246]. However, they are

not free from empirically determined decision rules, and the deep learning approach

hinders an optimal embedded implementation.

Focusing on the SQA systems proposed in the literature that went embedded, we

can highlight three recent works. In [247], Vadrevu et al. proposed one of the first

real-time PPG SQA systems by extracting time-domain features. They applied six

heuristic predefined rules to assess the quality of the signal, and used a 32-bit ARM

Cortex-M3 micro-controller. They combined two different public benchmark PPG

databases with their own dataset. Such data combination was used for both thresh-

old adjustment and performance validation. Finally, they achieved up to 95.93% for

overall accuracy. Although they showed competitive power consumption data re-

garding the effect of data retention decreasing and SQA embedded implementation,

their system was still subjected to the empirical threshold adjustment. This fact

tailored the proposed system to those specific set of estimated thresholds. Moreover,

they did not perform any blind testing. Similarly, in [248], Reddy et al. proposed

the use of time-domain features with a set of empirical rules and thresholds. They

also combined different public benchmark PPG databases, but divided them into
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two datasets. One of those was used for threshold adjustment and the other for

testing. They implemented the system into the same micro-controller as Vadrevu et

al. and achieved up to 93.21% overall accuracy. Finally, in [249], Samiul Alam et al.

employed Kurtosis and auto-correlation function with empirical thresholds as well.

They followed the same dataset arrangement as Reddy et al., and achieved up to

96.50% overall accuracy. Besides being affected by the same commented empirical

tailoring consideration, they used a high performance embedded platform (Quad-

core ARM Cortex-A53). The latter hinders the comparison task with an extreme

edge-computing context dealing with wearable devices. Amongst the commented

advantages and disadvantages of these systems, two factors should be highlighted.

First, the complete set of features used in these works was domain-specific, which

requires some prior knowledge of the nature of the type of noise to be detected.

Second, all the proposed systems were adjusted or trained using either the same

dataset or part of a combination of different datasets. The latter fact is specially

relevant due to the heterogeneous challenge previously detailed, as achieving a SQA

system applicable for a wide range of real-life situations and activities requires to not

only considering different volunteers but also performing blind testing with different

databases.

After having reviewed the SQA systems for PPG monitoring, we can conclude

that there is not a general common set of techniques to deal with this problem, but

different domain methodologies and even combination of those. Moreover, regardless

of the nature of such feature extraction techniques or classification algorithms, the

systems presented in the literature fall back on hard-thresholded approaches. This

produces the system to be tailored to the training dataset due to those heuristic

decisions. When looking for other types of SQAs trying to overcome such limitations

and dealing with generalisation, some research is found applying a type I Fuzzy Logic

System (FLS) [250]. However, physiological SQA becomes challenging when having

heterogeneous settings. Thus, type I FLS is limited on the amount of uncertainty it

can cope with. For this reason, and leading up to heterogeneous SQA application, a

reduced set of domain-specific and domain-agnostic features with an interval type II

FLS, specifically a Fuzzy Rule Based Classifier (FRBC) is exploited in this research.

Note that the type II technique is specifically intended to deal with the commented
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uncertainty as each level of the features is fuzzified based on an interval fuzzy set

called Footprint Of Uncertainty (FOU) [251].

5.2.3.1 SQA Design, Training and Validation

Figure 5-16 shows the SQA training architecture used in this research. Specifically,

this architecture is composed of seven different processes. The following sub-sections

provide a technical overview regarding each of the stages within this architecture.
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Figure 5-16: SQA training architecture proposed.

Acquisition and Conditioning

Once the signal is filtered following the previous selected embedded filtering archi-

tecture, segmentation takes place. This process is based on the fact that performing

the feature extraction in small chunks of data will alleviate the different statistical

processes to be done (e.g., mean or standard deviation time complexity calcula-

tions are based on the amount of data or samples, that is 𝒪(𝑛)). In our case, for

the proposed SQA, the length of the segmented window is set to 3 s. This specific

duration can provide two Heart Rate (HR) periods for a minimum of 40 beats-per-

minute (BPM). Moreover, within this short period of time, we can even consider

a quasi-stationary behaviour of this physiological signal. Note that as we decrease

the processing window, the resource usage within an embedded system is also de-

creased, but the minimum BPMs at which we can assure two periods of the signal

increases. This fact leads to a trade-off decision that in our case is driven by the

commented physiological facts and previous works that used the same or similar

temporal window lengths [249].

Feature extraction

Afterwards, different feature extraction techniques are applied to characterise the

current window processing. Specifically, four features are extracted. Note that
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all the implemented features are time-based. This decision is due to their lower

computational complexity and to their robust performance proven in recent publi-

cations [244]. The different features extracted are detailed as following:

• Kurtosis. This is the statistical metric related to the shape of a probability

distribution by measuring degree of concentration presented around the mean

of the frequency distribution for a real-value variable. It is also described as

the measure of the tailedness. This higher-order statistic measurement is given

by equation 4.18.

• Entropy. Shannon Entropy provides a quantitative measurement with respect

to the uncertainty or randomness of the signal. This feature is defined as:

𝑒 = −
𝑁∑︁

𝑖=1
(𝑥2

𝑖 )𝑙𝑜𝑔(𝑥2
𝑖 ), (5.2)

where 𝑁 is the sample size, and 𝑥𝑖 is each of the filtered data samples.

• Signal-to-noise-ratio (SNR). This is one of the most common features used

in SQA systems. It compares the power of a desired signal with respect to

observed noise. In this case, the following computation is performed:

𝑠𝑛𝑟 = 𝜎𝑎𝑏𝑠(𝑥)

𝜎𝑥

, (5.3)

where 𝜎𝑎𝑏𝑠(𝑥) is the standard deviation of the absolute value of the signal, while

𝜎𝑥 is the standard deviation of the signal.

• Matrix Profile. Up to my knowledge, this feature has not been used for any

PPG SQA system in the literature, although it is extensively used in time series

anomaly detection [252,253]. This metric offers different advantages that can

provide a robust and reliable SQI, such as domain agnosticism, deterministic

time, and parameter free. The working equation for the matrix profile is based

on the distance profile given by the Z-score normalised euclidean distances of

different sub-sequences within the time series:

𝑑𝑖,𝑗 =
√︃

2𝑚(1− 𝑄𝑖,𝑗 − 𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗

), (5.4)

where 𝑄𝑖,𝑗 is the dot product of the two sub-sequences with length 𝑚 (𝑇𝑖,𝑚
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and 𝑇𝑗,𝑚) of the time series, and 𝜇 and 𝜎 are the mean and standard deviation

of the respective sub-sequence. Note that for this research work, the mean

over the set of values stored in 𝑑𝑖,𝑗 is calculated and assigned to every 3-second

processing window. Regarding the specific algorithm, we used SCRIMP++,

which offers the lowest time complexity amongst the different possible imple-

mentations [254].

After extracting the complete set of features for all the different subjects, an auto-

matic gain controller (AGC) is applied to limit the amplitude and scale the extracted

information. In this case, we used a 0− 10 AGC.

Quantization and partitioning generation

Following a fully data-driven approach, this research work uses data quantization

and partitioning over the considered training data to generate the different fuzzy sets

in an unsupervised manner. Thus, these processes are essential to assess the limits

of the defined conceptual linguistic representations for every feature and properly

modelled the different membership functions. This is done to assess if there exist a

partition or separation of the feature values based on their distribution.

Specifically, in this case, we applied the cyclic Lloyd’s algorithm [255] to optimise

the different partitions using the reviewed features and targeting the extraction

of three linguistic variables: Low (L), Medium (M), and High (H). The LLoyd’s

algorithm is executed in an iterative process for each incoming sequence or feature,

𝐴1, 𝐴2, 𝐴3, ..., 𝐴𝑚, addressing a minimal mean square distortion or mean square

error for the generated partitions 𝐵1, 𝐵2, 𝐵3, ..., 𝐵𝑚. Due to the fuzzy logic system

to be applied within the proposed system, the output of this stage must be the

quantized partitions or intervals for each incoming sequence or feature. Note that,

as we deal with the design of a subject-invariant SQA system, the quantization

and partitioning optimisation is applied independently for each subject, which gives

a set of 𝑚 individual partitions or intervals (𝜈𝑖) with 𝑚 − 1 endpoints (𝜏). This

is outlined in Figure 5-17. The generated partitions are afterwards considered by

the next stage of the proposed SQA training architecture to design the different

membership functions to be implemented.
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τ𝑚𝑖𝑛

𝑣1 𝑣2 𝑣3

τ𝑚𝑎𝑥

τ1 τ2

Figure 5-17: Interval representation with three (𝑚) partitions (𝜈) and two found
endpoints (𝜏). The values 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are the min and max of the incoming
sequence being evaluated or left and right endpoints.

Type-II membership functions design

From the generated intervals or partitions and endpoints, we used the Interval Ap-

proach (IA) methodology [256] to design the initial membership functions as well

as the FOUs. This technique is applied over the complete set of feature’s partitions

[𝜈1, 𝜈𝑚] and is based on two different processes. First of all, a preprocessing step

for the complete set of intervals is applied. This step is based on four stages. The

first stage applies a saturation check just to assure that every feature is in range.

After that, the next two steps deal with outliers detection. On the one hand, a Box

and Whisker test is used to remove possible outliers out of certain inter-quartile

limit criteria, while on the other hand, a tolerance limit processing is applied to

check that every point is contained within a specific range with respect to the mean

and standard deviations of left, right endpoints and intervals. For the last stage,

a reasonable-interval processing is performed. This is based on specific definitions

or requirements that the different intervals must fulfilled. For instance, a non-valid

or non-reasonable interval is that not overlap with another data interval. Finally,

after the preprocessing stages, the second step of the IA technique is carried out. It

comprises different stages as well, from mapping an interval to an initial type I mem-

bership function to computing a mathematical model for the final proposed FOUs.

For instance, Figure 5-18 shows the final output for the membership functions and

FOUs generated using the matrix profile feature training data.

Formally, every type II fuzzy set or linguistic concept is defined by a membership

function that is given as following equation 5.5:

̃︀𝐴 = {(𝑥, 𝑢, 𝑓𝑥(𝑢))|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ [𝜇̃︀𝐴(𝑥), 𝜇̃︀𝐴(𝑥)] ⊆ [0, 1]}, (5.5)

where 𝑥 is the universe of discourse contained within 𝑋, 𝑢 is the primary membership

value, 𝑓𝑥(𝑢) is the secondary membership value, and 𝜇̃︀𝐴 represents the respective
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Figure 5-18: Type II membership functions generated from matrix profile feature
data applying IA for all training subjects. Three linguistic variables: Low (L),
Medium (M), High (H). Grey shaded area is the obtained FOU.

lower (
¯
𝜇̃︀𝐴(𝑥)) and upper (�̄�̃︀𝐴(𝑥)) membership degree functions of linguistic concept̃︀𝐴. Specifically for an interval type II fuzzy system, 𝑓𝑥(𝑢) is simplified as:

𝑓𝑥(𝑢) = 1,∀𝑥 ∈ 𝑋, ∀𝑢 ∈ [𝜇̃︀𝐴(𝑥), 𝜇̃︀𝐴(𝑥)] ⊆ [0, 1]}. (5.6)

Thus, given a discrete universe of discourse and regardless of the memberships

shape, eighth points for every fuzzy set are stored, i.e. four 𝑥 points per membership

functions (lower and upper) delimiting such universe. Note that in our case, due to

the previous feature scaling factor, 𝑋 ⊆ [0, 10].

Decision rule optimisation

One of the ultimate goals of this training architecture is to generate the set of optimal

rules to integrate into the embedded FRBC. Note that each rule is conceptualised

by the following nomenclature:

𝑅𝑗 : 𝐼𝐹 𝜑𝑎 𝑖𝑠 𝜆𝑏 𝑎𝑛𝑑 ... 𝑎𝑛𝑑 𝜑𝑐 𝑖𝑠 𝜆𝑑 𝑡ℎ𝑒𝑛 𝑌 𝑖𝑠 𝛾𝑛/𝑐 (5.7)

where 𝑎 ̸= 𝑐, 𝜑 are the different antecedents or features contained within rule 𝑗, 𝜆

are the activated linguistic variables for every antecedent, and 𝛾 is the respective
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consequent of the rule. Note that for this research work, the implemented FRBC

is based on a binary output, which leads up to two different classes or consequents,

i.e. positive class for noisy segments (𝛾𝑛) and negative class for clean segments (𝛾𝑐).

To achieve the purpose of this stage, an evolutionary genetic algorithm (GA) is

integrated and used to identify the rules that together give the best classification

results. Note that such training optimisation has been used in previous works for

different applications [257]. Specifically in this case, the GA is set to a maximum

generations (i.e. maximum number of iterations before the algorithm halts) and

population size (i.e. the number of feasible solutions) up to 50, uses a tournament

selection function, and employs a one-point cross-over for the chromosomes combi-

nation. Note that the GA tolerance is fixed to 1 * 10−5. Thus, the structure of each

phenotype is given by

𝜌𝑗 = {𝜑1
1, 𝜑1

2, 𝜑1
3, 𝜑2

1, 𝜑2
2, 𝜑2

3, ..., 𝜑𝑗
𝑖 ,

𝜆1
1, 𝜆1

2, 𝜆1
3, 𝜆2

1, 𝜆2
2, 𝜆2

3, ..., 𝜆𝑗
𝑖 ,

𝛾𝑛, 𝛾𝑐, ..., 𝛾𝑖}.

(5.8)

Note that, initially, the rules are randomly generated, the maximum number of

antecedents allowed for every rule (𝐴𝑚𝑎𝑥) is fixed to three, and the maximum number

of total rules (𝑀) is set to ten. The latter considerations are done to assure that

the final set of rules are comprehensive and interpretable enough [258].

Moreover, within this stage, a Rule Weight (RW) is assigned to every generated

rule for both upper and lower memberships. This score is calculated as outlined

in [259], following:

𝑅𝑊 𝑗 = 𝑐𝑗 · 𝑠𝑗

𝑅𝑊 𝑗 = 𝑐𝑗 · 𝑠𝑗

(5.9)

where 𝑐𝑗 and 𝑠𝑗 are the rule confidence and rule support for rule 𝑗 respectively. The

former represents the likelihood or conditional probability of a pattern correctly

classifying a data instance, while the latter is a measurement to quantify the rule
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coverage over the training dataset. They are given by,

𝑐𝑗(𝜑𝑗 ⇒ 𝛾) =
∑︀

𝑥𝑡∈𝛾 𝑤𝑠
𝑗(𝑥𝑡)∑︀𝑀

𝑗=1 𝑤𝑠
𝑗(𝑥𝑡)

𝑠𝑗(𝜑𝑗 ⇒ 𝛾) =
∑︀

𝑥𝑡∈𝛾 𝑤𝑠
𝑗(𝑥𝑡)

𝑀

, (5.10)

where 𝑥𝑡 is every data instance contained within the training set, and 𝑤𝑠
𝑗 is the scaled

strength of activation of such data with respect to every rule, i.e. the matching

degree of rule 𝑗 with input 𝑥𝑡. The scaled strength of activation is calculated as:

𝑤𝑠
𝑗(𝑥𝑡) = 𝑤𝑚(𝑥𝑡)∑︀

𝑘,𝑌 =𝛾 𝑤𝑘(𝑥𝑡)
, (5.11)

where 𝑤𝑚(𝑥𝑡) is the strength of activation, and 𝑤𝑘(𝑥𝑡) is the sum of all strengths of

activation that have the same class as the consequent of rule 𝑗. Finally, the strength

of activation is computed as outlined in the following equation:

𝑤𝑗(𝑥𝑡) =
𝐴𝑚𝑎𝑥∏︁
𝑧=1

𝜇𝑧̃︀𝐴(𝑥𝑡), (5.12)

where 𝜇𝑧̃︀𝐴(𝑥𝑡) represents the membership degree value of the 𝑥𝑡 data instance for the

interval type II fuzzy lower and upper membership degree functions, as denoted in

equation 5.5.

SQi generation

During the evaluation of every GA iteration, the fitness is calculated based on a

specific validation set. The split between training and validation sets was done

using different CV techniques, hold-out and k-fold. On the one hand, different

validation set percentages were employed for the hold-out validation. Specifically,

the system has been trained using a random and stratified 40%, 30%, 20%, and 10%

hold-out. On the other hand, a 5-fold disjoint training and validation datasets were

used. These processes ensure that there is no bias in the selection of the training

and validation datasets. Note that, as the signal segment acquisition and feature

extraction are not subjected to any overlapping process, there is no information flow

from the learning of rules from one training set or fold to others.

Regarding the specific SQi generation for each of the instances contained within the
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validation set, two methods are applied. Both of them are based on the association

degree computation with respect to the rule 𝑗 being evaluated, which is given by

ℎ𝑗(𝑥𝑡) = 𝑤𝑠
𝑗(𝑥𝑡) ·𝑅𝑊 𝑗, ℎ𝑗(𝑥𝑡) = 𝑤𝑠

𝑗(𝑥𝑡) ·𝑅𝑊 𝑗, (5.13)

where the strength of activation and the RW are obtained using equations 5.12 and

5.9 respectively. Thus, the overall association degree considering the contribution

of the upper and lower type II membership functions for a rule 𝑗 is computed as

ℎ𝑗(𝑥𝑡) =
ℎ𝑗(𝑥𝑡) + ℎ𝑗(𝑥𝑡)

2 . (5.14)

Based on this final classification score, the first reasoning method (𝛼) employed

to assign the predicted class is based on the maximum matching method by select-

ing the consequent of the rule with the maximum association degree. The second

method (𝛽) is based on the maximum association degree from the aggregation of

all association degrees having the same consequent. Note that, as the output of the

system is binary, the latter is translated to the maximum between two accumulated

association degrees. In the case of tie, we randomly classify the predicted class for

both methods. Therefore, these processes can be expressed as:

𝑌𝛼 = 𝛾𝑗 ⇒ max
𝑗∈[1,𝑀 ]

(ℎ𝑗(𝑥𝑡)), (5.15)

𝑌𝛽 = 𝛾𝑗 ⇒ max
∀𝑘∈𝑗

⎛⎝ ∑︁
𝑘,𝑌 =𝛾𝑛

ℎ𝑘(𝑥𝑡),
∑︁

𝑘,𝑌 =𝛾𝑐

ℎ𝑘(𝑥𝑡)
⎞⎠ , (5.16)

where 𝑌𝛼 and 𝑌𝛽 are the predicted class obtained with the first and second reasoning

method respectively. Up to my knowledge, this is the first time that the second

reasoning method is proposed, validated and implemented.

Performance evaluation metrics

Finally, the performance assessment of every cross-validated iteration is done through-

out the cost computed using the Mathew’s Correlation Coefficient (MCC) as follow-

ing:

𝑐𝑜𝑠𝑡 = 1− 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁
(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)

(5.17)
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where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 are the true positives, true negatives, false positives

and false negatives obtained from the confusion matrix using the predicted labels

compared with respect to the golden labels. Note that for the 5-fold cross-validation,

the cost is computed as the mean of all fold validation dataset costs. After the cost

is retrieved, the GA compares such value with a pre-defined tolerance criterion. If

the cost is greater than the tolerance of GA, the GA then populates a new set of

rules, and the process is repeated until the tolerance criterion of the GA is met. In

addition to the MCC, other metrics are also used to further compare the different

cross-validations. Such metrics are: sensitivity, specificity, geometric mean between

sensitivity and specificity (Gmean), and accuracy (ACC).

5.2.3.2 SQA Implementation and Self-Tuning

Regarding the differences between the online (embedded) and offline architectures,

it should be noted that no partitioning, membership generation nor rule optimisation

is performed in the former, as these processes were already done during the training

process. Figure 5-19 depicts the full embedded architecture. First of all, acquisition,

conditioning and feature extraction follow the same schema as in Section 5.2.2.

Secondly, with respect to the FRBC, the optimised set of rules, RWs and membership

functions values, which were obtained after training and validation, are hard-coded

parameters. These are specifically used for the online calculations of the scaled

strength of activation and association degrees for every new coming data instance.

Note that such computations follow equations 5.11 and 5.14 respectively.
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Figure 5-19: SQA embedded architecture implemented. SoA: Strength of Activation.
sSoA: Scaled Strength of Activation.

The small rule base considered in this research work as a requirement to ease

interpretability of the model can lead, in the long-term, to facing accumulated un-
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certainties. Thus, we propose an online self-tuning type II FRBC. Specifically and

considering previous works related to adaptive type II fuzzy systems [260], the im-

plemented self-tuning is based on the online generation of new rules in case the

new data instance shows zero association degree considering the initial ten rules,

i.e. none of the existing rules fired. Algortihm 1 shows the implemented process for

such online self-tuning. First of all, the antecedents and activated linguistic con-

cepts conforming the new rule are estimated based on the maximum three strength

of activation based on the membership degree of the new data instance, line 1. Note

that the selection is limited to three due to the maximum antecedent requirement

imposed, as stated in previous section. Thus, the new rule will always be formed

by three antecedents with their respective activated linguistic concepts. Next, the

degree of similarity is computed by using the Nguyen algorithm [261], line 2. This

process does not require to run online computation of similarities, as the different

degrees of similarities between the different memberships for every antecedent have

been already calculated offline. There can exist rules, within the original rule base,

that possess less than three antecedents, thus, to consider such particularities, the

returned similarities are scaled by being multiplied by the number of antecedents of

the rule being compared with. Following that, the RWs for the new rule are derived

by considering the obtained array of similarities, i.e. there is a degree of similarity

of the new rule with every existent rule, and the existent RWs within the rule base,

lines 3-4. Finally, to estimate the consequent (𝛾) or class of the new rule, the con-

sequent of the rule having the maximum similarity with the new rule is selected,

lines 7-11. After running this algorithm, the rule base and RWs are updated with

the new information. Moreover, the same inference process based on the association

degrees, which was performed before the execution of the algorithm, is repeated

assigning the corresponding label to the new data instance. To limit the impact of

this process within the system, the maximum number of new rules was set to five,

which can lead up to a maximum of 15 rules considering the initial 10.

5.2.3.3 Tools and Methods

A total of three different datasets were used to train, validate, and test the pro-

posed SQA. First, we carried out our own experiment by which the few-shot training

and validation data were gathered. The data was extracted from the experiment
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Algorithm 1: Online self-tuning by using Nguyen similarities.
Input : New data instance (𝑑𝑛𝑒𝑤);Membership values (𝑀𝐹𝑠);

Current rule base, lower and upper weights (𝑅, 𝑅𝑊𝑙𝑜𝑤, 𝑅𝑊𝑢𝑝);
Output: New rule base, new lower and upper weights

(𝑅𝑛𝑒𝑤, 𝑅𝑊𝑙𝑛𝑒𝑤, 𝑅𝑊𝑢𝑛𝑒𝑤);
Data: Similarity for lower and upper membership (𝑠𝑙𝑜𝑤, 𝑠𝑢𝑝);
Mean similarity and Max position (𝑠𝑚𝑒𝑎𝑛, 𝑠𝑚𝑎𝑥𝑃 𝑜𝑠);

1 𝑅𝑛𝑒𝑤 ←− 𝐺𝑒𝑡𝑀𝑎𝑥𝑆𝑜𝐴(𝑑𝑛𝑒𝑤, 𝑀𝐹𝑠) based on (5.12);
2 𝑠𝑙𝑜𝑤, 𝑠𝑢𝑝 ←− 𝑁𝑔𝑢𝑦𝑒𝑛(𝑑𝑛𝑒𝑤, 𝑀𝐹𝑠, 𝑅, 𝑅𝑛𝑒𝑤);
3 𝑅𝑊𝑙𝑛𝑒𝑤 = ∑︀𝑀

𝑗=1(𝑠𝑙𝑜𝑤𝑗
*𝑅𝑊𝑙𝑜𝑤𝑗

)/∑︀𝑀
𝑗=1 𝑅𝑊𝑙𝑜𝑤𝑗

;
4 𝑅𝑊𝑢𝑛𝑒𝑤 = ∑︀𝑀

𝑗=1(𝑠𝑢𝑝𝑗
*𝑅𝑊𝑢𝑝𝑗

)/∑︀𝑀
𝑗=1 𝑅𝑊𝑢𝑝𝑗

;
5 Update 𝑅𝑊𝑙𝑜𝑤,𝑢𝑝 with 𝑅𝑊𝑙𝑛𝑒𝑤,𝑢𝑛𝑒𝑤;
6 for 𝑖← 1 to 𝑀 do
7 𝑠𝑚𝑒𝑎𝑛𝑖

= (𝑠𝑢𝑝𝑖
+ 𝑠𝑙𝑜𝑤𝑖

)/2;
8 end
9 𝑠𝑚𝑎𝑥𝑃 𝑜𝑠 ←− 𝐹𝑖𝑛𝑑𝑀𝑎𝑥𝑃𝑜𝑠(𝑠𝑚𝑒𝑎𝑛);

10 𝑅𝑛𝑒𝑤(𝛾) = 𝑅(𝑠𝑚𝑎𝑥𝑃 𝑜𝑠, 𝛾);
11 Update 𝑅 with new rule 𝑅𝑛𝑒𝑤;

explained in Chapter 6. Specifically for the proposed SQA system, a few-shot of 993

seconds of PPG signal recorded at 200 Hz from 10 different volunteers was used.

Note that the stimuli were dynamic in terms of the movement of the volunteer, i.e.

the volunteer could move without any restriction other than be sitting. Based on

this data, manual annotations were performed by an expert who was familiar with

PPG and artefacts for labelling the acceptable and unacceptable quality of the PPG

segments. The labelling was assessed for every non-overlapped 3-second PPG win-

dow, which led up to 331 windows with 269 acceptable and 62 unacceptable PPG

segments. Thereafter, two public benchmark datasets were used to provide a fully

blind test, i.e. no information is provided about testing data during the training

and validation. The first dataset is Capnobase [262], from which we obtained 9120

seconds of PPG signal, while the second dataset was the Complex Systems Lab-

oratory (CSL) [263] with a total of 7200 seconds of PPG signal. Capnobase was

the first public benchmark for respiratory and PPG quality analysis and originally

contains 42 cases (volunteers) with 8 min duration PPG recordings at 300 Hz sam-

pling frequency. However, just 19 out of the 42 cases present both acceptable and

unacceptable PPG segments. This dataset provides artefact labels with no win-

dowing temporal restriction. CSL gathers two hour PPG signals from two different

volunteers, children in a pediatric intensive care unit, which was recorded at 125 Hz
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sampling frequency. This dataset also provides artefact annotations with no win-

dowing temporal restriction, which were recently released in [264]. It should be

highlighted two main considerations regarding this specific database collection. On

the one hand, a total of 17313 seconds of PPG signal were used, from which ap-

proximately only 5% is used for validation and 95% for blind testing. On the other

hand, the specific selection of the two detailed testing datasets was based on the

annotations availability. Thus, these considerations targeted the fact that the design

of SQA systems needs to provide enough generalisation to deal with heterogeneous

settings, as previously stated.

To adjust the PPG segment labels provided by the testing datasets to the 3-second

processing window of the proposed system, the testing data was segmented into such

window length and the label for each window was positive (unacceptable segment)

in case of being within or overlapping with the original labels. Thus, after this

process, the total amount of acceptable and unacceptable PPG segments obtained

from Capnobase was 2909 and 131 respectively, and 2131 and 269 from CSL.

5.2.3.4 Results

This section presents the experimental results regarding the validation, testing,

and real-time operation performance for the proposed PPG SQA system.

Validation and testing

Before performing the validation and further processes, the initial rule base was

obtained by GA optimisation, as detailed in Section 5.2.3.1. Table 5.2 presents

the obtained results for both reasoning classification methods and the employed

validation techniques. Different considerations might be addressed before explaining

such results. First of all, no self-tuning is applied during validation. Secondly, a

total of 30 independent iterations are run for every cross-validation method, i.e.

the training and validation partitions are randomly selected for every run. This is

done to provide statistical value. Finally, the RWs are obtained for every training

partition independently.

Regarding the different reasoning methods, 𝛼, as the one considering the maximum

association degree amongst all the rules, and 𝛽, as the one considering the maximum

association degree between the aggregated association degrees for the positive class

and those for the negative class, are compared. It can be observed that 𝛽 outper-
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Validation Performance Metrics
Reasoning Cross-Validation Sensitivity Specificity Gmean MCC ACC
Method Method 𝜇(𝜎) 𝜇(𝜎) 𝜇(𝜎) 𝜇(𝜎) 𝜇(𝜎)

40% Hold-Out 45.19 (7.17) 99.54 (0.47) 66.87 (5.21) 0.61 (0.06) 89.47 (1.37)
30% Hold-Out 55.78 (16.68) 97.81 (2.29) 72.92 (11.03) 0.64 (0.11) 89.97 (2.67)

𝛼 20% Hold-Out 72.91 (11.00) 90.98 (3.98) 81.25 (7.23) 0.62 (0.13) 87.58 (4.56)
10% Hold-Out 71.27 (14.93) 93.50 (5.10) 81.20 (9.80) 0.66 (0.18) 89.19 (5.67)

5 k-fold 83.71 (1.34) 92.63 (0.44) 88.05 (0.68) 0.73 (0.01) 90.95 (0.38)

40% Hold-Out 86.46 (5.55) 87.57 (3.10) 86.96 (3.33) 0.66 (0.06) 87.37 (2.80)
30% Hold-Out 87.68 (6.96) 87.59 (4.26) 87.56 (4.64) 0.67 (0.09) 87.60 (4.07)

𝛽 20% Hold-Out 87.09 (8.60) 88.24 (4.31) 87.57 (5.41) 0.68 (0.11) 88.03 (4.30)
10% Hold-Out 88.41 (10.43) 90.10 (10.44) 89.07 (6.46) 0.72 (0.13) 89.80 (5.54)

5 k-fold 87.37 (1.30) 88.54 (0.45) 87.95 (0.66) 0.68 (0.01) 88.31 (0.40)

Table 5.2: Validation performance metrics using both 𝛼 and 𝛽 reasoning methods
and our own dataset.

Dataset Reasoning Testing Performance Metrics
Method Sensitivity Specificity Gmean MCC ACC

[262]

𝛼 w/o s-T 79.39 93.92 86.34 0.51 93.29
𝛼 w/ s-T 82.44 92.05 87.11 0.48 91.64
𝛽 w/o s-T 80.91 93.81 87.12 0.52 93.25
𝛽 w/ s-T 84.73 90.82 87.72 0.47 90.55

[264]

𝛼 w/o s-T 71.75 99.48 84.48 0.81 96.38
𝛼 w/ s-T 75.47 99.06 86.46 0.82 96.41
𝛽 w/o s-T 73.60 99.48 85.56 0.82 96.58
𝛽 w/ s-T 81.41 98.82 89.69 0.84 96.88

Table 5.3: Testing performance metrics for the different testing datasets using both
𝛼 and 𝛽 reasoning methods, and self-tuning (s-T).

forms 𝛼 by reaching higher average metrics with less deviation in most of the cases.

This is due to the RW balance or distribution between the rules, as in this case the

rules having negative class consequent possess a higher RW in comparison with the

rules having positive class consequent. Moreover, overall, it can be observed that 𝛼

presents dependency over the amount of training data, whereas 𝛽 provides a more

robust system validation regardless of such fact. Note that, although this has been

observed specifically for this train dataset, it could be applicable for other datasets

as well as other problems. The best result for the 𝛼 method is achieved by using

5 k-fold, which lead up to 88.05% and 0.73 of Gmean and MCC averaged values

respectively. When comparing the results for the 𝛽 method, it can be observed that

the 10% hold-out cross-validation obtains the best averaged results. However, in

case of considering the balance between the averaged metrics and their deviations,

the 5 k-fold configuration shows the best performance with 87.95%, 0.68, 0.66, and

0.01 of Gmean and MCC averaged and standard deviation values respectively. This
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analysis is completed by comparing the k-fold validation results for both reasoning

methods. In that case, 𝛼 presents slightly better metrics than 𝛽 for all perfor-

mance metrics except for sensitivity. The latter fact is an indication of the actual

behaviour of the system for both reasoning methods over future unseen data, as 𝛽

provides better sensitivity at the expense to decreasing specificity. Notwithstanding

the latter differences between both methods, it can be concluded that the k-fold

cross-validation outperforms the rest of the methods and, thus, the optimised RWs

to be used for testing are obtained by averaging the RWs obtained during the k-fold

validation considering the 5 folds and the 30 independent iterations.

After performing the validation of the system and obtaining the initial optimised

rule base and their respective RWs, the test dataset collection is done as detailed

in the previous Section. Table 5.3 shows the results obtained for both considered

benchmark datasets and reasoning methods. In this case, we also provide the results

regarding the self-tuning application. Note that in bold are those metrics that

increased after the self-tuning integration. On the one hand, the 𝛽 method generally

achieves higher metrics than the 𝛼 method for both datasets when the self-tuning

is not applied. In fact, the difference between any of the metrics that are worse for

the 𝛽 than for the 𝛼 method does not even exceed 0.2%. On the other hand, the

application of the self-tuning process led to the addition of one new rule per dataset

with positive class consequent. One clear difference can be highlighted between

the results for such use case, as while for CapnoBase there is solely a sensitivity

improvement, for CSL there can be observed an increase for most of the performance

metrics except for specificity, whose worsening does not exceed 0.7%. This difference

in the trend of the results for the different datasets can be attributed to the nature of

the datasets itself. Note that the heterogeneity is present since these datasets contain

data from different volunteers but also that the artefacts within the extracted PPG

segments can have different characterised dynamics. In fact, although CapnoBase

is bigger than CSL, the latter contains the double of unacceptable labelled PPG

segments. Thus, the results and also the effects of the self-tuning application will

vary based on how well is characterised the target to be detected (unacceptable PPG

segments). In short, Table 5.4 presents the averaged testing results after combining

both testing datasets. The best results are obtained using the 𝛽 reasoning method
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Reasoning Averaged Testing Performance Metrics
Method Sensitivity Specificity Gmean MCC ACC

𝛼 w/o s-T 75.57 96.70 85.41 0.66 94.84
𝛼 w/ s-T 78.96 95.56 86.79 0.66 94.03
𝛽 w/o s-T 77.25 96.64 86.40 0.66 94.92
𝛽 w/ s-T 83.07 94.82 88.75 0.66 93.72

Table 5.4: Averaged testing performance metrics using both 𝛼 and 𝛽 reasoning
methods, and self-tuning.
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Figure 5-20: Real-time capture for the embedded SQA implementation showing the
different feature values every processing window (3-sec).

and the self-tuning adjustment. This leads up to 88.75% and 0.66 Gmean and MCC

averaged, which is comparable to the obtained validation results.

Real-Time operation performance

For the embedded implementation of the proposed SQA, the initial optimised rule

base, RWs and membership functions are hard-coded into the SoC. This is done

by quantifying such parameters using 32-bit registers. To validate the embedded

integration, 33 PPG segments (24 acceptable and 9 unacceptable 3-second PPG

segments) obtained from the first patient of the validation dataset are run into the

SoC. For instance, Figure 5-20 depicts an excerpt of the filtered PPG signal as well

as the different feature values for every 3-second processing window evaluated. Note

that the embedded reasoning method is 𝛽, as it achieved better results during offline

validation and testing.

Table 5.5 reports the performance metrics comparison between the embedded and
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Platform Sensitivity Specificity Gmean MCC ACC
MATLAB® 88.89 95.83 92.29 0.85 93.94

SoC 88.89 91.67 90.27 0.78 90.90
Table 5.5: Comparison between the embedded and MATLAB® performance metrics
obtained for the 33 PPG segments evaluated into the SoC using the 𝛽 reasoning
method.

SoA Kurtosis Entropy SNR MP −AD +AD
𝑅2 0.99 0.99 0.98 0.99 0.97 0.94 0.80

Table 5.6: Coefficient of determination (𝑅2) for the main processes performed within
the SoC. SoA: Strength of Activation. MP: Matrix Profile. − and + AD: Negative
Class Association Degrees.

the offline implementation. As expected, the latter achieves better performance.

Specifically, it reaches up to 92.29% and 0.85 of Gmean and MCC values respec-

tively, while the embedded implementation makes those results worse by lowering

them to 91.67% and 0.78. This performance difference is due to the loss of precision

for the different processes within the SoC. In fact, Table 5.6 shows the coefficient of

determination (𝑅2) between the embedded and the MATLAB® results for the main

processes of the system. Considering that this is the first implementation of the pro-

posed system, most of the processes deal with 32-bit floating-point numbers within

their operations (IEEE 754). Thus, the less computationally demanding and most

simple stages such as the strength of activation, Kurtosis, and SNR calculations get

a 𝑅2 of 0.99. However, when facing more complex mathematical operations such

as the logarithmic within the Entropy calculation and the multiple FFT algorithms

performed during the matrix profile computation, the 𝑅2 drops to 0.98 and 0.97

respectively. Although these precision errors are low, their accumulation along the

entire prediction make the final process, that is the association degree for negative

and positive classes, to have a 𝑅2 of 0.94 and 0.80 respectively. This is the reason

for the performance metrics drop within the SoC. Note that the MATLAB® im-

plementation operates with double data types, which corresponds to 64-bit floating

point numbers.

Regarding the energy saving analysis with and without SQA method, Table 5.7

reports four different test signal scenarios. The latter were chosen to ease the com-

parison with [247] and [248]. Regardless of applying the proposed SQA method,
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Test Signal Scenarios
System without SQA System with SQA Overall

Energy
𝐸𝐶𝑆𝑒𝑛𝑠𝑜𝑟 𝐸𝐶𝑆𝑄𝐴 𝐸𝐶𝑇 𝑅 Total 𝐸𝐶𝑆𝑄𝐴 𝐸𝐶𝑇 𝑅 Total (with SQA)

(𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) (𝑚𝐽) saving/extra
60-sec Noise Free Signal 1053.36 𝑁𝐸 318.60 1371.96 59.40 318.60 1431.36 4.3% Extra

60-sec Noisy Signal 1053.36 𝑁𝐸 318.60 1371.96 59.40 𝑁𝐸 1112.76 20.7% Saving
6-sec Noisy out of 60-sec Signal 1053.36 𝑁𝐸 318.60 1371.96 59.40 292.05 1404.81 2.3% Extra
12-sec Noisy out of 60-sec Signal 1053.36 𝑁𝐸 318.60 1371.96 59.40 238.95 1351.71 1.5% Saving

Table 5.7: Real-time energy saving analysis with and without SQA method. 𝐸𝐶𝑆𝑄𝐴:
Energy consumption for the SQA implemented system. 𝐸𝐶𝑆𝑒𝑛𝑠𝑜𝑟: Energy consump-
tion from the PPG sensor. 𝐸𝐶𝑇 𝑅: Energy consumption for BLE Transmission. 𝑁𝐸:
Not executed.

the energy consumption of the PPG sensor is unavoidable for a continuous physi-

ological monitoring system or application. Thus, the energy consumption baseline

of the system is 1053.36 𝑚𝐽 , which corresponds to the normal functioning of the

sensor as well as the I2C communication involved to gather the data from it. For

the transmission of every 3-second processing window, the energy consumed by the

BLE is around 15.50 𝑚𝐽 , which lead up to 318.60 𝑚𝐽 consumed for 60-sec noise

free signal transmission. The energy consumption due to the execution of all stages

involved into the proposed SQA system is 59.40 𝑚𝐽 . Thus, considering the different

test signal scenarios, we can conclude that the proposed SQA method can save an

overall energy power consumption from 1.5% to 20.7% for noisy PPG signals with

duration from 12 to 60 seconds. Conversely, the extra energy consumption due to

the SQA execution reaches up to 4.3% for an entire 60-second noise free signal.

Finally, time and memory complexities were also quantified for the proposed SQA.

The obtained averaged time to execute the proposed SQA method was 53.07 𝑚𝑠.

The total memory required to handle global and temporary variables, as well as

acquisition and processing buffers is 15kB.

To contextualised some of the obtained results with respect to other reported works

on SQA, Table 5.8 presents the key metrics for the proposed system and three recent

works [247–249] that were also reviewed. The proposed work provides comparable

performance metrics to the state-of-the-art. It should be noted that the other works

did not use the artefact labels provided by the benchmark datasets. Instead, they

labelled such data again. Moreover, none of them used exactly the same datasets,

whether they were using them for threshold adjustment or testing. In terms of
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Work Validation Experiment Few Training ACC Clock Memory Energy PlatformMetrics Independent Shot Observations (%) (𝑀𝐻𝑧) (𝑘𝐵) (𝑚𝐽)
Absolute amplitude, SAM3X8E

Vadrevu (2019) [247] crossing rate × × 38620 95.93 84 13 210 ARM
and autocorrelation Cortex-M3

SAM3X8E
G.N.K. Reddy (2020) [248] FOPC-DC feature × × 15000 93.21 84 29.56 – ARM

Cortex-M3
Kurtosis, and Quad-core

Samiul Alam (2021) [249] autocorrelation, × × 8000 96.50 1200 88 63.1 ARM
empirical thresholds Cortex-A53

Type-2 Fuzzy nrf52832
Proposed Subject-Invariant X X 331 93.72 64 15 59.40 ARM

(𝛽 w/ Self-Tuning) Cortex-M4

Table 5.8: Comparison with reported work on SQA.

memory and energy consumption, we provide one of the lowest metrics. Specifically

for the energy consumption, [247] and [248] also provided real-time energy saving

analysis comparable to the one reported in Table 5.7. They obtained an overall

energy saving above 90.00% for the second test signal scenario. However, they did

not considered nor reported the power consumption of the sensor, which is supposed

to be continuously working. It should be also noted the platform difference, as

while [247] and [248] used a comparable embedded device (microcontroller) to the

one used in this research work, [249] employed a Cortex-A53 which is far from

being able to be properly compared to ours. Finally, the few-shot and experiment-

independent approaches are highlighted towards the application and adaptation of

the system to heterogeneous settings as well as into-the-wild usability.

The proposed SQA provides a simplified low-complexity fuzzy rule-base Mamdani

inference model deployed in low resource edge devices. The main novelty of this

research is the non-heuristic, adaptive, wearable oriented, and subject-invariant as-

pects of the proposed SQA system. First, the non-heuristic feature is obtained

by using a novel unsupervised method for generating interval type-II fuzzy sets

from PPG signals based on quantization. Secondly, the adaptation of the system

is achieved by defining and implementing a novel online unsupervised fine-tuning

based on scaled similarity between interval type-II fuzzy sets for model self-adaptive

updates. Finally, the subject-invariant aspect and heterogeneity are accomplished

since all the datasets employed contain data from different volunteers. This fact

makes the artefacts within the extracted PPG segments have different dynamics.

To demonstrate the online PPG SQA implementation, a detailed analysis of the

embedded performance of the proposed methods in the Bracelet is performed, out-
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lined and compared against the state-of-the-art. Overall, the proposed work pro-

vides comparable metrics to the compared state-of-the-art. It achieved an overall

blind testing accuracy of up to 93.72%. The real-time evaluation showed an energy

consumption up to 59.40 𝑚𝐽 for the proposed SQA, which led up to 20.7% over-

all energy savings. Within this context and comparison, certain limitations of the

proposed system must be also considered. First, further digital signal processing op-

timisations can be applied, such as smaller integer computations scaling and single

instruction multiple data. Second, further experimentation and data gathering are

being performed to increase the training data and explore the design space. Some of

the advantages and limitations identified while performing this system confirm the

need for SQA systems focused on providing enough generalisation to deal with het-

erogeneous settings as well as SQA embedded implementations into extreme edge

devices. Note that, although we focus solely in the PPG signal, further research

can be investigated towards similar approaches for the other signals considering this

system as reference.

5.2.4 Feature Extraction Design Space Exploration
This section presents a feature extraction design space exploration, which is focused

on extracting BVP related information. The presented analysis is divided into the

different stages in the software architecture, as Fig. 5-21 shows. Thus, it is assumed

that the considered signals are properly filtered and segmented before the appli-

cation of any feature extraction technique. In each explored stage, parameters of

interest are evaluated and recommended. First of all, the morphological delineation

(Peak detection block) is discussed by means of a detailed comparison of different

peak detection algorithms. Secondly, the common applied techniques to extract

frequency information when dealing with the obtained unevenly or non-uniformed

delineated points, i.e. interpolation or beats counting blocks, are presented. For

the sake of the Bindi application, the interpolation technique is employed, imple-

mented and discussed. Finally, specific recommendations of the different trade-offs

discussed on these Sections are applied in Section 5.2.4.3 for a particular 4-second

stress detection use case, in which a validation of the embedded feature extraction

processes into the Bracelet are validated against a research-grade tool.All metrics

considered in this section to characterise the different stages are obtained from the
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embedded implementation within the design space exploration into the Bracelet.

Note that the final selection of the different evaluated parameters will depend upon

the requirements and needs of the application. As for Section 5.2.2, this analysis

is extracted from [159]. Thus, although the evaluated algorithms are focused on

a PPG use case, some of the feature extraction techniques, such as the FFT, are

common to the rest of the signals.

BVP filtered and 
segmented input

Peak detection

HRV information 
extraction

Interpolation 
and PSD

Beats counting 
and PSD

- Memory requirements
- Time requirements
- Signal quality considerations 

- Memory requirements
- Time requirements
- Resampling considerations
- FFT approach considerations
- Temporal resolution
- Frequency resolution

HRV frequency 
information

Figure 5-21: Parameters and processes involved in the BVP-based DSE.

5.2.4.1 Feature Extraction: Peak Detection

Focusing specifically into the PPG casuistry, different approaches can be used to

delineate PPG time series. The robustness of this delineation process is key to prop-

erly detect the desired morphological PPG parameters. This fact is determined not

only by the previous filtering steps but also by the different PPG waves morphology,

which can be directly affected by factors such as age and emotions [265,266]. Figure

5-22 shows the morphological difference between three different age groups measured

with our PPG sensor. The observed differences are in line with the ones published in

the literature [267]. For instance, the dicrotic part of the wave is the most affected.

This fact is mainly due to the vascular tone variation with age, which is translated

directly into more or less vasoconstriction and vasodilation. This situation produces

differences in arterial pressure leading to distorting diastolic run-off. Within this

physiological variable context, different delineation algorithms could provide differ-

ent results, i.e. different identified morphological points from the PPG signal. This

fact can even get worse when constraining the initial stage filtering architectures

applied, which used to happen in physiological monitoring embedded applications.
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Figure 5-22: PPG morphological differences between three age groups. (a) 18-24-
year-old person. (b) 35-44-year-old person. (c) 55-65-year-old person. The signals
shown was acquired by the Bindi bracelet.

For instance, if the application does not use any baseline wander removal filter, e.g.

notch filter below 0.5Hz, the different points extracted by the delineation algorithm

employed should be robust enough to be unaffected by the low-frequency out-of-band

trends. Different techniques can be applied to assure robust peak-to-peak detection.

However, some of them require the implementation of zero-crossing throughout the

first and second derivatives of the signal [268, 269]. This fact directly affects the

computational time within the data processing chain.

Considering the commented particularities of this stage for a PPG use case, a com-

parison between two well-known lightweight approaches is presented. On the one

hand, the first is based on a local maximum/minimum method (LCM) developed by

the UC3M4Safety team using the local slope and mean evolution over short periods

of samples along with the data processing window [159]. LCM methods are well

known within PPG peak detection algorithms as they used to be less computation-

ally demanding at the expense to lower performance. On the other hand, the second

algorithm is taken from [270], which is based on an adaptive threshold detection
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method (ADT) using a varying slope calculated iteratively based on the standard

deviation of the signal. Note that the second algorithm was validated against pub-

licly available datasets and outperformed LCM techniques without requiring first

and/or second derivative signal operations.

For the first method, Algorithm 2 describes the operations performed for each

BVP window. Specifically, the algorithm starts assuming that the maximum value

is the first sample of the signal. After that, mean and slope values over a specific

number of samples to be compared (𝑠𝑡𝑐) are calculated and evaluated. This step

is performed if one of the two threshold signal level conditions (max or min) are

met. Thus, a balanced trade-off to adjust 𝑠𝑡𝑐 is essential. For instance, if the BVP

signal is sampled at 100Hz, the mean evaluation over ten samples supposes -6dB

attenuation for 6Hz and -3dB attenuation for 4.5Hz, being the latter close to 4Hz

which is a frequency of interest for targeting maximum cardiac frequencies (BPM≥

240). Therefore, based on the expected residual high noise frequencies of the signal

filtered, this parameter can be adjusted. For this particular algorithm, and guided

by the trade-off taken on the filtering stage in Section 5.2.2, a 𝑠𝑡𝑐 equal to ten

can be chosen, which increases peak detection capabilities at the expense of time

complexity. Another key parameter included within the algorithm is 𝑑𝑖𝑠𝑡𝑚𝑖𝑛, which

is initially assigned to a specific number of samples 𝑘. This variable is referred as to

the minimum permitted distance between two identified systolic peaks and it is fixed

to the number of samples for the highest frequency within the BVP bandwidth. As

for the previous example, if the BVP signal is sampled at 100Hz and the highest

acceptable HR frequency is 3.5 Hz (210 BPM), then 𝑘 is set to 28 (samples). This

parameter does not affect the algorithm time complexity, but rather provides robust

handling for possible transients that are still in the signal and could be affecting

the peak detection. Moreover, we introduced different conditions into the developed

algorithm to cover special morphological cases. On the one hand, in the case of

dealing with wide systolic crests, just the last point of such is considered the systolic

peak, lines 11-17 of Algorithm 2. On the other hand, in case of having short systolic

crests, it could happen that a potential peak is left behind, which is taken into

account in lines 19-21 of Algorithm 2. Although the algorithm is used to extract the

systolic peaks information, valleys processing is also performed within it. The latter
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is performed through the opposite operations than for the peaks processing. Note

that, in our case, the signal is centred without any DC drift or tendency before the

application of this algorithm thanks to the previous filtering stages.

Algorithm 2: BVP Peak Detection Algorithm
1 function getPeaks (𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙, 𝑏𝑣𝑝𝑙𝑒𝑛);

Input :
Clean BVP signal 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙;
Total number of samples 𝑏𝑣𝑝𝑙𝑒𝑛;
Output:
Detected peaks position 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥;
Total number of peaks 𝑝𝑒𝑎𝑘𝑠𝑡𝑜𝑡𝑎𝑙;
Data:
Max and Min for each search 𝑝𝑒𝑎𝑘𝑠𝑚𝑎𝑥, 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛
Counter for detected peaks 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡
Minimum separation between detected peaks 𝑑𝑖𝑠𝑡𝑚𝑖𝑛

2 𝑝𝑒𝑎𝑘𝑠𝑚𝑎𝑥 ←− 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(0);
3 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛, 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡 ←− 0; 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ←− 𝑘;
4 for 𝑖← 1 to (𝑏𝑣𝑝𝑙𝑒𝑛 − 𝑠𝑡𝑐) do
5 if 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(𝑖)>𝑝𝑒𝑎𝑘𝑚𝑎𝑥 then
6 𝑝𝑒𝑎𝑘𝑚𝑎𝑥 ← 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(𝑖);
7 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛 ← 𝑝𝑒𝑎𝑘𝑠𝑚𝑎𝑥 − 𝑠𝑡𝑐;
8 Get 𝑣𝑡𝑐𝑚𝑒𝑎𝑛 for [𝑖,𝑠𝑡𝑐];
9 Get 𝑣𝑡𝑐𝑠𝑙𝑜𝑝𝑒 for [𝑖,𝑠𝑡𝑐];

10 if 𝑣𝑡𝑐𝑚𝑒𝑎𝑛≥𝑝𝑒𝑎𝑘𝑚𝑎𝑥 then
11 if 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡&& 𝑖− 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥(𝑝𝑒𝑎𝑘𝑐𝑜𝑢𝑛𝑡 − 1) < 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 then
12 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥(𝑝𝑒𝑎𝑘𝑐𝑜𝑢𝑛𝑡 − 1)← 𝑖;
13 else
14 𝑝𝑒𝑎𝑘𝑠𝑖𝑛𝑑𝑒𝑥(𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡)← 𝑖;
15 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡 ← 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡 + 1;
16 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛 ← 0;
17 end
18 else
19 if 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛 && 𝑣𝑡𝑐𝑠𝑙𝑜𝑝𝑒<0 then
20 Update counter, index and 𝑝𝑒𝑎𝑘𝑠𝑚𝑖𝑛;
21 end
22 end
23 end
24 if 𝑏𝑣𝑝𝑠𝑖𝑔𝑛𝑎𝑙(𝑖)<𝑝𝑒𝑎𝑘𝑚𝑖𝑛 then
25 Perform opposite operation to detect valleys;
26 end
27 end
28 𝑝𝑒𝑎𝑘𝑠𝑡𝑜𝑡𝑎𝑙 ← 𝑝𝑒𝑎𝑘𝑠𝑐𝑜𝑢𝑛𝑡

Figure 5-23 shows an analysis on the time impact for the two different peak de-

tection algorithms considering the number of samples in the processing window.

Related to this time complexity, a linear performance can be observed for our LCM

method, due to the neighbour evaluation done with every sample. Regarding the

ADT algorithm, an increase in computational time between 30 % and 50 % can be

observed compared to LCM with the highest 𝑠𝑡𝑐. This difference is mainly due to the

mandatory calculation of the standard deviation for the whole processing window
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signal, which is needed to obtain the varying slope to be used by the ADT algorithm.

Related to memory storage considerations in this stage, the implemented LCM al-

gorithm needs 2KB of ROM and 32B of RAM. In the case of the ADT implemented,

2.5KB of ROM and 64B of RAM are used by this algorithm.
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Figure 5-23: Time impact analysis for the peak detection algorithms considered.

From this stage and considering the time complexity and resource usage results

by the evaluated algorithms, we conclude that, although the LCM methods are one

of the simplest, they can fit the requirements of many applications. Thus, the use

of such lightweight algorithms is recommended. For the sake of providing a real

application validation following these feature extraction trade-offs, Section 5.2.4.3

presents the results from an actual HRV use case activation monitoring.

5.2.4.2 Feature Extraction: HRV Information

In digital constrained embedded systems, frequency analyses are performed by

DFT. One of the usual algorithms is the Fast Fourier Transform (FFT). However,

this algorithm is based on the assumption of an equidistant sampled input. At

this point, two possibilities arise based on the application needs. If the application

is not limited by any inference time restriction, the system can wait until enough

HRV points are extracted and the desired frequency resolution is possible. On the

contrary, when continuous rapid inference is needed within a fixed temporal win-

dow, interpolation between the HRV samples is applied to reestablish the temporal

coherence.
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Focusing on continuous rapid use cases to boost the response time of Bindi, we

considered two main parameters for the evaluation of this feature extraction stage:

the type of interpolation and the length of the FFT. Fig. 5-24 shows a time impact

analysis for both the interpolation techniques (linear and polynomial) and the FFT

implemented and considered for different window processing lengths. As expected,

polynomial methods have a higher time complexity, although producing more precise

results if spectral accuracy is needed subsequently. Note that Lagrange polynomial

quadratic interpolation is considered for this comparison. Regarding the FFT, a

fixed-point 32-bit radix-2 FFT algorithm is used, which provides one of the lowest

computational complexities (𝒪(𝑛 log 𝑛)) and is then adequate for the embedded de-

vice. It is noteworthy that for all the FFT lengths evaluated, applying polynomial

interpolation implies doubling the processing time with respect to linear interpola-

tion. Considering this fact and that quadratic interpolations within the time-domain

are preferred for HRV [271], such temporal complexity difference can be taken.
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Figure 5-24: Time impact analysis based on different interpolation methods and the
FFT implemented and considered.

In this stage, a trade-off between temporal and frequency resolution must be con-

sidered. Note that independently of the 𝑓𝑠𝑒𝑛𝑠𝑜𝑟, if the window processing length is

fixed, the frequency bin resolution for the chosen 𝐹𝐹𝑇𝑙𝑒𝑛 will not change. Thus, to

improve frequency resolution for a fixed temporal window, resampling techniques

are applied after interpolation in these situations. For instance, if the HRV is in-
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terpolated at 100Hz for a fixed four-second time window, it results in a 0.39Hz/bin

resolution. However, after applying a 1Hz resampling, frequency resolution increases

up to 0.25Hz/bin. Note that for the latter resolution, only 256 available points are

taken. In case of taking more points than the window length, zero-padding must

be applied. Thus, time and frequency resolution, as well as interpolation and re-

sampling techniques, depend on the application. This is a key aspect when dealing

with applications that require HRV frequency information extraction, as the lowest

band of interest is located from 0.01Hz to 0.04Hz. Therefore, to achieve full HRV

frequency band detection capability a minimum of 0.04Hz/bin should be assured. A

frequency resolution value higher than that will decrease such detection capability or

spectral bands separability. Note that frequency bin resolution is given by equation

4.7. Regarding temporal resolution, there must be considered that the duration of

the processing window must be selected to assure the presence of at least two HRV

points. Otherwise, interpolation is not possible.

Related to memory storage considerations in this stage, special care should be

taken for FFT resource requirements by implementing in-place properties and non-

recursive behaviour. Note that resources used during the resampling operation are

considered negligible. For the interpolations, both consumes up to 698B of ROM

and 10B of RAM, while the FFT needs 3KB of ROM and 548B of RAM.

This last step is especially sensitive. For instance, linear interpolation can even

introduce deformations in the resulting power spectra. In this case, a quality-based

design decision is recommended to prevail the physiological information. Thus,

assuming the same resource usage for both interpolation methods and considering

all the physiological advantages that polynomial interpolation provides, the latter

is recommended over linear.

5.2.4.3 HRV Use Case Implementation

To give a real use case and implement all the different recommendations concluded

for the latter feature extraction exploration, a specific four second physiological

activation rapid-inference application is presented. Bindi bracelet is programmed

with all the detailed signal processing architecture and taken trade-offs. In this

case, an experiment with six volunteers and ten different stressed and non-stressed

one-minute audiovisual stimuli was used. These stimuli were previously labelled and
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Figure 5-25: Complete data chain for a 4-second window processing given the trade-
offs discussed.

selected by the authors. After each stimulus, the volunteers self reported their own

level of arousal or excitement felt when watching the video. To provide a validation

tool or a golden measure against the signals acquired by our platform, a research-

grade sensory system1 was considered.

For this experiment, a 100Hz 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 was used and a fixed four second temporal pro-

cessing window was employed, which required a buffer of 400 samples (1.5KB). Note

that for HRs bellow 45BPMs, this window is not applicable, as only one HRV point

could be found. Every four seconds, the HRV points are extracted and interpolated,

which is followed by a FFT calculation and a PSD estimate given by

𝑃𝑆𝐷𝑖 = 2 * |𝑓𝑓𝑡|
𝑠

, (5.18)

where 𝑃𝑆𝐷𝑖 is the power spectral density for one specific frequency bin 𝑖, |𝑓𝑓𝑡| is

the squared spectrum magnitude and 𝑠 is the sum of squared samples of the window

function used. Specifically, to deal with scalloping loss and picket fence effects, a flat

top window is applied. A fix 𝐹𝐹𝑇𝑙𝑒𝑛 of 256 points is used, leading to a 0.39Hz/bin

resolution. This resolution is enough to observe the activity of lower frequency bands

(up to 0.4Hz) and higher ones (from 0.4Hz up to 1Hz). Take into consideration that

in case of having less than 256 points after interpolation, zero padding is applied.

The same digital procedure is applied for the validation tool and Bindi. Considering

all the data provided in previous sections, the final implementation of all the different

stages for this specific application requires up to 2KB RAM, 6KB ROM and takes

about 20 milliseconds to provide a valid HRV estimation from the completion of one

processing window, Figure 5-25.

Table 5.9 shows the collected results obtained for two arbitrary selected stress (𝐻)

and non-stress (𝐿) stimuli for the six different volunteers. 𝑃 𝐺𝑓1 is the averaged

1https://www.biosignalsplux.com/index.php/researcher
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Table 5.9: Measurement result of specific HRV stress detector use case.
𝑇𝑦𝑝𝑒 𝑃 𝐺𝑓1 𝑃 𝐺𝑓2 𝑃 𝐵𝑓1 𝑃 𝐵𝑓2 𝜀 [%(𝜀𝑓1, 𝜀𝑓2)]

1𝐻 5.28 0.15 5.27 0.16 (0.18,6.66)
1𝐿 5.05 0.16 4.81 0.17 (4.75,6.25)
Δ -0.23 +0.01 -0.46 +0.01
2𝐻 4.09 0.24 4.29 0.20 (4.88,16.66)
2𝐿 3.83 0.27 3.45 0.29 (9.92,7.41)
Δ -0.26 +0.03 -0.84 +0.09
3𝐻 5.18 0.16 5.17 0.16 (0.19,0.00)
3𝐿 4.40 0.19 4.28 0.21 (2.72,10.52)
Δ -0.78 +0.03 -0.90 +0.05
4𝐻 5.27 0.15 5.32 0.15 (0.09,0.00)
4𝐿 5.16 0.16 5.12 0.17 (0.7,6.25)
Δ -0.11 +0.01 -0.20 +0.03
5𝐻 5.07 0.16 4.82 0.17 (4.93,6.25)
5𝐿 4.64 0.17 4.63 0.18 (0.21,5.88)
Δ -0.43 +0.01 -0.19 +0.01
6𝐻 4.98 0.16 4.96 0.17 (4.03,6.25)
6𝐿 4.84 0.17 4.46 0.20 (7.85,17.64)
Δ -0.14 +0.01 -0.50 +0.03

quotient between the first frequency bin (0.39Hz) and the second frequency bin

(0.78Hz) during the stimulus using the signal from the validation tool, while 𝑃 𝐺𝑓2

is the one observed for the averaged quotient between the second frequency bin

and the sum of the first and the second. The fourth and the fifth columns are

the analogue values taken from Bindi. These results show a decrease on the first

factor for all the patients from the stress to the non-stress stimulus. Conversely,

there is an increment in the second factor. This is in line to the theory of the

ANS. As commented in Chapters 2 and 4, the lower frequency bands are dominated

by the SNS which is in charge the fight-or-flight response of the body, while PNS

is related with the higher bands and responsible of controlling relaxed (rest-and-

digest) conditions. The errors between the validation results and Bindi results are

also provided in Table 5.9 . These errors are low (𝜀 < 10%), except for cases such

as 2𝐻 or 6𝐿, in which strong motion artefacts presented in the signal of Bindi were

not cleaned as expected, resulting into locally contaminated signals segments, which

affects directly to the peak detection process and, therefore, to the HRV extraction,

see Figure 5-26.

By performing this particular use case, the different detailed trade-offs applied to

rapid-inference applications have been successfully implemented. Notwithstanding
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Figure 5-26: Motion artefacts effects displayed in one segment of the stress audiovi-
sual stimulus of volunteer 2.

that the presented use case does not reach the full HRV frequency band detection

capability, the goal of rapid stress detection is accomplished using low amount of

resources at the expense of frequency resolution.

5.2.5 Power Consumption Analysis
Power consumption management is a requirement in the design of a wearable sys-

tem. In Bindi, an accurate measure of the state of battery charge and autonomy of

the two wearable devices is essential to ensure that the system works when needed.

This section provides a quantitative current consumption analysis for the Bracelet.

This analysis is performed by measuring the most energy-demanding actions through

the monitoring part of the device. Thus, the electric current consumed by acquiring

data through each physiological sensor is measured separately. Moreover, the power

consumption incurred by making use of the buzzer in soft, medium, and strong in-

tensities is also measured. Thus, we chose to measure the power consumption due

to sensor data communication and acquisition, which are essential for the system

and are intrinsically related to the specific hardware design of the devices.

The results obtained in the current consumption analysis for Bindi 1.0 appear in

Figure 5-27. The vibration modes are the most current consuming actions, where

the higher the vibration produced, the higher the current required, as expected.

However, the buzzer impact on autonomy is reduced because it is activated for a
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short time in risky-related situations, meaning that its activation may usually be

sporadic. The SKT and GSR sensors also produce a small increment from the

idle state. However, the PPG sensor has a higher impact than the other sensors.

Thus, we can conclude that the current bottleneck of the system, in terms of power

consumption and operating time, is the PPG sensor. Notwistanding such fact,

the low power consumption in the idle state makes the Bracelet battery life to be

approximately 40 hours when using a 500 mAh battery. Note that these calculations

are based on no-alarm situations.
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Figure 5-27: Average current consumption in the Bracelet [9].

5.3 Conclusion
This Chapter reported the main contributions of this research regarding the de-

sign of wearable systems oriented towards continuous physiological acquisition and

monitoring. It has become clear that the design of wearable systems for the contin-

uous monitoring of physiological signals and the design and embedded integration

of affective computing related processes is a challenging task that requires a care-

ful balance between embedded resources, power consumption, and system response

time. Moreover, we presented different works contributing to the embedded imple-

mentation of machine learning related processes on the edge, i.e. into our Bracelet.

It should be highlighted that the complete data processing chain for all the sensors,

from acquisition to classification, is currently being improved and expanded towards

considering and sizing the embedded impact as well as its limitations.

The Section 5.1 provided the necessary technical background to contextualise the
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Figure 5-28: Bindi’s competitive advantage over its main and most direct competi-
tors.

different highlights that Bindi’s technology can offer. Figure 5-28 presents a com-

pact summary regarding Bindi’s competitive advantages over its main and most

direct competitors. Thus, we can conclude that the reviewed available technological

solutions to combat Gender-based Violence, the ones oriented for a general use-case,

or even solutions with different goals but being technologically comparable to Bindi

neither offer the same functionalities nor take advantage from the cutting-edge tech-

nology. Bindi possess great potential to be an effective technological tool to prevent

and combat Gender-based Violence.

Throughout Section 5.2, the Bracelet hardware and firmware architectures have

been carefully dissected to show in detail every digital processing block, both those

that are completely closed at the implementation and integration level and those

that are still in the design and development phase. Within this context and focusing

on the wearable aspect, this Section presented a PPG SQA system able to identify

segments of physiological information with poor quality, however, it did not present

any work related to the motion artefact correction or removal of such segments.

When looking for such type of systems in the scientific community and regardless

of the PPG SQA system proliferation [243], there are plenty of Motion artefact
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Removal (MAR) systems proposed in the literature. This fact is based on the craving

for recovering the whole PPG signal, disregarding the type and amount of noise

present. Even different initiatives and challenges were created along the last decade

to foster the development of new MAR algorithms and methods. For instance,

the IEEE Signal Processing Cup in 2015 was based on a laboratory captured PPG

dataset using a treadmill to generate different types of movement artefacts and

intended to deliver a general framework to deal with MAR in heart rate monitoring

[272]. On this basis, there are two different perspectives. On the one hand, when

focusing on offline use cases, the application of MAR techniques can be feasible

by considering an available high amount of computing resources. However, these

algorithms consider the whole signal for their processing pipelines, and in some

cases the reconstruction or extraction of a valid measurement from a noisy signal

is not achievable. On the other hand, wearable applications targeting continuous

PPG monitoring are subjected to the requirement for low resources usage and low

power consumption. This leaves a thin gap to implement some of the best and

heavier computational MAR algorithms, such as independent component analysis,

empirical mode decomposition, and deep learning based methods [273]. Therefore,

the signal quality assessment through SQA methodologies prior to the application of

any MAR algorithm is essential when aiming at continuous monitoring of PPG and

other cardiac-based related signals [274]. Notwithstanding the latter fact, research

related to the proposal of novel embedded MAR techniques has been initiated within

our research group [232], intending to contribute to this particular research topic.

Regarding the detailed feature extraction processes, certain limitations of the pro-

posed system must be considered.First, different signal processing techniques can be

applied. For instance, to deal with the unevenly spaced HRV data, Lomb-Scargle

periodrogram method could be applied [275] instead of FFT. Second, specific power

consumption for every of the feature extraction techniques needs to be properly

analysed towards the identification of possible bottlenecks within the digital sig-

nal processing architecture. The latter is currently being performed and further

publications are on preparation.
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WEMAC

In Chapter 4, we presented the work realised towards the design of a fear detection

system by using publicly available databases. Different limitations were identified

while developing these systems and it was confirmed that in order to come up with

an optimal fear recognition system, a novel database focused on fear detection is

required. Such database should include key factors already highlighted in previous

chapters, such as:

• The usage of emotional immersive technology.

• The labelling methodology modification to consider the gender perspective.

• A properly balanced stimuli distribution regarding the target emotions.

• A greater number of participants.

• The integration of a recovery process based on the physiological signals of the

volunteers to quantify and isolate the emotional activation between stimuli.

Moreover, targeting one of the main goals of this research, i.e. the generation of

new prevention and combating Gender-based Violence mechanisms, this database

must be conceived by considering the necessary particularities related to this specific

profile in order to carry out a proper methodology design. Within this context, this

Chapter presents the UC3M4Safety database, whose final objective is the unravelling

of the activation mechanisms of Gender-based Violence Victims under violence situ-

ations. This goal is intended to be accomplished by the generation and performance

of different experiments:
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• Pre-labelling experiment. This generated the first two datasets, which are pub-

lished in [276] and [277]. The aim was to study and validate the effectiveness

of a set of audiovisual stimuli when it comes to generating discrete, concrete

and unique emotions. This experiment focused into finding stimuli that were

able to provoke the same emotional reaction to the largest number of people

as possible. In addition, this study allowed us to analyse the methods for

classifying these emotional states, the understanding of critical aspects about

by the participants, and the influence of gender on the detection of fear [82].

• Laboratory experiments with Non Gender-based Violence Victims. These ex-

periments generated four datasets. The first release is denoted as "Women and

Emotion Multi-modal Affective Computing dataset" (WEMAC). They consist

of experiments performed in a laboratory environment with only women volun-

teers who never experienced Gender-based Violence. Specifically, a reduced set

of stimuli, which were extracted from the first datasets, are used together with

physiological and physical (voice and audio) information acquisition. Apart

from the undoubtedly value, for the affective computing area, of generating

a dataset with emotional reactions in women while recording their physiolog-

ical and physical variables, the fear-like emotions disentanglement by means

of monitoring physiological and physical reactions from women that are not

Gender-based Violence Victims is also necessary to understand these varia-

tions and patterns under non-specific population profiles1. This research deals

with these datasets focusing on the physiological and multi-modal data.

• Laboratory experiments with Gender-based Violence Victims. At the moment

of this PhD report, these experiments are still under development. They will

generate four additional datasets. They are based onto the same experimental

methodology followed with the Non-Gender-based Violence Victims. It should

be highlighted that special attention has been paid to avoid re-victimisation of

Gender-based Violence Victims, including psychological monitoring and work-

ing in their emotional recovery from violence. In these experiments, the goal

is to compare the physiological and multi-modal responses to the previous

experiments with Non-Gender-based Violence Victims.

1Here, non-specific population profiles are referred to as those that have not suffered gender-
based violence nor are under post-traumatic stress conditions.
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• Into-the-Wild experiments with both profiles, Gender-based Violence Victims

and Non-Gender-based Violence Victims. To date, these experiments are un-

der development. They will generate at least ten more datasets. These ex-

periments are intended to be performed during the daily life of some of the

volunteers that were involved in the laboratory experiments. The goal is to

get a real physiological and multi-modal behaviour to further study and char-

acterise the labelled emotions along the different days.

Regarding the structure of this Chapter, we start by providing a comprehensive

explanation of the methodology and development followed during the generation

of the laboratory experiments for the Non-Gender-based Violence Victims. As in

Chapter 4, the analysis of the self-reported labelling distribution is also presented for

this dataset. This analysis is followed by a physiological response exploration to give

a proper insight into the physiological patterns, recoveries, and other particularities

observed during the experiments. This exploration is concluded by presenting the

first fear detection results based on such information. The obtained metrics are used

and fused together with the speech results, which gives a multi-modal perspective

of the problem. The latter was done in a multidisciplinary research work with the

members of UC3M4Safety experts in Signal Theory and Communications. Note that

these are the first fear recognition results using multi-modal information recollected

from our database and they have already been presented in [9].

6.1 Methods, Tools and Stimuli
As already mentioned, this Chapter uses the information recollected in the WEMAC

dataset. The whole dataset contains a total of 104 women volunteers that were ex-

posed to 14 validated audiovisual emotion-related stimuli. This dataset is intended

to be publicly available throughout different releases. In particular, this research

uses the data contained within the first release, accounting for a total of 47 out

of the 104 volunteers. A total number of 123 experiments were done, from which

104 recordings were considered valid (no sensors malfunctioning). All of them were

performed between October 2020 to July 2021.

Regarding the methodology designed for the experimentation, Figure 6-1 shows a

simplified diagram for every volunteer and stimulus displayed. The Ethics Com-
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mittee of Universidad Carlos III de Madrid approved this protocol regarding Ethics

aspects and Data Protection aspects. Prior to the experiment, the recruited volun-

teers are explained all the different steps to be followed and given a set of documents,

such as an informed consent, personal data processing, and a general questionnaire.

As specified in Section 2.3.3, this questionnaire can provide additional information

related to cognition, appraisal, attention, personality traits, gender, and age. The

collected data were: age group, recent physical activity or medication that can alter

the physiological response of the participant, self-identified emotional burdens due

to work, economic and personal situation, and mood bias (fears, phobias, traumatic

experiences). Note that the multivariate analysis of these factors is out of the scope

of this research.

Neutral 

video clip 

recording

23 to 120 –

seconds emotion-

related video clip

Interactive 

Self-

Assessment

Researcher 

triggers 

next trial

Physiological 

stabilization

During the recording

Before the recording

Documentation Reading:

• Informed consent

• Personal data

• General questionnaire

Equipment 

Set-Up

Self-Assessment 

Demo

Figure 6-1: Experimental methodology followed during the development of the
WEMAC dataset. Prior and during the experimentation.

Following the documentation reading, the equipment set-up is performed and con-

sists of:

• Oculus® Rift-S Headset2 used to maximise the immersive experience and,

consequently, get a better emotion elicitation. This is the platform through

which the different stimuli are displayed to the volunteers both in 2D and 3D

format.

• BioSignalPlux®3 standard measurement system employed to acquired different

physiological signals. In particular, these were: finger PPG, ventral wrist

GSR, forearm SKT, trapezoidal electromiography, chest respiration, and wrist
2https://www.oculus.com/rift-s/
3https://biosignalsplux.com/products/kits/researcher.html
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inertial movement by means of an accelerometer. It provides a golden measure

to be compared with the rest of the sensors’, such as the bracelet of Bindi. In

fact, the PPG and GSR signals obtained from BioSignalPlux and Bindi have

been previously compared and successfully correlated in publications [159]

and [236].

• Bindi’s bracelet with dorsal wrist PPG, ventral wrist GSR and SKT. The

hardware and software architecture and detailed design of this element are

detailed in Chapter 5.

• An additional GSR sensor to be integrated in the following iteration of the

bracelet (Bindi 2.0). The hardware and software design of this new sensor are

out of the scope of this document, although a publication is in progress [237].

The synchronisation of all the different sensors acquisition together with the stages

of the experiment is performed by a laptop running a Unity® framework based

program. This work was done by the UC3M4Safety team. Note that all the devices

sensing physiological information were running at a 200 Hz sampling frequency.

Finally, the last step in the preparation of the experiment is a self-assessment

labelling demo, in which the volunteers get used to the virtual reality environment

and know better the different labelling categories and particularities. The elements

compiled during the labelling self report process are, in order of appearance:

• Audio sample recorded throughout the microphone in the Oculus® Headset,

right after the emotion-related video-clip visualisation. The volunteers are

requested to relive the emotions felt during the emotion-related stimulus vi-

sualisation. For this research, it is assumed that the correspondence is solid

enough between both instants. Note that, although this last assumption can

be considered as a simplification to be applied for a first data manipulation,

it will need further validation in future works.

• Modified SAM manikins for PAD affective dimensions mapping, as detailed in

Section 2.4 of Chapter 2.

• Familiarity level with respect to the felt emotion and to the displayed situation

in the video-clip. Both were asked using a 9-point Likert scale as for the SAMs.

• Liking of the video with three possibilities: yes, neutral, no.

• Selection of one discrete emotion out of a total of twelve. They were obtained
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from the pre-labelling study performed by the UC3M4Safety team, which used

the first two datasets and was published and detailed in [82], [278] and [279].

During the experiment, as already detailed, every volunteer visualised a total of 14

2D or 360º audiovisual stimuli. These stimuli were obtained considering 28 audiovi-

sual stimuli from a larger stimuli pool that contains a total of 42 stimuli validated

by more than 1332 people (811 females, 521 males) during the first detailed experi-

ment of the UC3M4Safety database [57,82]. Note that these 28 audiovisual stimuli

were selected based on three main premises: the highest emotional discrete labelling

agreement observed in women during the pre-labelling experiment, targeting for an

adequate laboratory experiment duration, and a balanced distribution of fear vs

no-fear by considering a PA model as performed for the stimuli selection of the

MAHNOB database explained in Section 4.2.1 of Chapter 4. Thus, two different

batches can be applied, with 14 stimuli per batch. Such amount of audiovisual stim-

uli together with the documentation reading, equipment set-up, and self-assessment

demo, used to take from 1 to 1.5 hours per volunteer, while data processing implies

from 3 to 8 hours. Table 6.1 reports the ordered structure of these batches.
Stimulus Emotion Quadrant (PA) Length Format Batch

1 Joy 1 1’26” 2D 1
2 Fear 2 1’20" 3D 1
3 Sadness 3 1’59" 2D 1
4 Anger 2 1’03" 3D 1
5 Fear 2 1’35" 2D 1
6 Calm 4 1’ 3D 1
7 Anger 2 1’ 2D 1
8 Fear 2 23" 2D 1
9 Disgust 3 40" 2D 1
10 Fear 2 2’ 3D 1
11 Joy 1 1’41” 2D 1
12 Fear 2 1’20" 2D 1
13 Gratitude 4 1’40" 2D 1
14 Fear 2 1’27" 2D 1
15 Fear 2 1’52" 2D 2
16 Joy 1 1’28” 2D 2
17 Fear 2 46” 2D 2
18 Sadness 3 45" 2D 2
19 Fear 2 1’33” 3D 2
20 Calm 4 1’ 2D 2
21 Anger 2 1’59” 2D 2
22 Fear 2 1’14" 2D 2
23 Disgust 3 1’36" 2D 2
24 Fear 2 2’ 3D 2
25 Surprise 1 1’41” 2D 2
26 Fear 2 1’06" 2D 2
27 Gratitude 4 1’30" 2D 2
28 Fear 2 1’59” 3D 2

Table 6.1: List of audiovisual stimuli used within the WEMAC Dataset.
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For the first batch, the stimuli duration are in 1’32”±46”, while for the second batch

the duration are in 1’46”±44”. It can be observed that both batches have 8 stimuli

belonging to the second PA quadrant, which was done on purpose to maintain a

proper balance between fear-like and non-fear-like emotions. Note that the balance

premise considers the PA model, rather than the PAD, to ease and simplify such task.

Due to this fact, the stimuli pre-labelled as anger were considered as well within the

second quadrant, and so being within the positive class for the dimensional ground

truth labelling. Note that all the volunteers in the same batch visualised them in

the same order.

Before the presentation of every emotion-related stimulus, a specific neutral clip is

also used to ease the emotional recovery. These are randomly selected from a larger

pool provided by the Stanford psycho-physiology laboratory [197]. In the same way

but at the end of the self-assessment, 360º recovery scenes are also presented. These

are selected by unanimous consensus of the research team. The main difference be-

tween the neutral and the recovery clips is that while the former are totally passive,

i.e. there is not a recovery monitoring, the latter actually implements a physiological

monitoring. This allows for the online assessment of the three measured variables

stabilisation. Such process is performed by using the physiological measurements

acquired by Bindi’s bracelet. Specifically for these first experiments, we implement

a physiological recovery stabilisation controller into the SoC of the bracelet, which

worked based on segmented temporal data processing windows. Such system per-

forms an online basic filtering process of the signals, extracted the BPMs from the

calculated heart rate, and verified the stabilisation of the signals for more than four

consecutive processing windows. Once the stabilisation has been achieved at least

by two out of the three variables, the bracelet notified via BLE to the host com-

puter running the virtual reality framework. Note that the physiological recovery

implementation was also followed by a Bachelor Thesis under my supervision [280].

Its goal was to implement new recovery mechanisms towards the improvement of

the current one during the experiments. The new implemented features and im-

provements were even applied to other projects being developed within the research

group.
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6.2 Self-Reported labelling response exploration
As detailed in the previous Section, the first release of the WEMAC dataset con-

tains data from 47 volunteers. Specifically, 32 and 15 volunteers visualised the first

and second batch, respectively. Due to the different labelling methodologies consid-

ered and based on the previous works using the public benchmark data explained

in Chapter 4, both discrete and dimensional labelling has been employed. Note

that both are binarized to provide a fear-like binary classification problem. Thus,

all the discrete labels that were not identified as fear are codified as the negative

class, while the ones assessed as fear are set as the positive class. The same process

is performed for the dimensional labelling methodology, but following the proposed

fear binarization method, see Section 2.3.4 of Chapter 2, as done for the public

benchmark databases, see Chapter 4.

Figures 6-2 and 6-3 show the binarized discrete and dimensional class balance for

the self-reported labels of the 47 volunteers. Note that in these figures, the ground

truth class balance per batch is also represented. On average, for the ground truth,

both batches possess 53.57% and 46.43% of negative and positive classes, respec-

tively. The average balance for the dimensional self-assessment labels is 55.80% and

44.20%, while for the discrete self-assessment labels is 60.47% and 39.53% for the

negative and positive classes, respectively. However, the main difference is obtained

when comparing the standard deviation, which is up to 15.22% for the dimensional

labels and 7.84% for the discrete labels. Although the averaged class balance of

the dimensional self-reports is closer to the golden class balance, its deviation is two

times the averaged class balance of the discrete self-reports, which is directly related

to the labelling agreement of the different 47 volunteers. Within this context, we

also defined a 25.00% threshold to identify the volunteers whose class balance was

affected by a 1.5 times (equal or higher) the golden class balance, which we identify

as labelling outliers. Note that this is a first approach simplification, as further

physiological data analysis might be performed with such outliers to properly char-

acterise their emotional reactions. Thus, volunteers that reached such threshold are

marked in brackets. For the discrete labelling were identified up to five volunteers

(5, 6, 15, 33 and 40), and for the dimensional labelling were identified up to nine

volunteers (3, 5, 6, 13, 20, 21, 22, 40, 42). It should be highlighted the class bal-
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Figure 6-2: Class distribution for binary fear mapping over the discrete subjective
self-reports in WEMAC for all the 47 considered female volunteers, and the original
intended class distribution of the experiment: G2 and G1 for the second and first
batch, respectively.

ance differences observed per volunteer when considering both methodologies. For

instance, the third volunteer shows a 57/43% balance approximately for the discrete

labelling, and a 85/25% balance for the dimensional assessment. This fact suggests a

different comprehension and understanding of each of these labelling methodologies,

which can lead to different machine learning systems when using one or the other.

This is the main reason that led us to work with both approaches.

Following the same schema analysis for this dataset as the one applied to the public

benchmark databases in Chapter 4, the label inter-individual correlations have been

assessed to check if all the volunteers are labelling every emotion-related stimulus.

In this case, the results obtained after a Levene’s test and a Kruskal-Wallis test for

the binarized discrete labelling provided different results. The former rejected the

null hypothesis that the variances are equal across all volunteers (p<0.001), while

the later failed to reject it (p>0.001). Conversely, the same methods rejected the

null hypothesis for the binarized dimensional labels (p<0.001). This difference is a

consequence of the final conclusion extracted from the previous figures by indicating

that, at least for the discrete labelling methodology, there is not enough evidence to

claim the variances are different across volunteers. Thus, this fact suggests that each

of the methodologies is characterising different aspects of the emotions, which is in
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Figure 6-3: Class distribution for binary fear mapping over the dimensional PAD
subjective self-reports in WEMAC for all the 47 considered female volunteers, and
the original intended class distribution of the experiment: G2 and G1 for the second
and first batch, respectively.

line with the information provided in Chapter 2 when stating that both models exist

but each is intended to explain different features of emotions [48]. Note that the set

of binarized labels exhibit a non-normal distribution and that the significance level

was set at p<0.05.

After the variance analysis, the Spearman correlation is also applied for this dataset.

However, due to the previous observed difference, the non-averaged matrices are

showed to graphically demonstrate the effect and actual inter-individual conse-

quence. Specifically, Figure 6-4 presents the inter-correlation across the 47 volunteers

for both methodologies. These matrices provide a one-to-one subject information

regarding the labelling differences. When comparing the inter-correlation matrices,

we can spot some common regions within both of them. Although it can be observed

that the discrete inter-correlation matrix possess a lighter grey colour, which indi-

cates that the correlations are slightly more positive, there is not a clear differential

conclusion by just analysing solely these matrices. Therefore, the p-values corre-

sponding to such correlation matrices are plotted in Figure 6-5. In this case, there

is a clear distinction between both methodologies. The discrete labelling shows a

black colour identification for the majority of the volunteers, which indicates a p-

value lower than 0.1. Conversely, the dimensional self-assessment does not reports
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Figure 6-4: Spearman one-to-one subject inter-correlation across the 47 volunteers
for both labelling methodologies: a) discrete, and b) dimensional (PAD).

such behaviour. This fact supports the previous conclusions and suggests that the

association or agreement between the fear binary labels of the volunteers within

the discrete case is stronger than with the dimensional methodology. Please, to

contextualise this analysis, note the following two considerations: a) the volunteers

from both batches were used indistinctly, and b) this analysis serves as a preliminary

study to assess the agreement within the same methodology and the differences with

respect to both of them, however, it can be further continued by digging into spe-

cific one-to-one volunteers differences and/or even by applying different statistical

methods.
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Figure 6-5: P-values obtained from the Spearman one-to-one subject inter-
correlation across the 47 volunteers for both labelling methodologies: a) discrete,
and b) dimensional (PAD).
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Figure 6-6: Averaged 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 for all considered volunteers and their labels applying
the Spearman correlation for their PAD-based fear binary mapping labels.
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Figure 6-7: Averaged 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 for all considered volunteers and their labels applying
the Spearman correlation for their discrete-based fear binary mapping labels.

In order to provide an individual averaged perspective for the agreement, Figures

6-6 and 6-7 are shown. The obtained results fail to reject the null hypothesis on

average for each of the 47 volunteers, which indicates that there is not enough

strong evidence to suggest that an association between the fear binary labels of the

volunteers unequivocally exist. For instance, the mean p-values are 0.15 and 0.31 for

the discrete and dimensional cases, respectively. Thus, although it should be noted

that this is an averaged result, the extracted conclusion is in line with the previous

ones. Note that the volunteers showing the highest averaged p-values are generally

those that possessed the labelling inconsistencies reported in Figures 6-2 and 6-3.

The analysis provided in this section suggests that the discrete labelling method-

ology outperforms, in terms of agreement, the dimensional assessment. This con-
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clusion does not strictly mean that a system trained separately with both labels

is going to have the same difference in performance, as the self-reported labels are

always affected and biased by cognitive processes, unlike the physiological responses

as detailed in Chapter 2. Thus, the different results gathered from this stimuli

balance and label consideration study need to be further contextualised also when

evaluating the obtained results for the machine learning systems based also on both

labelling methodologies.

6.3 Physiological response exploration
In this section, we carry out a physiological response exploration to give a proper

insight into the physiological patterns, recoveries, and other particularities observed

during the experiments. Moreover, those are concluded by presenting the first fear

detection results based on such information using the discrete and dimensional self-

reported labels for the 47 volunteers. The obtained metrics are used and fused

together with the audio results in the next section.

The signals used along this response exploration were properly filtered and de-

noised. The BVP signals were subjected to the same filtering strategy as described

in Section 4.1.2, and also to a forward-backwards low-pass Butterworth IIR filter to

deal with the baseline wander residual. For the GSR and SKT signals, a basic FIR

filtering with 2Hz cut-off frequency was applied. After that, this filtered output was

down-sampled to 10Hz and also processed with both a moving mean and a moving

median filters. The former used a 1-second window and helped reducing the high

noise residual after the initial FIR, while the latter employed a 0.5-second window

and dealt with the rapid-transients.

All the presented physiological analysis and results in this section are done by using

the signals acquired by the BioSignalPlux® research toolkit system. This decision

is considered towards obtaining comparable results for the different physiological

analysis and machine learning systems proposed with respect to literature. This

fact is essential to further be able to replicate the same analysis for the other sensor

systems employed in the experiments and evaluate the differences. Although the

latter task in not within the scope of this research work, the physiological signal

acquisition verification and validation with Bindi and the BioSignalPlux® research
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toolkit system has been already performed and published in [159,236].

6.3.1 Physiological patterns and recoveries
The work presented in Chapters 4 and 5 that dealt with all the digital signal

processing stages, such as filtering and feature extraction, allowed us to provide a

deeper analysis into the physiological response within our own dataset (WEMAC).

The physiological exploration is a challenging task when considering this type of

experiments. This fact is mainly affected by the complexity of emotions and by the

uncertainties or intrinsic physiological variations due to intra and inter individual

differences. Thus, for the sake of simplicity, we perform a preliminary physiological

exploration in this section by considering some of the reviewed signals and a reduced

set of features. Specifically, for the physiological pattern analysis, we used the GSR

signal extracted during the emotion-related stimuli visualisation to determine the

degree of similarity considering signals between the same and other volunteers. Re-

garding the physiological recovery analysis, specific features extracted from the GSR

and BVP signals were used to provide a detailed comparison between the recovery

and the emotion-related stimuli visualisation stages. These analysis provided useful

insights concerning the expected and actual physiological responses of the volunteers.

Moreover, they can be also expanded by studying the complete set of physiological

signals and features.

6.3.1.1 Pattern analysis

For the physiological pattern exploration, as already commented, the GSR signal

behaviour was analysed. The selection of this physiological signal was based on

the direct relation that it has with emotional responses, as reviewed and studied

previously in Chapters 2 and 4.

In this study, the pattern exploration was done for all the 47 volunteers by using

a common time series pattern analysis technique called Dynamic-Time-Warping

(DTW) [196,281–283]. This technique allows quantifying the similarity between two

time series with equivalent features even when having different velocities or phase

space trajectories. For instance, the GSR signals amongst the different volunteers

exhibit such behaviour. Figure 6-8 shows the GSR signals for volunteers 4, 15, and

27, extracted during the visualisation of one of the fear stimuli. There can be seen
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different phasic peaks locations, some within the same temporal interval for the

three volunteers and some in totally different instants. Note that the behaviour

and dynamics of the signal depends mainly on the type of emotion-related stimuli

and the volunteer (intra-individual factors as detailed in Chapter 2). Each of these

signals, which are acquired at regular intervals, can be defined as:

𝑆𝑖,𝑗 = (𝑠𝑖,𝑗
1 , 𝑠𝑖,𝑗

2 , 𝑠𝑖,𝑗
3 , ..., 𝑠𝑖,𝑗

𝑁 ), (6.1)

where 𝑖 and 𝑗 are the volunteer and the stimulus, respectively; and 𝑠𝑖,𝑗
𝑘 , with 𝑘 ⊆

[1, 𝑁 ], are the different acquired samples for the entire emotion-related stimulus

duration. Thus, DTW finds the optimal signal-to-signal distance measure, following

some restriction rules, highlighting the similarities between the signals and providing

a measurement of their similarity regardless of non-linear variations. Specifically,

a cost function is used to assess the dissimilarity between all the samples of both

time series being compared. In our case, the cost function is given by the Euclidean

distance following

𝑑𝑚𝑛(𝑆𝑖,𝑗, 𝑆𝑞,𝑝) =

⎯⎸⎸⎷ 𝐾∑︁
𝑚,𝑛=1

(𝑠𝑖,𝑗
𝑚 − 𝑠𝑞,𝑝

𝑛 ) * (𝑠𝑖,𝑗
𝑚 − 𝑠𝑞,𝑝

𝑛 ), (6.2)

where 𝑚 and 𝑛 are the specific samples for each time series. Note that 𝑗 and 𝑞 can be

the same or different stimuli. The results obtained with this operation are arranged

into a cost matrix, which is used to find the warping or optimal path. Once such

path is found, the final result is the total cost or distance, which is directly related

to the similarity between both sequences, given by

𝑑𝑚𝑖𝑛(𝑆𝑖,𝑗, 𝑆𝑞,𝑝) =
∑︁

𝑚,𝑛∈𝐾

𝑑𝑚𝑛(𝑆𝑖,𝑗, 𝑆𝑞,𝑝). (6.3)
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Figure 6-8: GSR signals extracted from the whole visualisation of the sixth stimulus
from the first batch (last one stimulus) of volunteer 4, 15, and 27.

Therefore, in case of the GSR signals depicted for the three volunteers in this

example, the obtained distances are:

𝑑𝑚𝑖𝑛(𝑆4,6, 𝑆15,6) = 585.23

𝑑𝑚𝑖𝑛(𝑆4,6, 𝑆27,6) = 549.13

𝑑𝑚𝑖𝑛(𝑆27,6, 𝑆15,6) = 172.87,

(6.4)

which indicates that volunteers 15 and 27 possess higher similarities than the other

two volunteer combinations. Thus, for this example, 2 out of 3 examined volunteers

present a similar physiological pattern, behaviour or dynamics regarding this specific

stimulus.

Within this pattern analysis context, three different pattern clustering use cases

were tackled based upon the separation or combination of the different batches. For

all the use cases, the different analysed GSR segments were normalised (Z-score)

and compared against each others. Note that in this case, each segment is referred

as to the extracted GSR signal for every complete emotion-related stimulus. Previ-

ously to studying the individual segment-to-segment pattern analysis, we generated

averaged matrix visualisations and aggregated DTW plots as shown in Figures 6-9

and 6-10, respectively. The former gives an insight regarding the averaged pattern

similarity for all volunteers and the entire experiment, i.e. the total distance for each
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Figure 6-9: Averaged DTW distance matrix for the 32 volunteers visualising the 6
fear stimuli from the first batch of emotion-related stimuli.

volunteer-to-volunteer is calculated by averaging the set of distances obtained for

each comparison that considered the whole experiment. It can be seen how the black

spots on the matrix are the ones presenting the higher similarity (e.g., diagonal).

This matrix can serve as a tool to assess an initial graphical perspective regarding

pattern clustering. In this case, Figure 6-9 depicts the averaged matrix values for

the 32 volunteers from the first batch and the 6 fear stimuli. Although some dark

spots can be sighted within the matrix (e.g., volunteers 8-1, 15-2, 31-16, etc.), we

cannot conclude that a pattern clustering formation exist. In case of aggregating

all the volunteer-to-volunteer distances within the matrix and obtaining the mean

and standard deviation (we omit the diagonal part), Figure 6-10 can be reported.

This gives a macro perspective for each volunteer behaviour in comparison with the

other volunteers. Thus, we can conclude that, on average, there are no extremely

deviated volunteers. However, we cannot claim the existence of pattern formations

either. Note that, for the sake of simplicity, only this matrix and plot are shown,

but the rest of the use cases were also analysed and led to the same conclusion.

After performing the previous analysis and towards a quantification of segment

clustering, subject-dependent and subject-independent leave-one-segment-out clus-

tering studies were performed. First of all, the similarities (distances) for every

GSR segment with respect to the rest of the segments from the same and different

volunteers were extracted. Secondly, considering the set of gathered distances, the

minimum was found. Finally, the current segment being processed was assigned to

231 Jose A. Miranda, PhD Thesis



Chapter 6. A new dataset for emotion recognition: WEMAC

0 5 10 15 20 25 30
Volunteers

0

200

400

600

800

1000
d D

W
T

Figure 6-10: Aggregated results obtained from the averaged DTW distance matrix
for the 32 volunteers from Figure 6-9.

the same label as the one of such minimum. Note that for this analysis, we considered

the binarized ground truth labels as the ones that are expected (non-self-reported).

This fact was based on assessing the feasibility of finding physiological pattern clus-

tering without any subject-specific cognitive-biased information. Table 6.2 reports

the results after carrying out the clustering studies for the different use cases. It can

be observed that the highest results for the three compared metrics are obtained

always when considering the subject-independent clustering approach. Note that

this fact can also be affected by the data set size, as the amount of data for the

subject-dependent clustering is considerably less than for the subject-independent.

Overall, there are more similar physiological segments within the non-fear stimuli

(specificity). In fact, the clustering of the fear stimuli segments does not surpass

the 50.00% detection threshold (sensitivity). The highest difference between both

batches is reported for the subject-independent clustering with up to 47.92% and

29.50% sensitivity for the first and second batch, respectively. Again, this fact can

indicate a clear physiological response difference regarding the fear stimuli effect,

however, it needs to be contextualised to the lesser amount of volunteers being

evaluated for the second batch. Finally, the highest sensitivity is achieved when

considering both batches together, although at the expense of obtaining the low-

est specificity for the subject-independent clustering. Notwithstanding to the latter

fact, the Gmean for such use case is one of the highest with up to 53.45%. Thus,
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after this study we can conclude different key aspects regarding the physiological

responses due to the non-fear and fear related stimuli as well as the overall physio-

logical clustering:

• Analysing the GSR signal similarities between the different volunteers does not

achieve a proper distinction between fear and non-fear related stimuli. Note

that this analysis can be further extended to explore other signals as well as

different pattern exploration techniques.

• The non-fear related stimuli clustering is better characterised or identified.

This fact is given regardless of the considered batch.

• The observed sensitivity when considering both batches together is the highest

one. This implies that there are fear related stimuli evoking similar physiolog-

ical responses regardless of the batch and their specific audiovisual content.

Thus, in this research we apply an agnostic-batch perspective by considering

that both batches can be used together to further design a more efficient fear

detection machine learning system.

• The low performance metrics for the different clustering use cases indicate that

this information is not enough to unravel and distinguish the fear related phys-

iological activation mechanisms. Thus, more signals and/or features might be

exploited towards achieving such goal.

Clustering Batch Segment identification metrics

Type Number SPE SEN Gmean

Subject-dependent
1 54.29% 43.23% 48.45%

2 48.57% 48.57% 48.57%

Subject-independent

1 61.33% 47.92% 54.16%

2 64.76% 29.50% 43.70%

1&2 57.34% 49.83% 53.45%
Table 6.2: Leave-one-segment-out clustering study for both subject-dependent and
subject-independent. SPE: specificity, SEN: sensitivity, Gmean: geometric mean.

6.3.1.2 Recovery analysis

For the physiological recovery analysis, as previously explained in Section 6.1, an

online stabilisation evaluation of the three different physiological signals being ac-
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quired by Bindi’s bracelet was performed during the experiments. This online pro-

cess operated every ten seconds performing an online basic filtering, extracting the

BPMs from the BVP signal, and finally assessing the BPMs, GSR, and SKT sta-

bilisation for more than four consecutive processing windows. The latter process

was done by hard-threshold adjustment following a 90% level confidence interval

with respect to the level of the first window. To analyse the actual effect of these

recovery stages, a posterior physiological study was performed. Specifically, features

extracted from the GSR and the BVP signals were used to provide a detailed com-

parison between the recovery and the stimuli visualisation stages. On the one hand,

the number of ERSCR or phasic peaks, amplitude and rise time are compared. On

the other hand, different Poincaré-plots are elaborated to assess the sympathetic

status within the recovery stage [284]. Note that this recovery analysis is done

considering both bathes.

Figure 6-11 shows the averaged results for the detected peaks during the experi-

ment. A distinction is done by dividing the fear and non-fear related physiological

responses, which is also applied for their respective recovery stages. This process

was performed considering the whole physiological signal acquired for the different

stimuli and recovery stages, i.e. no segmentation was applied. This latter consid-

eration is adopted as the main goal of this analysis is to evaluate the physiological

responses. Thus, there is no need for real implementation constraints such as data

segmentation. Note also that, for this analysis, cvxEDA algorithm was used, which

is detailed in Section 2.5.2. As expected, the peaks detected for all the fear stimuli

surpass the ones detected for the non-fear and the recovery stages. Specifically, dur-

ing the fear stimuli visualisation, an average of 2.30 peaks were detected per stimulus

with 0.81 standard deviation, while the non-fear stimuli produced 1.11 peaks with

0.52 standard deviation. One of the key aspects of these results is that the recovery

stages are below such metrics for both types of stimuli. This is obtained for both the

averaged and the standard deviation values: fear recovery presents a peak average

of 0.99 (0.37), and non-fear recovery is up to 1.03 (0.48). To support the peak de-

tection results, their amplitude and recovery time are also extracted and plotted in

Figures 6-12 and 6-13. Note that the reported amplitude is obtained as the relative

amplitude from the detected peak onset, as well as for the recovery time, see Figure
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Figure 6-11: Averaged results comparison obtained from the GSR peak extraction
process using cvxEDA algorithm for the 47 volunteers and both batches.

2-14. Overall, the same behaviour is observed for these metrics. However, the mean

and standard deviation of the relative amplitude for the non-fear recovery exceed the

non-fear stimuli metrics. Specifically, the non-fear stimuli reach an average relative

amplitude of 0.01uS with a standard deviation of 0.006uS, and the non-fear recovery

provides 0.02uS averaged relative amplitude with a standard deviation of 0.01uS.

This physiological difference needs to be contextualised together with the recovery

time of the extracted peaks, in which we observe exactly the same behaviour as for

the detected peaks. Thus, observing this behaviour, we can conclude that, on av-

erage, the level of arousal is as expected for the recovery stages in comparison with

both fear and non-fear stimuli together. Therefore, the application of the active

recovery process implemented reduces the emotional bias between stimulus.

For the BVP analysis, we used a commonly applied tool to assess the sympathetic

activation, which is known as Poincaré-plot. This is a recurrence plot in which the

consecutive IBIs are transferred to a two-dimensional dispersion diagram to obtain

a graphic image of the behaviour of the HRV for a given time interval, Figure 6-14.

From this specific graph, different geometric metrics are obtained. Generally, the

two most important are the standard deviation along and perpendicular to the line-

of-identity, 𝑆𝐷2 and 𝑆𝐷1 respectively. It has been shown that these features can

characterise the sympathetic and parasympathetic activation. For instance, having a

narrow shape of the main cluster is an indication of dominance of the non-respiratory
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Figure 6-12: Averaged results comparison obtained from the GSR relative amplitude
extraction process using cvxEDA algorithm for the 47 volunteers and both batches.
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Figure 6-13: Averaged results comparison obtained from the GSR peak recovery
time extraction process using cvxEDA algorithm for the 47 volunteers and both
batches.
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components regulating the heart rate, which is directly related to the sympathetic

activation. Conversely, the wider the cluster, the more dominance of the respiratory

components, which is related to the parasympathetic prevailing. Moreover, this type

of plot allows studying the non-linearity of the cardiac information as well as being

insensitive to trends in the IBIs [285–287]. Note that the IBI time series is explained

and represented in Section 4.1.3.1 and equation 4.6. The calculation of both standard

deviation features has been done following a simplification considering [288–290].

Thus, these are computed as the standard deviation of the time series obtained

following:

𝑆𝐷2(𝑖) = (
√

2
2 ) * (𝐼𝐵𝐼𝑖 + 𝐼𝐵𝐼𝑖+1),

𝑆𝐷1(𝑖) = (
√

2
2 ) * (𝐼𝐵𝐼𝑖 − 𝐼𝐵𝐼𝑖+1).

(6.5)

𝐼𝐵
𝐼 𝑛
+
1

𝐼𝐵𝐼𝑛

𝑆𝐷1
𝑆𝐷2

Figure 6-14: Exemplification of a recurrent Poincaré-plot and its standard deviation
metrics along (𝑆𝐷2) and perpendicular (𝑆𝐷1) to the line-of-identity.

For our experiment, as done with the GSR signal, the whole BVP signal for the dif-

ferent stimuli and recovery stages was considered, i.e. no segmentation was applied.

Figure 6-17 shows different perspectives for the three Poincaré-plots obtained: fear

and non-fear stimuli, and recovery stages. Note that all the IBI time series for the 47

volunteers are contained within these Poincaré-plots. At first glance, we can observe

that the fear points tend to be slightly closer to the bottom left corner. This fact

is an indication of lower heart rate variability or higher cardiac rhythm. Moreover,
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the recovery points are the ones presenting more dispersion or wider shape, which

indicates a parasympathetic dominance.
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Figure 6-15: Different Poincaré-plots perspectives for all the 47 volunteers consid-
ering the fear stimuli (red-bottom), non-fear stimuli (green-middle), and recovery
stages (blue-top). Frontal View.
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Figure 6-16: Different Poincaré-plots perspectives for all the 47 volunteers consid-
ering the fear stimuli (red-bottom), non-fear stimuli (green-middle), and recovery
stages (blue-top). Longitudinal View.
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Figure 6-17: Different Poincaré-plots perspectives for all the 47 volunteers consid-
ering the fear stimuli (red-bottom), non-fear stimuli (green-middle), and recovery
stages (blue-top). 2D View.
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The analysis of these type of plots by visual exploration is a challenging task.

Thus, Table 6.3 reports the average and standard deviation for the different 𝑆𝐷2

and 𝑆𝐷1 values obtained from this presented Poincaré-plots. Note that in this case

the recovery stages are divided as done for the GSR analysis.

Stimuli 𝑆𝐷2 (𝑚𝑠) 𝑆𝐷1 (𝑚𝑠)

Type 𝜇(𝜎) 𝜇(𝜎)

Fear 62.78 (9.99) 14.28 (2.91)

Fear Recovery 72.37 (13.11) 17.19 (3.47)

Non-Fear 60.96 (11.19) 14.42 (3.05)

Non-Fear Recovery 70.57 (11.84) 17.22 (3.34)

Table 6.3: Poincaré-plot features evaluation for the fear and non-fear stimuli, and
their respective recovery stages. These metrics are the averaged mean and standard
deviation for all the 47 volunteers.

Although the BVP information is not directly related with one emotional dimen-

sion, as the GSR is with the arousal, and its analysis is more complex, the obtained

results reaffirm some of the physiological effects stated in the previous GSR ex-

ploration. For instance, when comparing the obtained features for the fear and

non-fear stimuli, we can observe how while the average value of 𝑆𝐷2 decreases from

62.78 ms up to 60.96 ms, the 𝑆𝐷1 increases from 14.28 ms up to 14.42 ms. For

the recovery stages, 𝑆𝐷1 increases in both stimuli types, fear and non-fear recov-

ery, which indicates a wider clustering formation and a parasympathetic activation.

However, 𝑆𝐷2 also increases for both recoveries. This physiological fact implies that

the recovery stages cluster is more disperse in both directions, which is not desired.

Ideally, 𝑆𝐷2 should have the opposite behaviour for the recovery stages. Thus, from

this analysis, we conclude that the recovery process is actually having an effect into

the parasympathetic part of the ANS, but it is not lowering down the sympathetic

contribution.

The implemented physiological recovery process and its physiological effects have

been verified throughout these analysis. One of the main limitations of this online

recovery process is that it is not producing an averaged close to zero physiological

response, and in some cases it is not suppressing the sympathetic contribution. This

fact is mainly due to two main factors:
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• Achieving a flat (non-active), parasympathetic prevailing, physiological re-

sponse when being under a virtual reality emotion elicitation experiment is a

challenging task. Considering that this experiment, for most of the volunteers,

was the first virtual reality experience, the observed differences between the

physiological dynamics into the non-fear stimuli and into the recovery stages

are slightly noticeable for the GSR analysis.

• The hard-coded confidence interval implemented obviates the actual physi-

ological trend or dynamic within every processing window. Moreover, the

Poincaré-plot is insensitive to trends in the IBIs or heart-rate. For instance,

it could happen that, given a set of different consecutive temporal processing

windows and a hard-coded confidence intervals, the trend of the signal being

evaluated is positive, which in case of the GSR signal would mean an arousal

increment.

Up to my knowledge, no open public database considered an active biofeedback-

based recovery monitoring within their experiments, which makes this part of our

database, as well as the analysis presented in this section, a novel contribution. The

stated limitations were used to keep researching into new online wearable recovery

implementations. In fact, an improved version of the presented recovery process

is being developed and implemented. For instance, one of the first stages of the

new online recovery monitoring has been implemented in [280]. Specifically, this

first stage used online feature extraction for the BVP signal and, by means of least

squares linear regression, the different feature trends were analysed to ensure sym-

pathetic activation reduction. Although this new recovery process is still under

development, it has been already tested for a small sample size of volunteers and

proved to outperform the initial recovery monitoring process.

6.3.2 Physiological uni-modal results
As stated in the previous Section, the reported results in this Section has been

obtained with the signals acquired by the BioSignalPlux® research toolkit system.

Thus, these results are based on an offline machine learning system implementation.

Even though such system has not been embedded, these results represent the first

baseline fear detection results of our dataset. Note that the design and implemen-

tation of the fear detection system based on our dataset is mainly motivated by the
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limitations found in the previous fear detection systems proposed in Chapter 4. In

this case, and targeting the improvement and deepening of the subject-independent

models, the presented system is focused on such approach. Regarding the labels,

both discrete and dimensional have been used following the same fear-binary ap-

proach as stated in Chapter 2 and applied in Chapter 4. However, due to the

labelling inconsistencies observed for some of the volunteers in Section 6.2, we de-

cided to exclude volunteers number 5, 6, 15, 33, and 40 for the discrete case and

volunteers number 3, 5, 6, 13, 20, 21, 22, 40, and 42 for the dimensional use case

from the evaluation since they had only around 25% of the positive class. This is

considered here as the used labels are the self-reported ratings, unlike the previous

Section that used the validated or target labels. Further research might be realised

towards analysing and quantifying the effect of severely imbalanced subjects within

subject-independent machine learning systems. The latter is not within the scope

of this PhD thesis. It should be noted that during the development of the presented

fear detection system, two supervised bachelor thesis [291, 292] and one supervised

Master thesis [293] provided support into the design space exploration.

The implemented physiological data processing architecture is shown in Figure 6-

18. The initial stages are based on the previous proof-of-concept systems presented

in Chapter 4. First of all, the applied filtering stages follow the same processes as

detailed in Section 6.3. For the data segmentation and overlapping, the 20-second

and 50% overlapping strategy is used, as done for the MANHOB system in Section

4.2.2. The feature extraction process includes additional features in comparison

with the previously presented fear detection systems. Specifically, 57 features are

extracted: 31 from BVP, 20 from GSR, and 6 from SKT. These features are nor-

malised following a Z-score technique and later fed into the feature selection stage.

Note that, before the feature selection process, the train-test split is done in a per-

sonalised manner, by using a hybrid CV technique, LASO, as detailed in Section

3.1.7.3. This technique takes into account both the intra and inter variability of the

volunteers, unlike LOSO and LOTO. Specifically, the LASO partition is done by

leaving out half of every volunteer, i.e. the first seven audiovisual stimuli responses

are used for training and the other seven are used for testing. The test set is fur-

ther employed to execute a full blind testing, which will be used to assess the final
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system performance. Note that this train-test partition configuration is one initial

approximation and it can be further improved and/or performed differently. For the

training process, a training and validation partition is done with a 5-kFold CV. This

partition is also used during the hyperparameter optimisation done through SMBO,

as detailed in Section 4.2.4. This architecture is applied, validated and tested based

on the same three classifiers as for the fear detection system presented in Section

4.2.4: SVM, KNN, and ENS.

Feature 
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(20 sec Window, 

50% overlapping)
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scaling)

CV partition

(5-kFold)

Train (SBMO)

𝑐𝑜𝑠𝑡 = 1.6
Validation

(5-kFold)Optimised 

Model

Test assessment 

(LASO ad-hoc)

Train / Test Split 

(LASO ad-hoc)
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Figure 6-18: Physiological data processing architecture for training and testing the
generated machine learning models using our own dataset.

6.3.2.1 Feature Extraction

Within the feature extraction procedure, the different delineation processes are also

performed. In this case, the BVP signal is subjected to a stacking or an approximate

computing approach using three different algorithms. The first algorithm is the one

applied in Section 4.1.3. The second algorithm is given by [294] and it is based

on an adaptive threshold method for PPG peak detection. The third algorithm is

provided by [295] and it is based on a moving average of valley- peak differences

along with local threshold filters to identify the systolic peaks of the PPG signal.

These three algorithms can be grouped within the local maximum and minimum

slope-based methods, which are the less computational demanding BVP delineation

algorithms. Note that they obtained a peak detection accuracy over 90.00% for their

respective validation. Unlike using just one delineation algorithm as done for the

previous presented fear detection systems, this triple approach is considered in this

case to deal as much as possible with any PPG morphological deformation. Note

that in our dataset, the audiovisual stimuli are VR-based, which introduces more

body movements (motion artefacts) than the rest of the public open databases based
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on solely 2D stimuli. The delineation of the GSR signal has been performed as in

Section 4.1.3. Thus, we assumed a linear combination of both GSR components,

SCL and SCR, followed by equation 2.7.

Regarding specifically the number of new features added, Tables 6.4 and 6.5 detail

each of the features being considered in this case. Note that the extracted features

for the SKT signal did not change and they are the same as the ones specified in

Table 4.14. For the BVP, six new features were included. In the time domain,

the mean value of the signal and the root mean square of the IBI (HRV-RMSSD)

were considered. The former is used to account for any respiration residual left

that was strong enough after having filtered the signal. The latter is an additional

metric derived from the extracted IBIs and it provides another indicator for the

cardiac vagal control, i.e. the higher the metric the more parasympathetic activa-

tion. In the frequency domain, the different frequency bands were rearranged and

more information regarding the energy contribution of the different bands, relative

and normalised, was obtained. Note that such band definition rearrangement has

been assumed due to recent publications [180]. Moreover, a major change was im-

plemented for the PSD estimation considering the unevenly acquired IBIs. Thus,

rather than interpolating and using the Welch’s overlapping segment averaging esti-

mator, the Lomb-Scargle periodogram has been employed to estimate the PSDs for

the specified spectral bands [296]. This technique allows us to relax the frequency

resolution considerations. After obtaining the PSD contribution for each band, their

energy spectral density is computed, which was later normalised to obtain the en-

ergy ratio between the LF and the HF bands. Finally, the non-linear features has

been expanded with up to seven derived Poincaré-plot metrics. These were mainly

based upon [289, 290] and their computation use 𝑆𝐷2 and 𝑆𝐷1, which are detailed

in the previous Section and given by equation 6.5. Thus, the longitudinal and the

transverse length of the plot is computed following as:

𝐿𝑆𝐷2 = 4 * 𝑆𝐷2,

𝑇𝑆𝐷1 = 4 * 𝑆𝐷1.
(6.6)

Note that these two recurrence-based features are directly related to both standard

deviations 𝑆𝐷2 and 𝑆𝐷1. Thus, they follow the same physiological rationale but

243 Jose A. Miranda, PhD Thesis



Chapter 6. A new dataset for emotion recognition: WEMAC

on an enhanced manner due to the multiplication factor. Additionally, the Cardiac

Sympathetic Index (CSI), Modified CSI (MCSI) and Cardiac Vagal Index (CVI)

were also calculated. They are computed as follows

𝐶𝑆𝐼 = 𝐿𝑆𝐷2/𝑇𝑆𝐷1 = 𝑆𝐷2/𝑆𝐷1,

𝑀𝐶𝑆𝐼 = 𝐿2
𝑆𝐷2/𝑇𝑆𝐷1 ,

𝐶𝑉 𝐼 = 𝑙𝑜𝑔10(𝐿𝑆𝐷2 * 𝑇𝑆𝐷1).

(6.7)

It can be observed that these features are strongly related to sympathetic and

parasympathetic activation given a Poincaré-plot. For instance, the MCSI improves

the longitudinal length to emphasise the sympathetic response, which can lead to

distinguishing weaker sympathetic activations. One of the major changes within the

BVP non-linear features is that the MSE is not considered in this system. This

fact is due to observed limitations when extracting this feature for short temporal

windows [297, 298]. For the GSR, two more features were included. These are the

average relative recovery time and the average area under the detected peaks. The

former has been already used in the previous Section. The area under the peaks is

computed by means of trapezoidal approximation. Note that the latter can be fur-

ther improved using Simpson’s rule at the expense of increasing the computational

time.

6.3.2.2 Feature Selection

To reduce the dimensionality of the problem, SFS is employed. This technique

allows selecting the most relevant features and, thus, reducing the training and

inference time complexity and storage requirements. Thus, we run the SFS for each

of the three classifiers considering every generated training set of volunteers. In the

case of the SVM, a RBF kernel is used with with 𝛾 = 1 and 𝐶 = 1. The KNN

is set to Euclidean distance with 10-𝐾 nearest neighbours. Lastly, the ENS uses

an AdaBoost algorithm with boosted decision trees as weak learners and maximum

number of splits up to 10. The cost function for each iteration of the SFS was

given by 1−𝑀𝐶𝐶. Note that this feature selection process is performed after the

train/test split to avoid information leakage from the test set. In the next points, we

provide the list of features that were selected at least once for all generated models.

When using the binarized discrete labels, the following best features are obtained:
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Table 6.4: Features extracted for the BVP signal and the proposed fear binary
emotion recognition using our dataset.

Sensor Domain Features

BVP Time-domain: Filtered data mean value
(31) (4) Mean of IBI

HRV-SDNN
HRV-RMSSD

Frequency-domain: Normalised IBI PSD contribution (summation) for:
(12) Low frequency (LF) (0.01–0.15 Hz)

High frequency (HF) (0.15–0.40 Hz)
Ultra-High frequency (UHF) (0.40–1.00 Hz)
Energy contribution of those IBI PSD bands

Relative energy of those IBI PSD bands
Normalised energy ratio between LF and HF

Normalised energy ratio for LF and HF
Non-linear: From Poincaré-plot: SD2, SD1, LSD2, TSD1, CSI, MCSI, CVI

(15) Detrended fluctuation for the filtered signal
Recurrence rate

Determinism
Laminarity

Longest RP diagonal line
Diagonal lines entropy

Trapping time
Correlation dimension

• For the SVM-based system (15 features total selected):

– BVP (9): filtered data mean value, HRV-RMSSD, energy contribution of

HF and UHF, ratio LF/HF, 𝑆𝐷1, 𝑇𝑆𝐷1, detrended fluctuation analysis

for the filtered signal, laminarity and diagonal lines entropy.

– GSR (5): filtered data mean value, and its standard deviation, area under

the detected ERSCRs, first and third quartile distribution.

– SKT (1): filtered mean value.

• For the KNN-based system (11 features total selected):

– BVP (2): filtered data mean value, and laminarity.

– GSR (8): filtered data mean value, average number of ERSCR peaks,

average relative amplitude, rise time and recovery time of ERSCR peaks,

area under the ERSCRs, first and third quartile distribution.

– SKT (1): filtered mean value.

• For the ENS-based system (13 features total selected):

– BVP (3): filtered data mean value, diagonal lines entropy and trapping

time.

– GSR (8): filtered data mean value, average number of ERSCR peaks,
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Table 6.5: Features extracted for the GSR signal and the proposed fear binary
emotion recognition using our dataset.

Sensor Domain Features

GSR Time-domain: Filtered data mean value
(20) (9) ERSCR including number of peaks

ERSCR amplitude and rise time
ERSCR recovery time and area under the peak

Filtered data Standard deviation
First quartile
Third quartile

Frequency-domain: Power spectral density of two bands
(3) for SCL and SCR components

(0–0.05 Hz, 0.05–1.5 Hz)
Spectral density ratio for 0–0.05 Hz

Non-linear: Detrended fluctuation for filtered data
(8) Recurrence rate

Determinism
Laminarity

Longest RP diagonal line
Diagonal lines entropy

Trapping time
Correlation dimension

average relative amplitude and rise time of ERSCR peaks, area under

the ERSCRs, first and third quartile distribution, and laminarity.

– SKT (2): filtered mean value, and power spectral density of the lowest

band (0–0.1 Hz).

When using the binarized dimensional labels, the following best features are ob-

tained:

• For the SVM-based system (11 features total selected):

– BVP (4): filtered data mean value, mean of IBI, recurrence rate and

diagonal lines entropy.

– GSR (5): filtered data mean value and its standard deviation, first and

third quartile distribution, and trapping time.

– SKT (2): filtered mean value and power spectral density of the lowest

band (0–0.1 Hz).

• For the KNN-based system (8 features total selected):

– BVP (2): filtered data mean value, and laminarity.

– GSR (5): filtered data mean value, average number and average relative

amplitude of ERSCR peaks, first and third quartile distribution.

– SKT (1): filtered mean value.
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• For the ENS-based system (8 features total selected):

– BVP (3): filtered data mean value, diagonal lines entropy and trapping

time.

– GSR (4): filtered data mean value, average number of ERSCR peaks, av-

erage relative amplitude of ERSCR peaks, and first quartile distribution.

– SKT (1): filtered mean value.

Overall, the amount of features selected per each model ranges between 15 and

20. Thus, the complexity of the problem is reduced to a relatively low amount of

features for the different classifiers and for both labelling methodologies. Note that

this fact drastically affects to different stages of the physiological architecture, such

as the training and testing (inference). Moreover, regarding the specific number

and nature of the most important listed features for each labelling use case, approx-

imately 50% are temporal and morphological, 20% are frequency-based, and 30% are

non-linear. Although each classifier did not select exactly the same features, such

selection determines a first approximation to obtain the ones providing the most

valuable information. For the binarized discrete labelling case, it should be high-

lighted that the three classifiers agreed on considering the filtered data mean value

for the three sensors, features related to the ERSCR peaks, and some non-linear fea-

tures directly related to the non-periodic characterisation of the system (laminarity,

trapping time, diagol lines entropy). For the binarized dimensional labelling case,

the same behaviour with respect to the filtered data mean value consideration is

repeated, which is also accompanied with features related to the ERSCR peaks by

two out of the three classifiers and the same non-linear features. However, the SFS

applied for the binarized dimensional use case considers less features agreed among

models. This fact can be a consequence of the stronger self-reported disagreement

observed in such labelling.

6.3.2.3 Validation and testing results

Also, having applied the feature selection step, we decided to employ a cost-

sensitive learning approach to deal with the imbalance labelling situation. This

was done by tuning a miss-classification cost parameter, as performed with previous

proposed fear detection systems in Section 4.1.4. For this specific case, a miss-

classification cost of 1.6 was applied over the positive class (fear), which was fixed
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Class Discrete Labels Dimensional Labels
Fear 1496 1335

Non-Fear 2107 1942
Balance 42/58% 40/60%(Fear/Non-Fear)

Table 6.6: Total number of instances for our dataset based on both binarized discrete
and dimensional self-reported labels.

by an experimental parameter sweep after the feature selection stage. Note that this

design consideration makes the system less prompt to omit a dangerous situation

for the use case being addressed [184], i.e. it increases sensitivity.

The physiological machine learning system output is a binary label every 10 s, as

denoted in Section 4.2.2. Thus, for this first approximation, we assume that the

ground truth of a specific stimulus is the binarized self-reported label assigned to it,

regardless of the total amount of instances generated, i.e. all the generated instances

within the same stimulus have the same label. For instance, there are audiovisual

stimulus within the same class that generates more instances than others. Such

approximation can be critical for short-length stimulus, as stimulus number eighth

from the first batch, whose duration is 23 s. Such duration implies one generated

instance, which can seriously damage the balance of the system or even be insufficient

to properly characterised the target emotion of that stimulus. This limitation is

tackled by considering the complete number of instances for fear and non-fear classes

without relying onto the amount of information provided by each stimulus. Table

6.6 reports the total number of instances based on both binarized discrete and

dimensional self-reported labels considering a 20 second processing window and 50%

overlapping. Note that these values are obtained for all the volunteers independently

of imbalanced labels. It can be observed that the balance is close to that reported

in Section 6.2.

The validation and testing results for the different classifiers are detailed in Table

6.7. Note that the average and mean absolute deviation values are shown for the

different classifiers, partitions and labelling approaches. These results come from the

42 and 38 models considered for the binarized discrete and dimensional model, re-

spectively. Overall, the obtained results are inline with the ones obtained in Section

4.2.4.2, in which the SVM showed the worst performance, followed by the KNN, and
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Table 6.7: Validation and testing results for the different physiological machine
learning systems using the first release of WEMAC. Results for both approaches
binarized discrete (Disc) and dimensional (Dim) are shown.

Classifier Partition SEN SPE Gmean ACC AUC F1
Type (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

SVM

Val-Disc 83.02(1.19) 78.79(0.99) 80.87(0.79) 80.72(0.79) 86.72(0.79) 78.16(0.16)
Test-Disc 64.36(17.39) 67.88(13.77) 65.29(12.48) 65.70(11.44) 65.33(16.08) 62.84(13.79)
Val-Dim 86.45(1.05) 75.36(2.91) 80.63(1.54) 82.26(1.07) 87.33(1.00) 82.23(0.99)
Test-Dim 72.78(13.21) 53.86(11.24) 61.60(9.23) 62.51(9.03) 62.14(11.24) 65.01(9.64)

KNN

Val-Disc 81.15(4.52) 75.55(4.92) 78.28(4.71) 73.18(5.85) 86.84(4.26) 75.32(5.04)
Test-Disc 65.53(14.63) 69.00(13.49) 66.08(10.67) 66.87(9.64) 66.45(14.30) 64.72(10.17)
Val-Dim 84.27(4.49) 84.65(3.92) 84.46(4.17) 84.45(4.20) 92.34(3.44) 84.60(4.19)
Test-Dim 61.08(14.32) 65.01(14.45) 61.37(7.68) 61.78(6.84) 61.43(10.46) 60.00(9.76)

ENS

Val-Disc 81.82(4.31) 75.40(5.29) 78.53(4.82) 68.17(3.70) 75.52(4.01) 64.19(3.74)
Test-Disc 68.55(12.10) 61.61(16.81) 63.51(10.48) 64.50(9.54) 64.57(14.25) 65.11(8.31)
Val-Dim 94.02(0.48) 93.18(0.53) 93.60(0.44) 93.71(0.44) 98.40(0.22) 93.72(0.44)
Test-Dim 65.91(15.71) 64.98(14.69) 63.75(9.28) 64.23(8.15) 66.62(12.20) 63.37(10.63)

being the ENS the best one. In fact, when analysing the provided averaged metrics

and their dispersion values together for both discrete and dimensional labelling, the

AdaBoost (ENS) classifier is the one outperforming the other two. One of the key

differences among them is that, while the SVM and the KNN are losing specificity

for the dimensional use case, the ENS keeps the balance between sensitivity and

specificity leading up to a very similar Gmean for both cases.

On the one hand, specifically for the discrete labelling, the best averaged results are

obtained by the KNN classifier for both validation and testing partitions. Moreover,

the highest specificity, Gmean, accuracy, and AUC are achieved in this case for

this classifier with up to 69.00%, 66.08%, 66.87%, and 66.45%, respectively. On

the other hand, when dealing with the dimensional labelling, the classifiers do not

follow exactly the same behaviour as for the discrete. In fact, the best classifier in

such case is the ENS reaching the highest specificity, Gmean, accuracy, and AUC

with up to 64.98%, 63.75%, 64.23%, and 66.62%, respectively. Note that these

results are obtained using a reduced set of features, as detailed in the previous

Section. This fact, accompanied by the challenges when dealing with a subject-

independent approach, confers high value and great potential to these first initial

baseline WEMAC results.

To contextualise the behaviour of the classifiers for the different considered models,

Figures 6-19 and 6-20 show the MCC performance metric over their test partitions.

Note that this metric uses all the information from the confusion matrix and pro-

vides a correlation-like value considering the ground truth and predicted confusion
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Figure 6-19: MCC test-metric evaluation for all the 42 models considered within
the binarized discrete fear detection use case.

matrices. For both labelling use cases, we observe that the different models follow a

similar behaviour for some of the considered volunteer. For instance, the correlation

of the MCC metrics is up to 0.48(0.17) and 0.44(0.13) for the discrete and dimen-

sional labelling, respectively. This fact is remarkable since it is an indicator that

demonstrates the independence of the specific behaviour of each classifier with re-

spect to the dataset used. In line with the reported results of Table 6.7, the discrete

labelling approach outperforms the dimensional one. However, these plots also show

a very subject-dependent results in some cases. This is reflected into a very high

variability, which is also reported by the MAD of the different performance metrics.

Specifically for these plots, the MCC metrics are approximately contained within

-0.4 and 0.9 and within -0.4 and 0.6 for the discrete and the dimensional cases, re-

spectively. Such variability and distributions are plotted in Figure 6-21, which shows

the aggregated distribution for the different classifiers and labelling use cases. Note

that the median value is the red line or horizontal line within the boxes. As already

previously stated, the training using the binarized discrete labelling achieves better

models (higher medians) than the binarized dimensional labelling. Moreover, the

interquartile range dispersion is always smaller when applying the ENS classifier.

Up to my knowledge, the generated systems are the first fear detection systems

using a reduced set of physiological signals and virtual reality stimuli. For instance,

these results constitutes the physiological baseline for the WEMAC dataset. It has

been demonstrated that, overall, the systems trained with the binarized discrete

labelling obtain better models than the ones trained with the binarized dimensional
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Figure 6-20: MCC test-metric evaluation for all the 38 models considered within
the binarized dimensional fear detection use case.
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Figure 6-21: MCC test-metric box plot distribution for all the 42 and 38 models
considered within the binarized discrete and dimensional fear detection use cases.

labelling. This fact is in line with the self-reported labelling response exploration

conclusions stated in Section 6.2.

The main limitation of the generated machine learning models is the observed high

variability and dispersion. This fact could be due to an over-fitting problem, which

could be causing the generation of low bias and high variance models. However, the

obtained validation metrics do not suggest that. In fact, the classifier providing the

best validation performance metrics, that is AdaBoost with over 90.00%, is the one

being the less susceptible to this type of problem, see Section 3.1.7. Thus, different

aspects need to be studied and analysed to provide a proper explanation to this

problem:

• The applied CV LASO technique leaves a small amount of samples into the

testing partition. Although this technique is intended to deal with subject-
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personalisation, the small testing dataset size can result into an unrepresen-

tative dataset. Thus, other partition techniques might be exploited towards

considering a higher testing dataset and/or including more inter and intra-

variability. This fact is also affected by the limited amount of available data

for each volunteer when dealing with laboratory-based databases.

• In view of such variability among the different volunteers, some processes

within the proposed training architecture can be personalised based on the

specific dataset, i.e. based on the specific combination of volunteers or the

classes distribution. For instance, the cost-sensitive approach can be tuned for

every different training set.

• The partition techniques for the generation of the train-validation datasets

could be changed to the same CV technique as applied for the first partition

(LASO).

• Further physiological analysis can be done to find clusters and extreme differ-

ences among the different volunteers. As a first approximation, such clusters

can be based on simple physiological filters such as: level of GSR activation

(hypo-activity vs hyperactivity), SKT ranges, and level of residual noise of the

PPG signal after filtering.

• Different types of normalisation and scaling techniques can be also employed

to evaluate their effect. This fact is directly related to the need of discovering

the best way to model the problem, i.e. subject-independent fear detection.

Amongst these stated considerations, from my point of view, the one that is cur-

rently affecting the most is the unrepresentative test dataset risk. Specifically in

this case, the applied LASO left approximately up to 1.3% of the total data for the

test set. This is an average of 48 samples over a total of 3600 available instances.

For the sake of providing a starting point regarding this specific discussion, Table

6.8 reports the results for the same physiological architecture when training the

KNN system with the binarized discrete labelling, but using a LOSO partition for

the train-test split. We can observe that the LOSO case achieves smaller average

results, which can be affected by the intra-variability of the unseen volunteer that

is not considering for the training. However, the most important fact is spotted at

the dispersion difference. The LOSO system reports less variability, which can be
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an indication of a more representative test set. Note that more studies and analysis

need to be done to properly characterised this fact.

Table 6.8: Validation and testing results for the KNN machine learning systems
using the binarized discrete labelling and a LOSO CV technique for the train-test
partition.

Partition SEN SPE Gmean ACC AUC F1
Type (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

Test-Disc-LASO 65.53(14.63) 69.00(13.49) 66.08(10.67) 66.87(9.64) 66.45(14.30) 64.72(10.17)
Test-Disc-LOSO 64.05(10.69) 60.93(9.26) 61.74(6.98) 61.90(6.93) 62.25(9.54) 58.48(7.18)

Within this variability casuistry and besides the recommended analysis to be per-

formed towards the improvement of the models, it should be also considered that the

emotional latency and physiological dynamics of every volunteer for each stimulus

is affecting the binary class separation. For instance, Figure 6-22 shows the LF/HF

Ratio extracted from the IBI signal of volunteer number three. Specifically, each bar

represents the extracted feature for a 20-second window with 18-seconds overlapping.

Note that this overlapping is applied in this case to reduce the temporal resolution

and enhance the feature dynamic visualisation along each stimulus. We can observe

how the evolution of this specific feature varies within every stimulus. From this

information, we can perform an analysis as the one provided in Section 6.3.1.1, in

which the GSR patterns where studied. However, the problem to be highlighted in

this case is that, regardless of the dynamical evolution of the features within the

stimuli, the same label is being assigned to all generated instances. Thus, different

machine learning techniques should be exploited towards considering temporal fea-

ture evolution or contextualisation together with a different labelling approach. The

latter is referred to the possibility of applying semi-supervised machine learning to

treat the current hard-labels as soft ones. This can even be thought as models in

which the labels as learnable parameters. Moreover, the combination of both cur-

rent labelling methodologies, discrete and dimensional, should be exploited towards

taking advantage of each.

6.4 Multi-Modal data fusion framework
After having presented and explained the design of the physiological uni-modal

machine learning system, the other main focus along this Chapter is the multi-
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Figure 6-22: LF/HF Ratio extracted from volunteer 3 of the WEMAC dataset. Note
that in the abscissa are represented the targeted emotions for the first Batch.

modal data fusion capabilities that the architecture of the Bindi system can offer4.

In fact, emotion recognition systems based on multi-modal information are over-

taking over uni-modals in the affective computing community [155, 174]. Most of

the presented multi-modal systems in the literature used to be based on audio and

visual data [299], speech and face gestures [300], EEG and facial expressions [301].

There are datasets gathering multi-modal information, which consider physiological

and speech information [302, 303]. Little attention is paid to the multi-modal de-

sign exploration using physiological and speech information. Solely one work has

been found in the literature using these two types of information for short term

observations [304]. They employed a hybrid fusion by means of feature and decision

level data fusion, which yield up to 55.00% accuracy for a subject-independent ap-

proach and a binary arousal-valence classification. Thus, the proposed multi-modal

framework and methodologies serve as an initial approach towards working with real

elicited fear in women and its proper processing considering both physiological and

speech information.

Before going into details for the different designed systems and obtained results

4The research presented in this Section is based on a multidisciplinary work with the members
of UC3M4Safety experts in Signal Theory and Communications
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using the information collected during the development of the WEMAC dataset, a

proper contextualisation regarding the multi-modal casuistry and capabilities within

Bindi might be properly explained and detailed. On this basis, different arrange-

ments of the system components were proposed to explore the possibilities of such

multi-modal design space. This provided the outline of a design space exploration

for different system architectures (physiological and speech/audio information data

fusion coming from the bracelet and the pendant, respectively). Figure 6-23 shows

such outline and depicts the potential relationship to be encountered for the different

use cases presented. The proposed use cases are detailed as follows:

• Case 1: Uni-modal. This arrangement is the fear detection capacity baseline

for each of the uni-modal systems, the physiological and the speech models.

• Case 2: Multi-modal with pre-alarm. In this case, the physiological informa-

tion is continuously evaluated based on the uni-modal physiological system.

When it detects that the user is experiencing fear, it triggers a pre-alarm to the

Bindi APP. Note that this is done following a computing-on-the-edge approach,

as it is the bracelet itself running a lightweight machine learning engine. The

fear detection causes the Pendant to start recording audio for a brief period,

resulting in a low-energy consumption strategy for the microphone. The audio

signal is then sent to the for layer of the system, i.e. the Bindi APP, to per-

form fear detection using also a separate speech-based uni-modal intelligence

engine.

• Case 3: Multi-modal with periodic audio sampling. This case only differs

from the previous one in that there is not pre-alarm, but the speech/audio is

sampled on a periodic basis.

• Case 4: Multi-modal with pre-alarm and periodic audio sampling. This set-up

is based on the conjunction of the previous two use cases. Thus, it represents

a middle-stage between having continuous multi-modal information and the

previous cases.

• Case 5: Continuous Multi-modal. This is the last proposed arrangement of

the system and it requires the highest amount of resources as both uni-modal

systems, physiological and speech/audio, are always active, being the data

fusion performed in a continuous manner.
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Figure 6-23: Design space exploration outline for the different modality arrange-
ments to be performed with the architecture of Bindi.

It should be noted that these detailed use cases define the system architecture

in terms of information availability, rather than specifying the applied data fusion

methodology. The latter is referred as to the techniques used to perform the physi-

ological and audio information data fusion. They can be actually done in different

ways within the same use case. Note that the different typical data fusion techniques

are described and explained in Chapter 3. In fact, this research work, besides ex-

ploring the physiological uni-modal fear detection system, focuses on analysing and

comparing three proposed data fusion techniques by using different system architec-

ture arrangements mainly related with Case 2 and 5. The rest of the use cases are

not within the scope of this research. Thus, the analysis of other arrangements as

well as the rest of the use cases are left for the subsequent datasets to be released

within the UC3M4Safety database.

Within this multi-modal framework, I have performed the integration of the physi-

ological system detailed in the previous Section. Specifically, the KNN classifier was

employed. The speech uni-modal system has been designed and implemented by

the components of the UC3M4Safety team with expertise in audio signal processing.

This system includes the following fundamental modules: Voice Activity Detection

(VAD), Spectral Subtraction (SS), feature extraction, and a neural network-based

classifier [9]. Note that the binarized discrete labelling use case and the LASO CV

were applied for both uni-modal systems, and the speech system also excluded the
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high imbalanced volunteers specified in the previous Section. Finally, the physio-

logical and speech uni-modal subsystems provide a binary label every 10 and 1 s,

respectively.

Regarding the multi-modal design space exploration, Case 2 was the first imple-

mented; it is explained in Chapter 5 and implemented in the first version of Bindi

or Bindi 1.0 [221], which is based on a hierarchical data fusion strategy. In this

version, physiological information is continuously collected by the Bracelet, which

runs a lightweight uni-modal physiological fear detection intelligence engine. When

it detects that the user is experiencing such emotion, it triggers a pre-alarm to the

Bindi APP. This action causes the Pendant to start recording audio for a brief pe-

riod, resulting in a low-energy consumption strategy for the microphone. The audio

signal is then sent to the Bindi APP to perform fear detection using a speech-based

uni-modal intelligence engine. Finally, if the latter system confirms the detection,

the Bindi APP starts a safety procedure to help the user, triggering an alarm to

the respective responders. The second system arrangement analysed, Bindi 2.0a , is

also related with Case 2 and it is based on the same two uni-modal data processing

pipelines in Bindi 1.0 but applying, at the final decision stage, a late fusion tech-

nique rather than a hierarchical agreement or confirmatory strategy [222], Figure

6-24. It inherits the pre-alarm functionality and casuistry from Bindi 1.0 to have a

low-energy consumption for the microphone. Finally, the last system arrangement,

Bindi 2.0b, is related with Case 5. Such system is a variation of Bindi 2.0a but based

on a continuous physical and physiological data acquisition. There is not pre-alarm

involved and this arrangment follows the late fusion scheme introduced in Bindi

2.0a.

Processing

Processing

Predicted 
Physiological 

Label

Physiological 
Signals

Neural 
Network-based 

Classifier

Machine 
Learning
Classifier

Predicted 
Speech 
LabelAudio Signal

Fusion 
Strategy

Final 
Predicted 

Label

Figure 6-24: Data fusion block diagram for Bindi 2.0a and Bindi 2.0b.
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The following subsections detail the different data fusion strategies considered and

evaluated with the three system arrangements. The experimental results are an

account of the validation process performed offline to evaluate the functionality of

the data processing pipelines. This is done to later embedding such modules in the

architecture, balancing the trade-offs observed.

6.4.1 Multi-modal data fusion methods
Before going into details for the proposed multi-modal framework, some points

should be considered for the assessment of the different multi-modal system ar-

rangements. First, according to the WEMAC dataset design, it should be noted

that physiological data are gathered during the stimulus elicitation, whereas speech

recording is registered during the subsequent audio annotation. That means that

physiological and speech data are not aligned in time. However, both data are re-

quired to be aligned for Bindi 2.0b, unlike for Bindi 1.0 and Bindi 2.0a. Since during

the labelling the volunteers are requested to revive the emotions felt during the stim-

ulus elicitation, it is assumed that the correspondence is solid enough between both

instants. However, this assumption will need further validation when the rest of the

subsets in the UC3M4Safety Database became available.

As already detailed in the previous Section, the physiological and speech uni-modal

subsystems estimate a binary label, 𝑦𝑚
𝑘 ∈ {0, 1}, for every time window 𝑘, where

𝑚 ∈ {phy, sp} are the two modalities, with phy and sp referring to the physiological

and speech subsystems, respectively. However, each of the modalities uses a different

time window length, 𝑇𝑚, in seconds. Moreover, the system is intended to output

a response per time period 𝑛 (each of the time periods is of length 𝐿), in seconds.

Thus, an estimation of fear probability 𝑝𝑚
𝑛 for the 𝑛-th time period and the 𝑚-th

modality is computed, given by

𝑝𝑚
𝑛 =

𝐾𝑚∑︀
𝑘=1

𝑦𝑚
𝐾𝑚·𝑛+𝑘

𝐾𝑚

, (6.8)

where 𝐾𝑚 = ⌊ 𝐿
𝑇𝑚
⌋, i.e., the number of time windows that we consider for each

modality for the estimation of probabilities.

Thereafter, a single binary label, 𝑌 𝑚
𝑛 , corresponding to probability 𝑝𝑚

𝑛 can be
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calculated as

𝑌 𝑚
𝑛 =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝑝𝑚

𝑛 < th𝑚

1 otherwise
, (6.9)

i.e., it will result in "1" (fear) if 𝑝𝑚
𝑛 is higher than the modality-related predefined

threshold, th𝑚 ∈ {0, 1}, or "0" (no-fear) otherwise. Note that the thphy and thsp

values are discussed in Section 6.4.2.

As a metric to represent how confident each uni-modal system is for the class label

predicted in a given period, entropy ℎ𝑚
𝑛 for the 𝑛-th time period and 𝑚-th modality

is calculated as

ℎ𝑚
𝑛 = −[𝑝𝑚

𝑛 · log(𝑝𝑚
𝑛 ) + (1− 𝑝𝑚

𝑛 ) · log(1− 𝑝𝑚
𝑛 )]. (6.10)

On this basis, three late fusion strategies are studied to produce fused system

response 𝑌 f
𝑛 for the 𝑛-th time period:

• Case 1, Lowest Entropy: The system’s response corresponds to the binary

label produced by the uni-modal system with the smallest entropy, i.e., the

most confident one. To this end, fused fear probability 𝑝𝑓
𝑛 for the 𝑛-th time

period is calculated as

𝑝f
𝑛 =

⎧⎪⎪⎨⎪⎪⎩
𝑝phy

𝑛 if ℎphy
𝑛 < ℎsp

𝑛

𝑝sp
𝑛 otherwise

. (6.11)

Next, applying the same rationale as in Equation (6.9), a fused binary label is

obtained as

𝑌 f
𝑛 =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝑝f

𝑛 < thf

1 otherwise
, (6.12)

where, for now, thf is the conventional 0.5.

• Case 2, Inverse Entropy Weighted Combination: Fused fear probability 𝑝𝑓
𝑛 for

the 𝑛-th time period is computed as a weighted sum of probabilities, as given

by

𝑝f
𝑛 =

∑︁
𝑚

𝑤𝑚
𝑛 · 𝑝𝑚

𝑛 , (6.13)
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where

𝑤𝑚
𝑛 = 1/ℎ𝑚

𝑛∑︀
𝑚

1/ℎ𝑚
𝑛

. (6.14)

Next, a fused binary label is obtained according to Equation (6.12).

• Case 3, Logical OR: The system response corresponds to the logical OR com-

putation over the binary labels for each uni-modal system. That is,

𝑌 f
𝑛 = 𝑌 phy

𝑛 ∨ 𝑌 sp
𝑛 . (6.15)

The three fusion strategies are based on the literature (e.g., [305]) and are proposed

as a trade-off between low computational complexity and robustness considering the

confidence of the system in the predictions. When comparing the three fusion strate-

gies theoretically, the logical OR facilitates obtaining a fear class prediction without

checking the subsystem confidence, which could lead to false detection. However,

the lowest entropy strategy trusts the most confident model without considering the

differences in the probabilities. Finally, the inverse entropy weighted combination

establishes a trade-off between the probabilities and entropies for each uni-modal

subsystem. Thus, the confidence of this last strategy might be higher than that of

the others.

To sum up, regarding the testing procedure, the uni-modal subsystem’s outputs

are arrays of binary labels. Specifically, for the WEMAC the length of the arrays is

equal to dividing the duration of each emotion-related stimulus by the respective uni-

modal response window, i.e., 10 and 1 s for the physiological and speech subsystems,

respectively. Afterwards, those collected arrays are processed by calculating the soft

probabilities and its corresponding hard labels by applying the physiological (𝑡ℎ𝑝ℎ𝑦)

and speech (𝑡ℎ𝑠𝑝) thresholds. The data fusion strategies proposed will also generate

their corresponding hard labels as discussed before. The evaluation metrics selected,

which are accuracy and F1-score, feed on the final hard labels obtained. Accuracy

can fairly represent the prediction rates since class imbalance is low. F1-score is

considered to deal with the slight unbalance observed. Although F1-score should

be a good metric for a detection problem such as the one addressed, in which the

number of positives should be relatively low in comparison with the negatives, the

experimental setting considering here is almost balanced, and, therefore, this metric
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is not as significant as expected to be when testing with data captured in real-life

conditions.

6.4.2 Multi-modal data fusion results
The first analysis that needs to be done is the performance of the physiological and

speech subsystems working independently in a continuous setting, that is taking into

account all of the samples. This experiment is essential to determine the thresholds,

𝑡ℎ𝑝ℎ𝑦 and 𝑡ℎ𝑠𝑝, that convert the binary labels obtained for each period into a single

hard label. This step is relevant because it determines if the architecture is more or

less prone to false alarms, independently of the Bindi version or multi-modal system

arrangement considered. Thus, each parameter was swept in the range [0.3, 0.6] with

steps of 0.1 while generating the corresponding 42 uni-modal subsystems following

the LASO approach and considering each video length as the different applicable

periods. In this regard, Figs. 6-25a and 6-25b show 𝑡ℎ𝑝ℎ𝑦 and 𝑡ℎ𝑠𝑝 values versus

accuracy and F1-score average metrics for the 42 testing groups in the physiological

and speech subsystems, respectively.

th
phy

%

Accuracy
F1-Score

(a)

th
sp

%

Accuracy
F1-Score

(b)
Figure 6-25: Parameter sweep for a) 𝑡ℎ𝑝ℎ𝑦 and b) 𝑡ℎ𝑠𝑝 in the physiological and speech
uni-modal subsystems, respectively.

Analyzing Fig. 6-25a, it can be observed how F1-score decreases as 𝑡ℎ𝑝ℎ𝑦 grows,

whereas accuracy remains rather stable. Note that F1-score depends to a great

extent on the number of True Positives (TP) predicted but mostly disregards True

Negatives (TN). Thus, if TP increases and the sum of False Positive (FP) and

False Negative (FN) rates decrease, then F1-score increases. This trade-off causes

the behavior observed, where the lower 𝑡ℎ𝑝ℎ𝑦 is set, the higher F1-score become.

According to this analysis, 𝑡ℎ𝑝ℎ𝑦 was fixed to 0.40, getting 66.66% and 64.60% for
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F1-score and accuracy, respectively. Note that these values are higher than the ones

reported in Table 6.7 due to the effect of considering a set of uni-modal outputs

for a given period of time. The reason for choosing this specific threshold value is

the good compromise observed between both metrics and the fact that missing a

TP could be dramatic for the Gender-based Violence use case. Additionally, the

combined multi-modal system should refrain from triggering false alarms to avoid

overwhelming the institutions in charge of protecting them, and this is why the

speech subsystem is chosen to be more conservative in this regard. By analysing

Fig. 6-25b for the speech subsystem, it can be observed how F1 and accuracy begin

to diverge from 0.50 onward. Therefore, 𝑡ℎ𝑠𝑝 was fixed to this value, getting 54.07%

and 57.82% for F1-score and accuracy, respectively. Note that accuracy could even

be increased by choosing a higher 𝑡ℎ𝑠𝑝.

Once 𝑡ℎ𝑝ℎ𝑦 and 𝑡ℎ𝑠𝑝 were fixed, we studied the average performance predicting

over the 42 testing groups for the different architecture configurations, as shown in

Figures 6-27 and 6-26. These configurations are the physiological uni-modal sub-

system, the speech uni-modal subsystem, Bindi 1.0, Bindi 2.0a with lowest entropy

data fusion, Bindi 2.0a with inverse entropy weighting data fusion, Bindi 2.0b with

lowest entropy data fusion, Bindi 2.0b with inverse entropy weighting data fusion,

and Bindi 2.0b with logical OR data fusion. Note that Bindi 2.0a was not combined

with logical OR data fusion because it is equivalent to Bindi 1.0.

Analysing Figure 6-27, the physiological uni-modal subsystem achieves the highest

accuracy providing up to 64.63% and surpassing even the fusion schemes. For the F1

metric, this subsystem also provides the second highest-rate with up to 66.67%. This

behaviour can be related to the bias introduced toward detecting the positive class,

first, with the cost-sensitive learning approach and second, with the parameter sweep

of 𝑡ℎ𝑝ℎ𝑦. In Figure 6-26, The speech uni-modal subsystem provides significant lower

metrics than the physiological subsystem. This fact could be related to the limited

number of samples to train the neural network and the possible limited quality of

the samples due to the action of reliving the emotion felt in the dataset generation.

This situation causes that Bindi 1.0 provides the worst metrics in this analysis due

to the final system response falls on the speech subsystem. Bindi 2.0a and Bindi

2.0b both provide a similar accuracy close to the physiological subsystem in most
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Figure 6-26: Average F1-score performance analysis predicting over the 42 testing
volunteers for the different architecture configurations.
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Figure 6-27: Average Accuracy score performance analysis predicting over the 42
testing volunteers for the different architecture configurations.
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cases. However, Bindi 2.0b achieves the highest F1-score in all cases, especially for

Bindi 2.0b with the logical OR data fusion. This latter strategy provides the highest

F1-score, 67.59%, although accuracy is limited. This performance in F1-score could

be related to the positive bias contributed by the physiological subsystem due to

the lower threshold chosen, 𝑡ℎ𝑝ℎ𝑦, which introduces a conservative bias towards not

missing TP at the cost of increasing FP. However, as for the other architectures with

fusion strategies, the speech subsystem may be slightly deteriorating the system

performance in terms of F1-score and accuracy but is preventing Bindi 2.0a and

Bindi 2.0b to produce too many FP. A short preview of this analysis and discussion

of the confusion matrices obtained for each configuration can be found in [9].

To elaborate the results shown in Figures 6-27 and 6-26, Table 6.9 presents detailed

results for the different configurations, including the average standard deviation per

volunteer tested. Low standard deviation rates are good indicators of a better

generalization ability as long as the results are comparable. Note for example that,

although Bindi 1.0 presents the lowest standard deviation, which can be seen as

a good generalization, its scores are surpassed by most of the configurations, as

previously stated. Moreover, it can be observed that the standard deviation values

obtained were relatively high, especially for the F1-score. The cause is shown in

Fig. 6-28, where F1-score and accuracy are provided for each of the 42 tests and

uni-modal subsystem. It is observed that some volunteers have an F1-score of zero

for the speech subsystem in this figure. This fact occurs because F1-score depends

on the TP detected, and there were no positive predictions for some users.

Physiological
uni-modal

Speech
uni-modal

BINDI
1.0

Bindi 2.0a
Lowest

Entropy

Bindi 2.0a
Inverse

Entropy
Weighting

Bindi 2.0b
Lowest

Entropy

Bindi 2.0b
Inverse

Entropy
Weighting

Bindi 2.0b
Logical

OR

F1-score
Mean 66.67 54.48 50.23 56.68 56.33 60.87 60.58 67.59

Std 17.31 26.73 27.64 23.91 24.05 26.63 26.98 14.27

Accuracy
Mean 64.63 58.5 62.93 63.61 63.61 63.27 63.27 60.2

Std 16.56 16.73 14.30 14.35 14.35 17.94 18.21 15.75

Table 6.9: Average performance analysis predicting over the 42 testing volunteers.
Mean and standard deviations (Std).
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Figure 6-28: Individual performance analysis for the two uni-modal subsystems.
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6.5 Conclusion and discussion
This Chapter presented different essential contributions of this research. First of all,

the WEMAC dataset is detailed and explained. Secondly, a physiological-based fear

detection system is built upon the data collected in such dataset. Finally, a multi-

modal framework contextualised on the Bindi technology is provided. Specifically,

these contributions can be detailed as following:

• The generation of a novel emotion detection dataset that deals with all the lim-

itations encountered within public available databases. This dataset belongs

to the UC3M4Safety Database.

• The design and integration of an active physiological recovery process within

the dataset experiments.

• The design, implementation, and evaluation of a physiological-based fear de-

tection system using the WEMAC dataset.

• A novel multi-modal data fusion framework design using physiological and

speech information.

• The application of a LASO model considering fear recognition, multi-sensorial

signal fusion, and virtual reality stimuli for the first time.

For the physiological-based fear detection system, the best result is obtained using

a KNN classifier and an AdaBoost (ENS) classifier for the fear-binarized discrete and

dimensional labelling, respectively. The former reaches up to 66.87% and 66.45%,

while the latter achieves up to 64.23% and 66.62% for the averaged ACC and AUC.

The obtained results are in line with all the Leave-One-Out (subject or trial) systems

presented in the literature, see Table 4.19. However, provided recommendations at

the end of Section 6.3.2.3 might be exploited and investigated towards improving

these baseline results.

Regarding specifically the proposed multi-modal framework, the best balanced fu-

sion result is obtained for the Bindi 2.0b arrangement by applying a logical OR

data fusion strategy. This method reports up to 60.20% and 67.59% for ACC and

F1-score, respectively. These values represent a competitive result in comparison

with the state-of-the-art that deal with similar multi-modal use cases [301,304,306].

Moreover, it is worth highlighting that the configurations described in this Chapter

for fear detection through physiological, and speech data are just a possible way to
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characterise the situations and contexts in which Bindi users can be involved. These

are meant as initial baselines for further developments that have allowed the identi-

fication of important challenges. First, finding a suitable trade-off between TP-TN

and FP-FN is crucial since the cost of missing a true need for help is appalling, but

we also need to avoid interfering with the everyday life of Gender-based Violence

Victims and the saturation of the protection services with false alarms. Thus, we

have tried to reduce FNs as much as possible while FPs are maintained at an ade-

quate rate. To this end, we considered strategies based on miss-classification costs

and threshold parameters fixing. Specifically, we have fixed the 𝑡ℎ𝑝ℎ𝑦 parameter in

the physiological subsystem to get a higher outcome of positive predictions with this

system so that in a later stage, the speech (in Bindi 1.0) and data fusion strategies

(in Bindi 2.0a and Bindi 2.0b) helped in correcting the bias while trying to maintain

TP prediction. During this experimentation, the current speech uni-modal system

provided lower performance rates than expected, which could be caused by the tem-

poral misalignment of the physiological and speech data in WEMAC. The vanishing

of the emotion elicited by the time the voice sample gets collected could be behind

this decrease in performance.

In general, we conclude that the obtained uni-modal and multi-modal fear classi-

fication systems employing the WEMAC dataset report competitive results in com-

parison with the state-of-the-art. However, more research is needed to improve these

systems towards their applicability into real life. Thus, the main goal of the pro-

posed multi-modal framework and generated WEMAC is to ignite the community

interest in this very challenging problem regarding Gender-based Violence and to

start tackling the gender perspective into artificial intelligence.

As future work, the UC3M4Safety team plan to foster and develop a series of key

items and future lines of action that have been identified as limitations along with

the realisation of this work:

• To study other fusion alternatives and combination modes for the uni-modal

subsystems.

• To increase the number of volunteers and available sensor data acquired with

the Bindi edge devices.

• To include into the database the Gender-based Violence Victims data to better
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understand their activation mechanisms under fear-related situations.

• To Embed the complete physiological uni-modal system architecture and data

processing into the Bindi bracelet and to test its efficiency in real-life environ-

ments and situations in into-the-wild experiments.

• To evaluate the use of alternative score metrics, such as mutual information

and area under the curve, to continue finding a proper balance between false

alarms and miss probability.

• To develop and test subject-adaptation techniques to both the uni-modal and

fusion models.

In the design of fear detection systems for preventing and combating Gender-based

Violence situations, several problems may arise when the goal of a system is to work

with real-life data. First, the difficulty of finding realistic data, and second, the

low confidence on the architectures developed if the data used is acted or synthetic.

This situation leads to the need to generate databases with real elicited emotions,

which is, indeed, highly challenging and time-consuming. Above all, working with

strong negative emotion elicitation, such as the evoked in WEMAC for fear detec-

tion in women in a laboratory environment, can lead to ethical issues. Thus, many

resources must be devoted to safeguarding the welfare of the volunteers partici-

pating. This particular problem is magnified when the target group of volunteers

are women who have suffered Gender-based Violence. This is because the failures

of the protection system or service have critical consequences for them. For this

reason, the second release of the WEMAC dataset currently being collected within

UC3M4Safety Database comprises only Gender-based Violence Victims volunteers.
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Chapter 7
Conclusion

In this final Chapter, we will summarise the contributions of this PhD research based

on the proposed goals. We will also provide some suggestions on possible topics to

study in the future. These ideas come from the last year of investigation and may

suppose the starting point of new research projects.

This PhD started with the creation of UC3M4Safety, a multidisciplinary team

created when facing the Gender-based Violence problem and claiming that a mul-

tidisciplinary approach were needed to foster new and more innovative solutions to

prevent and combat it. Driven by this motivation, we aimed to provide new tools to

prevent and combat Gender-based Violence risky situations and, even, aggressions,

from a technological perspective, but without leaving aside the different sociological

considerations related to the problem. Within this context, and considering the

technological potential of affective computing through physiological information to

generate those new tools, we performed a detailed analysis regarding the disentan-

gle of the relationship between physiological signals and fear-related emotions. This

study provided us with the knowledge to propose a new approach to detect fear-

related emotions making use of the different emotional theories and physiological

affective indicators. This study was also accompanied by a comprehensive inves-

tigation regarding emotion-provoking tools, emotion assessment reports, emotion

classification databases, affective computing systems design, and related method-

ologies and tools that allowed us to build a solid technological knowledge base to

fulfil the challenges of this PhD.

Then, the fear binary classification approach has been included in different affec-
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tive computing systems constructed onto publicly available datasets. Specifically,

different specialised fear detection systems using time, frequency and non-linear do-

main features have been designed. The added value of the proposed architectures

is the consideration of digital processing constraints to further properly embed such

system into a wearable edge-device platform for allowing protection of vulnerable

people. During the design of these systems, different limitations were spotted within

the open available databases we were working with. For instance, there were no use

of emotional immersive technology, the labelling methodology was not considering

the gender perspective, a properly balanced stimuli distribution regarding the target

emotions was not always assured, and the integration of a recovery processes based

on the physiological signals of the volunteers to quantify and isolate the emotional

activation between stimuli were not implemented. However, the proposed systems

were successfully compared against the state-of-the-art.

Together with the design and validation of the different fear classification systems,

a new wearable hardware solution to deploy the fear-related detection system archi-

tectures was proposed. Thus, we designed Bindi, an autonomous multimodal system

towards the detection of risky situations under Gender-based Violence contexts. The

edge-computing part of the system is a smart cyberphysical network. Specifically,

this is accomplished by means of physiological and physical (audio and/or speech)

smart sensors continuously monitoring the user. The fog-based layer of the system

resides into a multimodal data fusion within an ad-hoc smartphone application.

Moreover, the information is sent to specific computing servers in the cloud, which

are responsible to store the collected data for further legal actions. The design of

such a system can boost the generation of new mechanisms for the prevention and

fight against Gender-based Violence.

Finally, after having identified the need for generating a new database and created

a new technological tool, we designed and carried out the WEMAC dataset. It

consists of 104 women who never experienced Gender-based Violence that performed

different emotion-related stimuli visualisations in a laboratory environment. The

previous fear binary classification systems were improved and applied to this novel

multimodal dataset, leading up to competitive results in comparison with the state-

of-the-art.
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7.1 Contributions
To be more precise, we will sort the contributions in function of the Chapter in

which they are made.

The contributions on Chapter 4 are the following:

• The application and validation of a new fear binary classification proposal

using open available datasets and a reduced set of physiological signals.

• The design and evaluation of a fear classification system employing the DEAP

database and the PA model. It achieved an AUC of 81.60% and a Gmean of

81.55% on average for a subject-independent approach and only two physio-

logical signals (PPG and GSR).

• The design and evaluation of a fear classification system employing the MAH-

NOB database and the PAD model. It achieved an AUC of 86.00% and a

Gmean of 73.78% on average for a subject-independent approach and only

three physiological signals (PPG, GSR, and SKT). Note that this system was

tested using LOSO.

The contributions on Chapter 5 are the following:

• The design, hardware and software, of a new smart-wearable system based

on a reduced set of physiological signals and targeting the generating of new

technological mechanisms and tools to prevent and combat Gender-based Vi-

olence.

• A simplified Signal-Quality-Assessment low-complexity fuzzy rule-base Mam-

dani inference model training design and implementation into the bracelet of

Bindi. This is accompanied by a proposal definition and implementation of

a novel online unsupervised fine-tuning based via scaled similarity between

interval type II fuzzy sets for model self-adaptive updates. Results show that

the system achieved overall accuracy of 93.72%. The proposed quality-aware

system presents an energy consumption of up to 59.40 𝑚𝐽 , which directly im-

pacts the overall energy consumption from 1.5% to 20.7% for transmission of

noisy 12–60 seconds photoplethysmography signal.

• Different filtering strategies and feature extraction techniques were imple-

mented into the bracelet of Bindi. This is accompanied by a successful mea-

surement and results comparison with a specific research-grade toolkit.
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The contributions on Chapter 6 are the following:

• The definition of the WEMAC dataset1. This is a collection of experiments

captured in laboratory conditions with women volunteers. A set of audiovi-

sual stimuli are employed to elicit realistic emotions using virtual reality and

acquiring volunteers’ physiological and speech information. Additionally, self-

reported emotional annotations on dimensional and discrete emotional scales

are also collected. The objectives and contributions of this novel multimodal

dataset are multiple, as briefly shown below:

1. The integration of immersive technology to elicit emotions. Virtual reality

is employed as it offers the closest resemblance to real world scenarios,

offering a high degree of correlation between the research conditions and

the emotional phenomenon under study, i.e. with ecological validity.

2. The consideration of a high number of volunteers. The first experiment

accounted for a total of 104 non-Gender-based Violence women volun-

teers.

3. The application of a properly balanced stimuli distribution regarding the

target emotions. Prior to the generation of the dataset, a mixed method-

ology with expert judges and general public was applied to select the best

audio-visual stimuli for provoking emotional reactions. A public pool was

run with 1, 332 participants for labelling the pre-selected emotion-related

stimuli.

4. The modification of the labelling methodology to consider the gender

perspective. This problem was addressed by changing the original Self-

Assessment Manikins.

5. The implementation of an active recovery process regarding the physio-

logical stabilisation between stimuli. To the best of our knowledge, there

is no public dataset that implemented an online stabilisation evaluation

by means of physiological feedback assessment during the experiments.

Amongst these contributions, I have been directly involved within into objec-

tives 1, 2, 4, and 5.

• The first experimental multimodal results with WEMAC. These show an aver-

1For the generation of this dataset, very hard team work has been required. For instance, a
global amount of 7000 hours have been employed.
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age accuracy of the fear recognition rate of up to 63.61% with the Leave-hAlf-

Subject-Out (LASO) method. To the best of my knowledge, this is the first

time a LASO model considering fear recognition, multisensorial signal fusion,

and virtual reality stimuli has been presented.

7.2 Future work
The author would like to provide some suggestions for future research:

• The consideration of more physiological signals, or even biological ones, to

expand this research scope and improve the fear classification results.

• Multivariate analysis considering the initial questionnaires collected at the

beginning of the WEMAC experiments together with the physiological and

auditory information.

• In case of collecting discrete and dimensional self-reports from volunteers, both

label methodologies could be fused together by means of a lineal or non-linear

combination. This is in line with the fact that both discrete and dimensional

labels exist, but are intended to different purposes or characterise different

aspects of the emotions.

• The research and implementation of compressed sensing techniques to reduce

the power consumption of the bracelet. Work on this topic has been already

initiated.

• The research and implementation of energy harvesting techniques within the

bracelet would be interesting to observe the power consumption effect. Work

on this topic has been already initiated.

• The research and integration of semi-supervised classification systems intended

to deal with the emotion dynamics and/or weakly-supervised Learning for fine-

grained emotion recognition using physiological signals. Work on this topic has

been already initiated.

• The integration of neuromorphic computing into Bindi, such as Akida Neural

Processor SoC.

• The implementation of novel motion artefact removal algorithms. For instance,

synchrosqueezing techniques together with end-to-end edge-computing friendly

neural networks have potential. Work on this topic has been already initiated.
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• The research of novel machine learning personalisation techniques and methods

would boost the deployment possibilities of Bindi. Work on this topic has been

already initiated.

• The design of new wearable form factors, rather than a bracelet and a pendant.

• The design of an expert system to be running in the cloud and operating in a

multivariate basis. The goal of such system would be to correct or modify the

edge-computing machine learning.
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