A T_{X}-A pproach to Some R esults on C uts and M etrics

Victor Chepoi*

Laboratoire de Biomathématiques, Faculté de Medecine, Université d'Aix Marseille II,
27 Bd Jean Moulin, F-13385 Marseille Cedex 5, France
metadata, citation and similar papers at core.ac.uk

We give simple algorithmic proofs of some theorems of Papernov (1976) and K arzanov (1985, 1990) on the packing of metrics by cuts. © 1997 A cademic Press

1. INTRODUCTION

Let us commence by recalling the multicommodity flow problem and its dual, the problem of packing metrics by cuts. A pair $S=\{A, B\}$ of nonempty disjoint subsets of a finite set V is called a cut if $B=V-A$. Consider a network $N=(G, H, c, q)$ consisting of a supply graph $G=$ (V, E) endowed with a capacity function $c: E \rightarrow \mathbb{R}^{+} \cup\{0\}$, a demand graph $H=(X, F)$ with $X \subseteq V$, and a demand function $q: F \rightarrow \mathbb{R}^{+} \cup\{0\}$. Denote the edges of H by $s_{1} t_{1}, \ldots, s_{m} t_{m}$. For a cut $S=\{A, B\}$ of V let $E(S)$ denote the set of edges of G with one end in A and the other in B, and let $c(S)=\sum_{e \in E(S)} c(e)$ be the capacity of the cut S.
The well-known multicommodity flow problem is to find flows f_{1}, \ldots, f_{m}, where each f_{i} is a flow from s_{i} to t_{i} of value q_{i}, such that for each $e \in E$ the total flow through e does not exceed $c(e)$, or to establish that no such flows exist. By linear programming duality, a multicommodity flow exists if and only if

$$
\sum q_{i} d_{l}\left(s_{i}, t_{i}\right) \leq \sum_{e \in E} c(e) l(e), \quad i=1, \ldots, m
$$

for any nonnegative real-valued length function l on E, and $d_{l}\left(s_{i}, t_{i}\right)$ denotes the distance between s_{i} and t_{i} in the graph G whose edges are

[^0]weighted by l [8, 15]. If a multicommodity flow exists then the following condition of Ford-Fulkerson type is verified:
\[

$$
\begin{equation*}
c(S) \geq \sum_{i=1}^{m} q_{i} \quad \text { for any cut } S=(A, B) \text { with } s_{i} \in A, t_{i} \in B . \tag{1}
\end{equation*}
$$

\]

For what commodity graphs H is this necessary condition also sufficient? The answer was given by the following result of Papernov [17]:
if H is the complete graph K_{4} with four vertices or the circuit C_{5} with five vertices or a union of two stars and (1) holds, then the multicommodity flow problem has a solution.

This result generalizes many earlier known theorems on multicommodity flows established in [11, 12, 16, 18, 19].

Let $G=(V, E)$ be a complete graph the edges $e \in E$ of which have nonnegative real-valued lengths $l(e)$. Suppose that $d_{l}(x, y)$ denotes the distance between vertices x and y with respect to l; in other words d_{l} is the metric closure of l. Then $\left(V, d_{l}\right)$ is a finite metric space. A sequence $u=x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}=v$ of points of V is called a shortest path between the points u and v if $d_{l}(u, v)=\sum_{i=1}^{n} d_{l}\left(x_{i}, x_{i+1}\right)$. We will say that l satisfies the parity condition if $l(u, v)+l(v, w)+l(w, u)$ is an even integer for any $u, v, w \in V$. Evidently, the parity condition is preserved while passing to d_{l}, and, moreover, all distances of (V, d_{l}) are integers because $d_{l}(u, v)+d_{l}(v, v)+d_{l}(v, u)=2 d_{l}(u, v)$ is an even integer.

Now we recall a cut packing problem which is dual to the multicommodity flow problem. Given a graph $H=(X, F)$ with $X \subseteq V$, a family $\left\{d_{1}, \ldots, d_{m}\right\}$ of metrics on V is called an H-packing for l (or $\left(V, d_{l}\right)$) [13, 14] if

$$
\begin{equation*}
d_{l}(x, y) \geq d_{1}(x, y)+\cdots+d_{m}(x, y) \quad \text { for all } x, y \in V \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{l}(s, t)=d_{1}(s, t)+\cdots+d_{m}(s, t) \quad \text { for all } s t \in F . \tag{3}
\end{equation*}
$$

If d_{1}, \ldots, d_{m} is an H-packing of l, and $u=x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}=v$ is a shortest path between u and v with $u v \in F$, then necessarily

$$
d_{l}\left(x_{i}, x_{i+1}\right)=d_{1}\left(x_{i}, x_{i+1}\right)+\cdots+d_{m}\left(x_{i}, x_{i+1}\right)
$$

for any $i=0, \ldots, n$. If equality (3) holds, then we say that the metric d_{l} admits an additive decomposition $d_{l}=d_{1}+\cdots+d_{m}$. The simplest building stones are the cut (pseudo-) metrics associated to cuts of the set V : for
a cut $S=(A, B)$ of V define

$$
\delta_{S}(x, y)= \begin{cases}0 & \text { if } x, y \in A \text { or } x, y \in B \\ 1 & \text { otherwise, i.e., if } S \text { separates } x \text { and } y .\end{cases}
$$

M ore generally, a metric d on V is called Hamming if for some $\lambda>0$ and some cut metric δ_{s} we have $d=\lambda \delta_{s}$. An example of a metric not decomposable into a sum of cut metrics (or Hamming metrics) gives the standard graph-metric d^{\prime} of the complete bipartite graph $K_{2,3}$. A 2,3-metric d^{\prime} on V is defined as follows: take a partition of V into five blocks, and consider each of them as a vertex of $K_{2,3}$. Put $d^{\prime}(x, y)=0$, if x and y belong to a common block, otherwise let $d^{\prime}(x, y)$ be the distance in $K_{2,3}$ between the blocks containing x and y. Finally, if $d=\lambda d^{\prime}$ for some positive λ, we will say that d is a Hamming 2,3-metric.

Combining linear programming arguments with the result of Papernov one can obtain the following theorem (see [13]).

Theorem A. If H is K_{4} or C_{5} or a union of two stars, then there exists an H-packing for l consisting of Hamming metrics.

As is noted in [13, 20], Theorem A implies the Papernov theorem. K arzanov [13] presented a stronger, "half-integral" version of this result.

Theorem B. If H is as in Theorem A and l satisfies the parity condition, then there exists an H-packing for l consisting of cut metrics.

K arzanov's proof yields an $O\left(|V|^{3}\right)$ algorithm for finding an H-packing for l. A shorter (but nonconstructive) proof of Theorem B was given by Schrijver [20].

Let d be a metric on V. An extremal graph (antipodal graph in the terminology of [16]) of d is a graph $H=(X, F)$ with $X \subseteq V$ such that for any distinct $x, y \in V$ there is an edge $s t \in F$ such that

$$
d(s, x)+d(x, y)+d(y, t)=d(s, t) ;
$$

see [13, 14]. A basic property of extremal graphs is that any shortest path between two points x, y of V can be extended to a shortest path between s, t of X with $s t \in F$. As is shown in [1] from Theorems A and B one can derive the following result.

Theorem C. Let d be a metric on V whose extremal graph H is either K_{4}, or C_{5}, or a union of two stars. Then
(i) d is decomposable into a sum of Hamming metrics;
(ii) if, in addition, d satisfies the parity condition, then d is decomposable into a sum of cut metrics.

In [14] Karzanov, continuing this line of research, established the following results.

Theorem D. If the length function l on V satisfies the parity condition and $H=(X, F)$ is a graph with $X \subseteq V$ and $|X|=5$, then there exists an H-packing for l consisting of cut metrics and 2,3-metrics.

Theorem E. Let d be a metric on V whose extremal graph H has five vertices. If d satisfies the parity condition, then d is decomposable into a sum of cut metrics and 2,3-metrics.

In this note we present alternative algorithmic proofs of Theorems A-E. If the metric closure d_{l} of l is given, then one can find the corresponding H-packings in optimal $O\left(|V|^{2}\right)$ time.

2. TIGHT EXTENSIONS OF METRIC SPACES

Let $X:=(X, d)$ be a metric space. The closed ball of center x and radius r will be $B(x, r)$. A metric space X is called hyperconvex if for any collection of closed balls in $X, B\left(x_{i}, r_{i}\right), i \in I$, satisfying the condition that $d\left(x_{i}, x_{j}\right) \leq r_{i}+r_{j}$ for all $i, j \in I$, the intersection $\bigcap_{i \in I} B\left(x_{i}, r_{i}\right)$ is nonempty, i.e., the family of balls of X has the H elly property.
The notion of hyperconvex spaces has been introduced by A ronszajn and Panitchpakdi [1], who proved that a hyperconvex space is injective, i.e., is a retract of any metric space in which it is isometrically embedded (for additional information consult $[2,10]$). To be more precise, here are the basic notions: a metric space (X, d) is isometrically embedded into a metric space $\left(Y, d^{\prime}\right)$ if there is a map $h: X \rightarrow Y$ such that $d^{\prime}(h(x), h(y))=d(x, y)$ for all $x, y \in X$. In this case we say that X is a subspace of Y and that Y is an extension of X. Now, a retraction $h: Y \rightarrow X$ from a metric space $\left(Y, d^{\prime}\right)$ to a subspace X is an idempotent $(h(x)=x$ for any $x \in X)$ nonexpansive $\left(d^{\prime}(h(x), h(y)) \leq d^{\prime}(x, y)\right.$ for any $\left.x, y \in Y\right)$ mapping; its image X is called a retract of Y. A metric space (X, d) is injective if X is a retract of every metric space in which X embeds isometrically.
Theorem 1 [1]. A metric space (X, d) is injective if and only if it is hyperconvex.

Let \mathbb{R}^{X} denote the set of all functions which map X into \mathbb{R}, endowed with the L_{∞}-metric

$$
d(f, g)=\sup _{x \in X}|f(x)-g(x)|
$$

for all elements f and g of \mathbb{R}^{X}. The resulting metric space $\left(\mathbb{R}^{X}, d\right)$ is a basic example of an injective space.

Isbell [9], Dress [6], and Chrobak and Larmore [5] independently established that every metric space (X, d) has a smallest containing injective space, which is compact if X is compact (in a more general framework a similar result was presented in [10]). Such a space is called the injective envelope by Isbell, the convex hull by Chrobak and Larmore, and the tight extension (notation T_{X}) by Dress. We will follow the terminology of [6], where a systematic treatment of this construction and its applications were given (for applications see also [5]). Although we need only a few elementary facts, mainly concerning the structure of T_{X} of small metric spaces, let us review some essential features of tight extensions.

A n extension (Y, d) of a metric space X is called a tight extension, if for any map $\rho: Y \times Y \rightarrow \mathbb{R}$ satisfying the conditions
(i) $\rho(x, y)=\rho(y, x) \geq 0$ for all $x, y \in Y$;
(ii) $\rho(x, z)+\rho(z, y) \geq \rho(x, y)$ for all $x, y, z \in Y$;
(iii) $\rho\left(x_{1}, x_{2}\right)=d\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$ and $\rho\left(y_{1}, y_{2}\right) \leq d\left(y_{1}, y_{2}\right)$ for all $y_{1}, y_{2} \in Y$;
one has necessarily $\rho\left(y_{1}, y_{2}\right)=d\left(y_{1}, y_{2}\right)$ for all $y_{1}, y_{2} \in Y$.
It has been shown in [6] that an extension (Y, d) of a metric space X is tight if and only if

$$
d\left(y_{1}, y_{2}\right)=\sup \left\{d\left(x_{1}, x_{2}\right)-d\left(x_{1}, y_{1}\right)-d\left(x_{2}, y_{2}\right): x_{1}, x_{2} \in X\right\}
$$

holds for all $y_{1}, y_{2} \in Y$.
In case X is compact, one can find a uniquely determined smallest subset F_{X} of X, such that any tight extension of X is a tight extension of F_{X}. The following result shows that F_{X} coincides with the vertex set of the extremal graph of a metric space defined in the previous section.

Theorem 2 [6]. Let (Y, d) be a compact metric space and let X be a closed subspace of Y. Then the following conditions are equivalent:
(i) Y is a tight extension of X;
(ii) X contains the set F_{X} of all $x \in Y$ for which there exists some $y \in Y$ with $d(y, x)+d(x, z)>d(y, z)$ for all $z \in Y-\{x\}$.

In particular, for any $y_{1}, y_{2} \in Y$ there exist $x_{1}, x_{2} \in F_{X}$ such that

$$
d\left(x_{1}, x_{2}\right)=d\left(x_{1}, y_{1}\right)+d\left(y_{2}, y_{2}\right)+d\left(y_{2}, x_{2}\right)
$$

and for any $y \in Y$ and $x \in F_{X}$ there is some $z \in F_{X}$ with $d(z, x)=d(z, y)+$ $d(y, x)$.

For a metric space (X, d) let T_{X} denote the set of all $f \in \mathbb{R}^{X}$ satisfying

$$
f(x)=\sup \{d(x, y)-f(y): y \in X\}
$$

for all $x \in X$. There is a canonical map, h_{X}, of the space (X, d) into T_{X}, which is given by $x \rightarrow h_{x}$, where the function h_{x} is defined by the formula

$$
h_{x}(y)=d(x, y) \quad \text { for all } y \in X
$$

From Theorem 3 of [6] it follows that T_{X} endowed with the L_{∞}-metric is a tight extension of X and the map h_{X} is an isometric embedding of X into T_{X}. It has been shown in $[5,6,9]$ that T_{X} is the universal tight extension of X, i.e., it contains, up to canonical isometries, every tight extension of X, and it has no proper tight extension itself. On the other hand, from the proof of Theorem 2.1 of [9] it follows that T_{X} is the smallest injective extension of X, i.e., T_{X} is the injective hull of X.

Now, suppose that X is finite, say $|X|=n$. Then T_{X} can be isometrically embedded in \mathbb{R}^{n} with the L_{∞}-metric and it consists of the finite union of a number of convex polyhedra of dimensions between 1 and $[n / 2][5,6]$. For our purposes we need the precise structure of T_{X} for small metric spaces ($n \leq 5$) only. T_{X} of metric spaces with at most four points has been described in [4-6] and T_{X} of metric spaces with five points was established in [4, 6]. Before we present these results, notice that in all these cases T_{X} is a union of a number of line segments, rectangles, or half-squares endowed with the rectilinear distance (due to the well-known fact that there is an isometry from the l_{1}-plane to the l_{∞}-plane).

For a cut $S=(A, B)$ of a metric space (X, d) define

$$
\begin{aligned}
& \alpha_{A, B}=\frac{1}{2} \cdot \min _{\substack{a, a^{\prime} \in A \\
b, b^{\prime} \in B}}\left(\operatorname { m a x } \left\{d(a, b)+d\left(a^{\prime}, b^{\prime}\right), d\left(a, b^{\prime}\right)+d\left(a^{\prime}, b\right),\right.\right. \\
&\left.\left.d\left(a, a^{\prime}\right)+d\left(b, b^{\prime}\right)\right\}-d\left(a, a^{\prime}\right)-d\left(b, b^{\prime}\right)\right) .
\end{aligned}
$$

A ccording to [4], $\alpha_{A, B}$ is called the isolation index of the cut $S=(A, B)$. If $S=\{\{x\}, X-\{x\}\}$ we simply write α_{x} instead of $\alpha_{\{x\}, X-\{x\}}$. If d satisfies the parity condition, then all isolation indices of cuts are integers; cf. [3]. Indeed, for a cut $S=(A, B)$ and points $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{aligned}
d(a, b) & +d\left(a^{\prime}, b^{\prime}\right)-d\left(a, a^{\prime}\right)-d\left(b, b^{\prime}\right) \\
= & \left(d\left(a, a^{\prime}\right)+d\left(a, b^{\prime}\right)+d\left(a^{\prime}, b^{\prime}\right)\right) \\
& +\left(d\left(a^{\prime}, b\right)+d\left(a^{\prime}, b^{\prime}\right)+d\left(b, b^{\prime}\right)\right) \\
& -2\left(d\left(a, a^{\prime}\right)+d\left(a^{\prime}, b^{\prime}\right)+d\left(b, b^{\prime}\right)\right),
\end{aligned}
$$

is an even integer. Hence all numbers over which this minimum is taken for $\alpha_{A, B}$ are integers, whence the isolation index of any cut is an integer. Now we are ready to describe T_{X} for $|X| \leq 5$, actually reproducing the results from [4-6].

If $|X|=2, T_{X}$ is a line segment, with two points of X at the ends.
If $|X|=3$, say $X=\{x, y, z\}, T_{X}$ consists of three line segments joined at a point, with the points of X at the ends of the arms. The lengths of these segments are α_{x}, α_{y}, and α_{z}, respectively (see Fig. 1). The metric d defined on X can be expressed in the form

$$
d=\alpha_{x} \delta_{\{x\},\{y, z\}}+\alpha_{y} \delta_{\{y\},\{x, z\}}+\alpha_{z} \delta_{\{z\},\{x, y\}} .
$$

In consequence, T_{X} isometrically embeds in the l_{1}-plane.
If $|X|=4$, say $X=\{u, v, x, y\}, T_{X}$ consists of a rectangle with the rectilinear metric, together with a line segment attached by one end to each corner. The points of X are the outer ends of these segments, whose lengths are $\alpha_{u}, \alpha_{v}, \alpha_{x}$, and α_{y}, respectively. If

$$
\begin{aligned}
& \max \{d(u, v)+d(x, y), d(u, x)+d(v, y), d(u, y)+d(v, x)\} \\
& \quad=d(u, v)+d(x, y)
\end{aligned}
$$

then the sides of the rectangle are given by the isolation indices $\alpha_{\{u, x\},\{y, v\}}$ and $\alpha_{\{u, y\},\{v, x\}}$ (see Fig. 2); for details consult [4-6]. A gain, d decomposes into a sum of H amming metrics

$$
\begin{aligned}
d= & \alpha_{u} \delta_{\{u\},\{v, x, y\}}+\alpha_{v} \delta_{\{v\},\{u, x, y\}}+\alpha_{x} \delta_{\{x\},\{u, v, y\}}+\alpha_{y} \delta_{\{y\},\{u, v, x\}} \\
& +\alpha_{\{u, x\},\{v, y\}} \delta_{\{u, x\},\{v, y\}}+\alpha_{\{u, y\},\{v, x\}} \delta_{\{u, y\},\{v, x\}}
\end{aligned}
$$

and T_{X} embeds in the l_{1}-plane.

FIG. 1. T_{X} of three points $X=\{x, y, z\}$.

FIG.2. $\quad T_{X}$ of four points $X=\{u, v, x, y\}$.

Finally, if X has cardinality five, there are three "generic" types of metrics defined on X. The corresponding spaces T_{X} taken from [4, 6] are shown in Figs. 3-5.

TyPE I. For $X=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ put

$$
d=\sum_{i=0}^{4} \gamma_{i} \delta_{\left\{x_{i}\right\}, X-\left\{x_{i}\right\}}+\sum_{i=0}^{4} \beta_{i} \delta_{\left\{x_{i}, x_{i+1}\right\}, X-\left\{x_{i}, x_{i+1}\right\}}
$$

(indices modulo 5), where $\gamma_{i}=\alpha_{x_{i}}$ and $\beta_{i}=\alpha_{\left\{x_{i}, x_{i+1}\right\}, X-\left\{x_{i}, x_{i+1}\right\}}$. As is shown in Fig. 3, T_{X} consists of five rectangles glued together to form a "star" and five line segments attached by one end to each corner of the star. In this case T_{X} isometrically embeds in \mathbb{R}^{3} endowed with the l_{1}-metric.

Type II. For $X=\left\{z_{1}, z_{2}, y_{1}, y_{2}, y_{3}\right\}$ let

$$
\begin{aligned}
d= & \sum_{i=1}^{2} \gamma_{i} \delta_{\left\{z_{i}\right\}, X-\left\{z_{i}\right\}}+\sum_{i=1}^{3} \eta_{i} \delta_{\left\{y_{i}\right\}, X-\left\{y_{i}\right\}}+\beta_{1} \delta_{\left\{y_{1}, z_{1}\right\}, X-\left\{y_{2}, z_{1}\right\}} \\
& +\beta_{2} \delta_{\left\{y_{1}, z_{2}\right\}, x-\left\{y_{1}, z_{2}\right\}}+\beta_{3} \delta_{\left\{y_{2}, z_{2}\right\}, x-\left\{y_{2}, z_{2}\right\}}+\beta_{4} \delta_{\left\{y_{2}, z_{1}\right\}, X-\left\{y_{2}, z_{1}\right\}}+\alpha d^{\prime},
\end{aligned}
$$

where $\gamma_{1}, \gamma_{2}, \eta_{1}, \eta_{2}, \eta_{3}, \beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}$, and β_{4} are the isolation indices of the respective cuts and d^{\prime} is the 2,3 -metric defined by

$$
\begin{gathered}
d^{\prime}\left(z_{1}, z_{2}\right)=d^{\prime}\left(y_{i}, y_{j}\right)=2 \quad(1 \leq i<j \leq 3) \\
d^{\prime}\left(z_{i}, y_{j}\right)=1 \quad(i=1,2 ; j=1,2,3) .
\end{gathered}
$$

FIG. 3. T_{X} of five points $X=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$: type I.

FIG.4. $\quad T_{X}$ of five points $X=\left\{z_{1}, z_{2}, y_{1}, y_{2}, y_{3}\right\}$: type II.

FIG. 5. T_{X} of five points $X=\left\{z_{1}, z_{2}, y_{1}, y_{2}, y_{3}\right\}$: type III.

Type III. The labels and parameters are as in type II, but now

$$
\begin{aligned}
d= & \sum_{i=1}^{2} \gamma_{i} \delta_{\left\{z_{i}\right\}, X-\left\{z_{i}\right\}}+\sum_{i=1}^{3} \eta_{i} \delta_{\left\{y_{i}\right\}, X-\left\{y_{i}\right\}}+\beta_{1} \delta_{\left\{y_{1}, z_{1}\right\}, X-\left\{y_{1}, z_{1}\right\}} \\
& +\beta_{2} \delta_{\left\{y_{2}, z_{1}\right\}, X-\left\{y_{2}, z_{1}\right\}}+\beta_{3} \delta_{\left\{y_{2}, z_{2}\right\}, X-\left\{y_{2}, z_{2}\right\}}+\beta_{4} \delta_{\left\{y_{3}, z_{2}\right\}, X-\left\{y_{3}, z_{2}\right\}}+\alpha d^{\prime} .
\end{aligned}
$$

Elementary cells of $T_{X},|X| \leq 5$ will be called the pendant line segments, the full rectangles, or the triplets of identical triangles glued together along their common diagonal to form a solid $K_{2,3}$ (for them we will use the short-name $K_{2,3}-$ cell). We will end this section by stating some useful properties of the space T_{X}. A straightforward verification shows that every elementary cell is a gated set of T_{X}. R ecall that according to [7] a subset M of a metric space $\left(T_{x}, d\right)$ is gated, if for any point $y \notin M$ there exists a (unique) point $g_{y} \in M$ (the gate for y in M) such that $d(y, z)=d\left(y, g_{y}\right)$ $+d\left(g_{y}, z\right)$ for all $z \in M$. This shows how given a point $x \in T_{X}$ and a radius $r>0$ to construct the ball $B(x, r)$. First, we find the gate g_{x} of x

y_{2}
FIG. 6. The ball $B(x, r)$.
on each elementary cell C of T_{X}. Then $B(x, r) \cap C$ coincides with $B\left(g_{x}, r-d\left(x, g_{x}\right)\right) \cap C$. The latter intersection can be easily found, because on all rectangular cells and triangles of $K_{2,3}$-cells the metric d is of l_{1}-type. Therefore, we can perform the whole construction of $B(x, r)$ in constant time $O(1)$; for an illustration see Fig. 6.

Due to the specific form of balls, we can solve the following problem in only $O(m)$ time: find the intersection B of m balls $B\left(x_{1}, r_{1}\right), \ldots, B\left(x_{m}, r_{m}\right)$. Indeed, it suffices to compute this intersection B_{R} inside each rectangular cell R or each triangle of a $K_{2,3}$-cell R. To find B_{R} we first compute the intersection of balls of radii $r_{i}-d\left(x_{i}, g_{x_{i}}\right)$ centered at $g_{x_{i}}$ in the whole plane of R, and then intersect the obtained figure with R.

If d satisfies the parity condition, then the lengths of edges of elementary cells of T_{X} are integers, because each of them is an isolation index of a certain cut of X. Therefore, one can identify every rectangular cell R of T_{X} with a rectangle R^{\prime} of \mathbb{R}^{2} whose all edges are axis-parallel and all corners are vertices of the grid \mathbb{Z}^{2}. It will be convenient to call integer points all points of R whose images in R^{\prime} belong to \mathbb{Z}^{2}. Similarly, we can define the integer points of triangles of $K_{2,3}$-cells. The gates of an integer point on elementary cells of T_{X} are integer, too. Now, suppose that
x_{1}, \ldots, x_{m} are integer points of T_{X} and $r_{1}, \ldots, r_{m} \in \mathbb{Z}^{+}$. One can easily show that in this case the set $B=\bigcap_{i=1}^{m} B\left(x_{i}, r_{i}\right)$ contains integer points (actually, the boundary segments of every nonempty set of the type B_{R} have such points). Therefore, with B in hands we can find at least one its integer point in only constant time.

2. PROOFS OF THEOREMS A-E

Let $G=(V, E)$ be a complete graph the edges $e \in E$ of which have nonnegative lengths $l(e)$, and let $H=(X, F)$ be a graph with $X \subseteq V$. From now on $d:=d_{l}$ will denote the metric closure of l.

K arzanov [13] outlined a simple way to reduce the case when H is a union of two stars S_{1} and S_{2} to that when H is K_{4}. Let S_{1} contain the edges $p p_{i}, i=1, \ldots, r$ and S_{2} contains the edges $q q_{j}, j=1, \ldots, t$. Put

$$
\delta_{1}=\max \{d(p, x): x \in V\}, \quad \delta_{2}=\max \{d(q, x): x \in V\},
$$

and $\delta=\delta_{1}+\delta_{2}$. Add two new points p^{\prime} and q^{\prime} to V and denote by V^{\prime} the resulting set. Let H^{\prime} be the complete graph K_{4} with the vertices $p, q, p^{\prime}, q^{\prime}$. Extend d to a metric d^{\prime} on V^{\prime} letting $d^{\prime}\left(p^{\prime}, x\right)=\delta-d(p, x)$, $d^{\prime}\left(q^{\prime}, x\right)=\delta-d(q, x)$, for any $x \in V$, and $d^{\prime}\left(p^{\prime}, q^{\prime}\right)=2 \delta-d(p, q)$. Then $d^{\prime}\left(p, p^{\prime}\right)=d^{\prime}\left(q, q^{\prime}\right)=\delta$, and, moreover, if a sequence p, \ldots, p_{i} (respectively, q, \ldots, q_{j}) is a shortest path of (V, d), then $p, \ldots, p_{i}, p^{\prime}$ (respectively, $\left.q, \ldots, q_{j}, q^{\prime}\right)$ is a shortest path of (V^{\prime}, d^{\prime}). In particular, if H is the extremal graph of (V, d), then H^{\prime} will be the extremal graph of the new metric space (V^{\prime}, d^{\prime}). Finally, if d satisfies the parity condition, then d^{\prime} satisfies it as well. Now, assume that there exists an H^{\prime}-packing d_{1}, \ldots, d_{m} of d^{\prime} consisting of H amming metrics (respectively, cut metrics, if d^{\prime} fulfills the parity condition). Since p, p_{i}, p^{\prime} and q, q_{j}, q^{\prime} are shortest paths of (V^{\prime}, d^{\prime}), as we already noted

$$
d^{\prime}\left(p, p_{i}\right)=\sum_{k=1}^{m} d_{k}\left(p, p_{i}\right) \quad \text { and } \quad d^{\prime}\left(q, q_{j}\right)=\sum_{k=1}^{m} d_{k}\left(q, q_{j}\right)
$$

Taking the restriction of each $d_{k}, k=1, \ldots, m$, on V we will get the required H-packing of d consisting of H amming (respectively, cut) metrics. Thus, it suffices to establish the validity of Theorems A, B, and C only for $H=K_{4}$ and $H=C_{5}$. Therefore, in all cases to be considered the graph $H=(X, F)$ has at most five vertices.

Let Y be the union of the sets V and T_{X} glued together along their common subspace X. D efine the distance $d(x, y)$ between two points of Y as the length of the shortest path joining them. Since on X the metric
closure of the length function l and the injective metric of T_{X} coincide, we conclude that both sets V and T_{X} endowed with their own metrics are isometric subspaces of the metric space (Y, d). From the definition of T_{X} and the results of Section 2 it follows that there is a retraction from Y to T_{X}. We construct a retraction map step by step, starting with the identity map h acting on T_{X}. At each step we extend h to a larger subset of V, finding an image in T_{X} of a new point from $V-X$. Namely, let $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and suppose that h has been defined on a subset $V^{\prime}=$ $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ of V containing X. Set $w_{j}=h\left(v_{j}\right), j=1, \ldots, k-1$. Pick a point $v_{k} \in V-V^{\prime}$, and for any point $v_{j} \in V^{\prime}$ put $r_{j}=d\left(v_{j}, v_{k}\right)$. By the triangle inequality and because h is non-expansive on V^{\prime}, we conclude that

$$
d\left(w_{i}, w_{j}\right) \leq d\left(v_{i}, v_{j}\right) \leq r_{i}+r_{j}
$$

for any $i, j \in\{1, \ldots, k-1\}$. Consider the balls $B\left(w_{j}, r_{j}\right), j \leq k-1$. Since T_{X} is hyperconvex, these balls intersect. Take as $w_{k}:=h\left(v_{k}\right)$ any point of $\bigcap_{j=1}^{k-1} B\left(w_{j}, r_{j}\right)$. E vidently, this iterative procedure provides a non-expansive map h from V to T_{X}. Therefore, an H-packing of d restricted to the set $W=\left\{w_{1}, \ldots, w_{n}\right\}$ can be easily transformed into an H-packing of d on the initial set V.

The properties of T_{X} stated at the end of Section 2 point the way how to construct the balls $B\left(w_{j}, r_{j}\right), j=1, \ldots, k-1$, and to select a new point $w_{k} \in \bigcap_{j=1}^{k-1} B\left(w_{j}, r_{j}\right), k=1, \ldots, n$, in total $O\left(n^{2}\right)$ time. In addition, if d obeys the parity condition, then within the same time bounds we can select all $w_{k}, k=1, \ldots, n$ among integer points of T_{X}.

Pick a point $w_{i} \in W$ in a rectangular cell R. Consider two segments which pass through w_{i} and are translates of the edges of R. If such a segment intersects an edge of a rectangular cell R^{\prime} incident to R, then extend it in the same way to a maximal chain whose endpoints belong to the boundary of T_{X}. Transform T_{X} into a grid Γ by taking all such chains, analogous chains formed by the edges of the rectangular cells, and the points of W located on the pendant edges of T_{X}; for an illustration see Fig. 7. To construct Γ we have to sort the coordinates of the points of W inside each rectangular cell or pendant edge of T_{X}. By a strip of T_{X} we mean an area of T_{X} comprised between two consecutive nonintersecting chains and which does not intersect the $K_{2,3}$-cell. This notion extends in an evident fashion to the case of pendant edges of T_{X}. Suppose now that T_{X} has m strips $S_{1}, \ldots, \mathrm{~S}_{m}$, whose widths are the numbers $\lambda_{1}, \ldots, \lambda_{m}$. N otice here that if W consists of integer points only, then the widths of all strips must be integral. Each strip S_{i} defines a cut $S_{i}=\left(A_{i}, B_{i}\right)$ of W (and of the initial set V, of course).

FIG.7. Two examples of the grid Γ.

Let d_{0} be a metric on W obtained by summing up the H amming metrics $\lambda_{i} \delta_{S_{i}}, i=1, \ldots, m$, i.e.,

$$
d_{0}=\lambda_{1} \delta_{S_{1}}+\cdots+\lambda_{m} \delta_{S_{m}}
$$

If T_{X} does not contain a $K_{2,3}$-cell, then one can easily show that d and d_{0} coincide, giving us the desired H-packing of d on W (and V) consisting of

Hamming metrics. If, in addition, d satisfies the parity condition, then each $\lambda_{i}, i=1, \ldots, m$, is an integer, i.e., we will have an H-packing of d consisting of cut metrics. This settles the case $H=K_{4}$ in Theorems A, B, and C. If $H=(X, F)$ is the extremal graph of the metric d on V, then the mapping h will be an isometry. If $H=C_{5}$, then T_{X} of Type II or III cannot occur, because in these cases the vertices y_{1}, y_{2}, and y_{3} will be pairwise adjacent in H. This concludes the proof of Theorem C .
Now, suppose that T_{X} contains a $K_{2,3^{-}}$cell C consisting of three congruent triangles T_{1}, T_{2}, T_{3}. For each point x of X, let R_{x} be the union of the pendant edge of T_{X} containing x and of the rectangular cell sharing a common vertex with this edge. Replace each point of W by its gate in C. We prefer to use the same symbol w_{i} for the gate of w_{i} in C. The unique common vertex of R_{x} and C will be the gate of every point of $W \cap R_{x}$. For convenience, we will denote it also by x. Then each distance between two points w_{i} and w_{j} of W decreases by the value $d_{0}\left(w_{i}, w_{j}\right)$. Therefore, it suffices to find an H-packing of $d-d_{0}$ defined on the new set W.

We are ready, finally, to complete the proof of Theorems A and B. Let $H=C_{5}$, and suppose, without loss of generality, that the vertices y_{2} and y_{3} are nonadjacent in H. Identify the triangles T_{2} and T_{3} as is shown in Fig. 8. This mapping is nonexpansive. Namely, it preserves the distances between points from the same triangle $T_{i}, i=1,2,3$, or from a point in T_{1} and another one in $T_{2} \cup T_{3}$. All other distances decrease. Transform the rectangle $R=T_{1} \cup T_{2}$ into a rectilinear grid by taking all vertical and horizontal lines passing through the images of points of W. A gain, the strips S_{m+1}, \ldots, S_{m+p} define the cuts $S_{m+1}=\left(A_{m+1}, B_{m+1}\right), \ldots, S_{m+p}=$ $\left(A_{m+p}, B_{m+p}\right.$) of W (and V). If $\lambda_{m+1}, \ldots, \lambda_{m+p}$ are the widths of these strips, then

$$
\lambda_{m+1} \delta_{S_{m+1}}+\cdots+\lambda_{m+p} \delta_{S_{m+p}}
$$

is an H-packing of $d-d_{0}$ consisting of H amming metrics (or cut metrics, if d fulfills the parity condition). The cuts which take part in this decomposition can be found in total $O\left(n^{2}\right)$ time in a straightforward way. This finishes the proof of Theorems A and B.

Finally, suppose that we are in the conditions of Theorems D or E. To construct the required 2,3-metrics we identify the triangles T_{1}, T_{2} and T_{3}. Consider a rectilinear grid within the resulting triangle (recall, it represents a half-square) by taking all vertical and horizontal lines passing through the images of points of W as is sketched in Fig. 9. We copy the obtained grid in all three triangles of C. Then T_{1}, T_{2}, T_{3} are subdivided into a collection of rectangles and half-squares, latter being arranged along the common edge of these triangles. The triplets C_{m+1}, \ldots, C_{m+p} of identical half-squares of sizes $\lambda_{m+1}, \ldots, \lambda_{m+p}$ taken from distinct triangles

FIG.8. A n illustration to the proof of Theorems A and B.
define a collection of 2,3 -metrics $d_{m+1}^{\prime}, \ldots, d_{m+p}^{\prime}$ on W. Namely, the gate in C_{m+j} of every point of W is a vertex of the bounding $K_{2,3}$-graph, this giving us the blocks of the 2,3 -metric $d_{m+j}^{\prime}, j=1, \ldots, p$. One can easily show that

$$
\lambda_{m+1} d_{m+1}^{\prime}+\cdots+\lambda_{m+p} d_{m+p}^{\prime}
$$

represents a decomposition of $d-d_{0}$ into a sum of H amming 2,3-metrics. If d satisfies the parity condition, then our preceding discussion yields that $\lambda_{m+1}, \ldots, \lambda_{m+p}$ are integers, concluding the proof of Theorems D and E . A gain the H-packing of $d-d_{0}$ can be computed in $O\left(n^{2}\right)$ total time. We conclude with the following variant of Theorems A and D.

Theorem D^{\prime}. If the graph $H=(X, F)$ has at most five vertices, then there exists an H-packing for l consisting of Hamming metrics and Hamming 2, 3-metrics.

ACKNOWLEDGMENTS

I am indebted to A. Karzanov for some useful discussions during the conference on discrete metric spaces in Bielefeld (1994). I express my appreciation to B. Fichet for valuable discussions on metrics and for his support.

REFERENCES

1. N. A ronszajn and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439.
2. J.-B. Baillon, Nonexpansive mappings and hyperconvex spaces, in "Contemporary M athematics," V ol. 72, pp. 11-19, A mer. M ath. Soc., Providence, RI, 1988.
3. H.-J. Bandelt and V. Chepoi, E mbedding into the rectilinear grid, submitted for publication.
4. H.-J. Bandelt and A. W. M. Dress, A canonical decomposition theory for metrics on a finite set, Adv. Math. 92 (1992), 47-105.
5. M. Chrobak and L. L. Larmore, Generosity helps or an 11-competitive algorithm for three servers, J. Algorithms 16 (1994), 234-263.
6. A. W. M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. Math. 5 (1984), 321-402.
7. A. W. M. Dress and R. Scharlau, Gated sets in metric spaces, Aequationes Math. 34 (1987), 112-120.
8. M.Iri, On an extension of the maximum-flow minimum-cut theorem to multicommodity flows, J. Oper. Res. Soc. Japan 13 (1970/1971), 129-135.
9. J. Isbell, Six theorems about metric spaces, Comment. Math. Helv. 39 (1964), 65-74.
10. E. J awhari, D. M isane, and M. Pouzet, R etracts: G raphs and ordered sets from the metric point of view, in "Contemporary M athematics," V ol. 57, pp. 175-225, A mer. M ath. Soc., Providence, RI, 1986.
11. L. R. Ford and D. R. Fulkerson, M aximal flow through a network, Canad. J. Math. 8 (1956), 399-404.
12. T. C. Hu, M ulticommodity network flows, Oper. Res. 11 (1963), 344-360.
13. A. V. K arzanov, M etrics and undirected cuts, Math. Programm. 32 (1985), 183-198.
14. A. V. Karzanov, Sums of cuts and bipartite metrics, Europ. J. Combin. 11 (1990), 473-484.
15. O. Kenji and K. O samu, On feasibility conditions on multicommodity flows in networks, IEEE Trans. Circuit Theory CT-18 (1971), 425-429.
16. M. V. Lomonosov, Combinatorial approaches to multiflow problems, Discrete Appl. Math. 11 (1985), 1-94.
17. B. A. Papernov, On existence of multicommodity flows, in "Studies Discrete Optimization," (A . A . Fridman, Ed.), Nauka, M oscow, 1976. [in R ussian]
18. B. R othschild and A. Whinston, On two commodity network flows, Oper. Res. 14 (1966), 377-387.
19. P. D. Seymour, Four-terminus flows, Networks 10 (1980), 79-86.
20. A. Schrijver, Short proofs on multicommodity flows and cuts, J. Combin. Theory Ser. B 53 (1991), 32-39.

[^0]: * On leave from the U niversitatea de stat din M oldova, Chişinău.

