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Abstract

This paper is devoted to the study of quotients of finite metric spaces. The basic type of

question we ask is: Given a finite metric space M and aX1; what is the largest quotient of (a
subset of) M which well embeds into Hilbert space. We obtain asymptotically tight bounds for

these questions, and prove that they exhibit phase transitions. We also study the analogous

problem for embeddings into cp; and the particular case of the hypercube.

r 2004 Elsevier Inc. All rights reserved.

‘‘Our approach to general metric spaces bears the undeniable imprint of early

exposure to Euclidean geometry. We just love spaces sharing a common feature

with Rn:’’

Misha Gromov.

1. Introduction

A classical theorem due to A. Dvoretzky states that for every n-dimensional
normed space X and every e40 there is a linear subspace YDX with k ¼
dim YXcðeÞ log n such that dðY ; ck

2Þp1þ e: Here dð�; �Þ denotes the Banach–Mazur

distance and cð�Þ depends only on e: The first result of this type appeared in [15], and
the logarithmic lower bound on the dimension is due to Milman [20]. If in addition
to taking subspaces, we also allow passing to quotients, the dimension k above can
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be greatly improved. This is Milman’s Quotient of Subspace Theorem [21]
(commonly referred to as the QS Theorem), a precise formulation of which reads
as follows:

Theorem 1.1 (Milman’s QS Theorem [21]). For every 0odo1 there is a constant

f ðdÞAð0;NÞ such that for every n-dimensional normed space X there are linear

subspaces ZDYDX with dimðY=ZÞ ¼ kXð1� dÞn and dðY=Z; ck
2Þpf ðdÞ:

Over the past two decades, several theorems in the local theory of Banach spaces
were shown to have non-linear analogs. The present paper, which is a continuation
of this theme, is devoted to the proof of a natural non-linear analog of the QS
Theorem, which we present below.
A mapping between two metric spaces f : M-X ; is called an embedding of M

in X : The distortion of the embedding is defined as

distð f Þ ¼ sup
x;yAM

xay

dX ð f ðxÞ; f ðyÞÞ
dMðx; yÞ � sup

x;yAM
xay

dMðx; yÞ
dX ðf ðxÞ; f ðyÞÞ:

The least distortion required to embed M in X is denoted by cX ðMÞ: When
cX ðMÞpa we say that M a-embeds in X : If M is a class of metric spaces then we
denote cMðMÞ ¼ infXAM cX ðMÞ:
In order to motivate our treatment of the non-linear QS problem, we first

describe a non-linear analog of Dvoretzky’s Theorem, which is based on the
following notion: Given a class M of metric spaces, we denote by RMða; nÞ
the largest integer m such that any n-point metric space has a subspace of size
m that a-embeds into some XAM: When M ¼ fcpg we use the notations cp and

Rp: The parameter c2ðMÞ is known as the Euclidean distortion of M: In [11]

Bourgain et al. study this function, as a non-linear analog of Dvoretzky’s theorem.
They prove

Theorem 1.2 (Non-linear Dvoretzky theorem [11]). For any a41 there exists

CðaÞ40 such that R2ða; nÞXCðaÞ log n: Furthermore, there exists a041 such that

R2ða0; nÞ ¼ Oðlog nÞ:

In [5] the metric Ramsey problem is studied comprehensively. In particular, the
following phase transition is proved.

Theorem 1.3 (Bartal et al. [5]). The following two assertions hold true:

1. For every nAN and 1oao2: cðaÞ log npR2ða; nÞp2 log n þ CðaÞ; where

cðaÞ;CðaÞ40 may depend only on a:
2. For every a42 there is an integer n0 such that for nXn0: nc0ðaÞpR2ða; nÞpnC0ðaÞ;

where c0ðaÞ;C0ðaÞ depend only on a and 0oc0ðaÞpC0ðaÞo1:
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The following result, which deals with the metric Ramsey problem for large
distortion, was also proved in [5]:

Theorem 1.4 (Bartal et al. [5]). For every e40; every n-point metric space X contains

a subset of cardinality at least n1�e whose Euclidean distortion is O
logð1=eÞ

e

� �
:

With these results in mind, how should we formulate a non-linear analog of the
QS Theorem? We now present a natural formulation of the problem, as posed by
Vitali Milman.
The linear quotient operation starts with a normed space X ; and a subspace

YDX ; and partitions X into the cosets X=Y ¼ fx þ YgxAX : The metric on X=Y is

given by dðx þ Y ; x0 þ YÞ ¼ inffjja � bjj; aAx þ Y ; bAx0 þ Yg: This operation is
naturally generalizable to the context of arbitrary metric spaces as follows: Given a
finite metric space M; partition M into pairwise disjoint subsets U1;y;Uk: Unlike
the case of normed spaces, the function dMðUi;UjÞ ¼ inffdMðu; vÞ; uAUi; vAUjg is

not necessarily a metric on U ¼ fU1;y;Ukg: We therefore consider the maximal
metric on U majorized by dM ; which is easily seen to be the geodesic metric given by:

dgeoðUi;UjÞ ¼ inf
Xk

r¼1
dMðVr;Vr�1Þ;V0;y;VkAU;V0 ¼ Ui;Vk ¼ Uj

( )
:

This operation clearly coincides with the usual quotient operation, when restricted to
the class of normed spaces. When considering the QS operation, we first pass to a
subset of M; and then construct a quotient space as above. We summarize this
discussion in the following definition:

Definition 1.5. Let M be a finite metric space. A Q space of M is a metric space that
can be obtained from M by the following operation: Partition M into s pairwise
disjoint subsets U1;y;Us and equip U ¼ fU1;y;Usg with the geodesic metric dgeo:

Equivalently, consider the weighted complete graph whose vertices are U with edge
weights: wðUi;UjÞ ¼ dMðUi;UjÞ: The metric on U can now be defined to be the

shortest-path metric on this weighted graph. A Q space of a subset of M will be
called a QS space of M: Similarly, a subspace of a Q space of M will be called a SQ

space of M:

The above notion of a quotient of a metric space is due to Gromov (see Section
1:16þ in [17]). The formulation of the non-linear QS problem is as follows: Given
nAN and aX1; find the largest sAN such that any n-point metric space M has a QS
space of size s that is a embeddable in c2: More generally, we consider the following
parameters:

Definition 1.6. LetM be a class of metric spaces. For every nAN and aX1 we denote
by QMða; nÞ (respectively QSMða; nÞ;SQMða; nÞ) the largest integer m such
that every n-point metric space has a Q space (respectively QS; SQ space) of size
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m that a-embeds into a member of M: When M ¼ fcpg we use the notations Qp;

QSp and SQp:

We remark that for finite metric spaces, embeddability into cp and Lp are the same

(see e.g. [14]). Additionally, by Dvoretzky’s theorem [15], if X is an infinite
dimensional Banach space then for every nAN; aX1 and e40; QfXgða; nÞp
Q2ðaþ e; nÞ (and similarly for QSfXg;QSfXg).

In the linear setting there is a natural duality between subspaces and quotients. In
particular, one can replace in Dvoretzky’s theorem the word ‘‘subspace’’ by the word
‘‘quotient’’, and the resulting estimate for the dimension will be identical. Similarly,
the statement of the QS Theorem remains unchanged if we replace ‘‘quotient of
subspace’’ by ‘‘subspace of quotient’’. In the non-linear setting these simple
observations are no longer clear. In view of Theorem 1.3, it is natural to ask if the
same is true for Q spaces. Similarly, it is natural to ask if the QS and SQ functions
behave asymptotically the same. In this paper we present a comprehensive analysis
of the functions Q2; QS2 and SQ2: It turns out that the answer to the former question
is no, while the answer to the latter question is yes. On the other hand, as conjectured
by Milman, our results show that just as is the case in the linear setting, once we
allow the additional quotient operation, the size of the Euclidean spaces obtained
increases significantly.
Below is a summary of our results concerning the QS and SQ problems:

Theorem 1.7. For every 1oao2 there are constants 0ocðaÞ;CðaÞo1 such that for

every nAN;

ncðaÞpQS2ða; nÞ;SQ2ða; nÞpnCðaÞ:

On the other hand, for every aX2 there is an integer n0 and there are constants

0oc0ðaÞ;C0ðaÞo1 such that for every nXn0;

c0ðaÞnpQS2ða; nÞ;SQ2ða; nÞpC0ðaÞn:

As mentioned above, the Q problem exhibits a different behavior. In fact, we have
a double phase transition in this case:

Theorem 1.8. For every 1oao
ffiffiffi
2

p
there is a constant C1ðaÞ such that for every

nAN; Q2ða; nÞpC1ðaÞ: For every
ffiffiffi
2

p
oao2 there are constants cðaÞ;CðaÞ such that

for every nAN; ncðaÞpQ2ða; nÞpnCðaÞ: Finally, for every aX2 there is an integer

n0 and there are constants 0oc0ðaÞ;C0ðaÞo1 such that for every nXn0;
c0ðaÞnpQ2ða; nÞpC0ðaÞn:

In other words, for a4
ffiffiffi
2

p
the asymptotic behavior of the function Q2 is the same

as the behavior of the functions QS2 and SQ2: We summarize the qualitative
behavior of the size of subspaces, quotients, quotients of subspaces and subspaces of
quotients of arbitrary metric spaces in Table 1. For aesthetic reasons, in this table we
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write S2 ¼ R2 (i.e. R2 is the ‘‘subspace’’ function). The first row contains results
from [5]. We mention here that the behavior of S2ð2; nÞ remains unknown.

Furthermore, we do not know the behavior of the function Q2 at
ffiffiffi
2

p
: Finally, we

mention that in [6] it is shown that R2ð1; nÞ ¼ 3 for all nX3: We did not study the
functions Q2;QS2;SQ2 in the isometric case.
For large distortions we prove the following analog of Theorem 1.4:

Theorem 1.9. For any nAN and e40; every n-point metric space has a Q space of size

ð1� eÞn whose Euclidean distortion is Oðlogð2=eÞÞ: On the other hand, there are

arbitrarily large n-point metric spaces every QS or SQ space of which, of size at least

ð1� eÞn; has Euclidean distortion Oðlogð2=eÞÞ:

This result should be viewed in comparison to Bourgain’s embedding theorem
[10], which states that for every n-point metric spaces X ; c2ðXÞ ¼ Oðlog nÞ: Theorem
1.9 states that if one is allowed to identify an arbitrarily small proportion of the
elements of X ; it possible to arrive at a metric space whose Euclidean distortion is
bounded independently of n: In fact, Theorem 1.9 is proved via a modification of
Bourgain’s original proof. This is unlike the situation for the non-linear Dvoretzky
problem, since in [7] an example is constructed which shows that Bourgain’s
embedding method cannot yield results such as Theorem 1.4.
Except for a loss in the dependence on e; it is possible to give a more refined

description of the Q spaces obtained in Theorem 1.9. Using a different embedding
method, we can actually ensure that for every e40; every n point metric space has a
Q space of size ð1� eÞn which well embeds into an ultrametric. This is of interest
since such spaces have a simple hierarchically clustered structure, which is best
described through their representation as a hierarchically well-separated tree (see
Section 3 for the definition). This special structure is useful in several algorithmic
contexts, which will be discussed in a forthcoming (Computer Science oriented)
paper.

Theorem 1.10. For every e40 and nAN; any n point metric space X contains a subset

ADX of size at most en such that the quotient of X induced by the partition

ffaggaAX \A,fAg is O½logð1=eÞe � equivalent to an ultrametric. On the other hand, there
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Table 1

The qualitative behavior of the Euclidean quotient/subspace functions, for different distortions

Distortion

ð1;
ffiffiffi
2

p
Þ ð

ffiffiffi
2

p
; 2Þ ð2;NÞ

S2 Logarithmic Logarithmic Polynomial

Q2 Constant Polynomial Proportional

QS2 Polynomial Polynomial Proportional

SQ2 Polynomial Polynomial Proportional
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are arbitrarily large n-point metric spaces every QS or SQ space of which, of size at

least ð1� eÞn; cannot be embedded into an ultrametric with distortion Oð1=eÞ:

In Section 5 we study the QS problem for the hypercube Od ¼ f0; 1gd (although
the embedding results used there may also be of independent interest). The cube-
analog of Theorem 1.4 was studied in [5], where it was shown that if BCOd satisfies

c2ðBÞpa then jBjpC2ð1�c=a2Þd ; and on the other hand there is a subset B0COd with

Euclidean distortion at most a and which contains at least 2ð1�½logðc0aÞ�=a2Þd points
(here c; c0;C are positive universal constant). In Section 5 we prove the following QS

counterpart of this result:

Theorem 1.11. There is an absolute constant c40 such that for all dAN and

0oeo1=2; every QS space of Od containing more than ð1� eÞ2d points has Euclidean

distortion at least:

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=eÞ

1þ log d
logð1=eÞ

� �
vuut :

On the other hand, there are QS spaces of Od ; of size greater than ð1� eÞ2d whose

Euclidean distortion matches this bound.

In Section 6 we briefly study another notion of quotient introduced by Bates et al.
[8], which has been the focus of considerable attention in the last few years. It turns
that this notion of quotient, while being useful in many contexts, does not yield a
satisfactory non-linear version of the QS theorem (at least for distortion greater than
2). Namely, we show that using this notion of quotient we cannot expect to obtain
quotients of subspaces which are asymptotically larger than what is obtained by just
passing to subspaces (i.e. what is ensured by Theorem 1.3).
In order to describe this notion we recall the following standard notation which

will be used throughout this paper. Given a metric space M; xAM and r40; denote
BMðx; rÞ ¼ fyAM; dMðx; yÞprg and B�

Mðx; rÞ ¼ fyAM; dMðx; yÞorg:
Let ðX ; dX Þ and ðY ; dY Þ be metric spaces and c40: A function f : X-Y is called

c-co-Lipschitz if for every xAX and every r40; f ðBX ðx; rÞÞ+BY ð f ðxÞ; r=cÞ: The
function f is called co-Lipschitz if it is c-co-Lipschitz for some c40: The smallest
such c is denoted by coLipð f Þ: A surjection f : X-Y is called a Lipschitz quotient if
it is both Lipschitz and co-Lipschitz. The notion of co-Lipschitz mappings was
introduced by Gromov (see Section 1.25 in [17]), and the definition of Lipschitz
quotients is due to Bates et al. [8]. The basic motivation is the fact that the Open
Mapping Theorem ensures that surjective continuous linear operators between
Banach spaces are automatically co-Lipschitz.
In the context of finite metric spaces these notions only make sense with additional

quantitative control of the parameters involved. Given a40 and two metric spaces
ðX ; dX Þ; ðY ; dY Þ we say that X has an a-Lipschitz quotient in Y if there is a subset
ZCY and a Lipschitz quotient f : X-Z such that Lipð f Þ � coLipð f Þpa: The
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following definition is the analog of Definition 1.6 in the context of Lipschitz
quotients.

Definition 1.12. Let M be a class of metric spaces. For every nAN and aX1 we

denote by QSLip
M ða; nÞ the largest integer m such that every n-point metric space has a

subspace which has an a-Lipschitz quotient in a member of M: When M ¼ fcpg
then we use the notation QSLip

p :

The main result of Section 6 is:

Theorem 1.13. The following two assertions hold true:

1. For every a42 there is an integer n0 such that for nXn0: ncðaÞpQSLip
2 ða; nÞpnCðaÞ;

where cðaÞ;CðaÞ depend only on a and 0ocðaÞpCðaÞo1:
2. For every 1pao2 there is an integer n0 such that for nXn0:

ec0ðaÞ
ffiffiffiffiffiffiffiffi
log n

p
pQSLip

2 ða; nÞpeC0ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog nÞðlog log nÞ

p
;

where c0ðaÞ;C0ðaÞ depend only on a:

Thus, the additional Lipschitz quotient operation only yields an improvement for
distortion smaller than 2. We have not studied the analogous questions for the Q and
SQ problems.
Throughout this paper we also study the functions Qp;SQp;QSp for general

1ppoN: In most cases we obtain matching or nearly matching upper and lower
bounds for the various functions, but some interesting problems remain open. We
summarize in Tables 2 and 3 the qualitative nature of our results (in which we write
once more Rp ¼ Sp). As is to be expected, it turns out that there is a difference

between the cases 1ppp2 and p42: In both tables, the first row contains results
from [5] and [6]. In Table 3 the question marks refer to the fact that for p42 our

lower and upper bounds do not match in the range ð22=p; 2Þ:
This paper is organized as follows. Section 2 deals with the various upper bounds

for Qp;QSp;SQp: In Section 3 we prove Theorem 1.9 and Theorem 1.10. In Section 4
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Table 2

The qualitative behavior of the cp quotient/subspace function for pp2; and different distortions

Distortion

ð1; 21�
1
pÞ ð21�

1
p; 2Þ ð2;NÞ

Sp Logarithmic Logarithmic Polynomial

Qp Constant Polynomial Proportional

QSp Polynomial Polynomial Proportional

SQp Polynomial Polynomial Proportional
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we prove the various lower bounds for Qpða; nÞ , QSpða; nÞ and SQpða; nÞ for ap2:

Section 5 deals with the QS problem for the hypercube (in the context of embeddings
into cp for general pX1). Finally, Section 6 deals with the QS problem for Lipschitz

quotients.

2. Upper bounds

In this section we prove the various upper bounds for the Q; QS and SQ problems
presented in the introduction. In the following two sections we will provide matching
lower bounds for these problems.
We begin with an abstract method with which one can obtain upper bounds for

QSMða; nÞ; for various classes of metric spaces M:

Lemma 2.1. Let M be a class of metric spaces and a41: Assume that there exists a

k-point metric space X such that cMðXÞ4a: Then for every integer n;

maxfSQMða; nkÞ;QSMða; nkÞgp k � 1

2


 �
n:

Proof. Define Y ¼ X � f1;y; ng: We equip Y with the following metric:

dY ððx; iÞ; ðy; jÞÞ ¼
dX ðx; yÞ i ¼ j;

b iaj:

�

It is straightforward to verify that provided bXdiamðXÞ; dY is indeed a metric.
Since jY j ¼ nk; it is enough to show that Y has no QS or SQ space of size greater

than k � 1
2

 �
n which a-embeds into a member on M: Let U1;y;UrDY be disjoint

subsets and r4 k � 1
2

 �
n: Denote m ¼ jf1pipr; jUij ¼ 1gj: Then:

knX
[r

i¼1
Ui

�����
����� ¼

Xr

i¼1
jUijXm þ 2ðr � mÞ42 k � 1

2


 �
n � m ¼ 2kn � n � m:

Hence m4kn � n; which implies that there is iAf1;y; ng such that the singletons
ffðx; iÞggxAX are all elements of U ¼ fU1;y;Urg: If Y has either a QS space or a
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Table 3

The qualitative behavior of the cp quotient/subspace function for pX2; and different distortions

Distortion

ð1; 2
1
pÞ ð2

1
p; 2

2
pÞ ð2

2
p; 2Þ ð2;NÞ

Sp Logarithmic Logarithmic ? Polynomial

Qp Constant Polynomial ? Proportional

QSp Polynomial Polynomial ? Proportional

SQp Polynomial Polynomial ? Proportional
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SQ space of size greater than r which a-embed into a member of M then we could
find such U which could be completed to a partition V of a subset SDY such that
U; equipped with the quotient metric induced by V; a-embeds into a member of M:
By taking b ¼ diamðXÞ we guarantee that both the QS and the SQ metrics induced
by V; when restricted to X � fig are isometric to X : This contradicts the fact that
cMðX Þ4a: &

The next two corollaries are the upper bounds contained in Theorem 1.9 and the
second part of Theorem 1.7.

Corollary 2.2. For every eAð0; 1Þ and 1ppoN there are arbitrarily large n-point

metric spaces every QS or SQ space of which, U; of size at least ð1� eÞn; satisfies

cpðUÞXOð½logð2=eÞ�=pÞ:

Proof. By [19] there are constants c; e040 such that for epe0 there is a k-point

metric spaces X with kp 1
3e; for which cpðXÞXc½logð1=eÞ�=p: By Lemma 2.1, for every

integer m there is a metric space of size km; such that every QS or SQ space of which,

of size at least k � 1
3

 �
mpð1� eÞkm; cannot be embedded in cp with distortion

smaller than c½logð2=eÞ�=p: &

Corollary 2.3. For every a41 there exists a constant cðaÞo1 such that for every

1ppoN there is an integer n0 ¼ n0ðpÞ such that for every nXn0;
QSpða; nÞ;SQpða; nÞpcðaÞ � n:

Proof. By [19] there is a constant c40 such that for every k large enough there is a

metric space Xk such that for every 1ppoN; cpðXkÞX½c log k�=p: So, for k ¼
Ieap=cmþ 1; cpðXkÞ4a: If n48k2 then we can find an integer m such that
n
k
pmp4k�1

4k�2
n
k
: By Lemma 2.1,

maxfQSpða; nÞ;SQpða; nÞg

pmaxfQSpða;mkÞ;SQpða;mkÞgp k � 1

2


 �
mp 1� 1

4k


 �
n: &

The upper bound for embedding into the class of ultrametrics, analogous to
Corollary 2.2, shows that in this case the asymptotic dependence on e is worse. In
order to prove it we need the following simple lemma. Recall that a metric space
ðX ; dÞ is called ultrametric if for every x; y; zAX ; dðx; yÞpmaxfdðx; zÞ; dðy; zÞg: In
what follows we denote by UM the class of all ultrametrics.

Lemma 2.4. Let faign
i¼1 be an increasing sequence of real numbers, equipped with the

metric induced by the real line. Then:

cUMðfa1;y; angÞX
an � a1

max1pipn�1ðaiþ1 � aiÞ
:
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In particular, cUMðf1;y; ngÞXn � 1; i.e. the least distortion embedding of f1;y; ng
into an ultrametric is an embedding into an equilateral space.

Proof. Let X be an ultrametric and f : fa1;y; ang-X be an embedding such that
for all 1pi; jpn; dX ð f ðaiÞ; f ðajÞÞXjai � aj j and there exist 1piojpn for which

dX ð f ðaiÞ; f ðajÞÞ ¼ jai � aj j: For 1pi; jpn write iBj if dX ð f ðaiÞ; f ðajÞÞoan � a1: The

fact that X is an ultrametric implies thatB is an equivalence relation. Moreover, our
assumption of f implies that 1fn: It follows that there exists 1pipn � 1 such that
aifaiþ1; i.e. dX ð f ðaiþ1Þ; f ðaiÞÞXan � a1; which implies the lower bound on the
distortion of f : &

Corollary 2.5. For every 0oeo1 there are arbitrarily large n-point metric spaces

every QS or SQ space of which,U; of size at least ð1� eÞn; satisfies cUMðUÞX 1
2e

� �
� 2:

Additionally, for every aX1 and every nX8ðIamþ 2Þ2; SQUMða; nÞ;
QSUMða; nÞp7þ4Iam

8þ4Iamn:

Proof. The proof is analogous to the proofs of Corollary 2.2 and Corollary 2.3.

In the first case we set k ¼ 1
2e

� �
and take X ¼ f1;y; kg: By Lemma 2.4, cUMðXÞX

k � 14k � 2; and the required result follows from Lemma 2.1. In the second case
we set k ¼ Iamþ 2 so that cUMðf1;y; kgÞ4a: We conclude exactly as in the proof
of Corollary 2.3. &

The following proposition bounds from above the functions QSp and SQp for

distortions smaller than 2minf1;2=pg: Our proof is a modification of the technique
used in [6].

Proposition 2.6. There is an absolute constant c40 such that for every dAð0; 1Þ there

exists n0 ¼ n0ðdÞ such that for every integer nXn0; if 1ppp2 then:

maxfQSpð2� d; nÞ;SQpð2� d; nÞgpn1�cd2 ;

and if 2opoN then:

maxfQSpð22=p � d; nÞ;SQpð22=p � d; nÞgpn1�cp2d2 :

Proof. Fix an integer m; and denote by Km;m the complete bipartite m � m graph. It

is shown in [6] that:

cpðKm;mÞX
2 m�1

m

 �1=p
; 1ppp2;

22=p m�1
m

 �1=p
; 2opoN:

8<
:

It follows in particular that for m ¼ 4
pd

j k
; cpðKm;mÞ42minf1;2=pg � d:

Fix 0oqo1; the exact value of which will be specified later. Let G ¼ ðV ;EÞ be a
random graph from Gðn; qÞ (i.e. a graph on n vertices, such that each pair of vertices
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forms an edge independently with probability q). Define a metric on V by requiring
that for u; vAV ; uav; dðu; vÞ ¼ 1 if ½u; v�AE and dðu; vÞ ¼ 2 if ½u; v�eE: Fix an integer
s: Consider a set of s disjoint subsets of V ; U ¼ fU1;y;Usg: We observe that when
U is viewed as either a QS or SQ space of ðV ; dÞ; in both cases the metrics induced by
U are actually the same (and equal minfdðx; yÞ; xAUi; yAUjg). Denote W ¼

Ui; 1pips; jUijp2n
s

� �
: Clearly jWjXs=2: Without loss of generality, W+

fU1;U2;y;UJs=2ng:
For 1piojpJs=2n denote by gij the probability that there is an edge between Ui

and Uj: Clearly gij ¼ 1� ð1� qÞjUi j�jUj j; so that:

qpgijp1� ð1� qÞð2n=sÞ2 :

Since Km;m has m2 edges, the probability that the metric induced by U (in both of the

SQ and QS cases) on a given 2m-tuple in fU1;U2;y;UJs=2ng coincides with the

metric on Km;m is therefore at least:

qm2 ½ð1� qÞð2n=sÞ2 �
2m
2

 �
�m2

X½qð1� qÞð2n=sÞ2 �m
2

:

As shown in [6], there are ð s
4m
Þ2 2m-tuples of elements of fU1;U2;y;UJs=2ng; such

that any two intersect in at most one point. Therefore, the probability that U does
not contain a subspace isometric to Km;m is at most:

f1� ½qð1� qÞð2n=sÞ2 �m
2

g
s
4mð Þ2 :

Observe that the number of partitions of V into at least s subsets is sn þ ðs þ 1Þn þ
?þ nnpðn þ 1Þn; so that the probability that all the s-point QS (or SQ) spaces of
ðV ; dÞ contain an isometric copy of Km;m; and hence cannot be embedded into cp

with distortion smaller that 2minf1;2=pg � d; is at least:

1� ðn þ 1Þnf1� ½qð1� qÞð2n=sÞ2 �m
2

g
s
4mð Þ2 :

We will therefore conclude the proof once we verify that for sEn1�cp2d2 ;

we can choose q such that this probability is positive. Write s ¼ n1�Z

and q ¼ p2d2n�2Z: Then, since mp 4
pd; there is an absolute constant C40 such

that:

½qð1� qÞð2n=sÞ2 �m
2

XCn�32Z=ðp2d2Þ:
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Hence:

1� ðn þ 1Þnf1� ½qð1� qÞð2n=sÞ2 �m
2

g
s
4mð Þ2

X1� ðn þ 1Þn½1� Cn�32Z=ðp
2d2Þ�p

2d2n2�2Z=162

X1� en logðnþ1Þ�C0p2d2n2�64Z=ðp
2d2Þ

40;

where we have assumed that C0p2d2o1 (which we are clearly allowed to do), and

chosen Z ¼ cp2d2 for a small enough constant c: &

We end this section by showing that for ao2minf1=p;1�1=pg we cannot
hope to extract quotients of metric spaces which embed in cp with distortion a
and that contain more than a bounded number of points. This is quite easy to
see, by considering the star metric (defined below). What is perhaps less
obvious is that star metrics are the only obstruction for the existence of un-
boundedly large quotients of any sufficiently large metric space, as shown in
Section 4.
Given an integer n we denote by %n the metric on f0; 1;y; ng given by

d%n
ði; 0Þ ¼ 1 for 1pipn; and d%n

ði; jÞ ¼ 2 for 1piojp2: The metrics %n are

naturally called star metrics.

Lemma 2.7. For every integer n;

cpð%nÞX
21�1=p 1� 1

n

 �1=p
; 1ppp2;

21=p 1� 1
n

 �1=p
; 2ppoN:

8<
: ð1Þ

Proof. Let f : %n-cp be an embedding such that for every x; yA%n;

d%n
ðx; yÞpjj f ðxÞ � f ðyÞjjppLd%n

ðx; yÞ:

We begin with case 1ppp2: In this case, as shown in [18], for every
x1;y; xn; y1;y; ynAcp;

Xn

i¼1

Xn

j¼1
ðjjxi � xjjjpp þ jjyi � yj jjppÞp2

Xn

i¼1

Xn

j¼1
jjxi � yjjjpp:

Applying this inequality to xi ¼ f ðiÞ and yi ¼ f ð0Þ we get that:

nðn � 1Þ2pp
Xn

i¼1

Xn

j¼1
jj f ðiÞ � f ð jÞjjppp2

Xn

i¼1

Xn

j¼1
jj f ðiÞ � f ð0Þjjppp2n2Lp:
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This proves the required result for 1ppp2: For pX2 we apply the same argument,
but use the following inequality valid for every x1;y; xn; y1;y; ynAcp (see Corollary

7 in [6]):Xn

i¼1

Xn

j¼1
ðjjxi � xjjjpp þ jjyi � yjjjppÞp2p�1

Xn

i¼1

Xn

j¼1
jjxi � yjjjpp: &

In the following corollary (and also later on in this paper), we use the convention
Qpða; nÞ ¼ 0 when ao1:

Corollary 2.8. For every integer n and every 0odo1; if 1opp2 then:

Qpð21�1=pð1� dÞ1=p; nÞp1þ 1

d
;

and if 2ppoN then:

Qpð21=pð1� dÞ1=p; nÞp1þ 1

d
:

Proof. It is straightforward to verify that any Q space of %n�1 of size k þ 1 is
isometric to %k (the new ‘‘root’’ will be the class containing the old ‘‘root’’ of the
star). The result now follows from the lower bounds in Lemma 2.7. &

3. Lower bounds for large distortions

In this section we study the following problem: Given e40; what is the least
distortion a such that every n point metric space has a Q space of size ð1� eÞn which
a embeds into cp? We prove a lower bound which matches the upper bound proved

in Section 2. The proof is based on a modification of Bourgain’s fundamental
embedding method [10]. Next, we further refine the structural information on the
quotients obtained. Namely, we construct for arbitrary n-point metric spaces
quotients of size ð1� eÞn which cðeÞ-embed into an ultrametric. In fact, in both cases
we obtain the following special kind of quotients:

Definition 3.1. Let M be an n-point metric space and ADM: Let U be the partition
of M consisting of A and the elements of M\A as singletons. The Q space of M

induced by U will be denoted M=A: By the definition of the quotient operation it is
easy to verify that for every x; yAM\A;

dM=Aðx; yÞ ¼ minfdMðx; yÞ; dMðx;AÞ þ dMðy;AÞg: ð2Þ

Additionally, for xAM\A; dM=Aðx;AÞ ¼ dMðx;AÞ:
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This simple description of the quotients we construct, together with the fact that
we can ensure they have the hierarchical structure of ultrametrics, has algorithmic
significance, which will be pursued in a future paper.
The following definition will be useful:

Definition 3.2. Let X be a metric space, xAX and mX1:We shall say x is an m-center

of X if for every yAX and every r40; if jBX ðy; rÞjXm then xABX ðy; rÞ:

Lemma 3.3. Let M be an n-point metric space and 0oeo1: Then there exists a subset

TDM such that jT jpen and T is a
2 logð2=eÞ

e -center of M=T :

Proof. Set m ¼ 2 logð2=eÞ
e : For every xAM denote by rxðmÞ the smallest r40 for which

jBMðx;rÞjXm: Choose a random subset TDM as follows: Let S be the random
subset of M obtained by choosing each point with probability e=2: Define:

T ¼ S, xAM;S-BMðx; rxðmÞÞ ¼ |f g:
Then:

EjT j ¼ EjSj þ
X
xAM

Pr½S-BMðx; rxðmÞÞ ¼ |�pen
2
þ 1� e

2

� �m

noen:

Denote U ¼ M=T : The proof will be complete once we show that:

8wAU; 8r40 jBUðw; rÞjXm ) TABUðw; rÞ:

Indeed, if w ¼ T then there is nothing to prove. Otherwise, assume for the sake of
contradiction that w ¼ x for some xAM\T with dUðw;TÞ ¼ dMðx;TÞ4r: By (2), for
every yAM\T ; dUðx; yÞ ¼ minfdMðx; yÞ; dMðx;TÞ þ dMðy;TÞg: In particular, if
dUðx; yÞpr then dMðx; yÞ ¼ dUðx; yÞ: Hence jBMðx; rÞjXm; so that by the construc-

tion of T ; T-BMðx; rÞa|; contrary to our assumption. &

The following lemma shows that metric spaces with an m-center well embed into
cp: The proof is essentially a repetition of Bourgain’s original argument [10] (we

actually follow Matoušek’s cp- variant of Bourgain’s theorem [19]).

Lemma 3.4. Fix mX1 and let X be a metric space which has an m-center. Then for

every 1ppoN;

cpðXÞp96
log m

p

� �
:

Proof. Let x be an m-center of X : Set q ¼ log m
p

l m
: Fix u; vAX ; uav: For

iAf0; 1;y; qg let ri be the smallest radius such that jBX ðu; riÞjXepi and

jBX ðv; riÞjXepi: Observe that by the definition of q; jBX ðu; rqÞj; jBX ðv; rqÞjXepq
Xm;

so that since x is an m-center of X ; xABX ðu; rqÞ-BX ðv; rqÞ: This implies that

rqX
dX ðu;vÞ

2
: Fix iAf1;y; qg: By the definition of ri we may assume without loss of
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generality that jB�
X ðu; riÞjpepi: If ADX is such that A-B�

X ðu; riÞ ¼ | and

A-BX ðv; ri�1Þa| then dX ðu;AÞ � dX ðv;AÞXri � ri�1: If A is chosen randomly such

that each point of X is picked independently with probability e�pi then the
probability of the former event is at least:

1� 1� 1

epi


 �jBX ðv;ri�1Þj
" #

� 1� 1

epi


 �jB�
X
ðu;riÞj

X 1� 1� 1

epi


 �epði�1Þ" #
� 1� 1

epi


 �epi

X
1

8ep
:

For ADX ; denote by piðAÞ the probability that a random subset of A; with points

from X picked independently with probability e�pi; equals A: The above reasoning
implies that: X

ADX

piðAÞjdX ðu;AÞ � dX ðv;AÞjpXðri � ri�1Þp

8ep
;

so that if we define aA ¼ 1
q

Pq
i¼1 piðAÞ then:X

ADX

aAjdX ðu;AÞ � dX ðv;AÞjpX 1

8qep

Xq

i¼1
ðri � ri�1Þp

X
1

8qpep

Xq

i¼1
ðri � ri�1Þ

 !p

¼ðrq � r0Þp

8qpep
X

½dX ðu; vÞ�p

16 � 2pqpep
:

Now, the embedding of X sends an element uAX to a vector indexed by the

subsets of X ; such that the coordinate corresponding to ADX is a1=p
A dX ðu;AÞ: SinceP

ADX aA ¼ 1; such a mapping is obviously non-expanding, and the above

calculation shows that the Lipschitz constant of its inverse is at most 161=p �
2eqp96q; as required. &

The following corollary is a direct consequence of Lemmas 3.3 and 3.4:

Corollary 3.5. There is an absolute constant c40 such that for every 1ppoN and

every 0oeo1; any n-point metric space M has a subset ADM such that jAjoen and:

cpðM=AÞp1þ c

p
log

2

e


 �
:

We can also apply Lemma 3.3 to obtain quotients which embed into ultrametrics.
A basic fact about ultrametrics, already put to good use in [5], is that they are
isometric to subsets of Hilbert space. Another useful trait of finite ultrametrics is that
they have a natural representation as hierarchically well-separated trees (HSTs). We
recall the following useful definition, due to Bartal [2]:
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Definition 3.6. Given kX1; a k-HST is a metric space whose elements are leaves of a
rooted tree T : To each vertex uAT ; a label DðuÞ is associated such that DðuÞ ¼ 0 if
and only if u is a leaf of T : The labels are strongly decreasing in the sense that
DðuÞpDðvÞ=k whenever u is a child of v: The distance between two leaves x; yAT is
defined as Dðlcaðx; yÞÞ; where lcaðx; yÞ denotes the least common ancestor of x and y

in T : In what follows, T is called the defining tree of the k-HST. For simplicity we
call a 1-HST a HST. It is an easy fact to verify that the notion of a finite ultrametric
coincides with that of a HST. Although k-HSTs will not appear in this section, this
proper subclass of ultrametrics will play a key role in Section 4.

Lemma 3.7. Let mX1 be an integer and let X be an n-point metric space which has an

m-center. Then X 2m-embeds into an ultrametric.

Proof. We prove by induction on n that there is a HST H with diamðHÞ ¼ diamðXÞ
and a bijection f : X-H such that for every u; vAX ; dX ðu; vÞpdHð f ðuÞ; f ðvÞÞ
p2mdX ðu; vÞ: For n ¼ 1 there is nothing to prove. Assuming n41; let x be an m-
center of X : Denote D ¼ diamðX Þ; and let a; bAX be such that dX ða; bÞ ¼ D: We
may assume without loss of generality that dX ðx; aÞXD=2: For every k ¼ 1;y;m;
define:

Ai ¼ yAX ;
Dði � 1Þ
2m

pdX ðy; aÞoDi

2m

� #
:

Now,
Sm

i¼1 Ai ¼ B�
X ða;D=2Þ ¼ fyAX ; dX ða; yÞoD=2g: Since X is finite, there is

some roD=2 such that B�
X ða;D=2Þ ¼ BX ða; rÞ: But xeBX ða; rÞ; and since x is an m-

center of X ; it follows that jBX ða; rÞjom: Since the set fAigm
i¼1 are disjoint, and

A1a|; it follows that there exists 1pipm � 1 for which Aiþ1 ¼ |:

Denote B ¼
Si

j¼1 Aj ¼ B�
X ða;Di=ð2mÞÞ: Observe that X \B has an m-center

(namely x), and B has an m-center vacuously (since jBjom). By the inductive
hypothesis there are HSTs H1;H2; defined by trees T1;T2; respectively, such that
diamðH1Þ ¼ diamðBÞ; diamðH2Þ ¼ diamðX \BÞ; and there are bijections f1 : B-H1;
f2 : X \B-H2 which are non-contracting and 2m-Lipschitz. Let r1; r2 be the roots of
H1;H2; respectively. Let T be the labelled tree T rooted at r such that DðrÞ ¼
diamðXÞ ¼ D; r1; r2 are the only children of r; and the subtrees rooted at r1; r2 are
isomorphic to H1;H2; respectively. Since Dðr1Þ ¼ diamðH1Þ ¼ diamðBÞpdiamðX Þ;
and similarly for r2; T defines a HST on its leaves H ¼ H1,H2:We define f : X-H

by f jB ¼ f1; and f jX \B ¼ f2: If uAB and vAX \B then dHð f ðuÞ; f ðvÞÞ ¼ DðrÞ ¼
DXdX ðu; vÞ: Furthermore, dX ðu; aÞoDi=2m and dX ðv; aÞXDði þ 1Þ=2m (since

Aiþ1 ¼ |). Hence:

dX ðu; vÞXdX ðv; aÞ � dX ðu; aÞ4 D
2m

¼ dHð f ðuÞ; f ðvÞÞ
2m

:

This concludes the proof. &

Lemmas 3.3 and 3.7 imply the following corollary:
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Corollary 3.8. For every 0oeo1 and every integer n; every n-point metric space M

contains a subset ADM such that jAjpen and:

cUMðM=AÞp6 logð2=eÞ
e

:

4. Lower bounds for small distortions

In this section we give lower bounds for Qpða; nÞ; QSpða; nÞ; SQpða; nÞ when ap2:

We begin by showing that for distortion a greater than 2minf1�1=p;1=pg; every n-point
metric space has a polynomially large Q space which a-embeds in cp: The following

combinatorial lemma will be used several times in this section. In what follows, given

an integer nAN we use the notation ½n� ¼ f1;y; ng: We also denote by ½n�
2

� �
the set

of all unordered pairs of distinct integers in ½n�:

Lemma 4.1. Fix n; kAN; nX2: For every function w : ½n�
2

� �
-½k� there is an integer

sX n1=k

8 log n

j k
and there are nonempty disjoint subsets A1;y;AsDf1;y; ng and

cAf1;y; kg such that for every 1piojps;

minfwðp; qÞ; pAAi; qAAjg ¼ c:

Furthermore, for every 1pi; jps; iaj; and every pAAi; there exists qAAj such that

wðp; qÞ ¼ c:

Proof. The proof is by induction on k: For k ¼ 1 there is nothing to prove. Assume

that k41 and denote m ¼ jfði; jÞ; wði; jÞ ¼ 1gj: Define s ¼ n1=k

8 log n

j k
: We first deal with

the case mX
1
2

n1þ1=k: For each iAf1;y; ng let Bi ¼ fj; wði; jÞ ¼ 1g: Denote C ¼
fi; jBijXn1=k=4g: Then:

n1þ1=k

2
pm ¼

Xn

i¼1
jBijpjCjn þ ðn � jCjÞn

1=k

4
pjCjn þ n1þ1=k

4
;

i.e. jCjXn1=k=4:
Consider a random partition of C into s subsets A1;y;As; obtained by assigning

to each iAC an integer 1pjps uniformly and independently. The partition
A1;y;As satisfies the required result with c ¼ 1 if A1;y;As are nonempty and for

every 1pups; every iAAu and every vau; Bi-Ava|: The probability that this event
does not occur is at most:

Xs

u¼1
PrðAu ¼ |Þ þ

Xs

u¼1

X
iAC

Xs

v¼1
PrðiAAu; Bi-Av ¼ |Þ

¼ s 1� 1

s


 �jCj
þ
Xs

u¼1

X
iAC

Xs

v¼1

1

s
1� 1

s


 �jBi j
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pðn þ 1Þs 1� 1

s


 �n1=k=4

p
n1þ1=k

4 log n
exp �n1=k

4

8 log n

n1=k


 �

p
1

4 log n
o1;

so that the required partition exists with positive probability.

It remains to deal with the case mo1
2 n1þ1=k: In this case consider the set D ¼

fi; jBijon1=kg: Then 1
2

n1þ1=k4mXn1=kðn � jDjÞ; so that jDj4n=2: Consider the

graph on D in which i and j are adjacent if and only if wði; jÞ ¼ 1: By the definition of

D; this graph has maximal degree less than n1=k; so that it has an independent set

IDD of size at least jDj=n1=k41
2

n1�1=k (to see this, color D with n1=k colors and take

the maximal color class). The fact that I is an independent set means that for i; jAI ;
wði; jÞ41; so that we may apply the inductive hypothesis to I and obtain the desired

partition of size at least jI j1=ðk�1Þ
8 log jI j

j k
: We may assume that n1=k

X2e; since otherwise the

required result is vacuous. In this case the lower bound on jI j implies that we are in
the range where the function x/x1=ðk�1Þ=log x is increasing, in which case:

jI j1=ðk�1Þ

8 log jI jX
1
2

n1�1=k
 �1=ðk�1Þ
8ð1� 1=kÞ log n

X
n1=k

8 log n
;

where we have used the inequality ð1� 1=kÞ21=ðk�1Þp1: &

The relevance of Lemma 4.1 to the QS problem is clear. We record below one
simple consequence of it. Recall that the aspect ratio of a finite metric space M is
defined as:

FðMÞ ¼ diamðMÞ
minxaydMðx; yÞ: ð3Þ

Lemma 4.2. Let M be an n-point metric space and 1oap2: Then there is a QS space

of M; U; which is a equivalent to an equilateral metric space and:

jUjX nðlog aÞ=½2 log FðMÞ�

8 log n

% &
:

Proof. By normalization we may assume that minxay dMðx; yÞ ¼ 1: We may also

assume that aoFðMÞ: Write F ¼ FðMÞ and set k ¼ log F
log a

j k
þ 1: For every x; yAM;

xay there is a unique integer wðx; yÞA½k� such that dMðx; yÞA½awðx;yÞ�1; awðx;yÞÞ:
Lemma 4.1 implies that there are disjoint subsets U1;y;UsCM and an integer

cA½k� such that sX nðlog aÞ=½2 log FðMÞ�

8 log n

j k
and for every 1piojps; dMðUi;UjÞA½ac�1; acÞ:

ARTICLE IN PRESS
M. Mendel, A. Naor / Advances in Mathematics 189 (2004) 451–494468



Consider the QS space U ¼ fU1;y;Usg; and observe that since ap2; any minimal
geodesic joining Ui and Uj must contain only two points (namely Ui and Uj). This

implies that U is a-equivalent to an equilateral space. &

In what follows we use the following definition:

Definition 4.3. Let M be a finite metric space. For xAM we denote by rMðxÞ the
distance of x to its closest neighbor in M:

rMðxÞ ¼ dMðx;M\fxgÞ ¼ minfdMðx; yÞ; yAM; yaxg:

For 0oaob it will be convenient to also introduce the following notation:

M½a; bÞ ¼ fxAM; aprMðxÞobg:

For the sake of simplicity, we denote yðpÞ ¼ min 1
p
; 1� 1

p

n o
:

In the following lemma we use the notation introduced in Definition 3.1 in
Section 4.

Lemma 4.4. Let M be an n-point metric space. Then there exist two subsets S;TDM

with the following properties:

(a) S-T ¼ |:
(b) jT jXn=4:
(c) For every xAT and every subset SDWDM\fxg; dMðx;WÞ ¼ rMðxÞ:
(d) For every A+M\T and every x; yAM\A:

dM=Aðx; yÞ ¼ minfdMðx; yÞ; rMðxÞ þ rMðyÞg; dM=Aðx;AÞ ¼ rMðxÞ:

Proof. Choose a random subset SDM by picking each point independently with
probability 1=2: Define:

T ¼ fxAM\S; dMðx;SÞ ¼ rMðxÞg:

To estimate the expected number of points in T ; for every xAM denote by NxDM

the set of all points yAM such that rMðxÞ ¼ dMðx;M\fxgÞ ¼ dMðx; yÞ: Then xAT if

an only if xeS and Nx-Sa|: These two events are independent and their
probability is at least 1=2: Hence EjT jXn=4: Parts (a), (b) and (c) are now evidently
true. Part (d) follows from part (c) due to (2). &

Given an integer n and 0otp2; we denote by%t
n the metric on f0; 1;y; ng given

by d%t
n
ði; 0Þ ¼ 1 for 1pipn; and d%t

n
ði; jÞ ¼ t for 1piojpn: The metrics %t

n will

also be called star metrics (recall that when t ¼ 2 we have previously used the

notation %n ¼ %2
n).
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Lemma 4.5. Let M be an n-point metric space, 0oaobo2a and b=apap2b=a: Let

S;TDM be as in Lemma 4.4. Write m ¼ jT-M½a; bÞj: Then there is some

0otp2b
aap2 and a Q space of M; U; which is a-equivalent to %t

jUj and:

jUjX mðlog aÞ=6

8 log m

% &
:

Proof. Consider the set N ¼ T-M½a; bÞ: By definition, for every x; yAN; xay;

minfdMðx; yÞ; rMðxÞ þ rMðyÞgA½a; 2bÞ:

Setting k ¼ logð2b=aÞ
log a

l m
� 1; it follows that there is a unique integer wðx; yÞA½0; k� such

that

2b

awðx;yÞþ1
pminfdMðx; yÞ; rMðxÞ þ rMðyÞgo 2b

awðx;yÞ
: ð4Þ

Denote s ¼ m1=ðkþ1Þ

8 log m

j k
; and apply Lemma 4.1 to get an integer cA½0; k� and disjoint

subsets A1;y;AsDN such that for every 1piojps:

minfwðx; yÞ; xAAi; yAAjg ¼ c:

Let U be the Q space of M whose elements are A1;y;As and A0 ¼ M\
Ss

i¼1 Ai: The

metric on U is described in the following claim:

Claim 4.6. For every 1pips; dUðAi;A0ÞA½a; bÞ: Furthermore, for every 1piojps;

2b

acþ1
pdUðAi;AjÞp

2b

ac
:

Proof. By part (c) of Lemma 4.4, for every 1pips and every xAAi; dMðx;A0Þ ¼
rMðxÞA½a; bÞ:Moreover, for every 0piojps; dMðAi;AjÞXa: Since 2a4b; this shows

that any geodesic inU connecting A0 and Ai cannot contain more than two elements,
i.e. dUðAi;A0Þ ¼ dMðAi;A0ÞA½a; bÞ: Now, take any 1piojps: By (4),

dMðAi;AjÞX 2b
acþ1 and:

dUðAi;AjÞpminfdMðAi;AjÞ; dMðAi;A0Þ þ dMðAj;A0Þg

¼ min
xAAi ;yAAj

minfdMðx; yÞ; rMðxÞ þ rMðyÞgA 2b

acþ1
;
2b

ac

) �
: ð5Þ

Consider a geodesic connecting Ai and Aj: It is either ðAi;AjÞ; ðAi;A0;AjÞ or else it
contains either a consecutive pair ðAu;AvÞ for some 1pupvps; uav; or four
consecutive pairs ðAi;A0Þ; ðA0;AuÞ; ðAu;A0Þ; ðA0;AvÞ for some 1pu; vps: In the first

three cases we get that dUðAi;AjÞX 2b
acþ1: The fourth case can be ruled out since in this
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case the length of the geodesic is at least 4a42bX2b
ac; which is a contradiction to the

upper bound in (5). &

Setting t ¼ 2b
aacþ1p2; it follows from Claim 4.6 that U is a-equivalent to %t

s : &

The relevance of the metrics %t
n to the Q problem is that when t is small enough

they isometrically embed into Lp:

Lemma 4.7. For every integer n; every 1pppN and every 0otp21�yðpÞ; %t
n

isometrically embeds into Lp:

Proof. We begin with the case 1ppp2: In this case our assumption implies that

there exists 0pdo1 such that t ¼ 21=pð1� dÞ1=p: Our claim follows from the fact that
there are w1;y;wnALp such that jjwijjp ¼ 1 and for iaj; jjwi � wjjjp ¼ t: Indeed, if
d ¼ 0 then we can take these vectors to be the first n standard unit vectors in cp: For

d40 we take w1;y;ws to be i.i.d. random variables which take the value d�1=p with
probability d and the value 0 with probability 1� d:
The case p42 is slightly different. In this case our assumption is that tp21�1=p; so

that we may find 0pdp1 such that t ¼ 21þ1=p½dð1� dÞ�1=p: We claim that there are
w1;y;wsALp such that jjwijjp ¼ 1 and for 1piojps; jjwi � wjjjp ¼ t: Indeed, we
can take w1;y;ws to be i.i.d. random variables which take the value þ1 with
probability d and the value �1 with probability 1� d: &

We will require the following definition from [4].

Definition 4.8. Fix kX1: A metric d on f1;y; ng is called k-lacunary if there is a
sequence a1Xa2X?Xan�1X0 such that aiþ1pai=k and for 1piojpn; dði; jÞ ¼ ai:

It is clear that k-lacunary spaces are ultrametrics, so that they embed isometrically
in Hilbert space.

Proposition 4.9. Let M be an n-point metric space, nX2: Fix kX1; 1obp2 and

boao2b: Then M has a Q space,U; which is a-equivalent to either a k-lacunary space

or a star metric %t
jUj for some 0otp2=b; and:

jUjX 1

32 log n

n logða=bÞ
maxflogð2kÞ; log½1=ðb� 1Þ�g

) *ðlog aÞ=8
:

Proof. Let T be as in Lemma 4.4. For every integer iAZ set:

Ci ¼ xAT ;
a
b


 �i

prMðxÞo a
b


 �iþ1
( )

¼ T-M½ða=bÞi; ða=bÞiþ1Þ:
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Define m ¼ maxflog k;log½1=ðb�1Þ�g
logða=bÞ

l m
: For every jAf0; 1;y;m � 1g define Dj ¼S

i�j modðmÞ Ci: Let q be such that jDqj ¼ maxiAf0;y;m�1gjDij: Then jDqjXjT j=mX

n=ð4mÞ þ 1:

Set c ¼ jfrAZ; Cqþrma|gj: There are r14r24?4rc such that Cqþrima|: Fix
viACqþrim: Consider the subset A ¼ M\fv1;y; vcg+M\T : By our choice of T :

dM=Aðvi;AÞ ¼ rMðviÞA
a
b


 �qþrim

;
a
b


 �qþrimþ1
" !

;

and

dM=Aðvi; vjÞ ¼ minfdMðvi; vjÞ; rMðviÞ þ rMðvjÞg:

In particular, since dMðvi; vjÞXmaxfrMðviÞ; rMðvjÞg;

dM=Aðvi; vjÞXdMðvj;SÞX a
b


 �qþrjm

:

Additionally, for ioj; since riXrj þ 1;

dM=Aðvi; vjÞp rMðviÞ þ rMðvjÞ

p
a
b


 �qþrimþ1
þ a

b


 �qþrjmþ1

p
a
b


 �qþrim a
b
1þ b

a


 �m) *

p a
a
b


 �qþrim

;

by our choice of m: Denote ai ¼ ða=bÞqþrim: Then aiþ1pðb=aÞm
aipai=k and we have

shown that M=A is a-equivalent to the k-lacunary induced by ðaiÞ on f1;y; cþ 1g:
Let r be such that jCqþrmj ¼ maxiAZjCqþimj: Then jCqþrmjXjDqj=cXn=ð4mcÞ: By

Lemma 4.5, M has a Q space V which is a equivalent to %t
jVj for some 0otp2=b;

and:

jVjX 1

16 log n

n

4mc

� �ðlog aÞ=6
:

Summarizing, we have proved the existence of the required Q space of M whose
cardinality is at least:

min
cX1

max c;
1

16 log n

n

4mc

� �ðlog aÞ=6
� #

;

from which the required result easily follows. &
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Corollary 4.10. For every 0oeo1 and 1opoN there exists a constant c ¼ cðp; eÞ40
such that for every integer n;

Qpð2yðpÞð1þ eÞ; nÞXcn½yðpÞþlogð1þeÞ�=10:

Proof. Apply Proposition 4.9 with k ¼ 1; a ¼ 2yðpÞð1þ eÞ and b ¼ 2yðpÞ: By Lemma
4.7, the resulting Q space is a-equivalent to a subset of Lp: &

Corollary 4.11. Fix 0oeo1: For every integer nX2 and every 1pppN:

SQpð1þ e; nÞX ne=12

100 log n
:

In fact, for every kX1; any n-point metric space M has a SQ space U which is 1þ e
embeddable in either a k-lacunary space or an equilateral space, and:

jUjX 1

100 log n

n

logð2kÞ


 �e=12

:

Proof. Apply Proposition 4.9 with a ¼ 1þ e and b ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
: If the resulting Q

space is a star metric then pass to a SQ space by deleting the root of the star, so that
the remaining space is equilateral. &

Before passing to the QS problem, we show that for distortion 2 we can obtain
proportionally large Q spaces of arbitrary metric spaces.

Lemma 4.12. For every integer n and every 1pppN; Qpð2; nÞXn
4
þ 1:

Proof. Let M be an n-point metric space and let T be as in Lemma 4.4. Write
jT j ¼ k and consider the Q space M=A; where A ¼ M\T : We relabel the elements of
M=A by writing T ¼ f1;y; kg; A ¼ k þ 1; where rMð1ÞXrMð2ÞyXrMðkÞ: For
every 1pipk; dM=Aði; k þ 1Þ ¼ rMðiÞ; and for every 1piojpk:

dM=Aði; jÞ ¼ minfdMði; jÞ; rMðiÞ þ rMð jÞgA½rMðiÞ; 2rMðiÞ�:

This shows that M=A is 2 equivalent to the 1-lacunary space induced on

f1;y; k þ 1g by the sequence frMðiÞgk
i¼1: &

As we have seen in the proof Corollary 4.11, the reason why the SQ problem is
‘‘easier’’ than the Q problem is that we are allowed to discard the ‘‘root’’ of Q spaces
which are approximately stars. This ‘‘easy solution’’ is not allowed when dealing
with the QS problem. The solution of the QS problem for distortions less than 2 is
therefore more complicated, and the remainder of this section is devoted to it.
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Our approach to the QS problem builds heavily on the techniques and results of
[5]. Among other things, as in [5], we will approach the problem by tackling a more
general weighted version of the QS problem, which we now introduce.

Definition 4.13. A weighted metric space ðM; dM ;wÞ is a metric space ðM; dMÞ
with non-negative weights w : M-½0;NÞ: Given ADM we denote wNðAÞ ¼
supxAA wðxÞ:
Given two classes of metric spaces M;A; and aX1 we denote by sAðM; aÞ the

largest sp1 such that any weighted metric space ðM; dM ;wÞAM has a QS space U
which is a-embeddable in a member of A and satisfies:

X
AAU

wNðAÞsX
X
xAM

wðxÞ
 !s

:

When A is the class of all k-HSTs we use the notation sk ¼ sA: The case w � 1
shows that lower bounds for skðM; aÞ also imply lower bounds for the QS problem.

Having introduced the weighted QS problem, it is natural that we require a
weighted version of Lemma 4.1:

Lemma 4.14. Fix n; kAN; nX2; a function w : ½n�
2

� �
-½k� and a weight function w :

½n�-½0;NÞ: There are disjoint subsets A1;y;AsDf1;y; ng and cAf1;y; kg such

that for every 1piojps;

minfwðp; qÞ; pAAi; qAAjg ¼ c; ð6Þ

and:

Xs

i¼1
wNðAiÞ1=½8k logðkþ1Þ�

X

Xn

r¼1
wðrÞ

 !1=½8k logðkþ1Þ�

:

Proof. We use the following fact proved in [3]: Let x ¼ fxigNi¼1 be a sequence of non-
increasing non-negative real numbers. Then there exists a sequence y ¼ fyigNi¼1 such
that yipxi for all iX1;

P
iX1 y

1=2
i Xð

P
iX1 xiÞ1=2; and either yi ¼ 0 for all i42 or

there exits w40 such that for all iX1; yiAfw; 0g: Applying this fact to the weight

function w : ½n�-½0;NÞ we get in the first case i; jA½n� such that
ffiffiffiffiffiffiffiffiffi
wðiÞ

p
þffiffiffiffiffiffiffiffiffiffi

wð jÞ
p

X
Pn

r¼1 wðrÞ
 �1=2

; and we take A1 ¼ fig; A2 ¼ fjg; c ¼ wði; jÞ: In the second

case we find w40 and AD½n�; jAjX3; such that for iAA wðiÞXw and

jAj
ffiffiffiffi
w

p
X
Pn

r¼1 wðrÞ
 �1=2

: In this case we may apply Lemma 4.1 to A and get an

integer cA½k� and disjoint subsets A1;y;AsDA satisfying (6) and such that

sXI jAj1=k

8 log jAjm: We can obviously also always ensure that sX2: Hence, using the

elementary inequality max z1=k

8 log z
; 2

n o
Xz1=½4k logðkþ1Þ�; valid for all zX3 and kX1; we
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get that:

Xs

i¼1
wNðAiÞ1=½8k logðkþ1Þ�

XðjAj
ffiffiffiffi
w

p
Þ1=½4k logðkþ1Þ�

X

Xn

r¼1
wðrÞ

 !1=½8k logðkþ1Þ�

: &

It is useful to introduce the following notation:

Definition 4.15. For FX1 denote by MðFÞ the class of all metric spaces with aspect
ratio at most F: The class Mð1Þ consists of all equilateral metric spaces, and is
denoted by EQ.

We have as a corollary the following weighted version of Lemma 4.2:

Corollary 4.16. For every FX2 and 1pap2;

sEQðMðFÞ; aÞX log a

16ðlogFÞlog 2 logF
log a


 �:

We recall below the notion of metric composition, which was used extensively
in [5].

Definition 4.17 (Metric composition [5]). Let M be a finite metric space. Suppose
that there is a collection of disjoint finite metric spaces Nx associated with the
elements x of M: Let N ¼ fNxgxAM : For bX1=2; the b-composition of M and N;

denoted by C ¼ Mb½N�; is a metric space on the disjoint union ’
S

x Nx: Distances in

C are defined as follows. Let x; yAM and uANx; vANy; then:

dCðu; vÞ ¼
dNx

ðu; vÞ; x ¼ y;

bgdMðx; yÞ; xay;

�

where g ¼ maxzAM diamðNzÞ
minxayAM dM ðx;yÞ: It is easily checked that the choice of the factor bg

guarantees that dC is indeed a metric.

Definition 4.18 (Composition closure [5]). Given a class M of finite metric
spaces, we consider compbðMÞ; its closure under Xb-compositions. Namely,

this is the smallest class C of metric spaces that contains all spaces in M;
and satisfies the following condition: Let MAM; and associate with every xAM

a metric space Nx that is isometric to a space in C: Also, let b0Xb: Then Mb0 ½N� is
also in C:

Lemma 4.19. Let M be a class of metric spaces, kX1; a41 and bXak: Then:

skðcompbðMÞ; ð1þ 1=bÞaÞXskðM; aÞ:
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Proof. Set s ¼ skðM; aÞ and take XAcompbðMÞ: We will prove that for any w :

X-½0;NÞ there exists a QS space Y of X and a k-HST H such that Y is a-
equivalent to H via a non-contractive ð1þ 1=bÞa-Lipschitz embedding, and:

X
yAY

wNðyÞsX
X
xAX

wðxÞ
 !s

:

The proof is by structural induction on the metric composition. If XAM then this
holds by the definition of s: Otherwise, let MAM and N ¼ fNzgzAMDcompbðMÞ
be such that X ¼ Mb½N�:
For every zAM define w0ðzÞ ¼

P
uANz

wðuÞ: By the definition of s there are disjoint
subsets U1;y;UsDM such that the QS space of M; U ¼ fU1;y;Usg; is a-
equivalent to a k-HST HM ; defined by the tree TM ; via a non-contractive a-Lipschitz
embedding, and:

Xs

i¼1
w0
N
ðUiÞsX

X
zAM

w0ðzÞ
 !s

¼
X
xAX

wðxÞ
 !s

:

By induction for each zAM there are disjoint subsets Uz
1 ;y;Uz

sðzÞDNz such that

the QS space of Nz; Uz ¼ fUz
1 ;y;Uz

sðzÞg is ð1þ 1=bÞa-equivalent to a k-HST, Hz;

defined by the tree Tz; via a non-contractive ð1þ 1=bÞa-Lipschitz embedding, and:

XsðzÞ
i¼1

wNðUz
i Þ

s
X

X
uANz

wðuÞ
 !s

:

For every 1pips let ziAUi be such that w0ðziÞ ¼ w0
N
ðUiÞ: Define V zi

1 ;y;V zi

sðziÞDX

by:

Vzi

1 ¼ Uzi

1 ,
[

zAUi\fzig
Nz

0
@

1
A and V zi

j ¼ Uzi

j for j ¼ 2; 3;y; sðziÞ:

Consider the QS space of X : V ¼ fVzi

j ; i ¼ 1;y; s j ¼ 1;y; sðziÞg: First of all:

X
AAV

wNðAÞs ¼
Xs

i¼1

XsðziÞ

j¼1
max
xAV

zi
j

wðxÞ
" #s

X

Xs

i¼1

XsðziÞ

j¼1
max
xAU

zi
j

wðxÞ
" #s

X

Xs

i¼1

X
uANzi

wðuÞ

0
@

1
A

s

¼
Xs

i¼1
w0ðNzi

Þs ¼
Xs

i¼1
w0
N
ðUiÞs

X

X
xAX

wðxÞ
 !s

:
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Therefore, all that remains is to show thatV is ð1þ 1=bÞa-equivalent to a k-HST via
a non-contractive, ð1þ 1=bÞa-Lipschitz embedding. For this purpose we first
describe the metric on V:

Claim 4.20. For every 1pips and every 1ppoqpsðziÞ;

dVðV zi
p ;Vzi

q Þ ¼ dUzi
ðUzi

p ;Uzi
q Þ: ð7Þ

Furthermore, for every 1piojps and every 1pppsðziÞ; 1pqpsðzjÞ:

bgdUðUi;UjÞpdVðV zi
p ;V zj

q Þpðbþ 1ÞgdUðUi;UjÞ: ð8Þ

Proof. By the definition of metric composition, if zazi; uANzi
; vANz; then

dX ðu; vÞXb diamðNzi
Þ4diamðNðziÞÞ: Since for every 1pjpsðziÞ; Nzi

-Vzi

j ¼ Uzi

j ;

this implies that dX ðV zi
p ;Vzi

q Þ ¼ dNzi
ðUzi

p ;Uzi
q Þ: In particular, it follows that

dVðVzi
p ;Vzi

q ÞpdUzi
ðUzi

p ;Uzi
q ÞpdiamðNzi

Þ: A geodesic connecting V zi
p and Vzi

q in V

cannot go out of fV zi

1 ;y;Vzi

sðziÞg; since by the above observation it would contain a

step of length greater that diamðNzi
Þ: This concludes the proof of (7).

Next take 1pi; jps and 1pppsðziÞ; 1pqpsðzjÞ and observe that

dX ðV zi
p ;V

zj
q ÞXbgdMðUi;UjÞ: Indeed, if i ¼ j there is nothing to prove, and if iaj

then this follows from the definition of metric composition and the fact that

V zi
p D

S
zAUi

Nz and V
zj
p D

S
zAUj

Nz: This observation implies the left-hand side

inequality in (8).
To prove the right-hand side inequality in (8), take a geodesic Ui ¼

W0;W1;y;Wm ¼ UjAU such that m is minimal. This implies that WraWr�1 for

all r; and:

dUðUi;UjÞ ¼
Xm

r¼1
dMðWr�1;WrÞ:

Let arAWr�1; brAWr be such that dMðar; brÞ ¼ dMðWr�1;WrÞ: By construction, for
each r there are Ar;BrAV such that ArDNar

and BrDNbr
: Consider the following

path in V connecting Vzi
p and V

zj
q : G ¼ ðVzi

p ;A1;B1;A2;B2;y;Am;Bm;V
zj
q Þ: Observe

that since V zi
p ;A1 contain points from Nzi

and A1;B1 do not contain points from a

common Nz; the definition of metric composition implies that
dX ðA1;B1ÞXbdX ðV zi

p ;A1Þ: In other words, dX ðVzi
p ;A1Þ þ dX ðA1;B1Þpð1þ 1=bÞdX

ðA1;B1Þ ¼ ðbþ 1ÞgdMðW0;W1Þ: Similarly, for rX2; dX ðBr�1;ArÞ þ dX ðAr;BrÞ
pðbþ 1ÞgdMðWr�1;WrÞ and dX ðAm;BmÞ þ dX ðBm;V

zj
q Þpðbþ 1ÞgdMðAm;BmÞ:

Hence, the length of G is at most ðbþ 1ÞgdUðUi;UjÞ; as required. &

We now construct H a k-HST that is defined by a tree T ; as follows. Start with a
tree T 0 that is isomorphic to TM and has labels DðuÞ ¼ ðbþ 1Þg � DTM

ðuÞ: At each leaf
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of the tree corresponding to a point UiAU; create a labelled subtree rooted at Ui that
is isomorphic to Tzi

with labels as in Tzi
: Denote the resulting tree by T : Since we

have a non-contractive ð1þ 1=bÞa-embedding of Yzi
in Hzi

; it follows that DðziÞ ¼
diamðHzi

Þpð1þ 1=bÞa diamðYzi
Þpð1þ 1=bÞa diamðNzi

Þ: Let p be a parent of Ui in

TM : Since we have a non-contractive a-embedding of U in HM it follows
that DTM

ðpÞXdMðA;BÞ for some A;BAU: Therefore DðpÞXðbþ 1Þg �
minfdMðx; yÞ; xayAMg: Consequently, DðpÞ=DðzÞXðbþ 1Þ=½ð1þ 1=bÞa�Xk; by
our restriction on b: Since HM and Hzi

are k-HSTs, it follows that T also defines

a k-HST.
It is left to show that V is a-equivalent to H: Recall that for each zAM there is a

non-contractive Lipschitz bijection fz : Uz-Hz that satisfies for every A;BAUz;
dUz

ðA;BÞpdHz
ð fzðAÞ; fzðBÞÞpadUz

ðA;BÞ: Define f : V-H by f ðV zi

j Þ ¼ fzi
ðUzi

j Þ:
Then, by Claim 4.20 for every 1ppoqpsðziÞ:

dVðV zi
p ;Vzi

q Þ ¼ dUzi
ðUzi

p ;Uzi
q Þ

p dHzi
ð fzi

ðUzi
p Þ; fzi

ðUzi
q ÞÞ ¼ dHð f ðV zi

p Þ; f ðV zi
q ÞÞ

p ð1þ 1=bÞadUzi
ðUzi

p ;Uzi
q Þ ¼ ð1þ 1=bÞadVðV zi

p ;Vzi
q Þ:

Additionally, we have a non-contractive Lipschitz bijection fM : U-HM

that satisfies for every Ui;UjAU; dUðUi;UjÞpdHM
ð fMðUiÞ; fMðUjÞÞpadU

ðUi;UjÞ: Hence, by Claim 4.20, for every 1piojps and every 1pppsðziÞ;
1pqpsðzjÞ:

dVðVzi
p ;V zi

q Þp ðbþ 1ÞgdUðUi;UjÞ

p ðbþ 1ÞgdHM
ð fMðUiÞ; fMðUjÞÞ ¼ dHð f ðV zi

p Þ; f ðV zj
q ÞÞ

p aðbþ 1ÞgdUðUi;UjÞpð1þ 1=bÞadVðVzi
p ;V zi

q Þ:

The proof of Lemma 4.19 is complete. &

We will also require the following two results from [5]:

Lemma 4.21 ([5]). For any a;bX1; if a metric space M is a-equivalent to a ab-HST,
then M is ð1þ 2=bÞ-equivalent to a metric space in compbðMðaÞÞ:

Theorem 4.22 ([5]). There exists a universal constant c40 such that for every 0oep1
and kX1 every n-point metric space M contains a subset NDM which ð2þ eÞ-embeds

into a k-HST and:

jNjXn
ce

logð2k=eÞ:

We are now in position to present the announced lower bound for the QS problem
for small distortion:
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Proposition 4.23. There exists a universal constant C40 such that whenever M is an

n-point metric space and 0oep1=2; there is a QS space of M; U; which is ð1þ eÞ-
equivalent to a 1=e-HST and:

jUjXn
Ce

½logð1=eÞ�2 :

In particular, for every 1pppN:

QSpð1þ e; nÞXn
Ce

½logð1=eÞ�2 :

Proof. Fix kX8 which will be specified later. By Theorem 4.22, M contains a

subset N which is 4-equivalent to a k-HST and jNjXnc=logð2kÞ: By Lemma 4.21,
N is ð1þ 8=kÞ-equivalent to a metric space in compk=4ðMð4ÞÞ: By

Corollary 4.16,

sEQ Mð4Þ; 1þ 1

k


 �
X

c0

k log k
;

for some absolute constant c0: By Lemma 4.19,

sk=8 compk=4ðMð4ÞÞ; 1þ 4

k


 �
1þ 1

k


 �
 �
Xsk=8 Mð4Þ; 1þ 1

k


 �

XsEQ Mð4Þ; 1þ 1

k


 �
X

c0

k log k
:

Since N is ð1þ 8=kÞ-equivalent to a metric space in compk=4ðMð4ÞÞ; it follows that it
has a QS space U which is ð1þ 8=kÞð1þ 4=kÞð1þ 1=kÞp1þ 20=k equivalent to a
k=8-HST, and:

jUjXjNjc
0=ðk log kÞ

Xnc00=½kðlog kÞ2�;

where c00 is an absolute constant. Taking k ¼ 20=e concludes the proof. &

5. The QS problem for the hypercube

For every integer dX1 denote Od ¼ f0; 1gd ; equipped with the Hamming ðc1Þ
metric. Our goal in this section is to prove Theorem 1.11, stated in the introduction.

As proved by Enflo in [16], for 1ppp2; cpðOdÞ ¼ d1�1=p: For 2ppoN it was shown

in [22] that there is a constant aðpÞ40 such that for all d; cpðOdÞXaðpÞ
ffiffiffi
d

p
: The

following lemma complements these lower bounds:

Lemma 5.1. For every 1ppoN there is an absolute constant c ¼ cðpÞ40 such that

for every integer dX1 and every 2�dpeo1=4; if U is a QS space of Od such that
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jUj4ð1� eÞ2d then

cpðUÞXc
logð1=eÞ

1þ log d
logð1=eÞ

� �
2
4

3
5
minf1�1

p
;
1
2g

:

Proof. By adjusting the value of c; we may assume that e�d=70oeod�50: In this case,
if we set:

r ¼ 1

16

logð1=eÞ
log d

logð1=eÞ

� �
6664

7775;
then 3pro d

16
: The ball of radius 2r in Od contains at most 3r d

2r

 �
p

3r ed
2r

 �2rpe4r logðd=rÞ points. Therefore, the cube Od contains at least 2de�4r logðd=rÞ

disjoint balls of radius r: Writing x ¼ d=logð1=eÞ we have 16x log xpx2; so that

4r logðd=rÞp1
4
logð1=eÞlog½16x log x�

log x
plog½1=ð2eÞ�: This reasoning shows that Od con-

tains at least 2e2d disjoint balls of radius r:

Let U ¼ fU1;y;Ukg be a QS space of Od with k4ð1� eÞ2d : As in the proof of

Lemma 2.1, U must contain more than ð1� 2eÞ2d singletons. Since Od contains at

least 2e2d disjoint balls of radius r; it follows that U must contain the elements of

some ball B of radius r as singletons. Let x be the center of B: Write m ¼ r
3

� �
and

consider the sub-cube C ¼ f0; 1gm � fxmþ1g �?� fxdg: Observe that CDB; and
the diameter of C is at most 2r=3: Moreover, since U contains the elements of B as
singletons, the distance in Od between an element of C and a non-singleton element
of U is at least 2r=3: This shows that when calculating the geodesic distance in U
between two points in C; it is enough to restrict ourselves to paths which pass
only through singletons. It follows that the metric induced by U on C coincides
with the Hamming metric. By the results of [16] and [22], it follows that

cpðUÞXcpðCÞXaðpÞkminf1�1=p;1=2g; for some constant aðpÞ depending only on p: This

completes the proof. &

We now turn our attention to the construction of large QS spaces of the
hypercube which well embed into cp: Our proof yields several embedding results

which may be useful in other circumstances. The case p ¼ 2 is simpler, so deal with it
first.

Given a metric space M and D40; we denote by MpD the metric space
ðM; dMpDÞ; where dMpDðx; yÞ ¼ minfdMðx; yÞ;Dg:

Lemma 5.2. For every D40; c2ðcpD
2 Þp

ffiffiffiffiffiffi
e

e�1
p

: In fact, cpD
2

ffiffiffiffiffiffi
e

e�1
p

-embeds into the

c2-sphere of radius D:

Proof. Let fgigNi¼1 i.i.d. standard Gaussian random variables. Assume that they are

defined on some probability space O: Consider the Hilbert space H ¼ L2ðOÞ where
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we think of L2ðOÞ as all the complex valued square integrable functions on O: Define
F : c2-H by:

Fðx1; x2;yÞ ¼ D exp
i

D

XN
j¼1

xjgj

 !
:

Clearly jjFðxÞjj2 ¼ D for every xAc2: Observe that for every x; yAc2;

jFðxÞ � FðyÞj2 ¼D2 exp
i

D

XN
j¼1

xjgj

 !
� exp

i

D

XN
j¼1

yjgj

 !�����
�����
2

¼D2 exp
i

D

XN
j¼1

yjgj

 !
exp

i

D

XN
j¼1

ðxj � yjÞgj

 !
� 1

" #�����
�����
2

¼D2 exp
i

D

XN
j¼1

ðxj � yjÞgj

 !
� 1

�����
�����
2

¼ 2D2 1� cos
1

D

XN
j¼1

ðxj � yjÞgj

 !" #
:

Now,
P

N

i¼1ðxj � yjÞgj has the same distribution as g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N

j¼1ðxj � yjÞ2
q

: Hence:

EjFðxÞ � FðyÞj2 ¼ 2D2 1� E cos
g1

D
jjx � yjj2

� �h i
:

Observe that by symmetry, E sin g1
D
jjx � yjj2

 �
¼ 0; so that:

E cos
g1

D
jjx � yjj2

� �
¼ E exp i

g1

D
jjx � yjj2

� �
¼ exp �jjx � yjj22

2D2

 !
;

where we use the fact that Eeiag1 ¼ e�a2=2:
Putting it all together, we have shown that:

jjFðxÞ � FðyÞjj2 ¼
ffiffiffi
2

p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�

jjx�yjj22
2D2

r
:

Using the elementary inequality:

e � 1

e
minf1; agp1� e�apminf1; ag a40;

we deduce that:ffiffiffiffiffiffiffiffiffiffiffi
e � 1

e

r
minfD; jjx � yjj2gpjjFðxÞ � FðyÞjj2pminfD; jjx � yjj2g: &
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It should be remarked here that in the proof of Lemma 5.2 we have only used the

fact that the metric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�jjx�yjj22

p
; defined on c2; embeds isometrically in Hilbert

space. This follows from a classical result of Schoenberg [23], but we have chosen to
present the above direct proof since, apart from giving a concrete embedding, this
argument generalizes to cp; 1ppp2 (Lemma 5.9 below).

Remark 5.3. Lemma 5.2 cannot be replaced by an isometric result. In fact, for every
D40;

c2ðcpD
2 ÞX2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�

ffiffiffi
7

pp
3

41:02:

To see this let T : R2-c2 be such that for every x; yAR2; minfjjx � yjj2;
DgpjjTðxÞ � TðyÞjj2pA minfjjx � yjj2;Dg: It is straightforward to verify that

when viewed as a subset of cpD
2 ; the points fð0; 0Þ; ðD; 0Þ; ðD=2;DÞ; ðD=2; 0Þg cannot

be isometrically embedded in Hilbert space. To lower-bound the distortion, define
a ¼ Tð0; 0Þ; b ¼ TðD; 0Þ; c ¼ TðD=2;DÞ; d ¼ TðD=2; 0Þ: By the parallelogram
identity:

D2A2

2
Xjja � djj22 þ jjb � djj22 ¼

jja þ b � 2djj22 þ jja � bjj22
2

X2
a þ b

2
� d

����
����

����
����
2

2

þD2

2
:

Hence:

a þ b

2
� d

����
����

����
����
2

p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p

2
:

Similarly:

2D2A2
Xjja � cjj22 þ jjb � cjj22 ¼

jja þ b � 2cjj22 þ jja � bjj22
2

X2
a þ b

2
� c

����
����

����
����
2

2

þD2

2
;

or

a þ b

2
� c

����
����

����
����
2

p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2 � 1

p

2
:

But:

Dpjjc � djj2p
a þ b

2
� d

����
����

����
����
2

þ a þ b

2
� c

����
����

����
����
2

p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p

2
þ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2 � 1

p

2
;

which simplifies to give the required result.

Remark 5.4. Let o : ½0;NÞ-½0;NÞ be a concave non-decreasing function such that
oð0Þ ¼ 0 and oðtÞ40 for t40: It is straightforward to verify that if we define for
x; yAc2; doðx; yÞ ¼ oðjjx � yjj2Þ; then do is a metric. Lemma 5.2 dealt with the case

oðtÞ ¼ minft;Dg; but we claim that in fact there is a constant C40 such that for
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every such o; c2ðc2; doÞpC: To see this observe that fðtÞ ¼ oð
ffiffi
t

p
Þ2 is still concave

and non-decreasing (assume by approximation that o is differentiable and observe

that f0ðt2Þ ¼ o0ðtÞoðtÞ=t: By our assumptions, both o0ðtÞ and oðtÞ=t are non-
negative and non-increasing, so that the required result follows). Now, it is well
known (see for example Proposition 3.2.6. in [13]) that we may therefore write

fðtÞE
P

N

i¼1 minfli; mitg for some li; mi40; where the symbol E means that the two

functions are equivalent up to absolute multiplicative constants. By Lemma 5.2, for
every i there is a function Fi : c2-c2 such that for every x; yAc2 jjFiðxÞ � FiðyÞjj2E
minf

ffiffiffiffi
li

p
;
ffiffiffiffi
mi

p jjx � yjj2g: Define F : c2-c2ðL2Þ by setting the ith coordinate of F

to be Fi: Then for every x; yAc2:

jjFðxÞ � FðyÞjj22 ¼
XN
i¼1

jjFiðxÞ � FiðyÞjj22

E
XN
i¼1

minfli; mijjx � yjj22gEfðjjx � yjj22Þ ¼ oðjjx � yjj2Þ
2:

Lemma 5.5. Let X be a metric space such that minxay dX ðx; yÞX1 and the metric

space ðX ;
ffiffiffiffiffiffi
dX

p
Þ is isometric to a subset of c2: Then for every DX1; c2ðXpDÞp

ffiffiffiffiffiffi
eD

e�1

q
:

Moreover, exists a 1-Lipschitz embedding f : XpD-c2 such that distð f Þp
ffiffiffiffiffiffi
eD

e�1

q
and

for every xAX ; jj f ðxÞjj2 ¼
ffiffiffiffi
D

p
:

Proof. All we have to do is to observe that for every x; yAX ;

minf
ffiffiffiffi
D

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX ðx; yÞ

p
gpminfD; dX ðx; yÞgp

ffiffiffiffi
D

p
minf

ffiffiffiffi
D

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX ðx; yÞ

p
g;

and then apply Lemma 5.2. &

Corollary 5.6. For every integer dX1; c2ðOpD
d Þp

ffiffiffiffiffiffi
eD

e�1

q
; where the embedding is

1-Lipschitz and takes values in the c2-sphere of radius
ffiffiffiffi
D

p
:

Proof. This follows from Lemma 5.5 and the classical fact [24] that c1 equipped with

the metric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjx � yjj1

p
is isometric to a subset of c2: &

Lemma 5.7. There is a universal constant C40 such that for every integer dX1

and every 2�dpeo1=4 there exists a QS space of Od ; U; such that jUjXð1� eÞ2d

and:

c2ðUÞpC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=eÞ

1þlog d
logð1=eÞ

� �s
:
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Proof. By adjusting the constant C; we may assume that eXe�d=400: Define r to be
the smallest even integer greater than:

2
logð1=eÞ

log d
logð1=eÞ

� �
2
666

3
777:

We first construct a subset ADOd via the following iterative procedure: Pick any

x1AOd : Having chosen x1;y; xk�1; as long as Od\
Sk�1

j¼1 BOd
ðxj; 2rÞa|; pick any

xiAOd\
Sk�1

j¼1 BOd
ðxj ; 2rÞ: When this procedure terminates we set A ¼ fx1;x2;yg:

Define SDOd by:

S ¼ Od

[
xAA

BOd
ðx; r=2Þ\fxg

 !
:

-

The QS space of Od which we consider is U ¼ S=A:
We first bound the cardinality of U from below. Observe that by the construction,

the balls fBOd
ðx; rÞgxAA are disjoint, so that jAj d

r

 �
p2d : Hence:

jUjX2d � jAjr
d

r=2


 �
þ 14 1�

r d
r=2

� �
d
r

 �
0
@

1
A2d

X 1�
r ed

r=2

� �r=2

d
r

 �r

0
B@

1
CA2d ¼ 1� re�

r
2
log

d
2er

 �
 �
2d :

By our choice of r; and the restriction eXe�d=400; it is straightforward to verify that

re�
r
2
log

d
2er

 �
pe: We have shown that jUjXð1� eÞ2d :

By our construction, for every xAS\A; r=2pdOd
ðx;AÞp2r: This implies that for

every x; yAU\fAg;

minfdOd
ðx; yÞ; rgpdUðx; yÞpminfdOd

ðx; yÞ; 4rg:

By Corollary 5.6 there is an embedding f : U\fAg-c2 such that for every xAU\fAg;
jj f ðxÞjj2 ¼

ffiffi
r

p
and for every x; yAU\fAg:

ffiffiffiffiffiffiffiffiffiffiffi
e � 1

16er

r
� dUðx; yÞpjj f ðxÞ � f ðyÞjj2pdUðx; yÞ:

Since for every xAU\fAg; r=2pdUðx;AÞp2r; we may extend f to U by setting

f ðAÞ ¼ 0: As f takes values in the c2-sphere of radius
ffiffi
r

p
; distð f Þ ¼ Oð

ffiffi
r

p
Þ; as

required. &
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Since c2 embeds isometrically into Lp; pX1; Lemma 5.7 implies that Lemma 5.1 is

optimal (up to the dependence of the constant on p) for pX2: The case 1ppp2
seems to be more delicate, but we can still match the bound in Lemma 5.1 up to
logarithmic factors.
Recall that for 1ppp2 there exists a symmetric p-stable random variable g: This

means that there exists a constant c ¼ cðpÞ40 such that for every tAR; Eeitg ¼ e�cjtjp :
In what follows we fix 1ppo2 and ignore the dependence of all the constants on p:
Moreover, given two quantities A;B the notation AEpB means that there are

constants C1;C2; which may depend only on p; such that C1ApBpC2A: Denote the

density of g by j: It is well known (see [25]) that jðtÞEp
1

1þtpþ1:

Lemma 5.8. Fix 1ppo2 and let g be a symmetric p-stable random variable. Then for

every a40;

E½1� cosðagÞ�p=2Ep min ap log
1

a
þ 1


 �
; 1

� #
:

Proof. Since for 0pxp1; 1� cos xEx2; we have that:

E½1� cosðagÞ�p=2

¼ 2

Z
N

0

1� cosðauÞ½ �p=2jðuÞdu

Ep

Z 1=a

0

apup

1þ upþ1 du þ
Z

N

1=a

1

1þ upþ1 duEpmin aplog
1

a
þ 1


 �
; 1

� #
: &

The following lemma is analogous to Lemma 5.2:

Lemma 5.9. For every 1ppo2 and every D40 there exists a mapping F : cp-Lp

such that for every xAcp; jjFðxÞjjp ¼ D and for every x; yAcp;

jjFðxÞ � FðyÞjjpEpmin jjx � yjjp log
D

jjx � yjjp
þ 1

 !" #1=p

;D

8<
:

9=
;:

Proof. Let fgigNi¼1 i.i.d. symmetric p-stable random variables. Assume that they are

defined on some probability space O: Consider the space LpðOÞ; where we think of

LpðOÞ as all the complex valued p-integrable functions on O: Define F : cp-H by:

Fðx1; x2;yÞ ¼ D exp
i

D

XN
j¼1

xjgj

 !
:
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Clearly jjFðxÞjjp ¼ D for every xAcp: As we have seen in the proof of Lemma 5.2, for

x; yAcp:

jFðxÞ � FðyÞjp ¼ 2pDp 1� cos
1

D

XN
j¼1

ðxj � yjÞgj

 !" #p=2

:

Now,
P

N

i¼1 ðxj � yjÞgj has the same distribution as g1jjx � yjjp: Hence by

Lemma 5.8:

EjFðxÞ � FðyÞjp ¼ 2pDpE 1� cos
g1

D
jjx � yjjp

� �h ip=2

Ep Dp min
jjx � yjjpp

Dp
log

D

jjx � yjjp
þ 1

 !
; 1

( )
: &

Remark 5.10. The above argument also shows that for every 1pqopp2 there is a

constant C ¼ Cðp; qÞ such that for every D40; cpD
p is C-equivalent to a subset of Lq

(since in this case there is no logarithmic term in Lemma 5.8). For every 1pqop; the

metric space ðLq; jjx � yjjq=p
q Þ is isometric to a subset of Lp: When pp2 this follows

from general results of Bretagnolle et al. [12] (see also the book [24]). It is of interest,
however, to give a concrete formula for this embedding, which works for every
1pqopoN: To this end observe that by a change of variable it follows that for

every 0oao2b there exists a constant ca;b40 such that for every xAR; jxja ¼

ca;b
R
N

�N

ð1�cos txÞb

jtjaþ1 dt: Define T : LqðRÞ-LpðR� RÞ by Tð f Þðs; tÞ ¼ 1�eitf ðsÞ

jtjðqþ1Þ=p: For every

f ; gALpðRÞ we have:

jjTð f Þ � TðgÞjjpp ¼
Z

N

�N

Z
N

�N

j1� eit½f ðsÞ�gðsÞ�jp

jtjqþ1
dt ds

¼ 2p=2

Z
N

�N

Z
N

�N

f1� cos½tð f ðsÞ � gðsÞÞ�gp=2

jtjqþ1
dt ds

¼ 2p=2cqþ1;p=2jj f � gjjqq;

so that T is the required isometry.
A corollary of these observations is that for every e40 there is a constant CðeÞ40

such that for every D40 the metric minfjjx � yjj1�e
p ;Dg on cp; 1ppp2; is CðeÞ-

equivalent to a subset of Lp: We do not know whether the exponent 1� e can be

removed in this statement.
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Remark 5.11. The same reasoning as in Remark 5.4 shows that for every o :
½0;NÞ-½0;NÞ which is concave, non-decreasing, oð0Þ ¼ 0 and oðtÞ40 for t40; the
metric oðjjx � yjjpÞ on cp is cðp; qÞ-equivalent to a subset of Lq for every 1pqopp2:

The only difference in the proof is that one should apply the same argument to

show that fðtÞ ¼ oðt1=qÞq shares the same properties as o: Similarly, the metric

oðjjx � yjj1�e
p Þ is CðeÞ-equivalent to a subset of Lp:

Remark 5.12. Remark 5.10 is false for p42: In fact, for every 0ogp1; and D40;

the metric minfjjx � yjjgp;Dg is not Lipschitz equivalent to a subset of Lq for any

1pqoN: To see this observe that if we assume the contrary then this metric
would be Lipschitz equivalent to a bounded subset of Lq: An application of

Mazur’s map (see [9]) shows that this implies that Lp is uniformly homeomorphic

to a subset of L2: Since Lp; p42 has type 2, a theorem of Aharoni et al. [1]

implies that Lp would be linearly isomorphic to a subspace of L1: This is a

contradiction since L1 has cotype 2 while Lp; p42 has cotype p: Actually, by the

results presented in Chapter 9 of [9], this argument implies that the above metric is
not Lipschitz equivalent to a subset of any separable Banach lattice with finite
cotype.

Corollary 5.13. Fix 1ppo2: Let X be a finite subset of L1 such that for every x; yAX ;
jjx � yjj1X1: Then for every DX2 there is an embedding c : X-Lp such that for every

xAX ; jjcðxÞjjp ¼ D1=p and for every x; yAX ;

C1ðpÞ
D1�1=p

minfjjx � yjj1;DgpjjcðxÞ � cðyÞjjppC2ðpÞðlog DÞ1=p minfjjx � yjj1;Dg;

where C1ðpÞ;C2ðpÞ are constants which depend only on p:

Proof. We begin by noting that as in Remark 5.10, there is a mapping G : L1-Lp

such that for every x; yAL1; jjGðxÞ � GðyÞjjp ¼ jjx � yjj1=p
1 : Since X is finite,

there is an isometric embedding T : GðX Þ-cp (see [14]). Let F be as in Lemma

5.9, with D replaced by D1=p; and define c ¼ F3T3G: Now, jjcðxÞjjp ¼ D1=p for every

xAX and:

jjcðxÞ � cðyÞjjpEp min jjx � yjj1=p
1 � log

D

jjx � yjj1
þ 1


 �) *1=p

;D1=p

( )

pCðpÞðlog DÞ1=p minfjjx � yjj1=p
1 ;D1=pg

pCðpÞðlog DÞ1=p minfjjx � yjj1;Dg;

ARTICLE IN PRESS
M. Mendel, A. Naor / Advances in Mathematics 189 (2004) 451–494 487



where we have used the fact that jjx � yjj1X1: Similarly, we have the inequality:

jjcðxÞ � cðyÞjjpX
C0ðpÞ
D1�1=p

minfjjx � yjj1;Dg:

The proof is complete. &

A proof identical to the proof of Lemma 5.7 now gives a bound which nearly
matches the bound in Lemma 5.1:

Lemma 5.14. For every 1ppo2 there is a constant CðpÞ40 such that for every

integer dX1 and every 2�dpeo1=4 there exists a QS space of Od ; U; such that

jUjXð1� eÞ2d and:

cpðUÞpCðpÞ logð1=eÞ
1þ logð d

logð1=eÞÞ

" #1�1=p

log
logð1=eÞ

1þ log d
logð1=eÞ

� �
0
@

1
A

2
4

3
5
1=p

:

6. Lipschitz quotients

In this section we prove Theorem 1.13. We shall use the notation introduced in the
introduction.
Recall that for a metric space X and two subsets U ;VCX ; the Hausdorff distance

between U and V is defined as:

HX ðU ;VÞ ¼ supfmaxfdX ðu;VÞ; dX ðv;UÞg; uAU ; vAVg:

The following straightforward lemma is the way we will use the Lipschitz and co-
Lipschitz conditions:

Lemma 6.1. Let X ; Y be metric spaces and A40: For every surjection f : X-Y the

following assertions hold:

1. Lipð f ÞpA if and only if for every y; zAY ; dY ðy; zÞpAdX ð f �1ðyÞ; f �1ðzÞÞ:
2. coLipð f ÞpA if and only if for every y; zAY ; HX ð f �1ðyÞ; f �1ðzÞÞpAdY ðy; zÞ:

Remark 6.2. A simple corollary of Lemma 6.1, which will be useful later, is

that if f : X-Y is a Lipschitz quotient and we set U ¼ f �1ðfyAY ; j f �1ðyÞj ¼ 1gÞ
then f jU is a Lipschitz equivalence between U and f ðUÞ and distð f jUÞ
pLipð f Þ coLipð f Þ:
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In the following lemma we prove two recursive inequalities which will be used to

give upper bounds for QSLip: In this lemma we use the notation RMð�; �Þ which was
introduced in the introduction.

Lemma 6.3. Let M be a class of metric spaces. Then for every two integers k;mX1
and every aX1;

1. QSLip
M ða; kmÞpQSLip

M ða; kÞQSLip
M ða;mÞ:

2. QSLip
M ða; kmÞpk þ RMða; kÞQSLip

M ða;mÞ:

Proof. We will start by proving the first assertion. Denote a ¼ QSLip
M ða; kÞ; b ¼

QSLip
M ða;mÞ: Let X be a k-point metric space such that the largest a-Lipschitz

quotient of a subspace of X which is in a member of M has a points. Similarly, let Y

be an m-point metric space such that the largest a-Lipschitz quotient of a subspace of
Y which is in a member of M has b points. We think of X as a metric dX on
½k� ¼ f1;y; kg: Fix any:

m4aFðY Þ ¼ a diamðYÞ
minyaz dY ðy; zÞ and yXamk diamðYÞ

min1piojpk dX ði; jÞ:

Set Z ¼ Y � ½k� and define:

dZððy; iÞ; ðz; jÞÞ ¼ midY ðy; zÞ; i ¼ j;

ydX ði; jÞ; iaj:

�

This definition is clearly a particular case of metric composition, and the choice of
parameters ensures that dZ is indeed a metric.
Assume that there is SDZ; MAM and NDM such that there is an a-Lipschitz

quotient f : S-N: Our goal is to show that jNjpab:
Observe that by the definition of the metric on Z we have that for every

iA½k� and p; qAN; paq; if f �1ðpÞ-ðY � figÞ; f �1ðqÞ-ðY � figÞa| then

dZð f �1ðpÞ; f �1ðqÞÞpmi diamðYÞpmk diamðYÞ: On the other hand, if in addition

for some jA½k�; jai; f �1ðpÞ-ðY � fjgÞa| but f �1ðqÞ-ðY � fjgÞ ¼ | then

HZð f �1ðpÞ; f �1ðqÞÞXymin1piojpk dX ði; jÞ4amk diamðYÞ: This is a contradiction

since Lemma 6.1 implies in particular that

HZð f �1ðpÞ; f �1ðqÞÞ
dZð f �1ðpÞ; f �1ðqÞÞ pa: ð9Þ

Hence f �1ðqÞ-ðY � fjgÞa|: Without loss of generality assume that j4i: Then:

HZð f �1ðpÞ; f �1ðqÞÞXmj min
yaz

dY ðy; zÞ4mj�1a diamðYÞXmia diamðY Þ;

and we arrive once more to a contradiction with (9).
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Summarizing, we have shown that for every iA½k� and pAN; if f �1ðpÞ-ðY �
figÞa| then either f �1ðpÞDY � fig or f �1ðpÞ+f �1ðNÞ-ðY � figÞ: In particular, if

we write for p; qAN; pBq if there is iA½k� such that f �1ðpÞ-ðY � figÞa|
and f �1ðqÞ-ðY � figÞa|: Then B is an equivalence relation. Let C1;y;Cs

be the equivalence classes of B: Take any pjACj and let AjC½k� be the set of

indices iA½k� such that there exists yAY for which ðy; iÞAf �1ðpjÞ: By the

definition of B; A1;y;As are disjoint. Let A ¼
Ss

j¼1 Aj and define

g : A-fp1;y; psg by: if iAAj then gðiÞ ¼ pj: By the definition of dZ; if jac
and hAAj ; iAAc then for every y; zAY ; dX ðh; iÞ ¼ dZððy; hÞ; ðz; iÞÞ=y:
Hence dAðg�1ðpjÞ; g�1ðpcÞÞ ¼ dZð f �1ðpjÞ; f �1ðpcÞÞ=y; HAðg�1ðpjÞ; g�1ðpcÞÞ ¼
HZð f �1ðpjÞ; f �1ðpcÞÞ=y: By Lemma 6.1, g is an a-Lipschitz quotient from the

subspace AC½k� onto fp1;y; psg: It follows that spa:
We will conclude once we show that for every j; jCjjpb: If jCjj ¼ 1 then there is

nothing to prove. Otherwise there is iA½k� such that for every pACj; f �1ðpÞCY �
fig: Lemma 6.1 implies that f jf �1ðCjÞ is an a-Lipschitz quotient of a subspace of

Y � fig; and since the metric on Y � fig is a dilation of dY ; it follows from the
definition of b that jCjjpb:

To prove the second assertion in Lemma 6.3 we repeat the same construction, but
now with Y as before, and X a k-point metric space whose largest subspace which
a-embeds into a member of M has c ¼ RMða; kÞ points. The rest of the notation
will be as above.
Consider the equivalence classes C1;y;CsDN; and enumerate them in

such a way that jC1j ¼ ? ¼ jCtj ¼ 1 and jCtþ1j;y; jCsjX2: As we have seen

above, for 1pjpt; since Cj ¼ fpjg; there is a subset IjC½k� such that f �1ðpjÞ ¼
f �1ðNÞ-ðY � IjÞ: Since I1;y; It are disjoint, tpk: Now, by the construction,

for tojps; jg�1ðpjÞj ¼ 1; so that by Remark 6.2 we get that

fg�1ðptþ1Þ;y; g�1ðpsÞgD½k� a-embeds into N: By the definition of c; it follows that
s � tpc: Finally, we have also shown that for every j jCjjpb; so that jNjpt þ ðs �
tÞbpk þ cb; as required. &

Corollary 6.4. Let M be a class of finite metric spaces and aX1: Assume that there is a

finite metric space M such that cMðMÞ4a: Then there is 0pdo1 such that for

infinitely many n’s, QSLip
M ða; nÞpnd:

Proof. Our assumption implies that there is 0pdo1 such that

QSLip
M ða; jMjÞpjMj � 1pjMjd: An iteration of Lemma 6.3 now implies that for

every iX1; QSLip
M ða; jMjiÞpjMjdi: &

Remark 6.5. For every 1ppoN and a42 there is an integer n0 ¼ n0ðp; aÞ and
constants c ¼ cðp; aÞ; C ¼ Cðp; aÞ such that 0ocpCo1 and for every nXn0;

ncpQSLip
p ða; nÞpnC : This follows from Corollary 6.4 and the trivial inequality

QSLip
p ða; nÞXRpða; nÞ; together with the results of [5].
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Corollary 6.6. For every 1pao2 and 1ppp2 there is an integer n0 ¼ n0ðp; aÞ and a

constant C ¼ Cðp; aÞ such that for every nXn0:

QSLip
p ða; nÞpeC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog nÞðlog log nÞ

p
:

For p42 the same conclusion holds for every 1pao22=p:

Proof. As shown in [6] for every 1ppoN and 1pao2minf1;2=pg there is a constant
c ¼ cðp; aÞ such that for every k; Rpða; kÞpc log k: It follows from Lemma 6.3 that

for every cAN;

QSLip
p ða; kcÞpk þ ðc log kÞQSLip

p ða; kc�1Þ:

Since QSLip
p ða; kÞpk; by induction we deduce that:

QSLip
p ða; kcÞp

Xc�1
j¼0

kðc log kÞjpkðc log kÞc:

Choosing k of the order of e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog nÞðlog log nÞ

p
and c of the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log n

log log n

q
gives the

required result. &

We now prove a nearly matching lower bound for QSpða; nÞ: In order to do

so we first observe that Lemma 4.2 holds also in the context of Lipschitz
quotients.

Lemma 6.7. Let M be an n-point metric space and 1oap2: Then there is a subspace

of M which has an a Lipschitz quotient in an equilateral metric space and:

jUjX nðlog aÞ=½2 log FðMÞ�

8 log n

% &
:

Proof. The proof is exactly the same as the proof of Lemma 4.2. Using the notation
of this proof, the only difference is that we observe that Lemma 4.1 actually ensures

that for every iaj; dMðUi;UjÞ;HMðUi;UjÞA½ac�1; acÞ; so that the quotient obtained

is actually a Lipschitz quotient due to Lemma 6.1. &

We also require the following fact, which is essentially proved in [4]
(see Proposition 16 there). Since the result of [4] was stated for parameters
other than what we need below, we will sketch the proof for the sake of
completeness.
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Lemma 6.8. Fix 0oeo1 and let M be an n-point metric space. Then there is a subset

NDM which is either ð1þ eÞ-equivalent to an ultrametric, or 3-equivalent to an

equilateral space, and:

jNjXexp c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n

logð2=eÞ

s !
:

Proof. Set k ¼ 2ð1=eþ 1Þ: By Theorem 4.22 there is a universal constant c40 such
that M contains a subset M 0DM which is 3-equivalent to a ð3kÞ-HST, X ; via a non-

contractive bijection f : M 0-X ; and jM 0jXnc=logð2=eÞ: Let T be the tree defining X :

Set h ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c log n
logð2=eÞ

q� �
: If T has a vertex u with out-degree exceeding h then by

choosing one leaf from each subtree emerging from u we obtain a h-point subset of
M 0 which is 3-equivalent to an ultrametric. We may therefore assume that all the
vertices in T have out-degree at most h: In this case by Lemma 14 in [4] T contains a

binary subtree S with at least jM 0j1=log2h
Xexp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c log n
logð2=eÞ

q� �
leaves. Now, denote by

Dð�Þ the original labels on S (inherited from T). We define new labels D0ð�Þ on S as
follows. For each vertex uAS; denote by T1 and T2 the subtrees rooted at u’s

children. We define D0ðuÞ ¼ maxfdMðx; yÞ; xAf �1ðT1Þ; yAf �1ðT2Þg: As shown in
the proof of Case 2 in Proposition 16 of [4], this relabelling results in a binary k-HST

which is k=ðk � 2Þ ¼ 1þ e equivalent to N ¼ f �1ðSÞ: &

Lemma 6.9. For every 1pao2 there is a constant c ¼ cðaÞ40 such that for every

integer n and every 1pao2;

QSLip
2 ða; nÞXec

ffiffiffiffiffiffiffiffi
log n

p
:

Proof. By Lemma 6.8 for every e40 there is a constant c ¼ cðeÞ such that every n

point metric space contains a subset of size at least ec
ffiffiffiffiffiffiffiffi
log n

p
which is either ð1þ eÞ-

equivalent to an ultrametric, in which case we are already done, or 3-equivalent to an
equilateral space. In the latter case the subspace obtained has aspect ratio at most 3,
so that the required result follows from Lemma 6.7. &
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