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FAT POLYGONAL PARTITIONS WITH APPLICATIONS
TO VISUALIZATION AND EMBEDDINGS∗

Mark de Berg,†Krzysztof Onak,‡ and Anastasios Sidiropoulos§

Abstract. Let T be a rooted and weighted tree, where the weight of any node is equal
to the sum of the weights of its children. The popular Treemap algorithm visualizes such a
tree as a hierarchical partition of a square into rectangles, where the area of the rectangle
corresponding to any node in T is equal to the weight of that node. The aspect ratio of
the rectangles in such a rectangular partition necessarily depends on the weights and can
become arbitrarily high.

We introduce a new hierarchical partition scheme, called a polygonal partition, which
uses convex polygons rather than just rectangles. We present two methods for constructing
polygonal partitions, both having guarantees on the worst-case aspect ratio of the con-
structed polygons; in particular, both methods guarantee a bound on the aspect ratio that
is independent of the weights of the nodes.

We also consider rectangular partitions with slack, where the areas of the rectangles
may differ slightly from the weights of the corresponding nodes. We show that this makes
it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-
rectangular partitions in Rd. We use these partitions with slack for embedding ultrametrics
into d-dimensional Euclidean space: we give a polylog(∆)-approximation algorithm for
embedding n-point ultrametrics into Rd with minimum distortion, where ∆ denotes the
spread of the metric, i.e., the ratio between the largest and the smallest distance between
two points. The previously best-known approximation ratio for this problem was polynomial
in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics
into a space of constant dimension that achieves polylogarithmic approximation ratio.

1 Introduction

Hierarchical structures are commonplace in many areas. It is not surprising, therefore,
that the visualization of hierarchical structures—in other words, of rooted trees—is one of
the most widely studied problems in information visualization and graph drawing. In the
weighted variant of the problem, we are given a rooted tree in which each leaf has a positive

∗This research was supported in part by NSF grants 0514771, 0728645, and 0732334. A preliminary
version of this paper appeared in the Proceedings of the 24th ACM Symposium on Computational Geome-
try [18].
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weight and the weight of each internal node is the sum of the weights of the leaves in its
subtree. One of the most successful practical algorithms for visualizing such weighted trees
is the so-called Treemap algorithm. Treemap visualizes the given tree by constructing a
hierarchical rectangular partition of a square, as illustrated in Figure 1(a). More precisely,
Treemap assigns a rectangle to each node in the tree such that

• the area of the rectangle is equal to the weight of the node;

• the rectangles of the children of each internal node ν form a partition of the rectangle
of ν.

The Treemap algorithm was proposed by Shneiderman [21] and its first efficient implemen-
tation was given by Johnson and Shneiderman [14]. Treemap has been used to visualize a
wide range of hierarchical data, including stock portfolios [15], news items [26], blogs [25],
business data [24], tennis matches [13], photo collections [6], and file-system usage [21, 27].
Shneiderman maintains a webpage [20] that describes the history of his invention and gives
an overview of applications and proposed extensions to his original idea. Below we only
discuss the results that are directly related to our work.

In general, there are many different rectangular partitions corresponding to a given
tree. To obtain an effective visualization it is desirable that the aspect ratio of the rectangles
be kept as small as possible; this way the individual rectangles are easier to distinguish and
the areas of the rectangles are easier to estimate. Various heuristics have been proposed
for minimizing the aspect ratio of the rectangles in the partition [8, 22, 23]. Unfortunately,
the aspect ratio can become arbitrarily bad if the weights have unfavorable values. For
example, consider a tree with a root and two leaves, where the first leaf has weight 1 and
the second has weight W . Then the optimal aspect ratio of any rectangular partition is
unbounded as W →∞. Hence, in order to obtain guarantees on the aspect ratio we cannot
restrict ourselves to rectangles. This lead Balzer et al. [2, 1] to introduce Voronoi treemaps,
which use more general regions in the partition. However, their approach is heuristic and it
does not come with any guarantees on the aspect ratio of the produced regions. Thus the
following natural question is still open:

Suppose we are allowed to use arbitrary convex polygons in the partition, rather
than just rectangles. Is it then always possible to obtain a partition that achieves
aspect ratio independent of the weights of the nodes in the input tree? (The
aspect ratio of a convex region A is defined as diam(A)2/ area(A), where diam(A)
is its diameter and area(A) is its area.1)

Our results on hierarchical partitions. Our main result is an affirmative answer to the
question above: we present two algorithms that, given an n-node tree of height h, construct

1Another common definition of the aspect ratio of a convex region A is the ratio between the radius R of
the smallest circumscribing circle and the radius r of the largest inscribed circle. The aspect ratio defined in
this manner is sometimes referred to as the fatness of the region. There are several other definitions of fatness,
all of which are equivalent up to constant factors for convex planar objects [11]. In particular, in our case it is
easy to show that diam(A) = Θ(R) and area(A) = Θ(R·r), which implies that diam(A)2/ area(A) = Θ(R/r).
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(a) A rectangular partition (b) A greedy polygonal partition

(c) An angular polygonal partition

Figure 1: Sample polygonal partitions

a partition into convex polygons with aspect ratio O(poly(h, log n)). Our algorithms, which
are described in Section 2, are very simple. They first convert the input tree into a binary
tree, and then recursively partition the initial square region using straight-line cuts. The
methods differ in the way in which the orientation of the cutting line is chosen at each step.
The greedy method minimizes the maximum aspect ratio of two subpolygons resulting from
the cut, while the angular method maximizes the angle that the splitting line makes with
any of the edges of the polygon being cut. Figures 1(b) and 1(c) depict partitions computed
by our algorithms.

The main challenge lies in the analysis of the aspect ratio achieved by the algorithms,
which is given in Sections 3 and 4. We prove that the angular method produces a partition
with aspect ratio O(h+ log n). For the greedy method we can only prove an aspect ratio of
O((h+ log n)8). Since the greedy method is the most natural one, we believe this result is
still interesting. Moreover, in the (limited) experiments we have done—see Section 2—the
greedy method always outperforms the angular method. Besides these two algorithms, we
also prove a lower bound: we show in Section 5 that for certain trees and weights, any
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partition into convex polygons must have polygons with aspect ratio Ω(h).2

After having studied the problem of constructing polygonal partitions, we return to
rectangular partitions. As observed, it is in general not possible to obtain any guarantees
on the aspect ratio of the rectangles in the partition. If, however, we are willing to let
the area of a rectangle deviate slightly from the weight of its corresponding node then we
can obtain bounded aspect ratio, as we show in Section 6. More precisely, we obtain the
following partition. Let ε ∈ (0, 1/3). We allow that the area A of the rectangle assigned to
every non-root node v is shrunken by a factor of at most 1− ε compared to its share of the
area A′ of the rectangle of the parent v′. That is, we only require that

(1− ε) · A
′

wv′
≤ A

wv
≤ A′

wv′
,

where wv and wv′ are the weights of v and v′, respectively. Then we show that the aspect
ratio of every rectangle can be bounded by 1/ε. We call this kind of partition a rectangular
partition with slack.

Application to embedding ultrametrics. The work of Bădoiu et al. [9] establishes a lower
bound for the distortion of the best embedding of an ultrametric into Rd. Our hierarchical
partitions with low aspect ratio can be used for efficiently constructing an embedding that
closely matches the lower bound of Bădoiu et al. More details, including a brief history of
relevant embedding results, follow.

Let us first recall a few standard definitions. A metric space M = (X,D) is a set X
together with a symmetric distance function D : X × X → R≥0 that satisfies the triangle
inequality and D(x1, x2) = 0 if and only if x1 = x2. An embedding of a metric space
M = (X,D) into a host metric space M ′ = (X ′, D′) is an injective mapping f : X → X ′.
The distortion of an embedding f is defined as

max
x,y∈X

D′(f(x), f(y))

D(x, y)
· max
x,y∈X

D(x, y)

D′(f(x), f(y))
.

Over the past few decades, low-distortion embeddings of metric spaces into various host
spaces have been the subject of extensive study [12]. Embeddings into Euclidean space
are of particular importance in applications, and have received a lot of attention. Bour-
gain’s theorem [7] asserts that any n-point metric space admits an embedding into high-
dimensional Euclidean space with distortion O(log n). Matoušek [16] has shown that the
minimum distortion for embedding into d-dimensional Euclidean space is nΘ(1/d) · logO(1) n.
Since the distortion for embedding into constant-dimensional Euclidean space can be poly-
nomially large in the worst case, it is natural to ask whether we can approximate the best
possible distortion for a given input metric. Matoušek and Sidiropoulos [17] have shown
that minimum-distortion embeddings of general metrics into Rd (with d ≥ 2) are hard to
approximate to within a factor of roughly n1/(22d−10), unless p=np [17]. In other words, it is
unlikely that there exists a polynomial-time algorithm with significantly better performance
than the worst case guarantee.

2Recently de Berg, Speckmann, and van der Weele [10] refined our angular method to get rid of the
additive O(logn) factor in the upper bound, thus obtaining a polygonal partition of aspect ratio O(h).
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In light of the above inapproximability result, it is natural to ask whether there exist
interesting families of metrics, for which we can obtain better than polynomial approxima-
tion factors for embedding into constant-dimensional Euclidean space. In this paper we
present the first result of this type, for embedding ultrametrics into Rd. An ultrametric
is a metric satisfying the following strengthened version of the triangle inequality: for any
x, y, z ∈ X we have D(x, z) ≤ max{D(x, y), D(y, z)}. Equivalently, M = (X,D) is an
ultrametric if it can be realized as the shortest-path metric over the leaves of a rooted
edge-weighted tree such that the distance between the root and any leaf is the same. Ul-
trametrics have received a lot of attention in the embeddings literature, and play a central
role in many algorithmic applications (see e.g. [3]).

Bădoiu et al. [9] showed that finding a minimum-distortion embedding of an ul-
trametric into R2 is np-complete and presented an O(n1/3)-approximation algorithm for
the problem. They extended the algorithm to embedding ultrametrics into Rd, obtaining

an (n
1
d
−Θ( 1

d2
))-approximation. This result is obtained using a lower bound on the amount

of space required in a non-contracting embedding of every subtree of an ultrametric into
Rd. We apply our results on rectangular partitions with slack to a hierarchical structure
corresponding to the ultrametric with weights given by the lower bound. Bounded aspect
ratios in our partition imply relatively low distortion and good approximation to the best
embedding of the ultrametric into Rd. Moreover, we show a connection between embedding
ultrametrics into Rd and (hyper-)rectangular partitions with slack and we use this connec-
tion to obtain a significant improvement over the result of Bădoiu et al. [9]. More precisely,
using our results on (hyper-)rectangular partitions with slack, we obtain a polynomial-
time polylog(∆)-approximation algorithm for the problem of embedding ultrametrics into
(Rd, `2) with minimum distortion, where ∆ is the spread of X. (The spread of X is defined
as ∆ = diam(X)/minx,y∈X D(x, y).) As long as the spread is sub-exponential in n, this is
an exponential improvement over [9].

2 The two algorithms

Before we present our algorithms, we define the problem more formally and introduce some
notation. Let T be a rooted tree. We say that T is properly weighted if each node ν ∈ T
has a positive weight w(ν) that equals the sum of the weights of the children of ν. We
assume without loss of generality that w(root(T )) = 1. A polygonal partition for a properly
weighted tree assigns a convex polygon P (ν) to each node ν ∈ T such that

• the polygon P (root(T )) is the unit square;

• for any node ν we have area(P (ν)) = w(ν);

• for any node ν, the polygons assigned to the children of ν form a disjoint partition of
P (ν).

Recall that the aspect ratio of a planar convex region A, denoted by asp(A), is defined as
asp(A) := diam(A)2/ area(A). The aspect ratio of a polygonal partition is the maximum
aspect ratio of any of the polygons in the partition. Our goal is to show that any properly
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ν

C1(ν) C2(ν)

C2(ν)

C1(ν)

ν

ν1 ν2

ν3
µ µ

Figure 2: Transforming a tree to a binary tree.

weighted tree admits a fat polygon partition, that is, a polygonal partition with small aspect
ratio.

We propose two methods for constructing fat polygonal partitions. They both start
with transforming the input tree T into a binary tree T ′. The nodes of T are a subset
of nodes of T ′, and two nodes are in the ancestor-descendant relation in T if and only if
they are in the same relation in T ′. The weights assigned to nodes of T are preserved
in T ′. Any polygonal partition for T ′ restricted to nodes from T is a polygonal partition
for T . Then, for the binary tree T ′, it suffices to design a method that cuts the polygon
P (ν) corresponding to a node ν into two polygons of prespecified areas that correspond to
ν’s children. We propose two such methods: the angular method and the greedy method.
To achieve a polygonal partition for T ′, it suffices to recursively apply one of the cutting
methods.

The transformation into a binary tree. We transform the input n-node tree T into a
binary tree T ′ by replacing every internal node ν of degree greater than two by a collection
of nodes whose subtrees together are exactly the subtrees of ν. This can be done in such a
way that height(T ′) = O(height(T ) + log n) [19]. The number of nodes in T ′ is O(n). For
completeness we sketch how this transformation is done.

For a node ν, we use Tν to denote the subtree rooted at ν, and |Tν | to denote the
number of nodes in Tν . The transformation is a recursive process, starting at the root
of T . Suppose we reach a node ν. If ν has degree two or less, we just recurse on the at
most two children of ν. If ν has degree k ≥ 3, we proceed as follows. Let C(ν) be the
set of children of ν, and let µ ∈ C(ν) be the child with the largest number of nodes in its
subtree. We partition C(ν) \ {µ} into two non-empty subsets C1(ν) and C2(ν) such that∑

µ∈C1(ν) |Tµ| < |Tν |/2 and
∑

µ∈C2(ν) |Tµ| < |Tν |/2. We create three new nodes ν1, ν2, ν3

and modify the tree as shown in Figure 2. The weights w(ν1), w(ν2), w(ν3) are set to the
sum of the weights of the leaves in their respective subtrees. Finally, we recurse on ν1, µ,
and ν3. After the procedure has finished we have a (properly weighted) tree in which every
node has degree at most two. We remove all degree-1 nodes to obtain our binary tree T ′.
The height of T ′ is at most 2(height(T ) + log n), because every time we go down two levels
in T ′ we either pass through an original node from T or the number of nodes in the subtree
halves.

http://jocg.org/
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angular

greedy

Figure 3: Sample executions of our cutting methods.

Methods for cutting a polygon. Suppose we have to cut a convex polygon P (ν) into two
subpolygons. Note that if we fix an orientation for the cut, then there are only two choices
left for the cut because the areas of the subpolygons are prespecified. (The two choices
correspond to having the smaller of the two areas to the left or to the right of the cut.) Our
cutting methods, depicted in Figure 3 are the following.

• Angular : Let c denote the cut, that is, the line segment separating the two subpoly-
gons of P (ν). We select the orientation of c such that we maximize min{angle(c, e) :
e is an edge of the input polygon}, where angle(c, e) is the smaller of the angles be-
tween the lines `(c) and `(e) containing c and e, respectively. In other words, we cut
in a direction as different as possible from all the orientations determined by the edges
of the polygon. We then take any of the two cuts of the selected orientation.

• Greedy : The greedy method selects the cut that minimizes the maximum of the aspect
ratios of the two subpolygons.

Experiments. To get an idea of the relative performance of the two methods we imple-
mented them and performed some experiments. Table 1 shows the results on two hierarchies.
One is synthetic and was generated using a random process, the other is the home direc-
tory with all subfolders of one of the authors. Leaves in the latter hierarchy are the files
in any of the folders, and the weight of a leaf is the size of the corresponding file. For
comparison, we also ran two additional partitioning methods. Both of these methods use
the transformation of the input into a binary tree. The random method always makes a
cut in a random direction. In the greedy rectangular method, all polygons are rectangles
and all cuts are parallel to the sides of the original rectangle. The method always greedily
chooses the cut that is perpendicular to the longer side, which maximizes the aspect ratio
of the two subpolygons resulting from the cut.

In all our tests, the methods partitioned a square. The greedy method performs
best, closely followed by the angular method. Interestingly, the greedy rectangular method
performs even worse than the random method—apparently restricting to rectangles is a
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Method Synthetic Data Home Folder
Average Maximum Average Maximum

Angular 3.79 13.19 3.87 20.11

Greedy 2.56 6.79 2.57 8.39

Random 5.79 355.14 6.26 1609.66

Greedy Rectangular 3.52 1445.99 24.49 230308.30

Table 1: Aspect ratios of partitions generated by various methods

very bad idea as far as aspect ratio is concerned.

In the next two sections we prove that both the angular method and the greedy
method construct a partition in which the aspect ratios are O(poly(height T + log n)). For
the angular method, the proof is simpler and gives a better bound on the worst-case aspect
ratio. We present the more complicated proof for the greedy method because it is the most
natural method and it has the best performance in practice.

3 Analysis of angular partitions

The idea behind the angular partitioning method is that a polygon with large aspect ratio
must have two edges that are almost parallel. Hence, if we avoid using partition lines
whose orientations are too close to each other, then we can control the aspect ratio of our
subpolygons. Next we make this idea precise.

Let U be the initial unit square that we partition, and let φ > 0 be a parameter.
Recall that for two line segments e and e′, we use angle(e, e′) to denote the smaller angle
defined by the lines `(e) and `(e′) containing e and e′, respectively. We define a convex
polygon P ⊂ U to be a φ-separated polygon if it satisfies the following condition. For any
two distinct edges e and e′, we have:

(i) angle(e, e′) ≥ φ; or

(ii) e is contained in U ’s top edge and e′ is contained in U ’s bottom edge (or vice versa);
or

(iii) e is contained in U ’s left edge and e′ is contained in U ’s right edge (or vice versa).

Lemma 1. The aspect ratio of a φ-separated polygon P is O(1/φ).

Proof. Let d := diam(P ) and let uv be a diagonal of P that has length d. Consider the
bounding box B of P that has two edges parallel to uv. We call the edge of B parallel to
and above uv its top edge, and the edge of B parallel to and below uv its bottom edge. Let r
be a vertex of P on the top edge of B and let s be a vertex on its bottom edge—see Fig. 4.
Let e1 and e2 be the edges of P incident to r, and let e3 and e4 be the edges incident to s.
Let the angles α1, . . . , α4 be defined as in Fig. 4. We distinguish two cases.

http://jocg.org/
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Figure 4: Illustration for the proof of Lemma 1.

• Case (a): none of e1, e2, e3, e4 are parallel.
By condition (i), this implies that the angles any two edges make is at least φ. Hence,
we have

φ ≤ angle(e1, e3) ≤ max(α1, α3), (1)

φ ≤ angle(e2, e4) ≤ max(α2, α4), (2)

φ ≤ angle(e1, e4) ≤ α1 + α4, (3)

φ ≤ angle(e2, e3) ≤ α2 + α3. (4)

By (3) we have α1 + α4 ≥ φ. Now assume without loss of generality that α1 ≥ φ/2.
If α2 ≥ φ/2 as well, then

area(uvr) ≥ (d2/4) · sin(φ/2).

Since uvr ⊂ P , this implies that

asp(P ) ≤ d2

(d2/4) · sin(φ/2)
= O(1/φ).

If α2 < φ/2, then we use (2) and (4) to conclude that α4 ≥ φ and α3 ≥ φ/2. Hence,
we now have area(uvs) ≥ (d2/4) · sin(φ/2), which implies that asp(P ) = O(1/φ).

• Case (b): some edges in e1, e2, e3, e4 are parallel.
By conditions (i)–(iii), two edges of P can be parallel only if they are contained in
opposite edges of U . Hence, |rs| ≥ 1. Moreover, since uv defines the diameter we have
|uv| ≥ |rs|. Let α := angle(uv, rs), as illustrated in Fig. 5. If α ≥ min{φ, π/4}, this is
easily seen to imply that area(P ) ≥ area(urvs) = Ω(φ), which means that asp(P ) =
O(1/φ). Now consider the case where α < φ and α < π/4. We show that this leads
to a contradiction. Let x := uv ∩ rs and assume without loss of generality that, as in
Figure 5, we have α = ∠rxv. Then angle(e1, e3) ≤ α < φ. By conditions (i)–(iii) this
can only happen if e1 and e3 are contained in opposite edges of U , if we assume that r
and s are chosen such that they maximize the distances between r and s, which can be
done without loss of generality. We have angle(e3, rs) ≤ angle(uv, rs) = α ≤ φ < π/4.

http://jocg.org/
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Figure 5: The case of parallel edges.

However, it is impossible to place two points r and s on opposite sides of U such that
angle(e3, rs) < π/4. The smallest angle one can obtain is π/4.

To construct a polygonal partition we use the procedure described in Section 2.
Thus, we first transform the input tree T into a corresponding binary tree T ′. Next, we
recursively apply the angular cutting method to T ′, that is, at each node ν, we cut the
polygon P (ν), using a cut c that maximizes the minimum angle c makes with any of the
edges of P (ν).

Lemma 2. Let P (ν) be the subpolygon generated by the algorithm above for a node ν at
level k in T ′. Then P (ν) is a (π/(2k + 6))-separated polygon.

Proof. The proof is by induction on k.

For k = 0, we have ν = root(T ′) and P (ν) is a unit square. Hence, P (ν) is (π/2)-
separated and therefore also (π/6)-separated.

For k > 0 we argue as follows. By the induction hypothesis, the polygon P (µ)
corresponding to the parent µ of ν is (π/(2k + 4))-separated. Moreover, by construction it
has at most 4+(k−1) = k+3 edges. Consider the sorted (circular) sequence of angles that
these edges make with the x-axis. By the pigeon-hole principle, there must be two adjacent
angles that are at least π/(k + 3) apart. Hence, the cut c that is chosen to partition P (µ)
makes an angle at least π/(2k+ 6) with all edges of P (µ), and by the induction hypothesis,
all the other angles are at least π/(2k + 4).

Recall that the height of the binary tree T ′ is O(height(T ) + log n). Hence, we get
the following theorem.

Theorem 1. Let T be a properly weighted tree with n nodes. Then the angular partitioning
method constructs a polygonal partition for T whose aspect ratio is O(height(T ) + log n).
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JoCG 4(1), 212–239, 2013 222

Journal of Computational Geometry jocg.org

4 Analysis of greedy partitions

We now turn our attention to the greedy method, which at each step chooses a cut c that
minimizes the maximum aspect ratio of the two subpolygons resulting from the cut. The
main component of our proof that polygonal partitions with good properties exist will be
the following lemma. It shows that there is always a way to cut a polygon into two smaller
polygons of required areas so that the aspect ratios of the new subpolygons are bounded.

Note that the lemma requires that the number of vertices in the polygon be bounded.
If the number of vertices is unbounded, the polygon may become arbitrarily close to a circle.
In this case there is no good cut if one of the resulting polygons has to be much smaller
than the other.

The proof of the lemma is long and consists of a case analysis. An impatient reader
may prefer to omit the proof and move directly to Theorem 2.

Lemma 3 (Good cuts). Let P ⊂ R2 be a convex polygon with k vertices, and let a ∈ (0, 1/2].
Then P can be partitioned into two convex polygons P1 and P2 such that

• Each of the P1 and P2 has at most k + 1 vertices.

• area(P1) = a · area(P ), and area(P2) = (1− a) · area(P ).

• max{asp(P1), asp(P2)} ≤ max
{

asp(P )
(
1 + 6

k

)
, k8
}

.

Proof. We distinguish two cases, depending on whether a ≤ 1/k2 (that is, we are cutting
off a relatively small subpolygon) or not.

Case 1: a ≤ 1/k2. Let φ be the smallest angle of P , and let v be a vertex of P whose
interior angle is φ. Since P has k vertices, we have

φ ≤ π
(

1− 2

k

)
.

Let ` be the angular bisector at v. Consider the cut c orthogonal to ` such that
area(P1) = a·area(P ), where P1 is the subpolygon induced by c having v as a vertex—
see Figure 6(a) for an illustration. Let P2 be the other subpolygon. Clearly, P1 and P2

are convex polygons of the required area with at most k+ 1 vertices each. Therefore,
it remains to bound the aspect ratios of P1 and P2.

Since P2 ⊂ P , we have

asp(P2) =
diam(P2)2

area(P2)
≤ diam(P )2

(1− a) · area(P )
=

asp(P )

1− a < asp(P ) (1 + 2a)

< asp(P )

(
1 +

2

k2

)
< asp(P )

(
1 +

1

k

)
.

We next bound asp(P1). Let x1, x2 be the two endpoints of the cut c, and let t be
the distance between x1 and x2. Let h be the distance from v to c. We distinguish
between two subcases.
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(a) Case 1.
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`2

γ

u

y1

y2 x2

x1
h′
h

t

(b) Case 1.2.

Figure 6: Partitioning P into P1 and P2 when a ≤ 1/k2.

Case 1.1: t ≥ h/k2. Since P is convex, the triangle vx1x2 is contained in P1.
Therefore,

area(P1) ≥ h · t/2 ≥ h2/(2k2).

On the other hand, since c is normal to the bisector of the angle of v, it follows
that P1 is contained inside a rectangle of width h and height H, with

H ≤ 2 · h · tan(φ/2) ≤ 2 · h · tan

(
π(1− 2/k)

2

)
≤ 2 · h/ tan(π/k) ≤ 2 · h · k/π.

Thus, diam(P1) < h(1 + 2 · k/π). It follows that

asp(P1) =
diam(P1)2

area(P1)
<

(h+ 2 · h · k/π)2

h2/(2k2)
< k5.

Case 1.2: t < h/k2. Let `1 be the line passing through v and x1, and let `2 be the
line passing through v and x2. Let γ be the angle between `1 and `2. Observe
that P2 is contained between `1 and `2. Therefore, if u is the point in P2 farthest
away from v we have

γ

2π
π|uv|2 ≥ area(P2),

where |uv| denotes the length of the segment uv. It follows that

diam(P )2 ≥ |uv|2 ≥ 2

γ
(1− a) · area(P ).

Therefore,

asp(P ) =
diam(P )2

area(P )
≥ 2

γ
(1− a) ≥ 2

γ

(
1− 1

k2

)
.

We now give an upper bound on the diameter of P1. Assume without loss of
generality that |vx2| ≥ |vx1|. Consider a segment y1y2 parallel to x1x2 with
y1, y2 ∈ ∂ P such that y1y2 lies between x1x2 and v—see Figure 6(b). Let h′ be
the distance between v and y1y2. We first argue that |y1y2| ≤ 2t.
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Assume for the sake of contradiction that |y1y2| > 2t. Let g1 be the line passing
through y1 and x1, and let g2 be the line passing through y2 and x2. Observe
that since |y1y2| > |x1x2|, the lines g1 and g2 intersect in a point w such that
P2 is contained in the triangle x1x2w. Furthermore, the polygon vy1x1x2y2 is
contained in P1. If h′ ≥ h/2, then the area of the triangle vy1y2 is greater
or equal to the area of the triangle x1x2w. Therefore, area(P1) ≥ area(P2),
contradicting the fact that a ≤ 1/k2. If, on the other hand, h′ < h/2, then the
area of the quadrilateral y1x1x2y2, is greater than the area of the triangle x1x2w,
again implying that area(P1) ≥ area(P2), a contradiction. Therefore, we obtain
that |y1y2| ≤ 2t.

It now follows that any point q ∈ P1 is at distance at most 2t from the line
segment vx2. Moreover, we have t < h/k2 ≤ |vx2|/k2. Hence,

diam(P1) = max
q,q′∈P1

|qq′| ≤ 2t+ |vx2|+ 2t ≤ |vx2|
(

1 +
4

k2

)
.

Let x∗ be the point on the line segment x1x2 that is closest to v. Since |vx2| ≥ h,
we have

area(P1) ≥ γ

2π
π|vx∗|2 ≥ γ

2
(|vx2| − t)2 ≥ γ

2
|vx2|2

(
1− 1

k2

)
.

Therefore,

asp(P1) =
diam(P1)2

area(P1)
≤ 2

γ
· (1 + 4/k2)2

1− 1/k2
≤ asp(P )

(1 + 4/k2)2

(1− 1/k2)2

≤ asp(P ) · (1 + 6/k2)2 ≤ asp(P ) · (1 + 2/k)2

≤ asp(P ) · (1 + 6/k).

Case 2: a > 1/k2.

Case 2.1: asp(P ) ≤ k6. In this case any cut giving the two subpolygons P1 and P2

the required areas works. Indeed,

asp(P1) =
diam(P1)2

area(P1)
≤ diam(P )2

a · area(P )
≤ k2 · asp(P ) ≤ k8

and

asp(P2) =
diam(P2)2

area(P2)
≤ diam(P )2

(1− a) · area(P )
≤ 2 · asp(P ) ≤ 2 · k6 < k7.

Case 2.2: asp(P ) > k6. Pick points v1, v2 ∈ P , such that |v1v2| = diam(P ). For each
z ∈ [0,diam(P )], let `(z) be a line normal to v1v2 that is at distance z from v1

and intersects P . Note that `(0) contains v1 and `(diam(P )) contains v2. Define
f(z) to be the length of the intersection of P with `(z). Observe that

area(P ) =

∫ diam(P )

z=0
f(z)dz
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`(s1)

Figure 7: Partitioning P into P1 and P2, when α > 1/k2: Case 2.2.

Pick s1, s2 ∈ [0, diam(P )], so that

a · area(P ) =

∫ s1

z=0
f(z)dz =

∫ diam(P )

z=diam(P )−s2
f(z)dz.

Let Q1 be the part of P that is contained between `(0) and `(s1). Similarly, let
Q2 be the part of P that is contained between `(diam(P )− s2) and `(diam(P )).
Clearly, both Q1 and Q2 are convex polygons with at most k + 1 vertices.

First, we will show that

min

{
area(Q1)

s1
,
area(Q2)

s2

}
≤ area(P )

diam(P )

Assume for a contradiction that both area(Q1)/s1 and area(Q2)/s2 are greater
than area(P )/ diam(P ). It follows that there exist z1 ∈ [0, s1] and z2 ∈ [diam(P )−
s2] such that f(z1) > area(P )/ diam(P ) and f(z2) > area(P )/ diam(P ). Since
P is convex, f is a bitonic function. Therefore, for each z ∈ [z1, z2], we have
f(z) > area(P )/diam(P ). It follows that

area(P ) = area(Q1) + area(Q2) + area(P \ (Q1 ∪Q2)) >
area(P )

diam(P )
· diam(P ),

a contradiction.

We can therefore assume without loss of generality that

area(Q1)

s1
≤ area(P )

diam(P )
.

Note that this implies
s1 ≥ a · diam(P ).

We set P1 = Q1, and P2 = P \Q1. It remains to bound asp(P1) and asp(P2).
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By the convexity of P , we have

area(P ) ≥ max
z∈[0,diam(P )]

f(z) · diam(P )/2.

Since asp(P ) > k6, it follows that

max
z∈[0,diam(P )]

f(z) ≤ 2 · area(P )

diam(P )2
· diam(P ) <

2

k6
· diam(P ).

This implies that P is contained inside a rectangle with one edge of length
diam(P ) parallel to v1v2, and one edge of length 4

k6
· diam(P ) normal to v1v2.

Thus,

diam(P1) ≤ s1 +
4

k6
· diam(P ).

Let σ1, σ2 be the two points where `(s1) intersects ∂ P . Let ζ1, ζ2, be the lines
passing through v1 and σ1, and v1 and σ2, respectively. Let also σ′1 and σ′2 be
the points where ζ1 and ζ2, respectively, intersect `(diam(P ))—see Figure 7.

By the convexity of P and P1, we have

area(P1) ≥ area(v1σ1σ2) =

(
s1

diam(P )

)2

·area(v1σ
′
1σ
′
2) ≥

(
s1

diam(P )

)2

·area(P ).

Since area(P1) = a · area(P ), it follows that s1 ≤
√
a · diam(P ). Using that

a > 1/k2 we can now derive

asp(P1) =
diam(P1)2

area(P1)
≤ (s1 + 4 · diam(P )/k6)2

area(P1)

≤ (
√
a · diam(P ) + 4 · diam(P )/k6)2

a · area(P )

<
diam(P )2

area(P )
·
(

1 +
4

k6
√
a

)2

≤ asp(P ) ·
(

1 +
8

k4
+

16

k16

)
≤ asp(P ) ·

(
1 +

1

k

)
.

Since f is bitonic, it follows that

min
z∈[s1,diam(P )−s2]

f(z) ≥ min

{
max
z∈[0,s1]

f(z), max
z∈[diam(P )−s2,diam(P )]

f(z)

}
.

Therefore,
area(P2)

diam(P )− s1
≥ area(P1)

s1
.

Because P2 is contained in a rectangle with one edge of length diam(P ) − s1

parallel to v1v2, and one edge of length 4
k6
· diam(P ) normal to v1v2, we have

diam(P2) ≤ diam(P )− s1 +
4

k6
· diam(P ).
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Putting everything together, we get

asp(P2) =
diam(P2)2

area(P2)
≤ (diam(P ) · (1 + 4/k6)− s1)2

(1− a) · area(P )

≤ asp(P ) ·
(

1 + 4/k6 − a√
1− a

)2

≤ asp(P ) ·
(

1 + 4 ·
√

2

k6

)2

≤ asp(P ) ·
(

1 +
1

k2

)2

≤ asp(P ) ·
(

1 +
3

k2

)
≤ asp(P ) ·

(
1 +

1

k

)
.

This concludes the proof.

Now we have all the necessary tools to prove a bound on the aspect ratio of the
polygonal partition constructed by the greedy method.

Theorem 2. Let T be a properly weighted tree with n nodes. Then the greedy partitioning

method constructs a polygonal partition for T whose aspect ratio is O
(

(height(T ) + log n)8
)

.

Proof. Recall from Section 2 that our algorithm starts by transforming T to a binary tree T ′
of height O(height(T ) + log n). This is done in such a way that a polygonal partition
for T ′ induces a polygonal partition for T of the same (or better) aspect ratio. We then
recursively apply the greedy cutting strategy to T ′. Hence, it suffices to show that a recursive
application of the greedy strategy to a binary tree of height h produces a polygonal partition
of aspect ratio (h+ 3)8.

Let A(i) be the worst-case aspect ratio of a polygon P (ν) produced by the greedy
method over all nodes ν at depth i in the tree. Note that P (root(T )) is a square and each
polygon at depth i has at most i+ 4 vertices. By Lemma 3 we thus have

A(i) ≤
{

2 if i = 0,

max
{

(i+ 3)8,
(

1 + 6
i+3

)
·A(i− 1)

}
if i > 0.

We can now prove by induction that A(i) ≤ (i+ 3)8. Indeed, for i = 0 this obviously holds,
and for i > 0 we have

A(i) ≤ max

{
(i+ 3)8,

(
1 +

6

i+ 3

)
·A(i− 1)

}
≤ max

{
(i+ 3)8,

(
1 +

6

i+ 3

)
· (i+ 2)8

}
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Figure 8: (i) Structure of the tree for the lower-bound construction. (ii) Illustration for the
proof of Lemma 4.

and (
1 + 6

i+3

)
· (i+ 2)8 =

{(
1 + 6

i+3

)
·
(
i+2
i+3

)8
}
· (i+ 3)8

=

{
1+ 6

i+3

(1+ 1
i+2)

8

}
· (i+ 3)8

<

{
1+ 6

i+3

1+ 8
i+2

}
· (i+ 3)8

< (i+ 3)8.

Hence, A(h) < (h+ 3)8, which finishes the proof.

5 A lower bound for polygonal partitions

In the previous sections we have seen that any properly weighted tree T with n nodes
admits a polygonal partition whose aspect ratio is O(height(T ) + log n). In this section we
prove this is almost tight in the worst case, by exhibiting a tree for which any polygonal
partition has aspect ratio Ω(height(T )).

We start with an easy lower bound on the aspect ratio of a convex polygon in terms
of its smallest angle.

Observation 1. Let P be a convex polygon and let α be the smallest interior angle of P .
Then the aspect ratio of P is at least 2/α.

Proof. Let v be a vertex of P whose interior angle is α. Then P is contained in the
circular sector with radius diam(P ) and angle α whose apex is at v. This sector has area
(α/2) · diam(P )2, from which the observation readily follows.

Next we show how to construct, for any given height h, a weighted tree T of height
h such that any polygonal partition for T has a region with a very small angle. The lower
bound on the aspect ratio then follows immediately from Observation 1.
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The structure of T is depicted in Fig. 8(i). The tree T has h + 1 nodes ν0, . . . , νh
that form a path, and h other (leaf) nodes λ1, . . . , λh branching off the path. The idea will
be to choose the weights of the leaves very small, so that the only way to give the region
P (λi) the required area, is to cut off a small triangle from P (νi). Then we will argue that
one of these triangles must have a small angle.

To make this idea precise we define

xi :=

{
1 if i = 0,

xi−1/(2
√
h) if 0 < i ≤ h,

and we set w(λi) := x2
i−1/(4h) for 1 ≤ i ≤ h. Note that defining the weights for λ1, . . . , λh

implicitly defines the weights for ν1, . . . , νh as well.

Lemma 4. If each region created in a polygonal partition for T has aspect ratio at most h,
then we have for 0 ≤ i ≤ h,

(i) P (λi−1) is a triangle (if λi−1 exists, that is, if i 6= 0);

(ii) P (νi) has i+ 4 sides, each of length at least xi.

Proof. We will prove the lemma by induction on i. For i = 0 the lemma is obviously true,
since P (ν0) is the unit square.

Now let i > 0. By the induction hypothesis, each side of P (νi−1) has length at
least xi−1. If P (λi) fully contained an edge of P (νi−1), its diameter would therefore be
more than xi−1. But then its aspect ratio would be

diam(P (λi))
2

area(P (λi))
≥ x2

i−1

w(λi)
=

x2
i−1

x2
i−1/4h

= 4h,

which contradicts the assumptions. Hence, P (λi) is a triangle, as claimed. It also follows
that P (νi) has i+ 4 sides. It remains to show that these sides have length at least xi.

Let st be the segment that cuts P (νi−1) into P (νi) and P (λi), let p be the corner
of P (νi−1) that is cut off, and let q and r be the corners of P (νi−1) adjacent to p—see
Fig. 8(ii). All sides of P (νi) except qs, st, and tr have length at least xi−1 so they definitely
have length at least xi.

It is easy to see that the angles of any polygon P (νj) are at least π/2—indeed, when
a corner is cut off from some P (νj), the two new angles appearing in P (νj+1) are larger
than the angle at the corner that is cut off. Hence, st is the longest edge of the triangle
pst = P (λi), and we have

|st| ≥
√

area(P (λi)) =
√
w(λi) =

√
x2
i−1

4h
=
xi−1

2
√
h

= xi.
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Next we show that qs has length at least xi; the argument for tr is similar. Note that
|ps| ≤

√
h · w(λi), otherwise P (λi)’s aspect ratio would be larger than h. Hence, we have

|qs| = |pq| − |ps|
≥ xi−1 − |ps| (induction hypothesis)

≥ xi−1 −
√
h · w(λi)

= xi−1 −

√
h · x

2
i−1

4h

=
xi−1

2
≥ xi.

Next we show that one of the triangles P (λi) must have large aspect ratio.

Lemma 5. If each region created in a polygonal partition for T has aspect ratio at most h,
then there is a region P (λi) where one of whose interior angles is at most 2π/(h+ 4).

Proof. By the previous lemma, the region P (νh) has h + 4 sides. The sum of the interior
angles of a (h+ 4)-gon is exactly (h+ 2) · 2π, so one of the interior angles of P (νh) must be
at least

(h+ 2) · 2π
h+ 4

= 2π − 4π

h+ 4
.

If the two edges meeting at some corner p of P (νh) make an angle of at least 2π−4π/(h+4)
in P (νh), then they must make an angle of at most 4π/(h + 4) in a region P (λi) adjacent
to p.

Theorem 3. For any h, there is a weighted tree T of height h such that any polygonal
partition for T has aspect ratio Ω(h).

Proof. Consider the tree T described above. Assume the aspect ratio of the polygonal
partition for T is less than h—otherwise we are done. Then by Lemma 5 there is a region
with interior angle 4π/(h + 4). By Observation 1 this region has aspect ratio at least
(h+ 4)/2π = Ω(h).

6 Partitions with slack

Recall that a rectangular partition is a polygonal partition in which all polygons are rect-
angles. We show that if we allow a small distortion of the areas of the rectangles, then
there exists a rectangular partition of small aspect ratio. This result can also be obtained
for partitions of a hypercube in Rd. We now define more precisely which type of distortion
we allow.

Let T be a properly weighted tree. A rectangular partition with ε-slack in Rd for T
assigns a d-dimensional hyperrectangle R(ν) to each node ν ∈ T such that
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• the hyperrectangle R(root(T )) is the unit hypercube in Rd;

• for any two nodes ν, µ such that µ is a child of ν we have

(1− ε) · vol(R(µ))

w(µ)
≤ vol(R(ν))

w(ν)
≤ vol(R(µ))

w(µ)
.

• for any node ν, the hyperrectangles assigned to the children of ν have pairwise disjoint
interiors and are contained in R(ν).

Observe that as we go down the tree T , the volumes of the hyperrectangles can start to
deviate more and more from their weights. However, the relative volumes of the hyperrect-
angles of the children of a node ν stay roughly the same and together they still cover R(ν)
almost entirely.

For convenience, we will work with the rectangular aspect ratio of a d-dimensional
hyperrectangle rather than using the aspect-ratio definition given earlier. The rectangular
aspect ratio asprect(R) of hyperrectangle R with side lengths s1, s2, . . . , sd is defined as
asprect(R) := maxi si

mini si
. It can easily be shown that for 2-dimensional rectangles, the aspect

ratio and the rectangular aspect ratio are within a constant factor. We define the rectangular
aspect ratio of a rectangular partition as the maximum rectangular aspect ratio of any of
the hyperrectangles in the partition.

Our algorithm to construct a rectangular partition always cuts perpendicular to the
longest side of a hyperrectangle R(ν). Since we can shrink each of the hyperrectangles of
the children of ν by a factor 1 − ε, we have some extra space to keep the aspect ratios
under control. We will prove that this means that the longest-side-first strategy can ensure
a rectangular aspect ratio of 1/ε. The basic tool is the following lemma.

Lemma 6. Let 0 < ε < 1/3, and let R be a hyperrectangle with asprect(R) ≤ 1/ε. Let
S = {w1, . . . , wk} be a set of weights with

∑k
i=1wi = (1 − ε) · vol(R). Then there exists a

set {R1, . . . , Rk} of pairwise disjoint hyperrectangles, each contained in R, such that for all
1 ≤ i ≤ k we have vol(Ri) = wi and asprect(Ri) ≤ 1/ε.

Proof. We will prove this by induction on k. The case k = 1 is trivial, so now assume k > 1.
For a subset S′ ⊂ S, we define w(S′) :=

∑
wi∈S′ wi. Assume without loss of generality that

w1 = maxiwi. There are two cases.

• If w1 ≤ (1− ε) · w(S), then we can split S into subsets S′ and S′′ such that w(S′) ≥
ε ·w(S) and w(S′′) ≥ ε ·w(S). Indeed, if i∗ is the minimum index such that

∑i∗

i=1wi ≥
ε·w(S), then

∑i∗

i=1wi ≤ (1−ε)·w(S) since ε < 1/3. Hence, setting S′ = {w1, . . . , wi∗}
satisfies the condition.

We now cut R perpendicular to its longest side into hyperrectangles R′ and R′′ such
that

vol(R′) = vol(R) · w(S′)

w(S)
and vol(R′′) = vol(R) · w(S′′)

w(S)
.
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Note that this implies that

w(S′) =
w(S)

vol(R)
· vol(R′) = (1− ε) · vol(R′).

Since w(S′) ≥ ε · w(S) and the cut is perpendicular to the longest side, we have
asprect(R

′) ≤ 1/ε. Hence, by induction there exists a set of pairwise disjoint hyper-
rectangles, each contained in R′, whose volumes are the weights in S′ and whose aspect
ratios are at most 1/ε. Similarly, there is a collection of suitable hyperrectangles con-
tained in R′′ for the weights in S′′. Hence, we have found a set of hyperrectangles for
S satisfying all the conditions.

• If w1 > (1−ε) ·w(S) we split R into R1 and R′ by cutting perpendicular to the longest
side, such that vol(R1) = w1. Since

w1 > (1− ε) · w(S) = (1− ε)2 · vol(R) > ε · vol(R),

we have asprect(R1) ≤ 1/ε. Furthermore, since w(S) = (1 − ε) · vol(R) we certainly
have w1 < (1− ε) · vol(R), and so

vol(R′) = vol(R)− w1 > ε · vol(R).

This implies that asprect(R
′) ≤ 1/ε. Finally, we note that

w(S \ {w1})
vol(R′)

=
w(S)− w1

vol(R)− w1
<

w(S)

vol(R)
= 1− ε.

Hence, we can slightly shrink R′ such that w(S \{w1}) = (1−ε) ·vol(R′), which means
we can apply the induction hypothesis to obtain a suitable set of hyperrectangles for
the weights in S \ {w1} inside R′. Together with the hyperrectangle R1 for w1, this
gives us a collection of hyperrectangles for the weights in S satisfying all the conditions.

We can now prove our final result on partitions with slack.

Theorem 4. Let 0 < ε < 1/3, and let d ≥ 2. Let T be a properly weighted tree. Then there
exists a rectangular partition with ε-slack in Rd for T whose aspect ratio is at most 1/ε.

Proof. We construct the rectangular partition recursively, as follows. We start at the root
of T , where we set R(root(T )) to the unit hypercube. Note that the rectangular aspect
ratio of a hypercube is 1. Now, given a hyperrectangle R(ν) of an internal node ν such
that the rectangular aspect ratio is at most 1/ε, we will construct hyperrectangles for the
children of ν of the required aspect ratio. To this end, for any child µ of ν we define

w∗(µ) := (1− ε) · w(µ) · vol(R(ν))

w(ν)
.
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Observe that since
∑

µw(µ) = w(ν), we have∑
µ

w∗(µ) = (1− ε) · vol(R(ν)).

Hence, we can apply Lemma 6 with S = {w∗(µ) : µ is a child of ν} to partition R(ν)
into pairwise disjoint hyperrectangles Rµ, each contained in R(ν) and of aspect ratio at
most 1/ε. The volume of each R(µ) will be w∗(µ), which is in the allowed range. Finally,
we recurse on each non-leaf child. After we the recursive process has finished, we have the
desired partition.

7 Embedding ultrametrics into Rd

Before we describe our algorithm for embedding ultrametrics into Rd, we define α-hierar-
chical well separated trees, or α-HSTs for short, introduced by Bartal [4]. Let α > 1 be a
parameter. An α-HST is a rooted tree T with all leaves on the same level, where each node
ν has an associated label l(ν) such that for any node ν with parent µ we have l(µ) = α · l(ν).
The metric space that corresponds to the HST T is defined on the leaves of T , and the
distance between any two leaves in T is equal to the label of the their lowest common
ancestor.

Let M = (X,D) be the given ultrametric. After scaling M , we can assume that
the minimum distance is 1 and the diameter is ∆. For any α > 1, we can embed M into
an α-HST, with distortion α [5]. Given M , we initially compute an embedding of M into
a 2-HST T with distortion 2. Let MT = (X,DT ) be the metric space corresponding to
T . Any embedding of MT into Rd with distortion c′, yields an embedding of M into Rd
with distortion O(c′). It therefore suffices to embed of MT into Rd. With a slight abuse of
notation we will from now on denote the leaf of T corresponding to a point x ∈ X simply
by x.

A lower bound. To prove the approximation ratio of our embedding algorithm, we need a
lower bound on the optimal distortion. We will use the lower bound proved by Bădoiu et al.
[9], which we describe next.

Consider an embedding φ of MT into Rd. Assume without loss of generality that φ
is non-contracting, that is, φ does not make any distances smaller. For each node ν ∈ T we
define a set Aν ⊂ Rd as follows. Let Bd(r) denote the ball in Rd centered at the origin and
of radius r. For a leaf ν of T , let Aν be equal to the ball Bd(

1
2) translated so that its center

is φ(ν). For a non-leaf node ν with children µ1, . . . , µk, let Aν be the Minkowski sum of⋃k
i=1Aµi with Bd(l(ν)). By the non-contraction of φ it follows that for each pair of nodes

ν, ν ′ that are on the same level of T , the regions Aν and Aν′ have disjoint interiors—see
Figure 9 for an example. Intuitively, the volume Aν is necessary to embed all the points
corresponding to the leaves below ν such that the embedding is non-contracting. This in
turn can be used via an isoperimetric argument to obtain a lower bound on the maximum
distance (and, hence, distortion) between the images of these leaves.

http://jocg.org/


JoCG 4(1), 212–239, 2013 234

Journal of Computational Geometry jocg.org

ν1

ν3 =⇒

Aν1

ν2

Aν2

Axx

y

z

zyx

Ay

Az

Aν3

Figure 9: The sets Aν for a non-contracting embedding of an HST.

We cannot compute Aν exactly, however, since we do not know the embedding.
Hence, following Bădoiu et al. [9] we define for each ν ∈ T a value A∗(ν) that estimates the
volume of Aν . Intuitively, the estimate on Aν is derived by the Brunn-Minkowski inequality.
More precisely, we define A∗(ν) as follows.

A∗(ν) =


vol
(
Bd(

1
2)
)

if ν is a leaf,∑
µ is a child of ν

(
A∗(µ)1/d + vol

(
Bd

(
l(ν)

4

))1/d
)d

otherwise.

The estimate A∗(ν) can be used to obtain a lower bound on the distortion, as made
precise in the next lemma. For any V > 0, let rd(V ) be the radius of a d-dimensional ball
with volume V ; thus we have

rd(V ) =

(
V · Γ(1 + d/2)

πd/2

)1/d

= Θ
(√

d · V 1/d
)
,

where Γ(z) =
∫∞

0 tz−1e−tdt.

Lemma 7 ([9], Corollary 1). Let opt denote the distortion of an optimal embedding of MT
into Rd. Then

opt ≥ max
ν is internal node of T

rd(A
∗(ν))

l(ν)
− 1.

The algorithm. We are now ready to describe the embedding f of MT into Rd. The
intuition behind our algorithm is as follows. The lower bound given by Lemma 7 implies
that an embedding is nearly-optimal if it results in sets Aν with small aspect ratio. Our
approach, however, is essentially reversed. We first compute a hyperrectangular partition
of Rd into hyperrectangles with small aspect ratio. The hyperrectangle computed for the
leaves in T will roughly correspond to the balls around the embedded points x ∈ X, so
given the partition we will be able to obtain the embedding by placing f(x) at the center
of the hyperrectangle computed for x. The weights we use for the nodes of T will be the
values A∗(ν), which using Lemma 7 can then be used to bound the distortion.

More precisely, the algorithm works as follows.
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1. Compute for each node ν ∈ T the value A∗ν .

2. Compute a hyperrectangular partition with slack ε := min(1
3 ,

1
log ∆) for T , where A∗ν

is used as the weight of a node ν. Note that T is not properly weighted: the weight of
root(T ) will be greater than 1 and the weight of an internal node ν is larger than the
sum of the weights of its children. However, we can still apply Theorem 4. Indeed, by
scaling the weights appropriately we can ensure that the root has weight 1, and the
fact that the weight of an internal node ν is larger than the sum of the weights of its
children only makes it easier to obtain a small aspect ratio. Thus we can compute a
hyperrectangular partition for T whose rectangular aspect ratio is at most log ∆.

3. Let P (ν) denote the hyperrectangle computed for node ν ∈ T in Step 2. We slightly
modify the hyperrectangles P (ν), as follows. Starting from the root of T , we traverse
all the nodes of T . When we visit an internal node ν, we shrink all hyperrectangles of
the nodes in the subtree rooted at ν by a factor of 1− 1/ log ∆, with the center of the
(current) hyperrectangle P ′(ν) of ν being the fixed point in the transformation. Note
that P ′(ν) itself is not shrunk. Thus the shrinking step moves the hyperrectangles
contained inside P ′(ν) away from its boundary and towards its center, thus preventing
points in different subtrees to get too close to each other.

4. Let P ′(ν) denote the hyperrectangle computed in Step 3. Then we define the embed-
ding f(x) of a point x ∈ X to be the center of the hyperrectangle P ′(x).

It remains to bound the distortion of f . We will need the following observation, which
bounds the diameter of a hyperrectangle in terms of its volume and aspect ratio.

Observation 2. Let P be a hyperrectangle in Rd with aspect ratio at most α. Then,
assuming α ≥

√
d− 1,

diam(P ) ≤ α
√

2 · vol(P )1/d.

From now on we assume that log ∆ ≥
√
d− 1.

Lemma 8. The expansion of f is O
(

1√
d
· log ∆ · opt

)
.

Proof. Consider points x, y ∈ X. Let ν be the lowest common ancestor of x and y in T . We
have DT (x, y) = l(ν). Both f(x) and f(y) are contained in P ′(ν), which in turn is contained
in P (ν). Hence, diam(P (ν)) gives an upper bound on |xy|. Note that asprect(P (ν)) ≤ log ∆
and that vol(P (ν)) ≤ A∗ν . (We do not necessarily have vol(P (ν)) = A∗ν because of the slack
in the partition.) Hence,

|xy| ≤ diam(P (ν))

≤ log ∆ ·
√

2 · vol(P (ν))1/d

≤ log ∆ ·
√

2 · (A∗ν)1/d

= O
(

log ∆ · rd(A∗ν) · 1√
d

)
= O

(
log ∆ · (opt + 1) · l(ν) · 1√

d

)
= O

(
log ∆ · opt ·DT (x, y) · 1√

d

)
,
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where the second-to-last transition follows from Lemma 7. This shows that the
expansion is O(log ∆ · opt · 1√

d
).

Lemma 9. The contraction of f is O
(√

d · log2 ∆
)

.

Proof. Since T is a 2-HST, we have ∆ = l(root(T )) = 2height(T ). Hence, height(T ) = log ∆.
It follows that for each node ν ∈ T ,

vol(P ′(ν)) = Ω

((
1− 1

log ∆

)log ∆

· vol(P (ν))

)
= Ω (vol(P (ν)))

= Ω

((
1− 1

log ∆

)log ∆

·A∗ν

)
= Ω (A∗ν) .

Consider points x, y ∈ X, and let ν be the lowest common ancestor of x and y in T . We
will consider the following two cases for ν:

• Case 1: ν is the parent of x and y in T .
Since the minimum distance in MT is 1, it follows that DT (x, y) = 1. By construction,
f(x) is the center of P ′(x). Let t be the distance between f(x) and ∂ P ′(x). Since
asprect(P

′(x)) ≤ 1/ε, we have

t ≥ ε · vol(P ′(x))1/d = Ω
(
ε · (A∗x)1/d

)
= Ω

(
ε · 1√

d

)
= Ω

(
1√

d log ∆

)
.

Thus, |f(x)f(y)| ≥ t = Ω
(

D(x,y)√
d log ∆

)
.

• Case 2: ν is not the parent of x and y in T .
Let µ be the child of ν that lies on the path from ν to x. Let t be the distance
between x and ∂ P ′(µ). Because of the shrinking performed in Step 3, we know that
t ≥ (1/ log ∆) · (s/2), where s is the length of the shortest edge of P ′(µ). Since
asprect(P

′(µ)) ≤ 1/ε, we have s ≥ ε1−1/d · vol(P ′(µ))1/d. Hence,

t ≥ 1
log ∆ · s2

= Ω
(
ε1−1/d

log ∆ · vol(P ′(µ))1/d
)

= Ω
(
ε1−1/d

log ∆ · (A∗µ)1/d
)

= Ω
(

1
log2 ∆

· (A∗µ)1/d
)

= Ω
(

1
log2 ∆

· l(µ) · 1√
d

)
= Ω

(
D(x,y)√
d log2 ∆

)
.

Combining Lemmas 8 and 9 we obtain the main result of the section.
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Theorem 5. For any fixed d ≥ 2, there exists a polynomial-time, O
(√

d · log3 ∆
)

-approx-

imation algorithm for the problem of embedding ultrametrics into Rd with minimum distor-
tion.

We remark that the running time of the above algorithm depends on the way the
input is given. If the ultrametric is given as a matrix of pairwise distances, then one needs
to first compute a tree representation, with the points being the leaves of the tree. For an
n-point ultrametric, this task takes at least Ω(n2) time. Given such a tree representation,
for any fixed dimension d, it is fairly easy to implement our algorithm in roughly quadratic
time. It is an interesting open problem to obtain an algorithm with near-linear running
time.

As a final comment, note that while the approximation factor is relatively small
(for instance, for ∆ = nO(1) and constant d, it becomes O(log3 n)), the distortion itself can
be much larger. For example, embedding the uniform metric on n vertices (which is an
ultrametric as well) into Rd requires distortion Ω(n1/d) for constant d.
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