101 research outputs found

    Multi-Embedding of Metric Spaces

    Full text link
    Metric embedding has become a common technique in the design of algorithms. Its applicability is often dependent on how high the embedding's distortion is. For example, embedding finite metric space into trees may require linear distortion as a function of its size. Using probabilistic metric embeddings, the bound on the distortion reduces to logarithmic in the size. We make a step in the direction of bypassing the lower bound on the distortion in terms of the size of the metric. We define "multi-embeddings" of metric spaces in which a point is mapped onto a set of points, while keeping the target metric of polynomial size and preserving the distortion of paths. The distortion obtained with such multi-embeddings into ultrametrics is at most O(log Delta loglog Delta) where Delta is the aspect ratio of the metric. In particular, for expander graphs, we are able to obtain constant distortion embeddings into trees in contrast with the Omega(log n) lower bound for all previous notions of embeddings. We demonstrate the algorithmic application of the new embeddings for two optimization problems: group Steiner tree and metrical task systems

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    On metric Ramsey-type phenomena

    Full text link
    The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky's theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any epsilon>0, every n point metric space contains a subset of size at least n^{1-\epsilon} which is embeddable in Hilbert space with O(\frac{\log(1/\epsilon)}{\epsilon}) distortion. The bound on the distortion is tight up to the log(1/\epsilon) factor. We further include a comprehensive study of various other aspects of this problem.Comment: 67 pages, published versio

    Online Embeddings

    Get PDF
    13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. ProceedingsWe initiate the study of on-line metric embeddings. In such an embedding we are given a sequence of n points X = x [subscript 1],...,x [subscript n] one by one, from a metric space M = (X,D). Our goal is to compute a low-distortion embedding of M into some host space, which has to be constructed in an on-line fashion, so that the image of each x i depends only on x [subscript 1],...,x [subscript i] . We prove several results translating existing embeddings to the on-line setting, for the case of embedding into ℓ [subscript p] spaces, and into distributions over ultrametrics

    Maximum gradient embeddings and monotone clustering

    Full text link
    Let (X,d_X) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f:X-->T such that for every x in X, the expectation with respect to D of the maximum over y in X of the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous one. To appear in "Combinatorica

    Tropical Principal Component Analysis and its Application to Phylogenetics

    Get PDF
    Principal component analysis is a widely-used method for the dimensionality reduction of a given data set in a high-dimensional Euclidean space. Here we define and analyze two analogues of principal component analysis in the setting of tropical geometry. In one approach, we study the Stiefel tropical linear space of fixed dimension closest to the data points in the tropical projective torus; in the other approach, we consider the tropical polytope with a fixed number of vertices closest to the data points. We then give approximative algorithms for both approaches and apply them to phylogenetics, testing the methods on simulated phylogenetic data and on an empirical dataset of Apicomplexa genomes.Comment: 28 page

    Euclidean quotients of finite metric spaces

    Get PDF
    This paper is devoted to the study of quotients of finite metric spaces. The basic type of question we ask is: Given a finite metric space M, what is the largest quotient of (a subset of) M which well embeds into Hilbert space. We obtain asymptotically tight bounds for these questions, and prove that they exhibit phase transitions. We also study the analogous problem for embedings into l_p, and the particular case of the hypercube.Comment: 36 pages, 0 figures. To appear in Advances in Mathematic

    Embedding Metrics into Ultrametrics and Graphs into Spanning Trees with Constant Average Distortion

    Full text link
    This paper addresses the basic question of how well can a tree approximate distances of a metric space or a graph. Given a graph, the problem of constructing a spanning tree in a graph which strongly preserves distances in the graph is a fundamental problem in network design. We present scaling distortion embeddings where the distortion scales as a function of ϵ\epsilon, with the guarantee that for each ϵ\epsilon the distortion of a fraction 1ϵ1-\epsilon of all pairs is bounded accordingly. Such a bound implies, in particular, that the \emph{average distortion} and q\ell_q-distortions are small. Specifically, our embeddings have \emph{constant} average distortion and O(logn)O(\sqrt{\log n}) 2\ell_2-distortion. This follows from the following results: we prove that any metric space embeds into an ultrametric with scaling distortion O(1/ϵ)O(\sqrt{1/\epsilon}). For the graph setting we prove that any weighted graph contains a spanning tree with scaling distortion O(1/ϵ)O(\sqrt{1/\epsilon}). These bounds are tight even for embedding in arbitrary trees. For probabilistic embedding into spanning trees we prove a scaling distortion of O~(log2(1/ϵ))\tilde{O}(\log^2 (1/\epsilon)), which implies \emph{constant} q\ell_q-distortion for every fixed q<q<\infty.Comment: Extended abstrat apears in SODA 200
    corecore