1,571 research outputs found

    Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms

    Get PDF
    open access articleOur goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their selfcoordinating emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into 1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micromacro gap (i.e., how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate and allow global behaviors to emerge across the swarm)

    Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments

    Full text link
    We develop and analyze algorithms for dispersing a swarm of primitive robots in an unknown environment, R. The primary objective is to minimize the makespan, that is, the time to fill the entire region. An environment is composed of pixels that form a connected subset of the integer grid. There is at most one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter R by means of k>=1 door pixels Robots are primitive finite automata, only having local communication, local sensors, and a constant-sized memory. We first give algorithms for the single-door case (i.e., k=1), analyzing the algorithms both theoretically and experimentally. We prove that our algorithms have optimal makespan 2A-1, where A is the area of R. We next give an algorithm for the multi-door case (k>1), based on a wall-following version of the leader-follower strategy. We prove that our strategy is O(log(k+1))-competitive, and that this bound is tight for our strategy and other related strategies.Comment: 17 pages, 4 figures, Latex, to appear in Workshop on Algorithmic Foundations of Robotics, 200

    Optimization of swarm robotic constellation communication for object detection and event recognition

    Get PDF
    Swarm robotics research describes the study of how a group of relatively simple physically embodied agents can, through their interaction collectively accomplish tasks which are far beyond the capabilities of a single agent. This self organizing but decentralized form of intelligence requires that all members are autonomous and act upon their available information. From this information they are able to decide their behavior and take the appropriate action. A global behavior can then be witnessed that is derived from the local behaviors of each agent. The presented research introduces the novel method for optimizing the communication and the processing of communicated data for the purpose of detecting large scale meta object or event, denoted as meta event, which are unquantifiable through a single robotic agent. The ability of a swarm of robotic agents to cover a relatively large physical environment and their ability to detect changes or anomalies within the environment is especially advantageous for the detection of objects and the recognition of events such as oil spills, hurricanes, and large scale security monitoring. In contrast a single robot, even with much greater capabilities, could not explore or cover multiple areas of the same environment simultaneously. Many previous swarm behaviors have been developed focusing on the rules governing the local agent to agent behaviors of separation, alignment, and cohesion. By effectively optimizing these simple behaviors in coordination, through cooperative and competitive actions based on a chosen local behavior, it is possible to achieve an optimized global emergent behavior of locating a meta object or event. From the local to global relationship an optimized control algorithm was developed following the basic rules of swarm behavior for the purpose of meta event detection and recognition. Results of this optimized control algorithm are presented and compared with other work in the field of swarm robotics

    Resilience and Controllability of Dynamic Collective Behaviors

    Get PDF
    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Optimizing collective fieldtaxis of swarming agents through reinforcement learning

    Full text link
    Swarming of animal groups enthralls scientists in fields ranging from biology to physics to engineering. Complex swarming patterns often arise from simple interactions between individuals to the benefit of the collective whole. The existence and success of swarming, however, nontrivially depend on microscopic parameters governing the interactions. Here we show that a machine-learning technique can be employed to tune these underlying parameters and optimize the resulting performance. As a concrete example, we take an active matter model inspired by schools of golden shiners, which collectively conduct phototaxis. The problem of optimizing the phototaxis capability is then mapped to that of maximizing benefits in a continuum-armed bandit game. The latter problem accepts a simple reinforcement-learning algorithm, which can tune the continuous parameters of the model. This result suggests the utility of machine-learning methodology in swarm-robotics applications.Comment: 6 pages, 3 figure
    • …
    corecore