541 research outputs found

    Representations, symbols and embodiment

    Get PDF
    Response to "Embodied artificial intelligence", a commentary by Ron Chrisley

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Hierarchical generative modelling for autonomous robots

    Get PDF
    Humans generate intricate whole-body motions by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control and approached the problem of autonomous task completion by hierarchical generative modelling with multi-level planning, emulating the deep temporal architecture of human motor control. We explored the temporal depth of nested timescales, where successive levels of a forward or generative model unfold, for example, object delivery requires both global planning and local coordination of limb movements. This separation of temporal scales suggests the advantage of hierarchically organizing the global planning and local control of individual limbs. We validated our proposed formulation extensively through physics simulation. Using a hierarchical generative model, we showcase that an embodied artificial intelligence system, a humanoid robot, can autonomously complete a complex task requiring a holistic use of locomotion, manipulation and grasping: the robot adeptly retrieves and transports a box, opens and walks through a door, kicks a football and exhibits robust performance even in the presence of body damage and ground irregularities. Our findings demonstrated the efficacy and feasibility of human-inspired motor control for an embodied artificial intelligence robot, highlighting the viability of the formulized hierarchical architecture for achieving autonomous completion of challenging goal-directed tasks

    Higher coordination with less control - A result of information maximization in the sensorimotor loop

    Full text link
    This work presents a novel learning method in the context of embodied artificial intelligence and self-organization, which has as few assumptions and restrictions as possible about the world and the underlying model. The learning rule is derived from the principle of maximizing the predictive information in the sensorimotor loop. It is evaluated on robot chains of varying length with individually controlled, non-communicating segments. The comparison of the results shows that maximizing the predictive information per wheel leads to a higher coordinated behavior of the physically connected robots compared to a maximization per robot. Another focus of this paper is the analysis of the effect of the robot chain length on the overall behavior of the robots. It will be shown that longer chains with less capable controllers outperform those of shorter length and more complex controllers. The reason is found and discussed in the information-geometric interpretation of the learning process

    Evaluating Morphological Computation in Muscle and DC-motor Driven Models of Human Hopping

    Get PDF
    In the context of embodied artificial intelligence, morphological computation refers to processes which are conducted by the body (and environment) that otherwise would have to be performed by the brain. Exploiting environmental and morphological properties is an important feature of embodied systems. The main reason is that it allows to significantly reduce the controller complexity. An important aspect of morphological computation is that it cannot be assigned to an embodied system per se, but that it is, as we show, behavior- and state-dependent. In this work, we evaluate two different measures of morphological computation that can be applied in robotic systems and in computer simulations of biological movement. As an example, these measures were evaluated on muscle and DC-motor driven hopping models. We show that a state-dependent analysis of the hopping behaviors provides additional insights that cannot be gained from the averaged measures alone. This work includes algorithms and computer code for the measures.Comment: 10 pages, 4 figures, 1 table, 5 algorithm

    Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis

    Get PDF
    One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost

    Path Planning for incline terrain using Embodied Artificial Intelligence

    Get PDF
    Η Ενσώματη Τεχνητή Νοημοσύνη στοχεύει στο να καλύψει την ανάγκη για την αναπαράσταση ενός προβλήματος αναζήτησης, καθώς και την αναπαράσταση του τι συνιστά “καλή” λύση για το πρόβλημα αυτό σε μια έξυπνη μηχανή. Στην περίπτωση της παρούσας πτυχιακής, αυτή η έξυπνη μηχανή είναι ένα ρομπότ. Συνδυάζοντας την Τεχνητή Νοημοσύνη και την Ρομποτική μπορούμε να ορίσουμε πειράματα των οποίων ο χώρος αναζήτησης είναι ο φυσικός κόσμος και τα αποτελέσματα κάθε πράξης συνιστούν την αξιολόγηση της κάθε λύσης. Στο πλαίσιο της πτυχιακής μου είχα την ευκαιρία να πειραματιστώ με την ανάπτυξη αλγορίθμων Τεχνητής Νοημοσύνης οι οποίοι καθοδηγούν ένα μη επανδρωμένο όχημα εδάφους στην ανακάλυψη μιας λύσης ενός δύσκολου προβλήματος πλοήγησης σε εξωτερικό χώρο, όπως η διάσχιση ενός εδάφους με απότομη κλίση. Επιχείρησα να αντιμετωπίσω το πρόβλημα αυτό με τρεις διαφορετικές προσεγγίσεις, μία με αλγόριθμο Hill Climbing, μία με N-best αναζήτηση και μία με Εξελικτικό Αλγόριθμο, καθεμία με τα δικά της προτερήματα και τις δικές της αδυναμίες. Τελικά, δημιούργησα και αξιολόγησα επίδειξεις, τόσο σε προσομοιωμένα σενάρια όσο και σε ένα σενάριο στον πραγματικό κόσμο. Τα αποτελέσματα αυτών των επιδείξεων δείχνουν μία σαφή πρόοδο στην προσέγγιση του προαναφερθέντος προβλήματος από μία ρομποτική πλαρφόρμα.Embodied Artificial Intelligence aims to cover the need of a search problem’s representation, as well as the representation of what constitutes a “good” solution to this problem in a smart machine. In this thesis’ case, this smart machine is a robot. When we combine Artificial Intelligence and Robotics we can define experiments where the search space is the physical world and the results of each action constitute each solution’s evaluation. In my thesis’ context, I had the opportunity to experiment with the development of artificial intelligence algorithms that guide an unmanned ground vehicle to discover the solution of a tough outdoor navigation problem, like traversing a terrain region of steep incline. I attempted to face the problem with three different approaches. A Hill Climbing algorithm approach, a N-best search approach and an Evolutionary Algorithm approach, each one with its own strengths and weaknesses. In the end, I created and I evaluated demonstrations, both in simulated scenarios and in a real world scenario. The results of these demonstrations show a clear progress in the approach of the aforementioned problem, by the robotic platform
    corecore