86,426 research outputs found

    Towards Intelligent Decision Making in Emotion-aware Applications

    Get PDF
    In this paper, we propose an intelligent emotion-aware system (IES), which aims to provide a systematic approach that can make use of the online technology to improve the intelligence of different emotion-aware mobile applications. IES is constructed to provide multi-dimensional online social community data collection and processing approaches for decision making, so as to recommend intelligent services for emotion-aware mobile applications. Furthermore, we present a flow of intelligent decision making process designed on IES, and highlight the implementation and orchestration of several key technologies and schemes applied in this system for different emotion-aware mobile applications in run-time. We demonstrate the feasibility of the proposed IES by presenting a novel emotion-aware mobile application - iSmile, and evaluate the system performance based on this application

    Does emotion influence the use of auto-suggest during smartphone typing?

    Get PDF
    Typing based interfaces are common across many mobile applications, especially messaging apps. To reduce the difficulty of typing using keyboard applications on smartphones, smartwatches with restricted space, several techniques, such as auto-complete, auto-suggest, are implemented. Although helpful, these techniques do add more cognitive load on the user. Hence beyond the importance to improve the word recommendations, it is useful to understand the pattern of use of auto-suggestions during typing. Among several factors that may influence use of auto-suggest, the role of emotion has been mostly overlooked, often due to the difficulty of unobtrusively inferring emotion. With advances in affective computing, and ability to infer user's emotional states accurately, it is imperative to investigate how auto-suggest can be guided by emotion aware decisions. In this work, we investigate correlations between user emotion and usage of auto-suggest i.e. whether users prefer to use auto-suggest in specific emotion states. We developed an Android keyboard application, which records auto-suggest usage and collects emotion self-reports from users in a 3-week in-the-wild study. Analysis of the dataset reveals relationship between user reported emotion state and use of auto-suggest. We used the data to train personalized models for predicting use of auto-suggest in specific emotion state. The model can predict use of auto-suggest with an average accuracy (AUCROC) of 82% showing the feasibility of emotion-aware auto-suggestion

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Designing and evaluating mobile multimedia user experiences in public urban places: Making sense of the field

    Get PDF
    The majority of the world’s population now lives in cities (United Nations, 2008) resulting in an urban densification requiring people to live in closer proximity and share urban infrastructure such as streets, public transport, and parks within cities. However, “physical closeness does not mean social closeness” (Wellman, 2001, p. 234). Whereas it is a common practice to greet and chat with people you cross paths with in smaller villages, urban life is mainly anonymous and does not automatically come with a sense of community per se. Wellman (2001, p. 228) defines community “as networks of interpersonal ties that provide sociability, support, information, a sense of belonging and social identity.” While on the move or during leisure time, urban dwellers use their interactive information communication technology (ICT) devices to connect to their spatially distributed community while in an anonymous space. Putnam (1995) argues that available technology privatises and individualises the leisure time of urban dwellers. Furthermore, ICT is sometimes used to build a “cocoon” while in public to avoid direct contact with collocated people (Mainwaring et al., 2005; Bassoli et al., 2007; Crawford, 2008). Instead of using ICT devices to seclude oneself from the surrounding urban environment and the collocated people within, such devices could also be utilised to engage urban dwellers more with the urban environment and the urban dwellers within. Urban sociologists found that “what attracts people most, it would appear, is other people” (Whyte, 1980, p. 19) and “people and human activity are the greatest object of attention and interest” (Gehl, 1987, p. 31). On the other hand, sociologist Erving Goffman describes the concept of civil inattention, acknowledging strangers’ presence while in public but not interacting with them (Goffman, 1966). With this in mind, it appears that there is a contradiction between how people are using ICT in urban public places and for what reasons and how people use public urban places and how they behave and react to other collocated people. On the other hand there is an opportunity to employ ICT to create and influence experiences of people collocated in public urban places. The widespread use of location aware mobile devices equipped with Internet access is creating networked localities, a digital layer of geo-coded information on top of the physical world (Gordon & de Souza e Silva, 2011). Foursquare.com is an example of a location based 118 Mobile Multimedia – User and Technology Perspectives social network (LBSN) that enables urban dwellers to virtually check-in into places at which they are physically present in an urban space. Users compete over ‘mayorships’ of places with Foursquare friends as well as strangers and can share recommendations about the space. The research field of Urban Informatics is interested in these kinds of digital urban multimedia augmentations and how such augmentations, mediated through technology, can create or influence the UX of public urban places. “Urban informatics is the study, design, and practice of urban experiences across different urban contexts that are created by new opportunities of real-time, ubiquitous technology and the augmentation that mediates the physical and digital layers of people networks and urban infrastructures” (Foth et al., 2011, p. 4). One possibility to augment the urban space is to enable citizens to digitally interact with spaces and urban dwellers collocated in the past, present, and future. “Adding digital layer to the existing physical and social layers could facilitate new forms of interaction that reshape urban life” (Kjeldskov & Paay, 2006, p. 60). This methodological chapter investigates how the design of UX through such digital placebased mobile multimedia augmentations can be guided and evaluated. First, we describe three different applications that aim to create and influence the urban UX through mobile mediated interactions. Based on a review of literature, we describe how our integrated framework for designing and evaluating urban informatics experiences has been constructed. We conclude the chapter with a reflective discussion on the proposed framework

    Exploring the Affective Loop

    Get PDF
    Research in psychology and neurology shows that both body and mind are involved when experiencing emotions (Damasio 1994, Davidson et al. 2003). People are also very physical when they try to communicate their emotions. Somewhere in between beings consciously and unconsciously aware of it ourselves, we produce both verbal and physical signs to make other people understand how we feel. Simultaneously, this production of signs involves us in a stronger personal experience of the emotions we express. Emotions are also communicated in the digital world, but there is little focus on users' personal as well as physical experience of emotions in the available digital media. In order to explore whether and how we can expand existing media, we have designed, implemented and evaluated /eMoto/, a mobile service for sending affective messages to others. With eMoto, we explicitly aim to address both cognitive and physical experiences of human emotions. Through combining affective gestures for input with affective expressions that make use of colors, shapes and animations for the background of messages, the interaction "pulls" the user into an /affective loop/. In this thesis we define what we mean by affective loop and present a user-centered design approach expressed through four design principles inspired by previous work within Human Computer Interaction (HCI) but adjusted to our purposes; /embodiment/ (Dourish 2001) as a means to address how people communicate emotions in real life, /flow/ (Csikszentmihalyi 1990) to reach a state of involvement that goes further than the current context, /ambiguity/ of the designed expressions (Gaver et al. 2003) to allow for open-ended interpretation by the end-users instead of simplistic, one-emotion one-expression pairs and /natural but designed expressions/ to address people's natural couplings between cognitively and physically experienced emotions. We also present results from an end-user study of eMoto that indicates that subjects got both physically and emotionally involved in the interaction and that the designed "openness" and ambiguity of the expressions, was appreciated and understood by our subjects. Through the user study, we identified four potential design problems that have to be tackled in order to achieve an affective loop effect; the extent to which users' /feel in control/ of the interaction, /harmony and coherence/ between cognitive and physical expressions/,/ /timing/ of expressions and feedback in a communicational setting, and effects of users' /personality/ on their emotional expressions and experiences of the interaction
    • 

    corecore