76,277 research outputs found

    Blockchain For Food: Making Sense of Technology and the Impact on Biofortified Seeds

    Get PDF
    The global food system is under pressure and is in the early stages of a major transition towards more transparency, circularity, and personalisation. In the coming decades, there is an increasing need for more food production with fewer resources. Thus, increasing crop yields and nutritional value per crop is arguably an important factor in this global food transition. Biofortification can play an important role in feeding the world. Biofortified seeds create produce with increased nutritional values, mainly minerals and vitamins, while using the same or less resources as non-biofortified variants. However, a farmer cannot distinguish a biofortified seed from a regular seed. Due to the invisible nature of the enhanced seeds, counterfeit products are common, limiting wide-scale adoption of biofortified crops. Fraudulent seeds pose a major obstacle in the adoption of biofortified crops. A system that could guarantee the origin of the biofortified seeds is therefore required to ensure widespread adoption. This trust-ensuring immutable proof for the biofortified seeds, can be provided via blockchain technology

    Reflections from Participants

    Get PDF
    The Road Ahead: Public Dialogue on Science and Technology brings together some of the UK’s leading thinkers and practitioners in science and society to ask where we have got to, how we have got here, why we are doing what we are doing and what we should do next. The collection of essays aims to provide policy makers and dialogue deliverers with insights into how dialogue could be used in the future to strengthen the links between science and society. It is introduced by Professor Kathy Sykes, one of the UK’s best known science communicators, who is also the head of the Sciencewise-ERC Steering Group, and Jack Stilgoe, a DEMOS associate, who compiled the collection

    Science and Technology Governance and Ethics - A Global Perspective from Europe, India and China

    Get PDF
    This book analyzes the possibilities for effective global governance of science in Europe, India and China. Authors from the three regions join forces to explore how ethical concerns over new technologies can be incorporated into global science and technology policies. The first chapter introduces the topic, offering a global perspective on embedding ethics in science and technology policy. Chapter Two compares the institutionalization of ethical debates in science, technology and innovation policy in three important regions: Europe, India and China. The third chapter explores public perceptions of science and technology in these same three regions. Chapter Four discusses public engagement in the governance of science and technology, and Chapter Five reviews science and technology governance and European values. The sixth chapter describes and analyzes values demonstrated in the constitution of the People’s Republic of China. Chapter Seven describes emerging evidence from India on the uses of science and technology for socio-economic development, and the quest for inclusive growth. In Chapter Eight, the authors propose a comparative framework for studying global ethics in science and technology. The following three chapters offer case studies and analysis of three emerging industries in India, China and Europe: new food technologies, nanotechnology and synthetic biology. Chapter 12 gathers all these threads for a comprehensive discussion on incorporating ethics into science and technology policy. The analysis is undertaken against the backdrop of different value systems and varying levels of public perception of risks and benefits. The book introduces a common analytical framework for the comparative discussion of ethics at the international level. The authors offer policy recommendations for effective collaboration among the three regions, to promote responsible governance in science and technology and a common analytical perspective in ethics

    Electronic health records to facilitate clinical research

    Get PDF
    Electronic health records (EHRs) provide opportunities to enhance patient care, embed performance measures in clinical practice, and facilitate clinical research. Concerns have been raised about the increasing recruitment challenges in trials, burdensome and obtrusive data collection, and uncertain generalizability of the results. Leveraging electronic health records to counterbalance these trends is an area of intense interest. The initial applications of electronic health records, as the primary data source is envisioned for observational studies, embedded pragmatic or post-marketing registry-based randomized studies, or comparative effectiveness studies. Advancing this approach to randomized clinical trials, electronic health records may potentially be used to assess study feasibility, to facilitate patient recruitment, and streamline data collection at baseline and follow-up. Ensuring data security and privacy, overcoming the challenges associated with linking diverse systems and maintaining infrastructure for repeat use of high quality data, are some of the challenges associated with using electronic health records in clinical research. Collaboration between academia, industry, regulatory bodies, policy makers, patients, and electronic health record vendors is critical for the greater use of electronic health records in clinical research. This manuscript identifies the key steps required to advance the role of electronic health records in cardiovascular clinical research

    Global Ethics and Nanotechnology: A Comparison of the Nanoethics Environments of the EU and China

    Get PDF
    The following article offers a brief overview of current nanotechnology policy, regulation and ethics in Europe and The People’s Republic of China with the intent of noting (dis)similarities in approach, before focusing on the involvement of the public in science and technology policy (i.e. participatory Technology Assessment). The conclusions of this article are, that (a) in terms of nanosafety as expressed through policy and regulation, China PR and the EU have similar approaches towards, and concerns about, nanotoxicity—the official debate on benefits and risks is not markedly different in the two regions; (b) that there is a similar economic drive behind both regions’ approach to nanodevelopment, the difference being the degree of public concern admitted; and (c) participation in decision-making is fundamentally different in the two regions. Thus in China PR, the focus is on the responsibility of the scientist; in the EU, it is about government accountability to the public. The formulation of a Code of Conduct for scientists in both regions (China PR’s predicted for 2012) reveals both similarity and difference in approach to nanotechnology development. This may change, since individual responsibility alone cannot guide S&T development, and as public participation is increasingly seen globally as integral to governmental decision-making

    Emerging risks identification on food and feed - EFSA

    Get PDF
    The European Food Safety Authority's has established procedures for the identification of emerging risk in food and feed. The main objectives are to: (i) to carry out activities aiming at identifying, assessing and disseminating information on emerging issues and ensure coordination with relevant networks and international organisations; (ii) promote the identification of data sources and data collection and /or data generation in prioritised emerging issues; and the (iii) evaluate of the collected information and identify of emerging risks. The objective(s) of the Standing Working Group on Emerging Risks (SWG‐ER) is to collaborate with EFSA on the emerging risks identification (ERI) procedure and provide strategic direction for EFSA work building on past and ongoing projects related to EFSA ERI procedure. The SWG‐ER considered the ERI methodologies in place and results obtained by EFSA. It was concluded that a systematic approach to the identification of emerging issues based on experts’ networks is the major strength of the procedure but at present, it is mainly focused on single issues, over short to medium time horizons, no consistent weighting or ranking is applied and clear governance of emerging risks with follow‐up actions is missing. The analysis highlighted weaknesses with respect to data collection, analysis and integration. No methodology is in place to estimate the value of the procedure outputs in terms of avoided risk and there is urgent need for a communication strategy that addresses the lack of data and knowledge uncertainty and addresses risk perception issues. Recommendations were given in three areas: (i) Further develop a food system‐based approach including the integration of social sciences to improve understanding of interactions and dynamics between actors and drivers and the development of horizon scanning protocols; (ii) Improve data processing pipelines to prepare big data analytics, implement a data validation system and develop data sharing agreements to explore mutual benefits; and (iii) Revise the EFSA procedure for emerging risk identification to increase transparency and improve communication

    Nanotechnology Oversight: An Agenda for the New Administration

    Get PDF
    Identifies how current laws can be applied or modified to provide needed oversight of nanotechnology and materials for public health and environmental protection. Calls for more funding for risk research, coordinated regulation, and public involvement
    corecore