
Nature Machine Intelligence

nature machine intelligence

https://doi.org/10.1038/s42256-023-00752-zArticle

Hierarchical generative modelling for
autonomous robots

Kai Yuan   1,5, Noor Sajid2,5, Karl Friston   2,3 & Zhibin Li   4

Humans generate intricate whole-body motions by planning, executing and
combining individual limb movements. We investigated this fundamental
aspect of motor control and approached the problem of autonomous
task completion by hierarchical generative modelling with multi-level
planning, emulating the deep temporal architecture of human motor
control. We explored the temporal depth of nested timescales, where
successive levels of a forward or generative model unfold, for example,
object delivery requires both global planning and local coordination
of limb movements. This separation of temporal scales suggests the
advantage of hierarchically organizing the global planning and local
control of individual limbs. We validated our proposed formulation
extensively through physics simulation. Using a hierarchical generative
model, we showcase that an embodied artificial intelligence system, a
humanoid robot, can autonomously complete a complex task requiring a
holistic use of locomotion, manipulation and grasping: the robot adeptly
retrieves and transports a box, opens and walks through a door, kicks a
football and exhibits robust performance even in the presence of body
damage and ground irregularities. Our findings demonstrated the efficacy
and feasibility of human-inspired motor control for an embodied artificial
intelligence robot, highlighting the viability of the formulized hierarchical
architecture for achieving autonomous completion of challenging
goal-directed tasks.

Humans can control their bodies to produce intricate motor behaviours
that align with their objectives, for example, navigating in an envi-
ronment with a mixed sequential use of legs and hands in a coherent
manner. These tasks require the coordination of multiple processes,
including motor planning and execution1. To realize this coordination,
human motor control unfolds at nested timescales at different levels
of the neuronal hierarchy2,3, for example, a high-level plan to arrive at a
particular place can entail multiple, individual, reflexive low-level limb
movements for walking. In the areas of robotics, hierarchical elements
have been applied to control systems to achieve diverse motor behav-
iours4. The core principles to achieve human-like motor control have

been derived and summarized previously5, by relating these elements
to the human nervous system.

In robotics, past research has been conducted to achieve similar
capabilities as humans, such as assembly in aircraft manufacturing6,
space missions7, as well as the computational model of active infer-
ence for robust robot behaviours8. These have been achieved by using
mainly three approaches: human commands, planning and learning.

While human commands have been used for disaster response9
or installation in construction works10—the high-level commands are
provided by a human, either via tele-operation9 or by a predefined task
sequence10. In this paradigm, the autonomous execution of a task builds

Received: 12 October 2021

Accepted: 29 September 2023

Published online: xx xx xxxx

 Check for updates

1Embodied AI Lab, Intel Labs, Munich, Germany. 2Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University
College London, London, UK. 3VERSES Research Lab, Los Angeles, CA, USA. 4Department of Computer Science, University College London, London, UK.
5These authors contributed equally: Kai Yuan, Noor Sajid.  e-mail: alex.li@ucl.ac.uk

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00752-z
http://orcid.org/0000-0002-2349-4192
http://orcid.org/0000-0001-7984-8909
http://orcid.org/0000-0002-6357-7419
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00752-z&domain=pdf
mailto:alex.li@ucl.ac.uk

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

manipulators15 and hierarchical navigation tasks13. The remaining chal-
lenges16 lie inter alia in finding the right levels of abstraction, and how to
find a proper hierarchical structure with meaningful sub-behaviours.
This is especially challenging for robotics, where the state and action
space is complex, and behaviours are abstract and often hard be quanti-
fied explicitly. Hence, hand-crafted sub-behaviours, such as the theory
of options used in Sutton et al.17, prevent adequate exploration during
reinforcement learning which is needed for autonomous operations.

This study investigates and presents five core principles of human
motor control, based on which we formalize the design of a framework
that generates autonomous behaviours. Our proposed hierarchical
generative model adheres to the core principles of hierarchical motor
control5, and the resulted capability can tackle several challenges that
hierarchical reinforcement learning has not yet overcome. Compared
to hierarchical reinforcement learning, our ensuing hierarchical con-
trol structure offers the possibilities to (1) create a transparent and
flexible approach to interpret and implement robotic decision-making,
(2) roll-out individual policies inside the hierarchical structure and
improve their overall performance and (3) identify and mitigate the
cause of performance deficits.

This work achieves human-level motor control by pursuing the
notion that structural dependencies (cf., interregion communication
as observed in human motor control5) are necessary for autonomous
robotic systems to optimize and adapt future actions in uncertain
environments. Human motor control is generated through nested
hierarchies comprising distinct, but functionally interdependent,

and relies on the use of planning explicit task sequences, which uses
limited sensory feedback to replan online. Such an approach is thus
not yet fully autonomous and is vulnerable to uncertainties when the
environment is likely to change during the interaction.

For planning methods, such as trajectory optimization11 or task
planning12, a model of the environment is needed to optimize a motion
sequence. Such a planning framework passes commands in a top-down
approach and has a separation between planned motions and the
control of their executions. Consequently, the planning framework
unilaterally connects with the control and lacks having feedback from
the low-level layer9. Therefore, this approach is restricted to a limited
range of scenarios, where the required execution is close to the ideal
planning, for example, quasi-static, kinematic motions or well-defined
environments. However, for situations where the environment model
deviates from the real world, feedback is indispensable and is required
for corrective actions to counterbalance changes that are not planned
beforehand. Since the control is responsible for execution and interac-
tion with the environment, the lack of feedback from the lower control
layers prevents a wider generalization to other environments; hence
limiting the applicability with respect to autonomous behaviours and
human-level motor control.

To overcome the aforementioned limitations, learning
approaches—such as hierarchical reinforcement learning13—is an alter-
native approach to accomplish tasks that require solving a discrete
sequence of sub-tasks in a close-loop fashion, such as path-following
for quadruped locomotion14, interactive navigation with mobile

Table 1 | Summary of the key principles of hierarchical motor control5, with exemplar realizations in human motor control
and our robotic system

Principle Description Hierarchical generative
models

Human motor control Our robotics system for autonomous
operations

Information factorization Different information is
processed by distinct
sub-systems.

Factorized distribution of
appropriate latent states
within the generative model.

Different sensory signals are
routed to different parts in the
hierarchy, for example, what and
where streams. These neuronal
pathways can be characterized
as factorized states responsible
for sub-systems.

Only task-relevant sensory signals
are used by individual levels, with
irrelevant states hidden across levels.
This speaks to an explicit factorization
of sensory signals and which parts of
the system have access to them.

Partial autonomy Lower hierarchical
levels can
semi-autonomously
produce outputs with
minimum input from
levels above.

The result of factorizing state
space into multiple levels can
independently accomplish
sub-goals at a (relatively) fast
temporal scale.

Semi-autonomous coordination
of joint movement at lower
levels (that is, brainstem and
spinal cord). These operate at
a faster temporal scale and do
not require continuous input for
higher levels.

Full autonomy and stability guaranteed
at individual levels. Explicitly, we
introduce stable mid-level and
low-level motions for random
higher-level inputs. This ensures
that lower levels can independently
perform fast movements.

Amortized control Re-execute appropriate
behaviours rapidly
using learnt
movements.

Learnt probability
distributions that
parameterize this generative
model can be used for
amortized control. That allows
for habitual control based on
previously learnt distributions.

The cerebellum is responsible
for amortized control of
deliberative and goal-directed
behaviours, evoking fast habitual
control for repeated actions.

The system learnt policies (that
is, action-state mappings) that
provide habitual control for rapidly
re-executing appropriate actions.

Multi-joint coordination Degenerate
coupling of different
components operating
as a whole for motor
control.

Result of state factorizations
that introduce flexible
mapping across and within
each level.

Different neuronal ensembles
have distinct influences, for
example, the red nucleus
controls movements of the arms.
Much like factorized states,
these neuronal ensembles come
together to produce intricate
movements.

The system is equipped with multiple
sub-structures (or policy mappings)
that are responsible for specific
actuator movement. Together these
come across, and within levels, to
produce particular motor movements.

Temporal abstraction Abstraction of time
across hierarchical
levels.

A feature of hierarchical
generative models, where
higher levels evolve slower
than and constrain the
level below.

Different levels evolve at
different temporal and spatial
scales, with the primary motor
cortex responsible for planning
(slow timescale) and spinal cord
responsible for generation (fast
timescale)

The three levels of the system evolve
at different temporal scales, much like
any hierarchical generative model.
The high-level planning is at a slow
timescale, mid-level stability control at
medium timescale and low-level joint
control at a fast timescale.

We omit the principle of modular objectives here (sub-systems trained to optimize specific objectives distinct from the global task objective) because a factorized generative model
architecture leads to distinct factor specific objectives at each level in the hierarchy.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

processing structures, for example, from the motor cortex to the spinal
cord down to neuromuscular junctions18. These nested hierarchies can
be interpreted as a hierarchical generative model5,19.

Our model is a particular instantiation of such hierarchical motor
control models, as contrasted by the prior studies8,16,20,21. To develop
further, our extension has introduced and incorporated multi-level
planning, asymmetric interregion communication and temporal
abstraction analogous into the computational models of human motor
control5,22.

In this work, we characterize motor control as an outcome of a
learnt hierarchical generative model; in particular, generative models
that include the consequences of action. This proposal inherits from
hierarchical functional organization of human motor control and
ensuing planning as inference21,23,24, active inference25–28 or control as
inference29,30. Briefly, hierarchical generative models are a description
of how sensory observations are generated, that is, encodings of sen-
sorimotor relationships relevant for motor control31,32. Importantly,
this gives for free the five core principles of hierarchical motor control
introduced in ref. 5. See Table 1 for further details.

This hierarchical formulation can facilitate multi-level planning
that operates at different levels of temporal and spatial abstraction5,32
(Fig. 1). This follows from the functional integration of separate plan-
ning (that is, choosing the next appropriate actions), motor generation
(that is, executing the selected actions) and control (that is, realizing
high-level plans as motor movements), as provided by the hierarchical
generative model32. As a result, the requisite architecture can be con-
sidered as a series of distinct levels, where each provides appropriate
motor control33 (Fig. 1). In our construction, the lowest level predicts
the proprioceptive signals—generated using a forward model of the
mechanics—and the kinetics that undergirds motor execution. This
kinetics can be regarded as realizing an equilibrium position or desired
set point, without the explicit modelling of task dynamics (cf., the
equilibrium point hypothesis34). The level above generates the neces-
sary sequence of fixed points that are realized by the lower level. This
sequence speaks to the stability control that a human has over limbs,
to perambulate in an upright manner over, for example, the centre of
gravity. The highest level then pertains to planning35, and different
states represent endpoints of an agent’s plan, for example, move a box
from a table to another.

To validate our proposition, we introduce a hierarchical generative
model for autonomous robotics. It enables context-sensitive, robust
task abilities by combining spatial-temporal levels and state-of-the-art
tools (that is, reinforcement learning, model-predictive control and
impedance control). Our model has three distinct levels for planning
and motor generation, emulating a simplified functional architecture
of human motor control. Importantly, each level comprises separate
but functionally integrated modules, which have partial autonomy
supported by asymmetric interregional communication36, that is,
the lower levels can independently perform fast movements. Such a
structure provides a flexible, scaled-up construction of a hierarchical
generative model, using established robotic tools (Methods). The
ensuing levels in the model hierarchy were optimized sequentially
and evolved at different temporal scales. However, only the middle
level planner had the access to state feedback, which allowed for a
particular type of factorization (that is, functional specialization) in
our generative model. We reserve further details in the later sections.

The Article is organized as follows. In the Results section, we
demonstrate that our (implicit) hierarchical generative model for
motor control, which entails a bidirectional propagation of informa-
tion between different levels of the generative model, can perform
tasks remarkably similar to humans. Here, an implicit hierarchical
generative model refers to a forward model whose explicit inversion
corresponds to control as inference (without the need for an inverse
model). In the Discussion section, we discuss the effectiveness of our
hierarchical generative model, how it may benefit potential applica-
tions, and provide an outlook for future work. Lastly, in the Methods
section, we provide details of our implementation.

Results
Our implicit hierarchical generative model enables a robot to learn
how to complete a loco-manipulation task autonomously in simula-
tion. We validate this model in three distinct scenarios: (1) a sequen-
tial task with two-step decision-making that involves moving a box
from one table to another and opening a door by pressing a button
(Fig. 1); (2) transporting a box between conveyor belts and activat-
ing the second belt by pushing a button (Fig. 2a); and (3) execut-
ing a penalty kick by approaching and kicking a football into a goal
(Fig. 2b). The learned policy demonstrates generality and robust-
ness to uncertainty (Fig. 3a–e), while evincing the core principles of
hierarchical motor control.

Our implicit hierarchical generative model can successfully
and autonomously achieve locomotion, manipulation and grasping
movements like humans, and solve all these complex tasks coher-
ently with internal consistency. In contrast, we demonstrate how a flat

G
oa

l-d
ire

ct
ed

 p
la

nn
in

g

Pick up box Open door

Approach table

Deliver box

Planning a box delivery task
M

ov
em

en
t g

en
er

at
io

n
In

fo
rm

at
io

n
ge

ne
ra

tio
n

C
on

tin
uo

us

π2

B2B2

π1

B1B1

ν

ƒƒ

Fig. 1 | Pictorial representation of a hierarchical generative model for moving
boxes. A generative model represents the conditional dependencies between
states and how they cause outcomes. For simplicity, we express this as filled
squares that denote actions, and circles that represent action sequences. The
key aspect of this model is its hierarchical structure that represents sequences
of action over time. Here, actions at higher levels generate the initial actions for
lower levels that then unfold to generate a sequence of actions (cf., associative
chaining). Crucially, lower levels cycle over a sequence for each transition of the
level above. It is this scheduling that endows the model with a deep temporal
structure. Particularly, planning (first row; highest level) to ‘deliver the box’
generates the actions for the information coordination level (second row; middle
level) that is, ‘movement towards the table’. This in turn determines the initial
actions for movement generation (third row; lowest level) of arms to ‘place the
box’ on the table. Here, a single action is generated at each timestep by sampling
from action sequences (that is, sequential policies) that are generated up to
a specified time horizon. π1, mid-level action sequence; π2, high-level action
sequence; B1, mid-level action; B2, high-level action; ƒ, joint torque actions; ν, joint
torque action sequence.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

architecture fails (Supplementary Fig. 6) in this regard (Supplementary
Information Section 5).

The high-level policy determines the action sequence necessary
for task completion and sends commands to the lower levels respon-
sible for limb coordination and joint control. Here, independently,
the locomotion policy can facilitate adaptation to perturbations,
for example, recovering from pushes or locomotion over different
types of terrains. Contrariwise, the low-level joint controller provides
robustness to sudden and hard contacts with the ground absorbing
high-frequent impacts.

To assess the robustness and generality of this hierarchical scheme,
we introduced several perturbations that were not encountered during
training (Fig. 3). First, we introduced external perturbation by placing
obstacles (that is, 5 kg box, Fig. 3a) in front of the robot and pushing
its pelvis (Fig. 3b). The mid-level locomotion policy withstood both
perturbations, moved the obstacle out of the way and took a step
to recover balance after the push. To test the performance further,
we modified the environment with unseen conditions by adding a 5°
inclined surface (Fig. 3c) and a low-friction glass plate (friction coef-
ficient of 0.3, Fig. 3d) in front of the door. The robot could complete
the task after each perturbation. More interestingly, we lesioned the
robot by amputating its right foot (Fig. 3e). Despite this handicap that
was never encountered and with only a stump touching the ground in
place of its right foot our hierarchical control was sufficiently robust
to deal with this situation and the robot was able to keep balance and
complete the task.

Next, we evaluate whether the ensuing control architecture sat-
isfies the key principles of hierarchical motor control (Table 1) that
underwrite robust task performance.

Information factorization
In this system, factorization exists across model levels and policy con-
trols, each responsible for a particular sort of information processing.
This factorization ensures that external perturbations have minimum
impact on task performance.

Since the information factorization defines the role for each
sub-system, thus, any failures in performance can be isolated and
fine-tuned for future tasks. For example, if the robot falls over while
walking to a goal, the locomotion policy can be identified as the root
cause, and hence improving the locomotion policy will resolve the issue
without needing to modify the high-level planner or the manipulation
policy. Further examples include oscillation of the robot limbs, which
can be attributed to the low-level joint control; or walking in the wrong
direction, which was due to the command from the high-level policy.

From a theoretical perspective, factorization of this sort corre-
sponds to the structure of the generative model that can be decom-
posed into factors of a probability distribution (in physics and
probabilistic inference, this is called a mean field approximation).
Almost universally, this results in certain conditional independencies
that minimize the complexity of model inversion; namely, planning
as inference or control as inference21,23,26. This is important because it
precludes overfitting and ensures generalization. From a biological
perspective, this kind of factorization can be regarded as a functional
segregation that is often associated with modular architectures and
functional specialization in the brain36.

Partial autonomy
The system is designed with partial autonomy, that is, minimum inter-
ference or support from other levels. Specifically, we implement a

A Pick up box B Deliver a box C Send o	 boxa

b B Kick C Scored goalA Approach

Fig. 2 | Manipulation and locomotion tasks to validate the hierarchical generative model. a, A manipulation task, where the robot picks up the box (A), delivers it
(B) and finally sends it off by activating the button (C). b, A penalty kick, where the robot approaches (A) the ball and kicks it into the goal (B and C).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

clear separation between the highest and intermediate levels, though
they are learned together. This is particularly relevant because the
high-level planning level could send unrealizable action sequences to
the mid-level stability controller. Without partial autonomy, the robot
can become unstable and unable to learn to move appropriately, given
such random or potentially unstable high-level commands.

Figure 4 illustrates a case when the robot is provided with random
commands to both the arms and legs. This causes the robot to walk
in random directions (Fig. 4a) and the arms move around randomly
(Fig. 4b). Despite imperfect motion tracking, the robot does not fall
over and can complete the tasks despite incoherent intentions.

Amortized control
After training, the robot engages in amortized control with the abil-
ity to re-execute appropriate behaviours rapidly using previously
learnt movements. We observed this behaviour in the baseline and

perturbed task settings (inset trajectories in Fig. 3f), where the amor-
tized locomotion policy was used to complete the task without the
need of additional learning.

Multi-joint coordination
The robot has multiple sub-structures that are responsible for spe-
cific controls and work together in different ways to generate motor
movements. Supplementary Fig. 5a demonstrates this multi-joint coor-
dination when pressing the button to open the door in the presence
of an obstacle (Task 2). To achieve this, the right arm motions had to
coordinate appropriately according to the initial hand position. Also,
the shoulder roll (Supplementary Fig. 5b, orange line) and elbow (Sup-
plementary Fig. 5b, red line) had to adjust and adapt differently from
the baseline. Explicitly, these do not yield a fixed motion, instead, the
manipulation policy coordinates these joints based on the centre of
mass (CoM). Therefore, during the baseline reaching motion, the arms

Box
obstacles

Low-friction
surface

Reacting to external disturbance by
taking a recovery step

Inclined
surface

Amputated
right foot

Centre of mass movement during task completionf

a b c d e

g Hip pitch joint movement during task completion

0

–0.5

–1.0

–1.5

C
ar

te
si

an
 p

os
iti

on
 (m

)

–2.0

–2.5

0 10 20 30 40

Time (s)

Time (s)

Jo
in

t a
ng

le
 (°

)

Centre of mass movement in lateral direction

50 60 70 80

67.066.566.065.565.064.564.0

0

10

20

30

40

50

60

C
ar

te
si

an
 p

os
iti

on
 (m

)

0

1

2

3

4

5

6

7 Baseline Baseline: left hip pitch
Baseline: right hip pitch
Box obstacle: left hip pitch
Box obstacle: right hip pitch

Inclined surfaces: left hip pitch
Inclined surfaces: right hip pitch
Amputated foot: left hip pitch
Amputated foot: right hip pitch

External push: left hip pitch
External push: right hip pitch
Slippery surfaces: left hip pitch
Slippery surfaces: right hip pitch

Box obstacle
Inclined surfaces

Slippery surfaces

Amputated foot
External push

0 10 20 30 40

Time (s)

Centre of mass movement in sagittal direction

50 60 70 80

Fig. 3 | Robustness of the system in the presence of perturbations and
environmental changes. a–e, Illustration of how the robot completes the task
in perturbation test scenarios that it has not encountered during training and
demonstrates the robustness of our proposed method. From left to right, we
place 5 kg box-obstacles in front of the robot (a), push the robot from the front
(b), alter the floor with an inclined (c) and slippery (d) surface and lesion the

robot by removing the right foot (e). f, Sagittal and lateral CoM movement is
shown under different perturbations demonstrating the amortized control.
g, Hip pitch joint movement, which has the biggest effect on the motion during
biped locomotion. The hip pitch joint motion is used to show how the policy
adapts to the perturbation and rapidly re-executes a motion to counteract the
perturbation.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

move differently than that in the case of an obstructed box, where the
CoM is in a different position because boxes are obstructing the door.

Temporal abstraction and depth
By design (‘Implicit generative models’), the three system levels evolve
at different temporal scales. Figure 4 illustrates these distinct scales as
the robot perambulates. The highest policy level has a slow timescale of
0.5 Hz (Fig. 4a). This allows the lower levels to carry out the command
in a partially autonomous way, that is, uninterrupted. Conversely, the
mid-level stability control of limbs has a faster timescale at 25 Hz (inset
trajectories of Fig. 4c,d). This is needed to generate rapid predictions
for the locomotion and manipulation policies. Finally, the low-level joint
control executes these control commands at a frequency of 500 Hz on
the actuator level.

Discussion
Hierarchical generative models of motor control
Our hierarchical generative model is an abstract computational rep-
resentation of the functional architecture of human motor control
(Fig. 5). Here, we briefly discuss its computational neuronal homo-
logues, focusing on predictions of primary afferent signals from
muscles, and consider the corresponding principles for human motor
control. The inversion of forward models that underwrite human motor
control generates continuous proprioceptive predictions at the lowest
level and propagates information to the highest levels that are respon-
sible for planning. Accordingly, our formulation provides an implicit
generative model that can be used by a model-based robotic agent,
including reinforcement learning and active inference37, to infer its
environment dynamics.

dt = 0.04 s

dt = 0.04 s

a Random leg motion: sagittal CoM motion

c Leg joint movements

d Arm joint movements

b Random arm motion: sagittal CoM motion

Baseline CoM position Random arm CoM position

Goal CoM position

Goal CoM position
Real CoM position–3

0

1

2

3

0 2 4 6 8 10 12

–2

C
ar

te
si

an
 p

os
iti

on
 (m

)

C
ar

te
si

an
 p

os
iti

on
 (m

)

Time (s)
0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

–1

0

1

0

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

Time (s)

Jo
in

t p
os

iti
on

 (°
)

Jo
in

t p
os

iti
on

 (°
)

Jo
in

t p
os

iti
on

 (°
)

Leg mid-level policy

Arm mid-level policy

10

20

30

40

50

100

50

0

–50

–100

60

0

–10

8.5

Time (s)

10.0 10.1 10.2 10.3 10.4

9.0

Reference: right hip pitch

R shoulder roll

L shoulder roll

R shoulder pitch

L shoulder pitch

R elbow pitch

L elbow pitch

R shoulder yaw

L shoulder yaw

Reference: left hip pitch

Left hip pitch

Right hip pitch

9.5 10.0 10.5 11.0 11.5

10

20

30

40

50

60

Jo
in

t p
os

iti
on

 (°
)

0

–80

–20

–40

–60

20

40

80

60

70

Fig. 4 | State and temporal dynamics of the robot during task performance
with random high-level commands. a,b, Sagittal motion of the CoM while
following random leg (a) and arm (b) commands, respectively. From the robot
snapshots corresponding to the time they’re shown, the partial autonomy of
the mid-level stability controllers can be seen, that is, a good performance of the
individual levels despite random and fast-changing command inputs. c,d, Leg

(c) and arm (d) movements, respectively. Here, the separation of temporal scales
during planning can be seen, where the high-level commands are provided at
0.5 Hz and the mid-level commands are realized at 25 Hz. The joint commands are
realized at 500 Hz on the joint actuators. In the inset plots of c,d the joint position
trajectories evolve similarly as postulated in the equilibrium point hypothesis.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

The generative model’s lowest and fastest level includes the spinal
cord and the brainstem. These areas are responsible for evaluating
the discrepancy between the proprioceptive inputs (primary affer-
ents) and descending predictions of these signals. This discrepancy
(namely, prediction error) drives the muscle contraction via classical
motor reflexes and their accompanying musculoskeletal mechan-
ics38,39. On this view, classical reflexes are realised by equilibirium or
setpoints from descending predictions of proprioceptive input40–42.
This is instantiated in our model at the low-level joint control, which
receives current joint position and sensor information to calculate
the desired torque necessary for achieving a targeted and predicted
position (supplied by the mid-level controller) via the motor control.
Here, the joint controller has partial autonomy to compute the desired
torque, similar to neuronal ensembles (that is, the red nucleus) control-
ling low-level arm movements.

At an intermediate level, one could consider the role of the cer-
ebellum. The cerebellum receives ascending inputs from the spinal
cord, and other areas, and integrates these to fine-tune motor activity.
In other words, it does not initiate movement, but contributes to its
coordination, precision and speed, through a fast non-deliberative
mode of operation. Therefore, it can be thought of as being respon-
sible for amortized (habitual) control of motor behaviour, which is

characterized by subcortical and cortical interactions43–45. The cer-
ebellum receives information from the motor cortex, processes this
information and sends motor impulses to skeletal muscles (via the
spinal cord). The mid-level of our generative model is used for similar
coordination and stability control of locomotion and manipulation
policies that yield multi-joint coordination. It fine-tunes pelvis and
hand targets, given descending policy from the higher level, to deter-
mine exact joint location (measured in radians). Like the cerebellum46,
this level can coordinate multiple joint movements semi-autonomously
over time.

Higher levels of the generative model include the cerebral cortex,
among other neuronal systems. The cortex has access to factorized
sensory streams of exteroceptive, interoceptive and proprioceptive
signals (for example, visual, auditory, somatosensory, etc) and can
coordinate, contextualize or override habitual control elaborated in
lower levels. Specifically, the primary motor cortex is responsible for
deliberative planning, control and execution of voluntary movements:
for example, when learning a new motor skill before its habituation or
amortization.

These are instantiated as ascending tracts that cross over to the
opposite side of the system, for example, the spinocerebellar tract that
is responsible for sending sensory signals regarding arms and limb

ba

Spinal
cord

Cerebellum

Prefrontal
cortex

Brain
stem

nuclei

Musculoskeletal
mechanics

Visual
cortex

Motor
cortex

Basal
ganglia

High-level decision-making

Mid-level stability
control for limbs

Low-level
joint control

Sensor
information

Motor
control

Action value function

F/T sensor

3 DoF shoulder

1 DoF elbow

1 DoF knee

3 DoF hip

2 DoF ankle

IMU

Lidar

RGB-D camera

Joint
Encoder

Locomotion policy

Joint torque controlSensor data post processing

–
+

Denoising
signals

25 Hz

0.5 Hz

Start

Finish

Inverse
dynamics

Feedback
control Arm+ e

–

Manipulation policy

Joint impedance mode

25 Hz

500 HzK
D

K
P

500 Hz

dL

Q(st
H, at

H)

dM
jL jMk500 Hz

PDF

State x

Initial SE
Predicted SE

Optimal SE
Measurement

State estimation

Object pose estimation

θ τ

τL, q

xk–1ˆ ˆ x̂k ykxk
–

τ2

τ1

τ3

τ4τM, θ

τFB

τFF

τrefθref

θ

Fig. 5 | Algorithmic realizations of hierarchical control as inference.
a, Schematic of a (high-level) generative model that underwrites human motor
control. b, The implicit generative model for a robotics system. The green nodes
in a and green boxes in b refer to the highest levels of human motor control
and our implicit generative model, respectively. In the generative model,
high-level decision-making is realized as a neural network learned through
deep reinforcement learning. The blue nodes in a correspond to the middle
level of human motor control and the blue boxes in b are intermediate level
realizations, implemented as a deep neural network policy learned through deep
reinforcement learning for locomotion and an inverse kinematics and dynamics
policy for manipulation. On the lowest level, depicted in grey nodes and boxes,
a joint impedance controller calculates the torques required for the actuation
of the robot. Yellow and light red denote sensor information and motor control,

respectively. For clarity, we limit our exposition to key regions in a, based on
prior literature, where these are drawn using the solid lines. The dotted lines
represent the processing of a separate outcome modality for human motor
control, that is, the visual input. Lastly, the prefrontal cortex is connected via the
dashed lines to denote its supporting role during human motor control. Dotted
lines in b indicate the realizations of the corresponding principles, while dashed
lines indicated message parsing. Please refer to ‘Implicit hierarchical generative
model for a robotics system’ for the algorithmic implementation of b. SE, state
estimation; PDF, probability density function; IMU, inertial measurement unit;
τ, torque of individual joints; dL and dM, damping parameters; jL and jM, inertia
parameters; k, stiffness parameter; F/T, force/torque; τL and τM, torques on L
and M, respectively.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

movements. Conversely, descending tracts carry appropriate motor
information to the lower levels, for example, the pyramidal tracts
responsible for sending conscious muscle movements. The role of the
cortex is instantiated at the highest level of our model, with access to
processed sensor information to aid decision-making. Specifically, we
introduce asymmetric interregion connections with connections from
the low-level sensor information to this high level, and from this high
level to the mid-level stability control. Anatomically, these correspond
to extrinsic white-matter connections in the brain which, in predictive
coding and variational message passing schemes, are responsible for
belief updating and planning as inference32.

Future directions
By providing robots with a new level of task autonomy for both
locomotion and manipulation skills—with appropriate triage pro-
cedures—humans can be relieved from the necessity of sending
low-level commands for control and decisions to robots, for exam-
ple, foot and hand contacts, as commonly seen in a shared autonomy
and semi-autonomous paradigms. Consequently, we can overcome
potential limitations coming from human errors and the reliance on
the communication bandwidth. One example is the large number of
robots that fell during the DARPA Robotics Challenge Finals in 2015 (ref.
47), where robots had very little autonomy and relied on close supervi-
sion by humans, such that the whole scheme became error-prone and
vulnerable, which suffered from erroneous human decision-making,
lack of local robot autonomy against environmental uncertainties and
disturbances and so on.

With this goal in mind, we will explore the future implementa-
tion of our hierarchical generative model on physical robots. Given
the extensive validation of our current work in physics simulations,
deploying the existing model and its components on real-world robots
would be possible by using additional simulation to reality (sim-to-real)
techniques to bridge the sim-to-real gap. To tackle this challenge, we
plan to use techniques that show potential for a seamless sim-to-real
transfer, minimizing the necessity for extensive adaptations. Particu-
larly, established methods such as domain randomization and action
filtering can be used, which are proven to be effective in enabling a
successful sim-to-real transfer48,49.

Future work will evaluate the use of hierarchical generative models
under more nuanced planning objectives, and different autonomous
robotics systems. Because of the modular factorization of the implicit
hierarchical generative model, policies at various levels can be replaced
and further upgraded with an alternative controller or a learned policy.
For example, replacing our Q-learning planner with more sophisticated
schemes which are designed to handle aleatoric and epistemic uncer-
tainties (that is, expected free energy50–52). This type of future work can
improve the performance in volatile conditions51.

Furthermore, robustness can be evaluated through robotic neu-
ropsychology53 that is, introducing in-silico lesions by perturbing
various approximations and policies and investigating their effect on
the ensuing inference and behaviour. These computational lesions can
be introduced in both simulated and physical robots, where lesions of
this sort can change functional outcomes. For example, perturbations
on the minimum-jerk optimization solution (that is, computational
lesion) at the mid-level stability control would lead to cerebellar trem-
ors for the arms.

Methods
Here we present the hardware implementation for inverting the implicit
hierarchical generative model for autonomous robot control. The
specification of the robot platform can be found in Supplementary
Table 1. First, we detail the task that is completed autonomously by
inverting the generative model, that is, using the model to predict sen-
sor inputs and using actuators to resolve the ensuing (proprioceptive)
prediction errors. Next, we elaborate on the details of generative model

including high-level decision-making, mid-level stability control and
low-level joint control.

Please refer to Supplementary Information Section 6 for additional
notes on the implementation.

Tasks of interest
To demonstrate how inversion of a hierarchical generative model
solves complex tasks that require a particular sequence and coor-
dination of locomotion and manipulation skills, we designed a task
that demanded both coordination of limbs and reasoning about the
sequence of actions. This task comprised four sub-tasks (Supplemen-
tary Fig. 1): picking up a box from the first table, delivering the box to
the second table, opening the door and walking to the destination or
goal position. To complete the task, all the sub-tasks had to be carried
out in an exact sequence.

Our proposed framework allowed the robot to learn successful
task completion through interactions with the environment in simula-
tion. This was achieved by designing a reward (or utility) function for
the high-level policy, such that cumulative maximization of reward
leads to task completion (‘High-level decision-making’). For the mid-
and low-level policies, a combination of control policies and imitation
learning was used.

Implicit hierarchical generative model for a robotics system
Following the key principles of hierarchical motor control in Table 1 and
the generative model in Fig. 1, we constructed a generative model for a
humanoid robot comprising three levels: high-level decision-making,
mid-level stability control and low-level joint control. The structure of
the hierarchical generative model is shown in Fig. 5b. This hierarchical
architecture rests on conditional independencies that result in factor-
ized message passing between hierarchical levels.

Here, the temporal depth and structure of motor planning rests
on specifying a hierarchical generative model, where level-specific
policies are evaluated at different timescales. In this setting, each level
assimilates54 evidence from the level below, in a way that is contextual-
ized or selected by (slow) constraints, afforded by the level above. A
summary of the implicit hierarchical generative model for a robotics
system can be seen in Supplementary Table 4 and Fig. 4.

The (implicit) hierarchical generative model is instantiated as:

p (o0∶T1 , s
1∶3
0∶Tn

, a1∶30∶Tn−1)

= ∏N
n=1p(s

n
0)p(a

n
0)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

state and actionprior

×∏T3
t3=1∏

T2
t2=1∏

T1
t1=1 [p (s

3
t3 |s

3
t3−1

, a3t3−1, ot1−1)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
level 3 transitions

p (a3t3 |s
3
t3−1

)⏟⎵⎵⏟⎵⎵⏟
level 3 policy

×p (s2t2 |s
2
t2−1

, a2t2−1, ot1−1, a
3
t3)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟

level 2 transitions

p (a2t2 |s
2
t2−1

)⏟⎵⎵⏟⎵⎵⏟
level 2 policy

×p (s1t1 |s
1
t1−1

, a1t1−1, ot1−1, a
2
t2)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

level 1 transitions

p (ot1 |s1t1)⏟⎵⎵⏟⎵⎵⏟
likelihood

p (a1t1 |s
1
t1−1

)⏟⎵⎵⏟⎵⎵⏟
level 1 policy

⎤
⎥
⎥
⎦
,

where outcome ot ∈ O, state stn ∈ S, action atn ∈ A and p denotes a prob-
ability distribution. The superscript n ∈ {1,2,3} indicates the level of the
state sn or action an, with N = 3 being the highest level and n = 1 being
the lowest level. The subscript tn ∈ {1,… ,Tn} indicates the time at each
level n evolving at different temporal scales: the highest level (n = 3)
evolves at 0.5 Hz, the mid-level (n = 2) at 25 Hz and the lowest level (n = 1)
at 500 Hz.

This temporal ordering denotes how different levels contextual-
ize the level below: the high-level policy contextualizes the roll-out for
the mid-level; mid-level policy contextualizes the low-level; and each

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

level has access to previous outcomes. Briefly, the transition function
is defined as an identity (using the previous outcome) for levels 2 and 3
until the next update (that is, 50 level 1 steps for level 2, and 1,000
level 1 steps for level 3). The pseudocode for optimizing each level can
be found in Supplementary Fig. 4, along with a detailed overview of
dependencies across levels.

The highest planning level, evolving at the slowest rate, selects
an appropriate sequence of limb movements, which are needed to
complete a particular sub-task. It decides where the hands should be
and what direction to go. Practically, deep reinforcement learning is
used to learn a high-level decision-making policy that generates tar-
gets (in a Cartesian space) for the mid-level stability control (cf., the
equilibrium point hypothesis for human motor control40 and active
inference formulations of oculomotor control32).

These planning targets are realized at the level below that reg-
ulates the balance and stability of the robot during manipulation
and locomotion. Manipulation is instantiated as a minimum-jerk
model-predictive controller that moves the arms to the target posi-
tions provided by the high-level policy. Locomotion is implemented
as a learnt mid-level policy, via deep reinforcement learning, that
coordinates legs to reach the destination predicted by the higher
level. Both policies are designed to ensure that infeasible setpoints
from the high level are corrected for the mid-level stability control so
that only stable joint target commands are supplied to the low-level
joint controller.

Despite receiving inputs from other levels, each level has partial
autonomy over its final predictions and goal. Furthermore, multi-joint
coordination is realized by learning a policy that coordinates all joints
of legs appropriately for the current state, while the arms coordinate
their joints through inverse kinematics (IK).

The low-level joint controller is instantiated as joint impedance
control and tracks the joint position commands afforded by the
mid-level stability controller. Based on tuned stiffness and damping,
the joint impedance control calculates the desired torque to attain
target positions closely and smoothly. Lastly, the torque commands are
tracked by the actuators, using embedded current control of onboard
motor drivers.

Training process
The generative model was realized by implementing three levels of
control in a hierarchical manner (Fig. 5): high-level decision-making,
mid-level stability control and low-level joint control. All compo-
nents were designed and trained separately, starting from the low-
est level.

First, accurate and robust motor control needed to be guaran-
teed, such that the low-level joint position control could be realized.
Stiffness and damping parameters were tuned to track the references
accurately and compliantly, which provided the mid-level stability
control. The mid-level stability control consisted of a manipulation and
a locomotion policy, which were individually designed. The locomotion
policy was trained to walk towards a commanded goal position, while
the manipulation policy was designed to place the hands on a target
position. Finally, the high-level decision-making policy was trained
via deep reinforcement learning, which learnt to provide appropriate
commands to these mid- and low-level policies.

Gradient-free optimization55,56 was used to find (1) the best
hyper-parameters sets for the mid-level manipulation policy and
low-level joint controller and (2) network architecture for the high-level
decision-making policy and mid-level locomotion policy.

High-level decision-making
We achieved high-level decision-making, the correct sequence and
choices of robot actions, through training a deep neural network that
approximated the action-value function Q(s,a) over the environment
and chose the action a that yielded the highest value in state s.

We used double Q-learning57 to train a Q-network Q (s,a;ϕ), para-
metrized by weights ϕ, to approximate the true action-value function
Q(s,a). At run-time, the action a was obtained as the argument of the
maximum Q-value a = argmaxaQ (s,a;ϕ) in state s. Two separate
Q-networks Q1 and Q2 were used for action selection and value estima-
tion, respectively. Having two separate Q-networks has previously
shown to improve training stability57.

The network parameter ϕi was obtained by minϕi L (ϕi):

min
ϕi

E [(r + γQj (s′,a∗;ϕj) −Qi (s,a;ϕi))
2] ,

with reward r, discount factor γ, network parameters ϕi and ϕj ,
Q-networks Qi and Qj, current state s, next state s’ and best action
a∗ = argmaxQi (s,a;ϕi) . During training, either network parameter ϕ1
or ϕ2 was randomly selected, trained and used for action selection,
while the other network parameter was used to estimate the
action-value. The tuple (s,a, r, s′) ≈ U (D) was obtained from the experi-
ence replay by uniformly sampling from buffer D, which was updated
by online action roll-out. The time horizon of the high-level
decision-making system is implicitly specified with the discount factor
γ that is used to calculate the return as Gi = ∑iγri. A way to interpret
the discount factor with respect to planning horizon is the concept of
half-life of the future reward, that is, when the current reward ri is
entering the return calculation as 1

2
ri. With the standard discount fac-

tor γ = 0.95 used in this work, the policy looks ahead ~13.5 steps:
γsteps = 0.5 = 0.95steps ⇒ steps = log(0.5)

log(0.95)
≈ 13.5. At a control frequency of

0.5 Hz, the prediction horizon is roughly 27 seconds.

Box delivery and opening door task. The high-level policy sent and
updated the actions a3 ∈ 𝒜𝒜3 ⊆ ℛ9 at 0.5 Hz frequency, which were the
positions in Cartesian space for the pelvis a3pelvis ∈ ℛ3, and left and right
hands a3lh,a

3
rh ∈ ℛ3. These actions a3 were executed by the mid-level

stability controller.
The states s3 ∈ 𝒮𝒮3 ⊆ ℛ12 were the vector spelvis = ptable − ppelvis ∈ ℛ3

from the table (origin of the coordinate system) to the current pelvis
position ppelvis, and the vectors slh = pbox − plh ∈ ℛ3, srh = pbox − prh ∈ ℛ3
from current hand positions plh,rh to the box’s position. Lastly, three
Boolean variables o3 ∈ O3 ⊆ [0, 1]3 were provided as the observation
state when the door was open, the box was on the table or the box was
being carried.

The reward terms ri were determined based on the task comple-
tion, such as whether the robot had passed the delivery table, the arm
joints were in the nominal position, the box was between the robot
hands, the box was at the delivery table, the door was open and whether
the robot was at the goal. The weights wi, i = 1,…,6 can be found in Sup-
plementary Table 2 (top).

At each timestep, the reward r was the sum of sparse, Boolean
states:

r = w1rpt +w2rjn +w3rbih +w4rbot +w5rdo +w6rag,

with passed table reward rpt, joints nominal reward rjn, box in hand
reward rbih, box on table reward rbot, door open reward rdo and at goal
reward rag.

We terminated the episode early if the robot fell, or collided
with itself, tables or the door. By terminating an episode early—when
a sub-optimal state (for example, falling) is reached—the return
is lower, and the policy is thus discouraged from entering similar
sub-optimal states.

We initialized the robot in different positions in the environment,
such as close to the final goal, in front of the door, or at the second
table, to allow the robot to encounter such states that were hard to
discover merely by exploration, as a particular sequence of actions
were required to reach those states.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

Penalty kick task. To perform a penalty kick, that is, approaching and
shooting a ball, the high-level policy is trained similarly to Task 1. Car-
tesian space commands of the pelvis a3pelvis ∈ ℛ3 are generated by the
high-level policy (actions a3 ∈ 𝒜𝒜3 ⊆ ℛ3) and executed by the mid-level
stability controller.

The states s3 ∈ 𝒮𝒮3 ⊆ ℛ4 are the horizontal positions of the ball and
pelvis. A reward r = 1 is given, whenever the ball surpasses the goal line,
that is, a goal was scored. An episode is terminated early if the robot
fell or collided with itself.

Transporting box and activating conveyor belt task. The box trans-
portation task consists of two separate sub-tasks that need to be per-
formed in a specific sequence: grasping a box from the first conveyor
belt, transporting the box to a second conveyor belt by rotating the
torso around the yaw axis, dropping the box off and sending it away
on the conveyor belt by activating the button.

The action space (a3 ∈ 𝒜𝒜3 ⊆ ℛ7) of the high-level policy includes
Cartesian space commands of the left and right hands a3lh,a

3
rh ∈ ℛ3 and

torso yaw joint position commands a3ty ∈ ℛ1. These actions a3 were
executed by the mid-level stability controller.

The states s3 ∈ 𝒮𝒮3 ⊆ ℛ14 consists of the joint positions of the arms
(sjoints3 ∈ ℛ8) , Cartesian positions of the box (sbox3 ∈ ℛ3) and three
Boolean values indicating whether the box is in contact with the hands,
table and whether the button is pushed.

A reward is given for three cases: (1) box in hands (rbih), (2) box on
conveyor belt (rboc) and (3) button pushed (rpb) while the box is on the
second conveyor belt. The resulting reward function with weights wi
(Supplementary Table 2 bottom) are:

r = w1rbih +w2rboc +w3rbp.

Mid-level stability control
The mid-level stability control level consisted of two components: the
manipulation policy was realized as a model-predictive control (MPC)
scheme for the arms, and a locomotion policy was learned through
deep reinforcement learning for the legs.

Manipulation policy. As input into the policy, the manipulation
policy received Cartesian target positions for the hands a3 = [alh,arh]
from the high-level policy, current Cartesian position of the hands
s2 = [plh,prh] ∈ 𝒮𝒮2 ⊆ ℛ6, and current, measured joint angles of the arms
o ⊆ ℛ8. The output a2 = qdarms ∈ 𝒜𝒜2 ⊆ ℛ8 of the manipulation policy
was target joint positions qdarms of the arms to the low-level joint
controller.

The manipulation policy consists of two parts (flow diagram in
Supplementary Fig. 2): MPC that generated a stable, optimal trajectory
in Cartesian space and IK58 that transformed desired actions from the
Cartesian space to the joint space.

To provide the smoothest possible motions for the hands, we
formulated the optimal control problem as the minimum-jerk opti-
mization, while satisfying dynamics constraints on the hands. The
optimal trajectory was then implemented in an MPC fashion. The MPC
control applied the first control input of the optimal input trajectory
and then re-optimized based on the new state at the next control loop59.
In this way, MPC successively solved an optimal control problem over
a prediction horizon N and achieved feedback control, while ensuring
optimality.

For the hand position p, an objective function J was designed to
minimize jerk p⃛ (the input u of the system) with final time tf:

J = 1
2∫

tf

0
(d

3p (t)
dt3

)
2

dt = 1
2∫

tf

0
u(t)2dt.

The minimum-jerk MPC (MJMPC) solved the following constrained
optimization problem at every timestep at a frequency of 25 Hz:

min
u(t)

1
2∫

tf

0
u(t)2dt

subject to d3p (t)
dt3

= u

[p (0) , ̇p (0) , p̈ (0)] = [p0, ̇p0, p̈0]

[p (tf) , ̇p (tf) , p̈ (tf)] = [pf, ̇pf, p̈f]

[pmin, ̇pmin, p̈min] ≤ [p, ̇p, p̈] ≤ [pmax, ̇pmax, p̈max] ,

with initial condition [p0, ̇p0, p̈0] and terminal condition [pf, ̇pf, p̈f].
The resultant Cartesian trajectory pd, that is, the trajectory that

leads from the initial hand position p0 to the final hand position ptf ,
from MJMPC was transformed into joint position commands qdarms
through IK. More formally, IK described a transformation T∶𝒞𝒞𝒞𝒞𝒞
from Cartesian space 𝒞𝒞 to joint space 𝒞𝒞. The joint position commands
qd were then tracked by the low-level joint position controller as
described in ‘Low-level joint control’. The IK ensures feasible joint
configuration on the robot even if the high-level decision policy or the
MPC trajectory yield infeasible setpoints.

Locomotion policy. The locomotion policy π (s;θ) coordinated the 12
degrees of freedom (DoF) leg joints and was instantiated as a deep
neural network (network parameters θ) that received robot states s as
inputs and outputs 12 target joint positions qdlegs for the legs.
It was trained through Soft Actor-Critic (SAC)60, an off-policy deep
reinforcement-learning algorithm.

SAC optimized a maximum entropy objective JSAC(π):

JSAC (π) =
T
∑
t=0

𝔼𝔼 [r (st,at) + αℋ (π (at|st))] ,

with reward r, state st and action at at time t, temperature parameter α
and policy entropy ℋ (π). The parameters θ for policy πθ were obtained
by minimizing Jπ (θ):

Jπ (θ) = 𝔼𝔼 [logπθ (at|st) −Qϕ (st,at)] .

The action-value function Qϕ (st,at) was obtained by minimizing
the Bellman residual JQ (ϕ):

JQ (ϕ) =𝔼𝔼 [1/2(Qϕ (st,at) − Q̂ (st,at))
2
] ,

with Bellman equation Q̂ (st,at) = r (st,at) + γ𝔼𝔼 [Vψ (st+1)] and discount
factor γ. The estimation of the value function Vψ was obtained by mini-
mizing JV (ψ):

JV (ψ) = 𝔼𝔼 [1/2(Vψ (st) − 𝔼𝔼 [Qθ (st,at) − logπϕ (at|st)])
2] .

The training procedures, including the design of reward, action
space and state space, are as in ref. 61. The actions a2 ∈ 𝒜𝒜2 ⊆ ℛ12 were
the joint positions qlegs of the 12 DoF of the legs (for each leg: three DoF
for hip, one DoF for knee and two for DoF ankle). The target joint posi-
tions qdlegs were tracked by the low-level joint controller (low-level
joint control).

The state s2 ∈ 𝒮𝒮2 ⊆ ℛ27 consisted of the target pelvis position a3pelvis
(the walking destination), the proprioceptive information of the robot
including pelvis orientation, linear and angular velocity of the pelvis,
the force of both feet, joint positions of the legs and the gait phase. The
gait phase indicates the phase of the periodic gait at any point in time,
which is implemented as a two-dimensional vector on the unit-circle
to describe the phase of periodic trotting. For more details regarding
the gait phase state, please refer to ref. 61, where the gait phase is used
to enable the imitation learning of periodic locomotion.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

The reward comprised of an imitation term and a task term:

r = wirimitation +wtrtask,

with weights wi and wt and reward terms rimitation and rtask for the imita-
tion and task, respectively. The imitation term encourages human-like
motions by rewarding motions that are close to a reference motion
capture trajectory. The task reward term rewards motions that con-
tribute towards achieving the task, that is, walking towards a goal while
maintaining balance. We found that combining imitation learning with
task-guided reward shaping led to improved sample-efficiency61 with
policy convergence after 1.6 × 106 steps, equating to 18 hours of
real-time.

To encourage a state x to be close to a desired target value ̂x, the
corresponding reward component was designed as the radial basis
function (RBF) kernel K(̂x, x,α):

K (̂x, x,α) = e−α(̂x−x)2 ,

with hyperparameter α controls the width of the kernel.
The aim of rimitation was to imitate the joint position, feet pose and

contact pattern of a reference motion capture trajectory as close as
possible. This is achieved by the reward function rimitation:

rimitation = wjoint_positionrjoint_position +wposerpose +wcontactrcontact.

The reward components rjoint_position and rpose use the RBF kernel to
encourage the policy learning motions that are close to the reference
joint positions and feet poses, respectively. The contact reward rcontact
is a binary reward that is equal to one if the foot in the reference motion
was in contact with the ground and zero otherwise. The weights used
for the reward components can be found in Supplementary Table 3.
The target references for joint position, feet pose and feet contact come
from the motion capture study in ref. 62.

The reward term rtask rewarded upright posture and short dis-
tances to the goal position, and regularized the joint velocity and
torque:

rtask = wposerpose +wgoalrgoal +wvelrvel +wtorquertorque,

with the values of the weights wpose, wgoal, wvel and wtorque as in Sup-
plementary Table 3, and reward components rpose, rgoal, rjoint_vel and rtorque
that respectively reward the torso pose to be upright, the distance
vector between pelvis and goal to be as small as possible and the joint
velocity and joint torque to be as small as possible. The RBF kernel is
used for all reward components in rtask.

Low-level joint control
The low-level joint control tracked the target joint positions
qd = [qdarms,qdlegs] provided by the mid-level stability controller (flow
diagram in Supplementary Fig. 3). It receives joint positions q ∈ ℛ20,
joint velocities ̇q ∈ ℛ20 and target joint position targets qd = a2 ∈ ℛ20
as input and outputs motor current a1 = I ∈ 𝒜𝒜1 ⊆ ℛ20.

It was implemented as a joint impedance controller that regulated
around the set point to achieve accurate tracking of the desired joint
motions qd.

The joint impedance control calculated the desired joint torque
τd using position q and its derivative ̇q, with the stiffness KPi and damp-
ing KDi gains:

τd = KP1 (qd − q) − KD1 ̇q.

At the actuator level, the motor driver implemented an internal
current control to track the desired joint torque τd using a

proportional-derivative law, where the desired motor current I was
computed as:

I = KP2 (τd − τ) − KD2 ̇τ.

Data availability
The data analysed in this work were generated using the code provided
in our open-source repository, where source data is also provided.
Further information can be found in our repository (Code availability)
and in the repository https://doi.org/10.5281/zenodo.8374262.

Code availability
The code used in this work is available on https://github.com/Yunaik/
hgm4robots.git.

References
1. Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor

cortex circuit for motor planning and movement. Nature 519,
51–56 (2015).

2. Honey, C. J. et al. Slow cortical dynamics and the accumulation of
information over long timescales. Neuron 76, 423–434 (2012).

3. Murray, J. D. et al. A hierarchy of intrinsic timescales across
primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

4. Merel, J. et al. Hierarchical visuomotor control of humanoids.
Preprint at https://doi.org/10.48550/arXiv.1811.09656 (2018).

5. Merel, J., Botvinick, M. & Wayne, G. Hierarchical motor control in
mammals and machines. Nat. Commun. 10, 5489 (2019).

6. Kheddar, A. et al. Humanoid robots in aircraft manufacturing: the
airbus use cases. IEEE Robot. Autom. Mag. 26, 30–45 (2019).

7. Schmaus, P. et al. IEEE Aerospace Conference (IEEE, 2019).
8. Oliver, G., Lanillos, P. & Cheng, G. An empirical study of active

inference on a humanoid robot. IEEE Trans. Cogn. Develop. Syst.,
14, 462–471 (2021).

9. Johnson, M. et al. Team IHMC’s lessons learned from the DARPA
robotics challenge trials. J. Field Rob. 32, 192–208 (2015).

10. Kumagai, I. et al. Toward industrialization of humanoid robots:
autonomous plasterboard installation to improve safety and
efficiency. IEEE Robot. Autom. Mag. 26, 20–29 (2019).

11. Winkler, A. W., Bellicoso, C. D., Hutter, M. & Buchli, J. Gait and
trajectory optimization for legged systems through phase-
based end-effector parameterization. IEEE Robot. Autom. Let. 3,
1560–1567 (2018).

12. Toyer, S., Thiébaux, S., Trevizan, F. & Xie, L. Asnets: deep learning
for generalised planning. J. Artif. Intell. Res. 68, 1–68 (2020).

13. Hutsebaut-Buysse, M., Mets, K. & Latré, S. Hierarchical
reinforcement learning: a survey and open research challenges.
Mach. Learn. Knowl. Extr. 4, 172–221 (2022).

14. Jain, D., Iscen, A. & Caluwaerts, K. 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE, 2019).

15. Li, C., Xia, F., Martin-Martin, R. & Savarese, S. Hrl4in: hierarchical
reinforcement learning for interactive navigation with mobile
manipulators. In Proc. Conference on Robot Learning (eds.
Kaelbling, L. P., Kragic, D. & Sugiura, K.) 603–616 (PMLR, 2020).

16. Findeisen, W. et al. Control and Coordination in Hierarchical
Systems (Wiley, 1980).

17. Sutton, R. S., Precup, D. & Singh, S. Between MDPs and
semi-MDPs: a framework for temporal abstraction in
reinforcement learning. Artif. Intell. 112, 181–211 (1999).

18. Uithol, S., van Rooij, I., Bekkering, H. & Haselager, P. Hierarchies in
action and motor control. J. Cogn. Neurosci. 24, 1077–1086 (2012).

19. Loeb, G. E., Brown, I. E. & Cheng, E. J. A hierarchical foundation for
models of sensorimotor control. Exp. Brain Res. 126, 1–18 (1999).

20. Tani, J. & Nolfi, S. Learning to perceive the world as articulated:
an approach for hierarchical learning in sensory-motor systems.
Neural Netw. 12, 1131–1141 (1999).

http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.8374262
https://github.com/Yunaik/hgm4robots.git
https://github.com/Yunaik/hgm4robots.git
https://doi.org/10.48550/arXiv.1811.09656

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

21. Botvinick, M. & Toussaint, M. Planning as inference. Trends Cogn.
Sci. 16, 485–488 (2012).

22. Wolpert, D. M., Ghahramani, Z. & Jordan, M. Forward dynamic
models in human motor control: psychophysical evidence.
Adv. Neural Inf. Process. Syst. 7, 43–50 (1994).

23. Attias, H. Planning by probabilistic inference. In Proc. Ninth
International Workshop on Artificial Intelligence and Statistics
(eds Bishop, C. M. and Frey, B. J.) 9–16 (PMLR, 2003).

24. Baker, C. L., Saxe, R. & Tenenbaum, J. B. Action understanding as
inverse planning. Cognition 113, 329–349 (2009).

25. Maisto, D., Donnarumma, F. & Pezzulo, G. Divide et impera:
subgoaling reduces the complexity of probabilistic inference and
problem solving. J. R. Soc. Interface 12, 20141335 (2015).

26. Kaplan, R. & Friston, K. J. Planning and navigation as active
inference. Biol. Cybern. 112, 323–343 (2018).

27. Tani, J. Learning to generate articulated behavior through the
bottom-up and the top-down interaction processes. Neural Netw.
16, 11–23 (2003).

28. Matsumoto, T. & Tani, J. Goal-directed planning for habituated
agents by active inference using a variational recurrent neural
network. Entropy 22, 564 (2020).

29. Haruno, M., Wolpert, D. M. & Kawato, M. Hierarchical MOSAIC for
movement generation. Int. Congr. Ser. 1250, 575–590 (2003).

30. Morimoto, J. & Doya, K. Acquisition of stand-up behavior by a real
robot using hierarchical reinforcement learning. Rob. Autom. Syst.
36, 37–51 (2001).

31. Baltieri, M. & Buckley, C. L. Generative models as parsimonious
descriptions of sensorimotor loops. Behav. Brain Sci. 42,
e218 (2019).

32. Friston, K. J., Parr, T. & de Vries, B. The graphical brain:
belief propagation and active inference. Net. Neurosci. 1,
381–414 (2017).

33. Pezzulo, G., Rigoli, F. & Friston, K. J. Hierarchical active
inference: a theory of motivated control. Trends Cogn. Sci. 22,
294–306 (2018).

34. Feldman, A. G. & Levin, M. F. in Progress in Motor Control
(ed. Sternad, D.) 699–726 (Springer, 2009).

35. Botvinick, M. M., Niv, Y. & Barto, A. G. Hierarchically organized
behavior and its neural foundations: a reinforcement learning
perspective. Cognition 113, 262–280 (2009).

36. Parr, T., Sajid, N. & Friston, K. J. Modules or mean-fields? Entropy
22, 552 (2020).

37. Lanillos, P. et al. Active inference in robotics and artificial agents:
survey and challenges. Preprint at https://doi.org/10.48550/
arXiv.2112.01871 (2021).

38. Parr, T., Limanowski, J., Rawji, V. & Friston, K. The computational
neurology of movement under active inference. Brain 144,
1799–1818 (2021).

39. Aitchison, L. & Lengyel, M. With or without you: predictive coding
and Bayesian inference in the brain. Curr. Opin. Neurobiol. 46,
219–227 (2017).

40. Feldman, A. G. New insights into action–perception coupling.
Exp. Brain Res. 194, 39–58 (2009).

41. Adams, R. A., Shipp, S. & Friston, K. J. Predictions not commands:
active inference in the motor system. Brain Struct. Funct. 218,
611–643 (2013).

42. Shipp, S., Adams, R. A. & Friston, K. J. Reflections on agranular
architecture: predictive coding in the motor cortex. Trends
Neurosci. 36, 706–716 (2013).

43. Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum
a smith predictor? J. Mot. Behav. 25, 203–216 (1993).

44. Koziol, L. F. et al. Consensus paper: the cerebellum’s role in
movement and cognition. Cerebellum 13, 151–177 (2014).

45. Ramnani, N. Automatic and controlled processing in the
corticocerebellar system. Prog. Brain Res. 210, 255–285 (2014).

46. Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. Computations underlying
the execution of movement: a biological perspective. Science
253, 287–291 (1991).

47. Atkeson, C. G. et al. 2015 IEEE-RAS 15th International Conference
on Humanoid Robots (Humanoids) (IEEE, 2015).

48. Yuan, K. & Li, Z. Multi-expert synthesis for versatile locomotion
and manipulation skills. Front. Robot. AI 9, 970890 (2022).

49. Yang, C., Yuan, K., Zhu, Q., Yu, W. & Li, Z. Multi-expert learning of
adaptive legged locomotion. Sci. Robot. 5, eabb2174 (2020).

50. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. &
Pezzulo, G. Active inference: a process theory. Neural Comput. 29,
1–49 (2017).

51. Sajid, N., Ball, P. J., Parr, T. & Friston, K. J. Active inference:
demystified and compared. Neural Comput. 33, 674–712 (2021).

52. Da Costa, L. et al. Active inference on discrete state-spaces: A
synthesis. J. Math. Psychol. 99, 102447 (2020).

53. Sajid, N. et al. Simulating lesion-dependent functional recovery
mechanisms. Sci. Rep. 11, 7475 (2021).

54. Lang, C. J. G., Kneidl, O., Hielscher-Fastabend, M. & Heckmann, J. G.
Voice recognition in aphasic and non-aphasic stroke patients.
J. Neurol. 256, 1303–1306 (2009).

55. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Proc. 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (Association for Computing Machinery, 2019).

56. Yuan, K., Chatzinikolaidis, I. & Li, Z. Bayesian optimization
for whole-body control of high-degree-of-freedom robots
through reduction of dimensionality. IEEE Robot. Autom. Lett. 4,
2268–2275 (2019).

57. Hasselt, H. Double Q-learning. In Advances in Neural Information
Processing Systems (eds Lafferty, J. et al.) 2613–2621 (Curran
Associates Inc., 2010).

58. Siciliano, B., Khatib, O. & Kröger, T. Springer Handbook of
Robotics, Vol. 200 (Springer, 2008).

59. Yuan, K., McGreavy, C., Yang, C., Wolfslag, W. & Li, Z. Decoding
motor skills of artificial intelligence and human policies: a study
on humanoid and human balance control. IEEE Robot. Autom.
Mag. 27, 87–101 (2020).

60. Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-
critic: off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Proc. 35th International
Conference on Machine Learning (eds Dy, J. & Krause, A.)
1861–1870 (PMLR, 2018).

61. Yang, C., Yuan, K., Heng, S., Komura, T. & Li, Z. Learning natural
locomotion behaviors for humanoid robots using human bias.
IEEE Rob. Autom. Lett. 5, 2610–2617 (2020).

62. McGreavy, C. et al. 2020 IEEE International Conference on
Robotics and Automation (ICRA) (IEEE, 2020).

Acknowledgements
We would like to thank the Theoretical Neurobiology Group at
University College London and the Advanced Intelligent Robotics Lab
for their insightful feedback. K.Y. was supported by the Engineering
and Physical Sciences Research Council Center for Doctoral Training
in Robotics and Autonomous Systems (EP/L016834/1). N.S. is funded
by the Medical Research Council (MR/S502522/1) and a 2021–2022
Microsoft PhD Research Fellowship. K.F. is supported by funding for
the Wellcome Centre for Human Neuroimaging (Ref: 205103/Z/16/Z), a
Canada-UK Artificial Intelligence Initiative.

Author contributions
K.Y. and Z.L. conceptualized the robot control architecture. K.Y., N.S.
and K.F. designed and formulated the hierarchical generative model.
K.Y. implemented the model and performed the robotic experiments.
K.Y. and N.S. wrote the manuscript. All authors contributed to and
edited the manuscript.

http://www.nature.com/natmachintell
https://doi.org/10.48550/arXiv.2112.01871
https://doi.org/10.48550/arXiv.2112.01871

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s42256-023-00752-z.

Correspondence and requests for materials should be addressed
to Zhibin Li.

Peer review information Nature Machine Intelligence thanks
Pablo Lanillos, Wouter Kouw and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work. Primary
Handling Editor: Jacob Huth, in collaboration with the Nature Machine
Intelligence team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00752-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Hierarchical generative modelling for autonomous robots
	Results
	Information factorization
	Partial autonomy
	Amortized control
	Multi-joint coordination
	Temporal abstraction and depth

	Discussion
	Hierarchical generative models of motor control
	Future directions

	Methods
	Tasks of interest
	Implicit hierarchical generative model for a robotics system
	Training process
	High-level decision-making
	Box delivery and opening door task
	Penalty kick task
	Transporting box and activating conveyor belt task

	Mid-level stability control
	Manipulation policy
	Locomotion policy

	Low-level joint control

	Acknowledgements
	Fig. 1 Pictorial representation of a hierarchical generative model for moving boxes.
	Fig. 2 Manipulation and locomotion tasks to validate the hierarchical generative model.
	Fig. 3 Robustness of the system in the presence of perturbations and environmental changes.
	Fig. 4 State and temporal dynamics of the robot during task performance with random high-level commands.
	Fig. 5 Algorithmic realizations of hierarchical control as inference.
	Table 1 Summary of the key principles of hierarchical motor control5, with exemplar realizations in human motor control and our robotic system.

