
ORIGINAL RESEARCH
published: 25 July 2016

doi: 10.3389/frobt.2016.00042

Edited by:
Claudius Gros,

Goethe University Frankfurt, Germany

Reviewed by:
Dimitrije Marković,
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In the context of embodied artificial intelligence, morphological computation refers to
processes, which are conducted by the body (and environment) that otherwise would
have to be performed by the brain. Exploiting environmental and morphological properties
are an important feature of embodied systems. The main reason is that it allows to
significantly reduce the controller complexity. An important aspect of morphological
computation is that it cannot be assigned to an embodied system per se, but that it is, as
we show, behavior and state dependent. In this work, we evaluate two different measures
of morphological computation that can be applied in robotic systems and in computer
simulations of biological movement. As an example, these measures were evaluated on
muscle and DC-motor driven hopping models. We show that a state-dependent analysis
of the hopping behaviors provides additional insights that cannot be gained from the
averaged measures alone. This work includes algorithms and computer code for the
measures.

Keywords: morphological computation, sensorimotor loop, embodied artificial intelligence, muscle models,
information theory

1. INTRODUCTION

Morphological computation (MC), in the context of embodied (artificial) intelligence, refers to
processes, which are conducted by the body (and environment) that otherwise would have to be
performed by the brain (Pfeifer and Bongard, 2006). A nice example of MC is given by Wootton
(1992) (see p. 188), who describes how “active muscular forces cannot entirely control the wing
shape in flight. They can interact dynamically with the aerodynamic and inertial forces that the
wings experience and with the wing’s own elasticity; the instantaneous results of these interactions
are essentially determined by the architecture of the wing itself [. . .]”

MC is relevant in the study of biological and robotic systems. To illustrate the utility of MC in
robotics, we will first briefly discuss the Passive Dynamic Walker (McGeer, 1990), which is a purely
mechanical system. The proportions of the legs and the weight distribution are similar to those
of human legs. The Passive Dynamic Walker shows that walking can result from the interaction
of the system’s physical properties and its environment (in this case a slope of 3°). No actuation
is required for the walking behavior. Transferred to robotics, this means that systems with high
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morphological computation only need to generate motor com-
mands when they are needed. Not only does such a control
increase the durability of the systems (because the wear-out of the
actuators is decreased), it alsomeans that robotswith highMCwill
have a reduced energy demand for their actuation (e.g., Niiyama
et al. (2012) andRenjewski et al. (2015)). By outsourcing computa-
tion to the embodiment, the controller complexity, and hence, the
computational cost can be reduced, which again contributes to the
overall reduction of the energy consumption. For contemporary
mobile robots, the energy supply still is one of the biggest unsolved
problems, as mobile robots can either operate only for a short
period of time or have to carry heavy batteries (Baughman, 2005).
To summarize, increasing MC for a robotic system potentially
decreases the overall energy demand, the controller complexity,
and finally also the wear-out of the system.

This said, one should not mistake MC to be synonymous for
energy efficiency. One example in which MC does not relate to
energy efficiency is human running, in particular, running in
an outdoor environment, such as a downhill off-road path. The
runner is not able to detect every change of slope or see every
stone, tree branch, etc., on the ground. This means that most
irregularities are sensed at the moment when the foot touches
the ground (Müller et al., 2015). However, an immediate reaction
in the sense of neural change in muscle activity is not possible,
as the communication pathway from the feet to the spinal cord
and back is simply too long (~0.02 s). Running on an irregular
ground is only possible because of the physical properties of the
muscle-tendon system. Not only do they have a shock-absorbing
function, within certain limits, irregularities of the ground can
be accounted for without any explicit control (Brown et al., 1995;
Proctor and Holmes, 2010; Müller et al., 2015). In this case, MC
does not contribute to the energy efficiency (running is not energy
efficient), but it is required to enable the behavior. We believe
that maximizing MC covers more than just energy efficiency (fast
adaptivity in uncertain environments is one example), but that this
is an immediate benefit in the field of robotics.

For biological systems, energy efficiency and adaptivity are
important and evolutionary advantages. A strong indication for
the importance of energy efficiency is given by the fact that
the human brain accounts for only 2% of the body mass but
is responsible for 20% of the entire energy consumption (Clark
and Sokoloff, 1999). The energy consumption is also remarkably
constant (Sokoloff et al., 1955). Under the assumption that the
acquisition of energy was not a trivial task throughout most of
the evolution of humans, on can safely conclude that as much
computation as possible has been outsourced to the embodiment.
When hunting prey or escaping from a predator, adaptivity to
irregularities in the environment through morphological proper-
ties is a clear evolutionary advantage. Therefore, MC may be a
driving force in evolution.

In biological systems, movements are typically generated by
muscles. Several simulation studies have shown that the mus-
cles’ typical non-linear contraction dynamics can be exploited
in movement generation with very simple control strategies
(Schmitt andHaeufle, 2015).Muscles improvemovement stability
in comparison to torque driven models (van Soest and Bobbert,
1993) or simplified linearized muscle models [for an overview

see (Haeufle et al., 2012)].Muscles also reduce the influence of the
controller on the actual kinematics (they can act as a low-pass
filter). This means that the hopping kinematics of the system is
more predetermined with non-linear muscle characteristics than
with simplified linear muscle characteristics (Haeufle et al., 2012).
And finally, in hopping movements, muscles reduce the control
effort (amount of information required to control the movement)
by a factor of approximately 20 in comparison to a DC-motor
driven movement (Haeufle et al., 2014).

In view of these results, we expect that MC plays an important
role in the control of muscle driven movement. To study this
quantitatively, a suitable measure for MC is required. There are
several approaches to formalize MC. Hauser et al. (2011) pro-
poses a dynamical systems approach in which the effect of the
morphology on the attractor landscape of the systems is taken
into account. Polani (2011) minimizes the controller complexity
in a reinforcement learning setting. This is very close to our
second quantification MCMI (see Section 3.2). The difference is
that we take the behavior complexity instead of a reward signal
into account. Rückert and Neumann (2013) measure morpho-
logical computation indirectly by measuring how changes of the
morphology reduce or increase the required controller complexity
in the context of stochastic optimal control.

In our previous work, we have focused on a direct quantifica-
tion of the embodiment, whereas most other approaches quantify
MC indirectly through the controller complexity. In particular,
in our first publication (Zahedi and Ay, 2013), we focused on an
agent-centric perspective ofmeasuringMC.We had proposed two
different, complementary concepts of measuring morphological
computation (which are discussed below). From those concepts,
which rely on information that is only partially available to the
agent, we derived quantifications that only rely on the agents
sensors and actuators. In this publication, we evaluate MC on
simulated muscles models, which means that we have access to
the full system’s state. Hence, in this publication, we concentrate
on measures, which operate on the full system’s state. This allows
us to investigate how the concepts operate on realistic muscle
models without taking approximation errors into account that
occur from limited sensor information. In a different publica-
tion (Ghazi-Zahedi and Rauh, 2015), we applied an information
decomposition (Bertschinger et al., 2014) to the sensorimotor
loop and developed a refined understand the two concepts that
we have proposed in Zahedi and Ay (2013). Both publications
used a binary toy world model to evaluate the measures. With this
toy model, it was possible to show that these measures capture
the conceptual idea of MC and, in consequence, that they are
candidates to measure MC in more complex and more realistic
systems.

The main contribution of this publication is to evaluate two
measures of MC on biologically realistic hopping models. With
this, we want to demonstrate their applicability in non-trivial,
realistic scenarios. Based on our previous findings (see above), we
hypothesize that MC is higher in hopping movements driven by a
non-linear muscle compared to those driven by a simplified linear
muscle or a DC-motor. Furthermore, our experiments show that
a state-dependent analysis of MC for the different models leads
to insights, which cannot be gained from the averaged measures
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alone. Finally, we provide detailed instructions on how to apply
these measures to robotic systems and to computer simulations,
including MATLAB®, C++ code, and the data used in this publi-
cation (Ghazi-Zahedi, 2016). With this, we hope to provide a tool
for the evaluation of MC in a large variety of applications.

The quantifications of MC require a formal representation of
the sensorimotor loop (see Figure 1), which is introduced in the
next section as far as it is required to understand the remainder
of this work. For further information, the reader is referred to
Klyubin et al. (2004), Zahedi et al. (2010), Ay and Zahedi (2013),
and Zahedi and Ay (2013).

2. THE SENSORIMOTOR LOOP

The conceptual idea of the sensorimotor loop is similar to the
basic control loop systematics, which is the basis of robotics
and also of computer simulations of human movement. In our
understanding, a cognitive system consists of a brain or controller,
which sends signals to the system’s actuators, thereby affecting
the system’s environment. We prefer to capture the body and
environment in a single random variable named world. This is
consistent with other concepts of agent-environment distinctions.
An example for such a distinction can be found in the context of
reinforcement learning, where the environment (world) is every-
thing that cannot be changed arbitrarily by the agent (Sutton and
Barto, 1998). A more thorough discussion of the brain-body-
environment distinction can be found in (von Uexkuell, 1934;
Clark, 1996) and more recently by Ay and Löhr (2015). A brief
example of a world, based on a robot simulation, is given below.
The loop is closed as the system acquires information about its
internal state (e.g., current pose) and its world through its sensors.

For simplicity, we only discuss the sensorimotor loop for
reactive systems in this work (for a detailed discussion, please
see Ay and Zahedi (2014)). This is plausible, because behaviors
which exploit the embodiment (e.g., walking, swimming, flying)
are typically reactive. A measure that takes the controller state
into account is discussed in Zahedi and Ay (2013). Restricting

ourselves to reactive systems results in three (stochastic) processes
S(t), A(t), and W(t), t∈ N that constitute the sensorimotor loop
(see Figure 1), which take values s, a, and w, in the sensor,
actuator, and world state spaces (their respective domains will
be clear from the context). The directed edges (see Figure 1)
reflect causal dependencies between these random variables. We
consider time to be discrete, i.e., t∈ N and are interested in what
happens in a single time step. Therefore, we use the following
notation. Random variables without any time index refer to some
fixed time t and primed variables to time t+ 1, i.e., the two
variables S, S′ refer to S(t) and S(t+ 1).

Starting with the initial distribution over world states, denoted
by p(w), the sensorimotor loop for reactive systems is given by
three conditional probability distributions, β, α, π, also referred
to as kernels. The sensor kernel, which determines how the agent
perceives the world, is denoted by β(s|w), the agent’s controller or
policy is denoted by π(a|s), and finally, the world dynamics kernel
is denoted by α(w′|w,a).

To understand the function of the world dynamics kernel
α(w′|w,a), it is useful to think of a robotic simulation. In this
scenario, the world stateW is the state of the simulator at a given
time step, which includes the pose of all objects, their velocities,
applied forces, etc. The actuator state A is the value that the
controller passes on to the physics engine prior to the next physics
update. Hence, the world dynamics kernel α(w′|w,a) is closely
related to the forward model that is known in the context of
robotics and biomechanics.

Based on this notation, we can now formulate quantifications
of MC in the next section.

3. QUANTIFYING MORPHOLOGICAL
COMPUTATION

In the introduction, we stated that MC relates to the computation
that the body (and environment) performs that otherwise would
have to be conducted by the controller (or brain). This means that
we want to measure the extent to which the system’s behavior is

FIGURE 1 | Left-hand side: Schematics of a cognitive system and the interactions of sensors, brain, actuators, and environment. Right-hand side:
Causal model of the sensorimotor loop for a reactive system (no internal state). This figure depicts a single step of an embodied, reactive system’s sensorimotor loop.
The state of the world, sensors, and actuators are modeled by the random variables W, S, and A. The arrows between the variables depict the causal relations. The
Greek letters denote the corresponding kernels. The sensor kernel β(s|w) determines how the agent senses the world. The policy is given by π(a|s), and finally the
world dynamics kernel α(w′ |w, a) determines how the next world state W′ depends on the previous world state W and action A. A detailed explanation is given in
Section 2.
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the result of the world dynamics (i.e., the body’s internal dynamics
and it’s interactionwith its world) and howmuch of the behavior is
determined by the policyπ (seeFigure 1). In our previous publica-
tion (Zahedi and Ay, 2013), we have derived two complementary
concepts to quantify MC (see Section 1 for a discussion). The two
measures discussed below were chosen for presentation in this
work, because they represent the two concepts.

3.1. Morphological Computation as
Conditional Mutual Information (MCW)
The first quantification,which is used in thiswork,was introduced
in Zahedi andAy (2013). The idea behind it can be summarized in
the following way. The world dynamics kernel α(w′|w,a) captures
the influence of the actuator signal A and the previous world state
W on the next world state W′. A complete lack of MC would
mean that the behavior of the system is entirely determined by the
system’s controller, and hence, by the actuator state A. In this case,
the world dynamics kernel reduces to p(w′|a). Every difference
from this assumption means that the previous world state W
had an influence, and hence, information about W changes the
distribution over the next world states W′. The discrepancy of
these two distributions can be measured with the average of the
Kullback-Leibler divergence DKL(α(w′|w,a) || p(w′|a)), which is
also known as the conditional mutual information I(W′;W|A).
This distance is formally given by (see also Algorithm 2)

MCW :=
∑
w′,w,a

p(w′,w, a)log2
α(w′|w, a)
p(w′|a) . (1)

3.2. Morphological Computation as
Comparison of Behavior and Controller
Complexity (MCMI)
The second quantification follows concept one of Zahedi and Ay
(2013). The assumption that underlies this concept is that, for
a given behavior, MC decreases with an increasing effect of the
action A on the next world stateW′. The corresponding measure
MCA ∝–I(W′;W|A) cannot be used in systems with deterministic
policy, because for these systems I(W′;W|A)= 0 (see Appendix
A). Therefore, for this publication, we require an adaptation that
operates onworld states and is applicable to deterministic systems.

The newmeasure compares the complexity of the behaviorwith
the complexity of the controller. The complexity of the behav-
ior can be measured by the mutual information of consecutive
world states, I(W′;W), and the complexity of the controller can
be measured by the mutual information of sensor and actuator
states, I(A;S), for the following reason. The mutual information
of two random variables can also be written as difference of
entropies: I(X;Y)=H(X)−H(X|Y),H(X)=−

∑
x p(x)log2 p(x),

H(X|Y)=−
∑

x,y p(x, y) log2 p(x|y), which, applied to our set-
ting, means that the mutual information I(W′;W) is high, if we
have a high entropy over world states W′ (first term) that are
highly predicable (second term). Summarized, this means that
the mutual information I(W′;W) is high if the system shows
a diverse but non-random behavior. Obviously, this is what we
would like to see in an embodied system. On the other hand, a
system with high MC should produce a complex behavior based

on a controller with low complexity. Hence, we want to reduce
the mutual information I(A;S), because this either means that
the policy has a low diversity in its output (low entropy over
actuator states H(A)) or that there is only a very low correlation
between sensor states S and actuator states A (high conditional
entropy H(A|S)). Therefore, we define the second measure as the
difference of these two terms, which is (see also Algorithm 4).

MCMI = I(W′;W) − I(A;S). (2)

Equation 2 reveals that this measure is closely related to the
work by Polani (2011), and in particular his work on relevant
information (Polani et al., 2006), which minimizes the controller
complexity while maximizing a reward function, i.e., min(I(S;
A)− βE{Q(s,a)}).

For deterministic systems, as those studied in this work,
the two proposed measures, MCW and MCMI [see equations
(1) and (2)], are closely related. In particular, it holds that
MCW −MCMI =H(A|W′) (see Appendix B). The inequality
MCW ≥MCMI may not be satisfied always, because discretization
can introduce stochasticity.

Note that in the case of a passive observer, i.e., a system that
observes the world but in which there is no causal dependency
between the action and the next world state (i.e., missing connec-
tion between A and W′ in Figure 1), the controller complexity
I(A;S) in equation (2) will reduce the amount of MC measured
byMCMI, although the actuator state does not influence the world
dynamics. This might be perceived as a potential shortcoming.
In the context discussed in this paper, e.g., data recorded from
biological or robotic systems, we think that this will not be an
issue.

The next section introduces the hopping models on which the
two measures are evaluated.

3.3. Algorithms
This section presents the algorithms to calculate both measures
in pseudo-code. Implementations of the algorithms inMATLAB®
and C++ are available at Ghazi-Zahedi (2016). The repository
also contains the data sets used in this publication.

Note that we use a compressed notion in Algorithms 2–5, in
which x′ = x(t+ 1) and x= x(t).

The first algorithm (seeAlgorithm1) is required to pre-process
the data. Currently, our measure only work on discretized data.
This means that we need to bin the system’s variables (position,
velocity, etc.), and furthermore, combine to a uni-variate random
variable W. The same procedure must also be followed for the
action state variable A and sensor state variable S.

Once the discretised uni-variate random variablesW, A, S,W′

are available, we can now calculate the two measures MCW (see
Algorithm 2) and MCMI (see Algorithm 4).

The state-dependent calculations of the two measures on
require minimal changes to the original algorithms. Instead of
averaging over all states, which leads to a single number as a result,
the measures are evaluated n-tupel in the data set. This means
that for MCW, the logarithm is evaluated for every triple wt+1,
wt, at (see Algorithm 3). Consequently, the logarithms that are
used in the measure MCMI are evaluated for every 4-tupel wt+1,
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ALGORITHM1 |Discretisation of the data. This part is the same for all measures,
depending on which time series are required. The minimum and maximum were
determined of the data of all hopping models.

Require: t= 1, 2, . . . , T

Require: time series y= (y(t)), ẏ = (ẏ(t)), ÿ = (ÿ(t)), a= (a(t)), s= (s(t)),
t=1, 2, . . . ,T

Require: Number of bins Bx for time series x

1: y∗(t)= (y(t)−min(y))/(max(y)−min(y)) · By

2: repeat previous step analogously for ẏ, ÿ, a, and s to generate discretised
time series ẏ∗, ÿ∗, a∗, and s∗

3: w∗(t) = y∗(t) + By · ẏ∗(t) + ByBẏ · ÿ∗(t)

4: The previous step must be applied to sensors and actuators, if they result
from more than one time series

5: w′∗ = (w∗(2), w∗(3), . . . ,w∗(T ))

6: w∗ = (w∗(1), w∗(2), . . . ,w∗(T−1))

7: s∗ = (s∗(1), s∗(2), . . . , s∗(T−1))

8: a∗ = (a∗(1), a∗(2), . . . , a∗(T−1))

ALGORITHM 2 | Algorithm for MCW.

1: p(w′, w, a)← (0)|W | × |W | × |A | {Matrix with |W |× |W |× |A| entries set to zero}

2: for t= 1, 2,. . .,T−1 and wt+1, wt ∈ w∗, at ∈ a∗ do

3: p(wt+1, wt, at )← p(wt+1, wt, at )+ 1

4: end for

5: p(w′, w, a)← p(w′, w, a)/(T−1)

6: Estimate p(w′, a) from w∗, a∗ or by summing over w

7: p(w′|w,a) = p(w′,w,a)∑
w′ p(w′,w,a)

8: p(w′|a) = p(w′,a)∑
w′ p(w′,a)

9: MCW =
∑

w′,w,a p(w′,w,a)log2
p(w′|w,a)
p(w′|a)

ALGORITHM 3 | Algorithm for state-dependent MCW(t).

1: Perform steps 1–8 from Algorithm 2

2: for t= 1,2, . . . ,T−1 and w′, w ∈ w∗, a ∈ a∗ do

3: MCW(t) = log2
p(w′|w,a)
p(w′|a)

4: end for

ALGORITHM 4 | Algorithm for MCMI.

1: Estimate p(w′, w) from w∗ (see Algorithm 2)

2: Estimate p(a, s) from a∗, s∗ (see Algorithm 2)

3: H(W′) = −
∑

w′ p(w′)log2p(w
′)

4: H(W′|W) = −
∑

w′,w p(w′,w)log2p(w
′,w)/

∑
w′ p(w′,w)

5: H(A) = −
∑

a p(a)log2p(a)

6: H(A|S) = −
∑

a,s p(a,s)log2
(
p(a,s)/

∑
a p(a,s)

)
7: MCMI =H(W′)−H(W′ |W)−H(A)+H(A|S)

ALGORITHM 5 | Algorithm for state-dependent MCMI(t).

1: Perform step 1–2 from Algorithm 4

2: for t= 1,2, . . . ,T−1 and w′, w ∈ w∗, a ∈ a∗, s ∈ s∗ do

3: MCMI(t) = log2p(w
′)− log2p(w

′|w) + log2p(a)− log2p(a|s))

4: end for

wt, at, st in the data set. The arithmetic mean ( 1n
∑

xt, where xt is
either MCW(t) or MCMI(t), see Algorithms 3 and 5) of the state-
dependent MC values leads to same values that result from the
original algorithms.

This concludes the discussion of the measures and their imple-
mentation. The next section presents the muscle and DC-motor
model against which these measure were evaluated.

4. HOPPING MODELS

In a reduced model, hopping motions can be described by a
one-dimensional differential equation (Haeufle et al., 2010):

mÿ = −mg +

{
0 y > l0 flight phase
FL y ≤ l0 ground contact

, (3)

where the point mass m= 80 kg represents the total mass of
the hopper, which is accelerated by the gravitational force
(g = –9.81m/s2) in negative y-direction. An opposing leg force
FL in positive y-direction can act only during ground contact
(y≤ l0 = 1m). Hopping motions are then characterized by alter-
nating flight and stance phases. For this manuscript, we inves-
tigated three different models for the leg force (Figure 2). All
models have in common, that the leg force depends on a control
signal u(t) and the system state y(t), ẏ(t): FL = FL(u(t), y(t), ẏ(t)),
meaning, that the force modulation partially depends on the
controller outputu(t) and partially on the dynamic characteristics,
or material properties of the actuator. The control parameters
of all three models were adjusted to generate the same periodic
hopping height of max (y(t))= 1.070m. All models were imple-
mented in MATLAB® Simulink™ (Ver2014b) and solved with
ode45 Dormand-Prince variable time step solver with absolute
and relative tolerances of 10−12. To evaluate and compare the
results of the models, a time-discrete output with constant sam-
pling frequency is required (see Section 3.3). Therefore, the quasi-
continuous variable time step signals generated by the ode45
solver are not adequate. To generate the desired output at 1 kHz
sampling frequency, we used the Simulink built-in feature to
generate desired output only. This way, the solver decreased step-
size below 1ms if required for precision, however, Simulink would
only output the data for 1 kHz sampling frequency. This is similar
to measuring a continuous physical system with a discrete time
sensor. The models were solved for T= 8 s.

4.1. Muscle-Fiber Model (MusFib)
A biological muscle generates its active force in muscle fibers
whose contraction dynamics are well studied. It was found that the
contraction dynamics are qualitatively and quantitatively (with
some normalizations) very similar across muscles of all sizes and
acrossmany species. In theMusFibmodel, the leg force ismodeled
to incorporate the active muscle fibers’ contraction dynamics.
The model has been motivated and described in detail elsewhere
(Haeufle et al., 2010, 2012, 2014). In a nutshell, the material
properties of the muscle fibers are characterized by two terms
modulating the leg force

FL,MusFib = q(t)Ffib(lM, l̇M). (4)
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FIGURE 2 | Hopping models. The MusFib model considers the non-linear contraction dynamics of active muscle fibers and is driven by a mono-synaptic
force-feedback reflex. The MusLin model only differs in the contraction dynamics, where the force-length relation is neglected and the force-velocity relation is
approximated linearly. The DCMot model generates the leg force with a DC motor. It is controlled by a proportional-differential controller (PD), enforcing the desired
trajectory. The desired trajectory is the recorded trajectory from the MusFib Model. The sensor signals are shown as blue arrows, and the actuator control signals are
shown as green arrows. In case of the muscle models, the sensor signal is the muscle force FM, and the actuator control signal is the neural muscle stimulation u. In
case of the DC-motor model, the sensor signals are the position and velocity of the mass, and the actuator control signal is the motor armature voltage uDC.

The first term q(t) represents the muscle activity. The activ-
ity depends on the neural stimulation u(t) of the muscle
0.001≤ u(t)≤ 1 and is governed by biochemical processes mod-
eled as a first-order ODE called activation dynamics

˙q(t) =
1
τ

(u(t) − q(t)) , (5)

with the time constant τ = 10ms. The second term in equation
(5) Ffib considers the force-length and force-velocity relation of
biological muscle fibers. It is a function of the system state, i.e.,
the muscle length lM = y and muscle contraction velocity l̇M = ẏ
during ground contact y≤ l0 and constant lM = l0 l̇M = 0 during
flight y> l0:

Ffib = Fmax · exp

(
−c
∣∣∣∣ lM − lopt

loptw

∣∣∣∣3
)

×


l̇M,max+l̇M
l̇M,max−Kl̇M

l̇M > 0

N + (N − 1) l̇M,max−l̇M
−7.56Kl̇M−l̇M,max

l̇M ≤ 0
.

(6)

Here, we use amaximum isometricmuscle force Fmax = 2.5 kN,
an optimal muscle length lopt = 0.9m, force-length parameters
w= 0.45 m and c= 30, and force-velocity parameters l̇max =
−3.5ms−1, K = 1.5, and N = 1.5 (Haeufle et al., 2010).

In this model, periodic hopping is generated with a controller
representing a mono-synaptic force-feedback. The neural muscle
stimulation

u(t) = G · FL,MusFib(t − δ) + u0 (7)

is based on the time delayed (δ = 15ms) muscle fiber force
FL ,MusFib. Please note that this delay corresponds to the biophysical
time delay due to the signal propagation velocity of neurons. The
feedback gain is G= 2.4/Fmax, and the stimulation at touch down
u0 = 0.027.

Thismodel neither considers leg geometry nor tendon elasticity
and is therefore the simplest hopping model with muscle-fiber-
like contraction dynamics. The model output was the world state

w(t) = (y(t), ẏ(t), ÿ(t)), the sensor state s(t)= FL ,MusFib(t), and
the neural control command a(t)= u(t). For this model, these are
the values that the random variablesW, S, and A take at each time
step.

4.2. Linearized Muscle-Fiber Model
(MusLin)
This model differs from the model MusFib only in the repre-
sentation of the force–length–velocity relation, i.e., FL,MusLin =
q(t)Flin(l̇M) [see equation (6)]. More precisely, the force–length
relation is neglected and the force–velocity relation is approxi-
mated linearly

Flin = 1 · (1 − µl̇M), (8)

with µ= 0.25m/s. Feedback gainG= 0.8/Fmax and stimulation at
touch down u0 = 0.19 were chosen to achieve the same hopping
height as the MusFib model.

4.3. DC-Motor Model (DCMot)
An approach to mimic biological movement in a technical system
(robot) is to track recorded kinematic trajectories with electric
motors and a PD-control approach. The DCMot model imple-
ments this approach [slightlymodified fromHaeufle et al. (2014)].
The leg force generated by the DC-motor was modeled as

FL,DCMot = γTDC = γkTIDC, (9)

where kT = 0.126Nm/A is the motor constant, IDC the current
through the motor windings, γ = 100:1 the ratio of an ideal gear
translating the rotational torqueTDC andmovement φ̇(t) = γẏ(t)
of the motor to the translational leg force and movement required
for hopping. The electrical characteristics of the motor can be
modeled as

İDC =
1
L (uDC − kTγẏ(t) − RIDC) , (10)

where –48V≤ uDC ≤ 48V is the armature voltage (control sig-
nal), R= 7.19Ω the resistance, and L= 1.6 mH the induc-
tance of the motor windings. The motor parameters were
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taken from a commercially available DC-motor commonly used
in robotics applications (Maxon EC-max 40, nominal Torque
Tnominal = 0.212Nm). As this relatively small motor would not be
able to lift the samemass, the bodymass was adapted to guarantee
comparable accelerations

mDC =
γTnominal
Fmax

m = 0.68 kg. (11)

The controller implemented in this technical model is a stan-
dard PD-controller. The controller tries to minimize the error
between a desired kinematic trajectory (ydes(t) and ẏdes(t)) and the
actual position and velocity (y(t) and ẏ(t)) by adapting the motor
voltage:

uDC(t) = KP(ydes(t) − y(t)) + KD(ẏdes(t) − ẏ(t)). (12)

Here, the feedback gains are KP = 5000V/m and
KD = 500Vs/m. The desired trajectory during ground contact
was taken from the periodic hopping trajectory of the MusFib
model (ydes(t)= yMusFib(t) and ẏdes(t) = ẏMusFib(t)).

Thismodel is the simplest implementation of negative feedback
control that allows to enforce a desired hopping trajectory on a
technical system. The model output was the world state w(t) =
(y(t), ẏ(t), ÿ(t)), the sensor state s(t) = (y(t), ẏ(t)), and the
actuator control command a(t)= uDC(t).

5. EXPERIMENTS

This section discusses the experiments that were conducted with
the hopping models and the preprocessing of the data. Algo-
rithms for the calculations are provided in the previous section
(Section 3). At this stage, the measures operate on discrete state
spaces [see equations (1)–(4) and Algorithms 2–4]. Hence, the
data was discretized in the following way. To ensure the com-
parability of the results, the domain (range of values) for each
variable (e.g., the position y) was calculated over all hopping
models. Then, the data of each variable was discretized into 300
values (bins). The algorithm for the discretization is described in
Algorithm 1. Different binning resolutions were evaluated, and
themost stable results were found formore than 100 bins. Finding
the optimal binning resolution is a problem of itself and beyond
the scope of this work. In practice, however, a reasonable binning
can be found by increasing the binning until further increase has
little influence on the outcome of the measures.

The possible range of actuator values is different for the motor
and muscle models. For the muscle models, the values are in the
unit interval, i.e., a(t)∈ [0,1], whereas the values for themotor can
have higher values (see above). Hence, to ensure comparability, we
normalized the actions of themotor to the unit interval before they
were discretized.

The hopping models are deterministic, which means that only
a few hopping cycles are necessary to estimate the required prob-
ability distributions. To ensure comparability of the results, we
parameterized the hopping models to achieve the same hopping
height.

6. RESULTS

The following paragraphs discuss the findings based on the aver-
aged results presented in Table 1 first and then follow with a
discussion of the state-dependent results presented in Figure 3.

All three models generated a similar movement, i.e., peri-
odic hopping with a hopping height of 1.07m. However, the
control signals and the trajectories of the center of mass vary
between models (Figure 4). Therefore, the computed values for
the morphological computation (MC) vary between the models
for both quantificationmethods (Table 1). Compared to the com-
plex muscle fiber model (MusFib), the linearized muscle model
(MusLin) and the technical DC-motor model (DCMot) result in
significantly lower values of MC (≈30% less, see Table 1).

To analyze the differences between the models in more detail,
we plotted the state-dependent MC (see Algorithm 3). Figure 3
shows the values of MCW for each state of the models during
two hopping cycles. We chose to discuss MCW only, because the
corresponding values of MCMI are very similar to those of MCW,
and hence, a discussion of the state-dependent MCMI will not
provide any additional insights. The plots for all models and the
entire data are shown in Figure 4.

The orange line shows the state-dependent MC for the linear
muscle model (MusLin) and the blue line for the non-linear mus-
clemodel (MusFib). The green line shows the state-dependentMC
for the motor model (DCMot). In the figure, the lower lines show
the position y of the center of mass over time. The PD-controller
of the DCMot model is parameterized to follow the trajectory
of the MusFib model, which is why the blue and green position
plots coincide. The original data is shown in Figure 4. There are
basically three phases, which need to be distinguished (indicated
by the vertical lines). First, the flight phase, during which the
hopper does not touch the ground (position plots are above the red
line), second, the deceleration phase, which occurs after landing
(position is below the red line but still declining), and finally, the
acceleration phase, in which the position is below the red line but
increasing.

The first observation is that MC is very similar for all mod-
els during most of the flight phase (position above the red
line) and that it is proportional to the velocity of the systems.
By that we mean that MC decreases when the velocity during
flight decreases and increases when the system’s speed (toward
the ground) increases. During flight, the behavior of the sys-
tem is governed only by the interaction of the body (mass,
velocity) and the environment (gravity) and not by the actua-
tor models. Also, all actuator control signals are constant dur-
ing flight. This explains why the values coincide for the three
models.

TABLE 1 |Numerical results on the hoppingmodels forMCW [Morphological
Computation as Conditional Mutual Information, see equation (14)] and
MCMI [Morphological Computation as the comparison between behavior
and controller complexity, see equation (2)].

Muscle fiber model
MusFib

Lineraized muscle model
MusLin

DC motor model
DCMot

MCW 7.219 bits 4.975 bits 4.960 bits
MCMI 7.310 bits 5.153 bits 4.990 bits
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FIGURE 3 | Comparison of state-dependent MCW on the three hopping models (upper plot). The lower plot visualizes the hopping position. The red line
separates stance and flight phases. The plots only show a small fraction of the recorded data. The full data is shown in Figure 4. For better readability, all the plots
for MC are smoothened with a moving average of block size 5. The plots show that MC is high during the flight phase for all systems, i.e., whenever the behavior of
the system is only governed by gravity. Only for the MusFib, MC is highest when the muscle is contracting. The other two models show low MC when the muscle is
contracting and in general when the hopper touches the ground.

For all models, MC drops as soon as the systems touch the
ground. DCMot and MusLin reach their highest values only dur-
ing the flight phase, which can be expected at least from a motor
model that is not designed to exploit MC. The graphs also reveal
that the MusLin model shows slightly higher MC around mid-
stance phase, compared to the DCMot model. For the non-linear
muscle model, the behavior is different. Shortly after touching the
ground, the system shows a strong decline of MC, which is fol-
lowed by a strong incline during the deceleration with the muscle.
Contrary to the other two models, the non-linear muscle model
MusFib shows the highest values when the muscle is contracted
the most (until mid-stance). This is an interesting result, as it
shows that the non-linear muscle is capable of showing more MC
while the muscle is operating, compared to the flight phase, in
which the behavior is only determined by the interaction of the
body and environment.

7. DISCUSSION

This work presented two different quantifications of morpho-
logical computation including algorithms, MATLAB®, and C++
code to use them (Ghazi-Zahedi, 2016). We demonstrated their
applicability in experiments with non-trivial, biologically realistic
hopping models and discussed the importance of a state-based
analysis of morphological computation. The first quantification,
MCW, measures MC as the conditional mutual information of
the world and actuator states. Morphological computation is the

additional information that the previous world state W provides
about the next world state W′, given that the current actuator
state A is known. The second quantification, MCMI, compares
the behavior and controller complexity to determine the amount
of MC.

The numerical results of the two quantifications MCW and
MCMI confirm our hypothesis that the MusFib model should
show significantly higher MC, compared to the two other mod-
els (MusLin, DCMot). These results complement previous find-
ings showing that the minimum information required to gener-
ate hopping is reduced by the material properties of the non-
linear muscle fibers compared to the DC-motor driven model
(Haeufle et al., 2014). More precisely, the higher MC in the
MusFib model can be attributed to the force–velocity char-
acteristics of the muscle fibers. Previous hopping simulations
showed that these non-linear contraction dynamics reduce the
influence of the controller on the actual hopping kinematics
(Haeufle et al., 2010, 2012). This means, that the kinematic
trajectory is more predetermined by the material properties
as compared to the linearized muscle model MusLin, or the
motor model DCMot. Similar effects have been demonstrated
for jumping (van Soest and Bobbert, 1993) and walking (Ger-
ritsen et al., 1998; John et al., 2013). In conclusion, this implied
that studies on neural control of biological movement should
consider the biomechanical characteristics of muscle contrac-
tion (Pinter et al., 2012; Schmitt et al., 2013; Dura-Bernal et al.,
2016).
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FIGURE 4 | Plots of state-dependent MC (first two rows) and the world state (following four rows) for all muscle models. The red line in the position plot
indicates the time steps at which the hopper touches ground (position is below the red line). Note that the stimulation is dimensionless.

We also showed that a state-dependent analysis of MC leads
to additional insights. Here, we see that the non-linear muscle
model is capable of showing significantly more morphological
computation in the stance phase, compared to the flight phase,
duringwhich the behavior is only determined by the interaction of
the body and environment. This shows that morphological com-
putation is not only behavior dependent but also state-dependent.

Future work will include the analysis of additional behaviors,
such as walking and running, for which we expect, based on the
findings of this work, to see more morphological computation of
the non-linear muscle model MusFib.

To summarize the previous paragraphs, in this work we
have showed that the results obtained from the two measures
MCW and MCMI correspond to the intuitive understanding of
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morphological computation in muscle and DC-motor models.
Furthermore, the results are in accordance with previous work
on the control complexity of these models (Haeufle et al., 2014).
We also showed that both measures show very similar results for
deterministic systems. Hence, onemight ask if there is a justifiable
preference for one of the twomeasures. To answer this question, it
is helpful to set themethods and results of this work in perspective
to our previous work.

In our first publication (Zahedi andAy, 2013), we proposed two
concepts for quantifying morphological computation. The first
conceptMCA =D(p(w′|w, a) || p(w′|w))was not used in thiswork,
because it not applicable to deterministic systems. The original
concepts were developed for stochastic systems only. Instead, we
analyzed a replacement, which is themeasureMCMI. In this work,
we showed that MCMI and MCW are almost equivalent in the
context of deterministic systems. In our secondwork into account,
we applied an information decomposition to the sensorimotor
loop (Ghazi-Zahedi and Rauh, 2015), and found that the second
concept, MCW, can be decomposed into the unique information
that the current world stateW contains about the next world state
W′ and the synergistic information about the next world state
W′ that is only available if the current world stateW and current
action A are taken into account simultaneously. If we take all of
these results into consideration, we can conclude that there are
more arguments in favor of MCW than MCMI for the following
reasons. (1) The decomposition ofMCW leads to quantities, which
nicely reflect intuitive understanding of morphological computa-
tion (Ghazi-Zahedi and Rauh, 2015). (2) MCW and MCMI lead to
almost identical results for deterministic systems (see Appendix
B). (3) MCW can be computed more easily. It requires the joint
distribution of only three random variables (W, A, W′), whereas
MCMI requires the joint distributions of p(w′, w) and p(a, s),
and hence, also information about the sensor states S. This does
not mean that we conclude that MCW is the final answer to the
question on how to quantify morphological computation. Yet,
these are strong indications, that the second concept proposed in

Zahedi and Ay (2013) is the path to take for further investigations.
Nevertheless, the results of this paper show that MCW can already
be used to quantify morphological computation in realistic sys-
tems. Hence, the next step is to apply MCW on high-dimensional
data collected fromnatural systems. The first issue that needs to be
solved here is the formulation ofMCW for the continuous domain,
which is our next step.

We believe that quantifying morphological computation is also
useful in the context of robotics, e.g., in the optimization of mor-
phology and control. Hence, in currently ongoing work, we are
applyingMCW (and the provided software, which we hope proves
to be beneficial also to others) to study the effect of morphological
design and controller variations onmorphological computation in
the context of soft robotics.
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APPENDIX

A. I(W ′;A|W) = 0 for Deterministic Systems
In the case where α(w′|w, a), β(s|w) and π(a|s) are deterministic,
the conditional entropy H(W′|W) vanishes. It follows that

0 ≤ I(W′;A|W) = H(W′|W) − H(W′|W,A)

≤ H(W′|W)

= 0.

B. Relation between MCW and MCMI
From the following equality

I(W′;W,A) = I(W′;W) + I(W′;A|W)

= I(W′;A) + I(W′;W|A)

we can derive

I(W′;W|A)︸ ︷︷ ︸
MCW

= I(W′;W) − I(A;S)︸ ︷︷ ︸
MCMI

+I(A;S)

+ I(W′;A|W) − I(W′;A)

MCW − MCMI = I(A;S) + I(W′;A|W) − I(W′;A)

= H(A) − H(A|S)
+ H(W′|W) − H(W′|W,A)

− H(A) + H(A|W′)

= H(A|W′)

For deterministic systems, the conditional entropies
H(A|S)=H(W′|W)=H(W′|A,W)= 0. We show this
exemplarily for H(A|S). If the action A is a function of the
sensor state S, then p(a, s)= p(a|s) is either one or zero,
because there is exactly one actuator value for every sensor
state. Hence, H(A|S) =

∑
a,s p(a, s)logp(a|s) = 0. The

equality MCMI – MCW =H(A|W′) is not hold in Table 1,
because the discretization introduces stochasticity, and hence,
the conditional entropies are only approximately zero, i.e.,
H(A|S)≈H(W′|W)≈H(W′|A,W)≈ 0.
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