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27 Bd Jean Moulin, F-13385 Marseille Cedex 5, France

Received November 2, 1996; accepted December 30, 1996

Ž .We give simple algorithmic proofs of some theorems of Papernov 1976 and
Ž .Karzanov 1985, 1990 on the packing of metrics by cuts. Q 1997 Academic Press

1. INTRODUCTION

Let us commence by recalling the multicommodity flow problem and its
� 4dual, the problem of packing metrics by cuts. A pair S s A, B of

nonempty disjoint subsets of a finite set V is called a cut if B s V y A.
Ž .Consider a network N s G, H, c, q consisting of a supply graph G s

Ž . q � 4V, E endowed with a capacity function c: E ª R j 0 , a demand graph
Ž . q � 4H s X, F with X : V, and a demand function q: F ª R j 0 . Denote

� 4 Ž .the edges of H by s t , . . . , s t . For a cut S s A, B of V let E S1 1 m m
denote the set of edges of G with one end in A and the other in B, and

Ž . Ž .let c S s Ý c e be the capacity of the cut S.eg EŽS .
The well-known multicommodity flow problem is to find flows f , . . . , f ,1 m

where each f is a flow from s to t of value q , such that for each e g Ei i i i
Ž .the total flow through e does not exceed c e , or to establish that no such

flows exist. By linear programming duality, a multicommodity flow exists if
and only if

q d s , t F c e l e , i s 1, . . . , m ,Ž . Ž . Ž .Ý Ýi l i i
egE

Ž .for any nonnegative real-valued length function l on E, and d s , tl i i
denotes the distance between s and t in the graph G whose edges arei i
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w xweighted by l 8, 15 . If a multicommodity flow exists then the following
condition of Ford]Fulkerson type is verified:

m

c S G q for any cut S s A , B with s g A , t g B. 1Ž . Ž . Ž .Ý i i i
is1

For what commodity graphs H is this necessary condition also sufficient?
w xThe answer was given by the following result of Papernov 17 :

if H is the complete graph K with four ¨ertices or the circuit C with fï e4 5
Ž .¨ertices or a union of two stars and 1 holds, then the multicommodity flow

problem has a solution.

This result generalizes many earlier known theorems on multicommod-
w xity flows established in 11, 12, 16, 18, 19 .

Ž .Let G s V, E be a complete graph the edges e g E of which have
Ž . Ž .nonnegative real-valued lengths l e . Suppose that d x, y denotes thel

distance between vertices x and y with respect to l; in other words d isl
Ž .the metric closure of l. Then V, d is a finite metric space. A sequencel

u s x , x , . . . , x , x s ¨ of points of V is called a shortest path be-0 1 n nq1
Ž . n Ž .tween the points u and ¨ if d u, ¨ s Ý d x , x . We will say that ll is1 l i iq1
Ž . Ž . Ž .satisfies the parity condition if l u, ¨ q l ¨ , w q l w, u is an even integer

for any u, ¨ , w g V. Evidently, the parity condition is preserved while
Ž .passing to d , and, moreover, all distances of V, d are integers becausel l

Ž . Ž . Ž . Ž .d u, ¨ q d ¨ , ¨ q d ¨ , u s 2 d u, ¨ is an even integer.l l l l
Now we recall a cut packing problem which is dual to the multicommod-

Ž .ity flow problem. Given a graph H s X, F with X : V, a family
� 4 Ž Ž .. wd , . . . , d of metrics on V is called an H-packing for l or V, d 13,1 m l

x14 if

d x , y G d x , y q ??? qd x , y for all x , y g V 2Ž . Ž . Ž . Ž .l 1 m

and

d s, t s d s, t q ??? qd s, t for all st g F . 3Ž . Ž . Ž . Ž .l 1 m

If d , . . . , d is an H-packing of l, and u s x , x , . . . , x , x s ¨ is a1 m 0 1 n nq1
shortest path between u and ¨ with u¨ g F, then necessarily

d x , x s d x , x q ??? qd x , xŽ . Ž . Ž .l i iq1 1 i iq1 m i iq1

Ž .for any i s 0, . . . , n. If equality 3 holds, then we say that the metric dl
admits an additive decomposition d s d q ??? qd . The simplest build-l 1 m

Ž .ing stones are the cut pseudo- metrics associated to cuts of the set V : for
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Ž .a cut S s A, B of V define

0 if x , y g A or x , y g B ,
d x , y sŽ .S ½ 1 otherwise, i.e., if S separates x and y.

More generally, a metric d on V is called Hamming if for some l ) 0 and
some cut metric d we have d s ld . An example of a metric notS S

Ž .decomposable into a sum of cut metrics or Hamming metrics gives the
standard graph-metric dX of the complete bipartite graph K . A 2, 3-met-2, 3
ric dX on V is defined as follows: take a partition of V into five blocks, and

XŽ .consider each of them as a vertex of K . Put d x, y s 0, if x and y2, 3
XŽ .belong to a common block, otherwise let d x, y be the distance in K2, 3

between the blocks containing x and y. Finally, if d s ldX for some
positive l, we will say that d is a Hamming 2, 3-metric.

Combining linear programming arguments with the result of Papernov
Ž w x.one can obtain the following theorem see 13 .

THEOREM A. If H is K or C or a union of two stars, then there exists an4 5
H-packing for l consisting of Hamming metrics.

w xAs is noted in 13, 20 , Theorem A implies the Papernov theorem.
w xKarzanov 13 presented a stronger, ‘‘half-integral’’ version of this result.

THEOREM B. If H is as in Theorem A and l satisfies the parity condition,
then there exists an H-packing for l consisting of cut metrics.

Ž < < 3.Karzanov’s proof yields an O V algorithm for finding an H-packing
Ž .for l. A shorter but nonconstructive proof of Theorem B was given by

w xSchrijver 20 .
ŽLet d be a metric on V. An extremal graph antipodal graph in the

w x. Ž .terminology of 16 of d is a graph H s X, F with X : V such that for
any distinct x, y g V there is an edge st g F such that

d s, x q d x , y q d y , t s d s, t ;Ž . Ž . Ž . Ž .

w xsee 13, 14 . A basic property of extremal graphs is that any shortest path
between two points x, y of V can be extended to a shortest path between

w xs, t of X with st g F. As is shown in 1 from Theorems A and B one can
derive the following result.

THEOREM C. Let d be a metric on V whose extremal graph H is either K ,4
or C , or a union of two stars. Then5

Ž .i d is decomposable into a sum of Hamming metrics;
Ž .ii if , in addition, d satisfies the parity condition, then d is decompos-

able into a sum of cut metrics.
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w xIn 14 Karzanov, continuing this line of research, established the
following results.

THEOREM D. If the length function l on V satisfies the parity condition
Ž . < <and H s X, F is a graph with X : V and X s 5, then there exists an

H-packing for l consisting of cut metrics and 2, 3-metrics.

THEOREM E. Let d be a metric on V whose extremal graph H has fï e
¨ertices. If d satisfies the parity condition, then d is decomposable into a sum
of cut metrics and 2, 3-metrics.

In this note we present alternative algorithmic proofs of Theorems A]E.
If the metric closure d of l is given, then one can find the correspondingl

Ž < < 2 .H-packings in optimal O V time.

2. TIGHT EXTENSIONS OF METRIC SPACES

Ž .Let X [ X, d be a metric space. The closed ball of center x and
Ž .radius r will be B x, r . A metric space X is called hypercon¨ex if for any

Ž .collection of closed balls in X, B x , r , i g I, satisfying the condition thati i
Ž . Ž .d x , x F r q r for all i, j g I, the intersection F B x , r isi j i j ig I i i

nonempty, i.e., the family of balls of X has the Helly property.
The notion of hyperconvex spaces has been introduced by Aronszajn

w xand Panitchpakdi 1 , who proved that a hyperconvex space is injective, i.e.,
Žis a retract of any metric space in which it is isometrically embedded for

w x.additional information consult 2, 10 . To be more precise, here are the
Ž .basic notions: a metric space X, d is isometrically embedded into a metric

Ž X. XŽ Ž . Ž .. Ž .space Y, d if there is a map h: X ª Y such that d h x , h y s d x, y
for all x, y g X. In this case we say that X is a subspace of Y and that Y
is an extension of X. Now, a retraction h: Y ª X from a metric space
Ž X. Ž Ž . .Y, d to a subspace X is an idempotent h x s x for any x g X

Ž XŽ Ž . Ž .. XŽ . .nonexpansive d h x , h y F d x, y for any x, y g Y mapping; its
Ž .image X is called a retract of Y. A metric space X, d is injectï e if X is a

retract of every metric space in which X embeds isometrically.

w x Ž .THEOREM 1 1 . A metric space X, d is injectï e if and only if it is
hypercon¨ex.

Let R X denote the set of all functions which map X into R, endowed
with the L -metric`

d f , g s sup f x y g xŽ . Ž . Ž .x g X

X Ž X .for all elements f and g of R . The resulting metric space R , d is a
basic example of an injective space.
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w x w x w xIsbell 9 , Dress 6 , and Chrobak and Larmore 5 independently estab-
Ž .lished that every metric space X, d has a smallest containing injective

Žspace, which is compact if X is compact in a more general framework a
w x.similar result was presented in 10 . Such a space is called the injectï e

en¨elope by Isbell, the con¨ex hull by Chrobak and Larmore, and the tight
Ž . w xextension notation T by Dress. We will follow the terminology of 6 ,X

where a systematic treatment of this construction and its applications were
Ž w x.given for applications see also 5 . Although we need only a few elemen-

tary facts, mainly concerning the structure of T of small metric spaces, letX
us review some essential features of tight extensions.

Ž .An extension Y, d of a metric space X is called a tight extension, if for
any map r : Y = Y ª R satisfying the conditions

Ž . Ž . Ž .i r x, y s r y, x G 0 for all x, y g Y;
Ž . Ž . Ž . Ž .ii r x, z q r z, y G r x, y for all x, y, z g Y;
Ž . Ž . Ž . Ž . Ž .iii r x , x s d x , x for all x , x g X and r y , y F d y , y1 2 1 2 1 2 1 2 1 2

for all y , y g Y;1 2

Ž . Ž .one has necessarily r y , y s d y , y for all y , y g Y.1 2 1 2 1 2
w x Ž .It has been shown in 6 that an extension Y, d of a metric space X is

tight if and only if

d y , y s sup d x , x y d x , y y d x , y : x , x g X� 4Ž . Ž . Ž . Ž .1 2 1 2 1 1 2 2 1 2

holds for all y , y g Y.1 2
In case X is compact, one can find a uniquely determined smallest

subset F of X, such that any tight extension of X is a tight extension ofX
F . The following result shows that F coincides with the vertex set of theX X
extremal graph of a metric space defined in the previous section.

w x Ž .THEOREM 2 6 . Let Y, d be a compact metric space and let X be a
closed subspace of Y. Then the following conditions are equï alent:

Ž .i Y is a tight extension of X ;
Ž .ii X contains the set F of all x g Y for which there exists some y g YX
Ž . Ž . Ž . � 4with d y, x q d x, z ) d y, z for all z g Y y x .

In particular, for any y , y g Y there exist x , x g F such that1 2 1 2 X

d x , x s d x , y q d y , y q d y , xŽ . Ž . Ž . Ž .1 2 1 1 2 2 2 2

Ž . Ž .and for any y g Y and x g F there is some z g F with d z, x s d z, y qX X
Ž .d y, x .
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Ž . XFor a metric space X, d let T denote the set of all f g R satisfyingX

f x s sup d x , y y f y : y g X� 4Ž . Ž . Ž .

Ž .for all x g X. There is a canonical map, h , of the space X, d into T ,X X
which is given by x ª h , where the function h is defined by the formulax x

h y s d x , y for all y g X .Ž . Ž .x

w xFrom Theorem 3 of 6 it follows that T endowed with the L -metric is aX `

tight extension of X and the map h is an isometric embedding of X intoX
w xT . It has been shown in 5, 6, 9 that T is the universal tight extension ofX X

X, i.e., it contains, up to canonical isometries, every tight extension of X,
and it has no proper tight extension itself. On the other hand, from the

w xproof of Theorem 2.1 of 9 it follows that T is the smallest injectiveX
extension of X, i.e., T is the injective hull of X.X

< <Now, suppose that X is finite, say X s n. Then T can be isometri-X
cally embedded in R n with the L -metric and it consists of the finite union`

w x w xof a number of convex polyhedra of dimensions between 1 and nr2 5, 6 .
For our purposes we need the precise structure of T for small metricX

Ž .spaces n F 5 only. T of metric spaces with at most four points has beenX
w xdescribed in 4]6 and T of metric spaces with five points was establishedX

w xin 4, 6 . Before we present these results, notice that in all these cases TX
is a union of a number of line segments, rectangles, or half-squares

Žendowed with the rectilinear distance due to the well-known fact that
.there is an isometry from the l -plane to the l -plane .1 `

Ž . Ž .For a cut S s A, B of a metric space X, d define

1 X X X Xa s ? min max d a, b q d a , b , d a, b q d a , b ,� Ž . Ž . Ž . Ž .ŽA , B 2 Xa, a gA
Xb , b gB

d a, aX q d b , bX y d a, aX y d b , bX .4Ž . Ž . Ž . Ž . .

w x Ž .According to 4 , a is called the isolation index of the cut S s A, B . IfA, B
�� 4 � 44S s x , X y x we simply write a instead of a . If d satisfiesx � x4, Xy� x4

w xthe parity condition, then all isolation indices of cuts are integers; cf. 3 .
Ž . X XIndeed, for a cut S s A, B and points a, a g A and b, b g B,

d a, b q d aX , bX y d a, aX y d b , bXŽ . Ž . Ž . Ž .
s d a, aX q d a, bX q d aX , bXŽ . Ž . Ž .Ž .

q d aX , b q d aX , bX q d b , bXŽ . Ž . Ž .Ž .
y 2 d a, aX q d aX , bX q d b , bX ,Ž . Ž . Ž .Ž .
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is an even integer. Hence all numbers over which this minimum is taken
for a are integers, whence the isolation index of any cut is an integer.A, B

< <Now we are ready to describe T for X F 5, actually reproducing theX
w xresults from 4]6 .

< <If X s 2, T is a line segment, with two points of X at the ends.X
< < � 4If X s 3, say X s x, y, z , T consists of three line segments joined atX

a point, with the points of X at the ends of the arms. The lengths of these
Ž .segments are a , a , and a , respectively see Fig. 1 . The metric dx y z

defined on X can be expressed in the form

d s a d q a d q a d .x � x4 , � y , z4 y � y4 , � x , z4 z � z4 , � x , y4

In consequence, T isometrically embeds in the l -plane.X 1
< < � 4If X s 4, say X s u, ¨ , x, y , T consists of a rectangle with theX

rectilinear metric, together with a line segment attached by one end to
each corner. The points of X are the outer ends of these segments, whose
lengths are a , a , a , and a , respectively. Ifu ¨ x y

max d u , ¨ q d x , y , d u , x q d ¨ , y , d u , y q d ¨ , x� 4Ž . Ž . Ž . Ž . Ž . Ž .
s d u , ¨ q d x , y ,Ž . Ž .

then the sides of the rectangle are given by the isolation indices a�u, x4, � y, ¨4
Ž . w xand a see Fig. 2 ; for details consult 4]6 . Again, d decomposes�u, y4, �¨ , x4

into a sum of Hamming metrics

d s a d q a d q a d q a du �u4 , �¨ , x , y4 ¨ �¨4 , �u , x , y4 x � x4 , �u , ¨ , y4 y � y4 , �u , ¨ , x4

q a d q a d ,�u , x4 , �¨ , y4 �u , x4 , �¨ , y4 �u , y4 , �¨ , x4 �u , y4 , �¨ , x4

and T embeds in the l -plane.X 1

� 4FIG. 1. T of three points X s x, y, z .X
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� 4FIG. 2. T of four points X s u, ¨ , x, y .X

Finally, if X has cardinality five, there are three ‘‘generic’’ types of
w xmetrics defined on X. The corresponding spaces T taken from 4, 6 areX

shown in Figs. 3]5.

� 4TYPE I. For X s x , x , x , x , x put0 1 2 3 4

4 4

d s g d q b dÝ Ýi � x 4 , Xy� x 4 i � x , x 4 , Xy� x , x 4i i i iq1 i iq1
is0 is0

Ž .indices modulo 5 , where g s a and b s a . As isi x i � x , x 4, Xy� x , x 4i i iq1 i iq1

shown in Fig. 3, T consists of five rectangles glued together to form aX
‘‘star’’ and five line segments attached by one end to each corner of the
star. In this case T isometrically embeds in R3 endowed with theX
l -metric.1

� 4TYPE II. For X s z , z , y , y , y let1 2 1 2 3

2 3

d s g d q h d q b dÝ Ýi � z 4 , Xy� z 4 i � y 4 , Xy� y 4 1 � y , z 4 , Xy� y , z 4i i i i 1 1 2 1
is1 is1

q b d q b d q b d q a dX ,2 � y , z 4 , Xy� y , z 4 3 � y , z 4 , Xy� y , z 4 4 � y , z 4 , Xy� y , z 41 2 1 2 2 2 2 2 2 1 2 1

where g , g , h , h , h , b , b , b , b , and b are the isolation indices of1 2 1 2 3 0 1 2 3 4
the respective cuts and dX is the 2, 3-metric defined by

dX z , z s dX y , y s 2 1 F i - j F 3Ž . Ž . Ž .1 2 i j

dX z , y s 1 i s 1, 2; j s 1, 2, 3 .Ž . Ž .i j
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� 4FIG. 3. T of five points X s x , x , x , x , x : type I.X 0 1 2 3 4

� 4FIG. 4. T of five points X s z , z , y , y , y : type II.X 1 2 1 2 3
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� 4FIG. 5. T of five points X s z , z , y , y , y : type III.X 1 2 1 2 3

TYPE III. The labels and parameters are as in type II, but now

2 3

d s g d q h d q b dÝ Ýi � z 4 , Xy� z 4 i � y 4 , Xy� y 4 1 � y , z 4 , Xy� y , z 4i i i i 1 1 1 1
is1 is1

q b d q b d q b d q a dX .2 � y , z 4 , Xy� y , z 4 3 � y , z 4 , Xy� y , z 4 4 � y , z 4 , Xy� y , z 42 1 2 1 2 2 2 2 3 2 3 2

< <Elementary cells of T , X F 5 will be called the pendant line segments,X
the full rectangles, or the triplets of identical triangles glued together

Žalong their common diagonal to form a solid K for them we will use2, 3
.the short-name K -cell . We will end this section by stating some useful2, 3

properties of the space T . A straightforward verification shows that everyX
w xelementary cell is a gated set of T . Recall that according to 7 a subsetX

Ž .M of a metric space T , d is gated, if for any point y f M there exists ax
Ž . Ž . Ž . Ž .unique point g g M the gate for y in M such that d y, z s d y, gy y

Ž .q d g , z for all z g M. This shows how given a point x g T and ay X
Ž .radius r ) 0 to construct the ball B x, r . First, we find the gate g of xx
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Ž .FIG. 6. The ball B x, r .

Ž .on each elementary cell C of T . Then B x, r l C coincides withX
Ž Ž ..B g , r y d x, g l C. The latter intersection can be easily found, be-x x

cause on all rectangular cells and triangles of K -cells the metric d is of2, 3
Ž .l -type. Therefore, we can perform the whole construction of B x, r in1

Ž .constant time O 1 ; for an illustration see Fig. 6.
Due to the specific form of balls, we can solve the following problem in

Ž . Ž . Ž .only O m time: find the intersection B of m balls B x , r , . . . , B x , r .1 1 m m
Indeed, it suffices to compute this intersection B inside each rectangularR
cell R or each triangle of a K -cell R. To find B we first compute the2, 3 R

Ž .intersection of balls of radii r y d x , g centered at g in the wholei i x xi i

plane of R, and then intersect the obtained figure with R.
If d satisfies the parity condition, then the lengths of edges of elemen-

tary cells of T are integers, because each of them is an isolation index ofX
a certain cut of X. Therefore, one can identify every rectangular cell R of
T with a rectangle RX of R2 whose all edges are axis-parallel and allX
corners are vertices of the grid Z2. It will be convenient to call integer
points all points of R whose images in RX belong to Z2. Similarly, we can
define the integer points of triangles of K -cells. The gates of an integer2, 3
point on elementary cells of T are integer, too. Now, suppose thatX
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x , . . . , x are integer points of T and r , . . . , r g Zq. One can easily1 m X 1 m
m Ž .show that in this case the set B s F B x , r contains integer pointsis1 i i

Žactually, the boundary segments of every nonempty set of the type BR
.have such points . Therefore, with B in hands we can find at least one its

integer point in only constant time.

2. PROOFS OF THEOREMS A]E

Ž .Let G s V, E be a complete graph the edges e g E of which have
Ž . Ž .nonnegative lengths l e , and let H s X, F be a graph with X : V.

From now on d [ d will denote the metric closure of l.l
w xKarzanov 13 outlined a simple way to reduce the case when H is a

union of two stars S and S to that when H is K . Let S contain the1 2 4 1
edges pp , i s 1, . . . , r and S contains the edges qq , j s 1, . . . , t. Puti 2 j

d s max d p , x : x g V , d s max d q , x : x g V ,� 4 � 4Ž . Ž .1 2

and d s d q d . Add two new points pX and qX to V and denote by V X
1 2

the resulting set. Let H X be the complete graph K with the vertices4
X X X X XŽ X . Ž .p, q, p , q . Extend d to a metric d on V letting d p , x s d y d p, x ,

XŽ X . Ž . XŽ X X. Ž .d q , x s d y d q, x , for any x g V, and d p , q s 2d y d p, q . Then
XŽ X. XŽ X. Žd p, p s d q, q s d , and, moreover, if a sequence p, . . . , p respec-i

. Ž . X Žtively, q, . . . , q is a shortest path of V, d , then p, . . . , p , p respectively,j i
X. Ž X X.q, . . . , q , q is a shortest path of V , d . In particular, if H is thej

Ž . Xextremal graph of V, d , then H will be the extremal graph of the new
Ž X X . Xmetric space V , d . Finally, if d satisfies the parity condition, then d

satisfies it as well. Now, assume that there exists an H X-packing d , . . . , d1 m
X Ž Xof d consisting of Hamming metrics respectively, cut metrics, if d fulfills

. X Xthe parity condition . Since p, p , p and q, q , q are shortest paths ofi j
Ž X X.V , d , as we already noted

m m
X Xd p , p s d p , p and d q , q s d q , q .Ž . Ž . Ž . Ž .Ý Ýi k i j k j

ks1 ks1

Taking the restriction of each d , k s 1, . . . , m, on V we will get thek
Ž .required H-packing of d consisting of Hamming respectively, cut metrics.

Thus, it suffices to establish the validity of Theorems A, B, and C only for
H s K and H s C . Therefore, in all cases to be considered the graph4 5

Ž .H s X, F has at most five vertices.
Let Y be the union of the sets V and T glued together along theirX

Ž .common subspace X. Define the distance d x, y between two points of Y
as the length of the shortest path joining them. Since on X the metric
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closure of the length function l and the injective metric of T coincide, weX
conclude that both sets V and T endowed with their own metrics areX

Ž .isometric subspaces of the metric space Y, d . From the definition of TX
and the results of Section 2 it follows that there is a retraction from Y to
T . We construct a retraction map step by step, starting with the identityX
map h acting on T . At each step we extend h to a larger subset of V,X
finding an image in T of a new point from V y X. Namely, let V sX
� 4 X¨ , . . . , ¨ and suppose that h has been defined on a subset V s1 n
� 4 Ž .¨ , ¨ , . . . , ¨ of V containing X. Set w s h ¨ , j s 1, . . . , k y 1. Pick1 2 ky1 j j

X X Ž .a point ¨ g V y V , and for any point ¨ g V put r s d ¨ , ¨ . By thek j j j k

triangle inequality and because h is non-expansive on V X, we conclude that

d w , w F d ¨ , ¨ F r q rŽ . Ž .i j i j i j

� 4 Ž .for any i, j g 1, . . . , k y 1 . Consider the balls B w , r , j F k y 1. Sincej j
Ž .T is hyperconvex, these balls intersect. Take as w [ h ¨ any point ofX k k

ky1 Ž .F B w , r . Evidently, this iterative procedure provides a non-expansivejs1 j j
map h from V to T . Therefore, an H-packing of d restricted to the setX

� 4W s w , . . . , w can be easily transformed into an H-packing of d on the1 n
initial set V.

The properties of T stated at the end of Section 2 point the way how toX
Ž .construct the balls B w , r , j s 1, . . . , k y 1, and to select a new pointj j

ky1 Ž . Ž 2 .w g F B w , r , k s 1, . . . , n, in total O n time. In addition, if dk js1 j j
obeys the parity condition, then within the same time bounds we can select
all w , k s 1, . . . , n among integer points of T .k X

Pick a point w g W in a rectangular cell R. Consider two segmentsi
which pass through w and are translates of the edges of R. If such ai
segment intersects an edge of a rectangular cell RX incident to R, then
extend it in the same way to a maximal chain whose endpoints belong to
the boundary of T . Transform T into a grid G by taking all such chains,X X
analogous chains formed by the edges of the rectangular cells, and the
points of W located on the pendant edges of T ; for an illustration seeX
Fig. 7. To construct G we have to sort the coordinates of the points of W
inside each rectangular cell or pendant edge of T . By a strip of T weX X
mean an area of T comprised between two consecutive nonintersectingX
chains and which does not intersect the K -cell. This notion extends in2, 3
an evident fashion to the case of pendant edges of T . Suppose now thatX
T has m strips SS , . . . , SS , whose widths are the numbers l , . . . , l .X 1 m 1 m
Notice here that if W consists of integer points only, then the widths of all

Ž . Žstrips must be integral. Each strip SS defines a cut S s A , B of W andi i i i
.of the initial set V, of course .
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FIG. 7. Two examples of the grid G.

Let d be a metric on W obtained by summing up the Hamming metrics0
l d , i s 1, . . . , m, i.e.,i Si

d s l d q ??? ql d .0 1 S m S1 m

If T does not contain a K -cell, then one can easily show that d and dX 2, 3 0
Ž .coincide, giving us the desired H-packing of d on W and V consisting of
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Hamming metrics. If, in addition, d satisfies the parity condition, then
each l , i s 1, . . . , m, is an integer, i.e., we will have an H-packing of di
consisting of cut metrics. This settles the case H s K in Theorems A, B,4

Ž .and C. If H s X, F is the extremal graph of the metric d on V, then the
mapping h will be an isometry. If H s C , then T of Type II or III5 X
cannot occur, because in these cases the vertices y , y , and y will be1 2 3
pairwise adjacent in H. This concludes the proof of Theorem C.

Now, suppose that T contains a K -cell C consisting of three congru-X 2, 3
ent triangles T , T , T . For each point x of X, let R be the union of the1 2 3 x
pendant edge of T containing x and of the rectangular cell sharing aX
common vertex with this edge. Replace each point of W by its gate in C.
We prefer to use the same symbol w for the gate of w in C. The uniquei i
common vertex of R and C will be the gate of every point of W l R .x x
For convenience, we will denote it also by x. Then each distance between

Ž .two points w and w of W decreases by the value d w , w . Therefore, iti j 0 i j
suffices to find an H-packing of d y d defined on the new set W.0

We are ready, finally, to complete the proof of Theorems A and B. Let
H s C , and suppose, without loss of generality, that the vertices y and5 2
y are nonadjacent in H. Identify the triangles T and T as is shown in3 2 3
Fig. 8. This mapping is nonexpansive. Namely, it preserves the distances
between points from the same triangle T , i s 1, 2, 3, or from a point in Ti 1
and another one in T j T . All other distances decrease. Transform the2 3
rectangle R s T j T into a rectilinear grid by taking all vertical and1 2
horizontal lines passing through the images of points of W. Again, the

Ž .strips SS , . . . , SS define the cuts S s A , B , . . . , S smq 1 mqp mq1 mq1 mq1 mqp
Ž . Ž .A , B of W and V . If l , . . . , l are the widths of thesemq p mqp mq1 mqp
strips, then

l d q ??? ql dmq 1 S mqp Smq 1 mqp

Žis an H-packing of d y d consisting of Hamming metrics or cut metrics,0
.if d fulfills the parity condition . The cuts which take part in this decompo-
Ž 2 .sition can be found in total O n time in a straightforward way. This

finishes the proof of Theorems A and B.
Finally, suppose that we are in the conditions of Theorems D or E. To

construct the required 2, 3-metrics we identify the triangles T , T and T .1 2 3
ŽConsider a rectilinear grid within the resulting triangle recall, it repre-

.sents a half-square by taking all vertical and horizontal lines passing
through the images of points of W as is sketched in Fig. 9. We copy the
obtained grid in all three triangles of C. Then T , T , T are subdivided1 2 3
into a collection of rectangles and half-squares, latter being arranged along
the common edge of these triangles. The triplets C , . . . , C ofmq 1 mqp
identical half-squares of sizes l , . . . , l taken from distinct trianglesmq 1 mqp
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FIG. 8. An illustration to the proof of Theorems A and B.

define a collection of 2, 3-metrics dX , . . . , dX on W. Namely, the gatemq 1 mqp
in C of every point of W is a vertex of the bounding K -graph, thismq j 2, 3
giving us the blocks of the 2, 3-metric dX , j s 1, . . . , p. One can easilymq j
show that

l dX q ??? ql dX
mq1 mq1 mqp mqp

represents a decomposition of d y d into a sum of Hamming 2, 3-metrics.0
If d satisfies the parity condition, then our preceding discussion yields that
l , . . . , l are integers, concluding the proof of Theorems D and E.mq 1 mqp

Ž 2 .Again the H-packing of d y d can be computed in O n total time. We0
conclude with the following variant of Theorems A and D.
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FIG. 9. Construction of the grid in Theorems D and E.

X Ž .THEOREM D . If the graph H s X, F has at most fï e ¨ertices, then
there exists an H-packing for l consisting of Hamming metrics and Hamming
2, 3-metrics.
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