5 research outputs found

    Embedding into the rectilinear plane in optimal O*(n^2)

    Get PDF
    We present an optimal O*(n^2) time algorithm for deciding if a metric space (X,d) on n points can be isometrically embedded into the plane endowed with the l_1-metric. It improves the O*(n^2 log^2 n) time algorithm of J. Edmonds (2008). Together with some ingredients introduced by J. Edmonds, our algorithm uses the concept of tight span and the injectivity of the l_1-plane. A different O*(n^2) time algorithm was recently proposed by D. Eppstein (2009).Comment: 12 pages, 13 figure

    ATX-Approach to Some Results on Cuts and Metrics

    Get PDF
    AbstractWe give simple algorithmic proofs of some theorems of17and970549on the packing of metrics by cuts

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    Embedding into the rectilinear grid

    No full text
    corecore