10,568 research outputs found

    Context-aware solutions for asthma condition management: a survey

    Get PDF
    The evolution of information technology has allowed the development of ubiquitous, user-centred, and context-aware solutions. This article considers existing context-aware systems supporting asthma management with the aim of describing their main benefits and opportunities for improvement. To achieve this, the main concepts related to asthma and context awareness are explained before describing and analysing the existing context-aware systems aiding asthma. The survey shows that the concept of personalisation is the key when developing context-aware solutions supporting asthma management because of the high level of heterogeneity of this condition. Hence, the benefits and challenges of context-aware systems supporting asthma management are strongly linked to contextual Just-In-Time information of internal and external factors related to a person and the heterogeneity it represents

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    A new track for technology: Can ICT take care for healthier lifestyles?

    Get PDF
    The paper takes a look on potential contribution of Information and Communication Technologies to abate public health challenges caused by demographics and lifestyle. From the current convergence of mhealth, and sport market products emerge targeting normal athletes to control their training in a quantified manner. The resulting feedback and transparency foster a healthier lifestyle. These products and services help overcome limitations to innovation typical to the health care market. The paper is based on research by the European Commission's Institute for Prospective Technological Studies on Integrated Personal Health/Care services. --eHealth,Integrated Personal Health/Care services,sport,training,lifestyle related disease,innovation

    Edge Computing For Smart Health: Context-aware Approaches, Opportunities, and Challenges

    Get PDF
    Improving the efficiency of healthcare systems is a top national interest worldwide. However, the need to deliver scalable healthcare services to patients while reducing costs is a challenging issue. Among the most promising approaches for enabling smart healthcare (s-health) are edge-computing capabilities and next-generation wireless networking technologies that can provide real-time and cost-effective patient remote monitoring. In this article, we present our vision of exploiting MEC for s-health applications. We envision a MEC-based architecture and discuss the benefits that it can bring to realize in-network and context-aware processing so that the s-health requirements are met. We then present two main functionalities that can be implemented leveraging such an architecture to provide efficient data delivery, namely, multimodal data compression and edge-based feature extraction for event detection. The former allows efficient and low distortion compression, while the latter ensures high-reliability and fast response in case of emergency applications. Finally, we discuss the main challenges and opportunities that edge computing could provide and possible directions for future research

    A smart home environment to support safety and risk monitoring for the elderly living independently

    Get PDF
    The elderly prefer to live independently despite vulnerability to age-related challenges. Constant monitoring is required in cases where the elderly are living alone. The home environment can be a dangerous environment for the elderly living independently due to adverse events that can occur at any time. The potential risks for the elderly living independently can be categorised as injury in the home, home environmental risks and inactivity due to unconsciousness. The main research objective was to develop a Smart Home Environment (SHE) that can support risk and safety monitoring for the elderly living independently. An unobtrusive and low cost SHE solution that uses a Raspberry Pi 3 model B, a Microsoft Kinect Sensor and an Aeotec 4-in-1 Multisensor was implemented. The Aeotec Multisensor was used to measure temperature, motion, lighting, and humidity in the home. Data from the multisensor was collected using OpenHAB as the Smart Home Operating System. The information was processed using the Raspberry Pi 3 and push notifications were sent when risk situations were detected. An experimental evaluation was conducted to determine the accuracy with which the prototype SHE detected abnormal events. Evaluation scripts were each evaluated five times. The results show that the prototype has an average accuracy, sensitivity and specificity of 94%, 96.92% and 88.93% respectively. The sensitivity shows that the chance of the prototype missing a risk situation is 3.08%, and the specificity shows that the chance of incorrectly classifying a non-risk situation is 11.07%. The prototype does not require any interaction on the part of the elderly. Relatives and caregivers can remotely monitor the elderly person living independently via the mobile application or a web portal. The total cost of the equipment used was below R3000

    Distributed Computing and Monitoring Technologies for Older Patients

    Get PDF
    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient at home, deriving the common functional requirements for monitoring technology. Next, the work identifies the state of the art of technological monitoring approaches that are practically applicable to geriatric patients. A survey is presented on a range of such interdisciplinary fields as smart homes, telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges, offering a number of suggestions for further research directions

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Heart failure patients monitoring using IoT-based remote monitoring system

    Get PDF
    Intelligent health monitoring systems are becoming more important and popular as technology advances. Nowadays, online services are replacing physical infrastructure in several domains including medical services as well. The COVID-19 pandemic has also changed the way medical services are delivered. Intelligent appliances, smart homes, and smart medical systems are some of the emerging concepts. The Internet of Things (IoT) has changed the way communication occurs alongside data collection sources aided by smart sensors. It also has deployed artificial intelligence (AI) methods for better decision-making provided by efficient data collection, storage, retrieval, and data management. This research employs health monitoring systems for heart patients using IoT and AI-based solutions. Activities of heart patients are monitored and reported using the IoT system. For heart disease prediction, an ensemble model ET-CNN is presented which provides an accuracy score of 0.9524. The investigative data related to this system is very encouraging in real-time reporting and classifying heart patients with great accuracy
    • 

    corecore