9 research outputs found

    Machine Learning assisted Chimera and Solitary states in Networks

    Full text link
    Chimera and Solitary states have captivated scientists and engineers due to their peculiar dynamical states corresponding to the co-existence of coherent and incoherent dynamical evolution in coupled units in various natural and artificial systems. It has been further demonstrated that such states can be engineered in systems of coupled oscillators by the suitable implementation of communication delays. Here, using supervised machine learning, we predict (a) the precise value of delay which is sufficient for engineering chimera and solitary states for a given set of system parameters, as well as (b) the intensity of incoherence for such engineered states. The results are demonstrated for two different examples consisting of single layer and multi layer networks. First, the chimera states (solitary states) are engineered by establishing delays in the neighboring links of a node (the interlayer links) in a 2-D lattice (multiplex network) of oscillators. Then, different machine learning classifiers, KNN, SVM and MLP-Neural Network are employed by feeding the data obtained from the network models. Once a machine learning model is trained using a limited amount of data, it makes predictions for a given unknown systems parameter values. Testing accuracy, sensitivity, and specificity analysis reveal that MLP-NN classifier is better suited than Knn or SVM classifier for the predictions of parameters values for engineered chimera and solitary states. The technique provides an easy methodology to predict critical delay values as well as the intensity of incoherence for designing an experimental setup to create solitary and chimera states.Comment: 11 Pages, 9 Figures, Contains revised abstract and publication detail

    Complex partial synchronization patterns in networks of delay-coupled neurons

    Get PDF
    We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Chimeras in Multiplex Networks: Interplay of Inter- and Intra-Layer Delays

    Get PDF
    Time delay in complex networks with multiple interacting layers gives rise to special dynamics. We study the scenarios of time delay induced patterns in a three-layer network of FitzHugh-Nagumo oscillators. The topology of each layer is given by a nonlocally coupled ring. For appropriate values of the time delay in the couplings between the nodes, we find chimera states, i.e., hybrid spatio-temporal patterns characterized by coexisting domains with incoherent and coherent dynamics. In particular, we focus on the interplay of time delay in the intra-layer and inter-layer coupling term. In the parameter plane of the two delay times we find regions where chimera states are observed alternating with coherent dynamics. Moreover, in the presence of time delay we detect full and relay inter-layer synchronization.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität BerlinDFG, SFB 910, Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Composed solutions of synchronized patterns in multiplex networks of Kuramoto oscillators

    Full text link
    Networks with different levels of interactions, including multilayer and multiplex networks, can display a rich diversity of dynamical behaviors and can be used to model and study a wide range of systems. Despite numerous efforts to investigate these networks, obtaining mathematical descriptions for the dynamics of multilayer and multiplex systems is still an open problem. Here, we combine ideas and concepts from linear algebra and graph theory with nonlinear dynamics to offer a novel approach to study multiplex networks of Kuramoto oscillators. Our approach allows us to study the dynamics of a large, multiplex network by decomposing it into two smaller systems: one representing the connection scheme within layers (intra-layer), and the other representing the connections between layers (inter-layer). Particularly, we use this approach to compose solutions for multiplex networks of Kuramoto oscillators. These solutions are given by a combination of solutions for the smaller systems given by the intra and inter-layer system and, in addition, our approach allows us to study the linear stability of these solutions

    Optimal self-induced stochastic resonance in multiplex neural networks: electrical versus chemical synapses

    Get PDF
    Electrical and chemical synapses shape the dynamics of neural networks and their functional roles in information processing have been a longstanding question in neurobiology. In this paper, we investigate the role of synapses on the optimization of the phenomenon of self-induced stochastic resonance in a delayed multiplex neural network by using analytical and numerical methods. We consider a two-layer multiplex network, in which at the intra-layer level neurons are coupled either by electrical synapses or by inhibitory chemical synapses. For each isolated layer, computations indicate that weaker electrical and chemical synaptic couplings are better optimizers of self-induced stochastic resonance. In addition, regardless of the synaptic strengths, shorter electrical synaptic delays are found to be better optimizers of the phenomenon than shorter chemical synaptic delays, while longer chemical synaptic delays are better optimizers than longer electrical synaptic delays -- in both cases, the poorer optimizers are in fact worst. It is found that electrical, inhibitory, or excitatory chemical multiplexing of the two layers having only electrical synapses at the intra-layer levels can each optimize the phenomenon. And only excitatory chemical multiplexing of the two layers having only inhibitory chemical synapses at the intra-layer levels can optimize the phenomenon. These results may guide experiments aimed at establishing or confirming the mechanism of self-induced stochastic resonance in networks of artificial neural circuits, as well as in real biological neural networks.Comment: 24 pages, 7 figure

    Emergence of Chimera in Multiplex Network

    No full text
    corecore