6,204 research outputs found

    Strictly convex drawings of planar graphs

    Full text link
    Every three-connected planar graph with n vertices has a drawing on an O(n^2) x O(n^2) grid in which all faces are strictly convex polygons. These drawings are obtained by perturbing (not strictly) convex drawings on O(n) x O(n) grids. More generally, a strictly convex drawing exists on a grid of size O(W) x O(n^4/W), for any choice of a parameter W in the range n<W<n^2. Tighter bounds are obtained when the faces have fewer sides. In the proof, we derive an explicit lower bound on the number of primitive vectors in a triangle.Comment: 20 pages, 13 figures. to be published in Documenta Mathematica. The revision includes numerous small additions, corrections, and improvements, in particular: - a discussion of the constants in the O-notation, after the statement of thm.1. - a different set-up and clarification of the case distinction for Lemma

    A local grid refinement technique based upon Richardson extrapolation

    Get PDF
    A grid-embedding technique for the solution of two-dimensional incompressible flows governed by the Navier-Stokes equations is presented. A single coarse grid covers the whole domain, and local grid refinement B carried out in the regions of high gradients without changing the basic grid structure. A finite volume method with collocated primitive variables is employed, ensuring conservation at the interfaces of embedded grids, as well as global conservation. The method is applied to the simulation of a turbulent flow past a backward facing step, the flow over a square obstacle, and the flow in a sudden pipe expansion, and the predictions are compared with data published in the literature. They show that neither the convergence rate nor the stability of the method are affected by the presence of embedded grids. The grid-embedding technique yields significant savings in computing time to achieve the same accuracy obtained wing conventional grids. (C) 1997 by Elsevier Science Inc

    Millimeter-Wave Diode-Grid Frequency Doubler

    Get PDF
    Monolithic diode grid were fabricated on 2-cm^2 gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept. An equivalent circuit model based on a transmission-line analysis of plane wave illumination was applied to predict the array performance. The doubler experiments were performed under far-field illumination conditions. A second-harmonic conversion efficiency of 9.5% and output powers of 0.5 W were achieved at 66 GHz when the diode grid was pumped with a pulsed source at 33 GHz. This grid had 760 Schottky-barrier varactor diodes. The average series resistance was 27 Ω, the minimum capacitance was 18 fF at a reverse breakdown voltage of -3 V. The measurements indicate that the diode grid is a feasible device for generating watt-level powers at millimeter frequencies and that substantial improvement is possible by improving the diode breakdown voltage

    Overlap Removal of Dimensionality Reduction Scatterplot Layouts

    Full text link
    Dimensionality Reduction (DR) scatterplot layouts have become a ubiquitous visualization tool for analyzing multidimensional data items with presence in different areas. Despite its popularity, scatterplots suffer from occlusion, especially when markers convey information, making it troublesome for users to estimate items' groups' sizes and, more importantly, potentially obfuscating critical items for the analysis under execution. Different strategies have been devised to address this issue, either producing overlap-free layouts, lacking the powerful capabilities of contemporary DR techniques in uncover interesting data patterns, or eliminating overlaps as a post-processing strategy. Despite the good results of post-processing techniques, the best methods typically expand or distort the scatterplot area, thus reducing markers' size (sometimes) to unreadable dimensions, defeating the purpose of removing overlaps. This paper presents a novel post-processing strategy to remove DR layouts' overlaps that faithfully preserves the original layout's characteristics and markers' sizes. We show that the proposed strategy surpasses the state-of-the-art in overlap removal through an extensive comparative evaluation considering multiple different metrics while it is 2 or 3 orders of magnitude faster for large datasets.Comment: 11 pages and 9 figure

    A direct procedure for interpolation on a structured curvilinear two-dimensional grid

    Get PDF
    A direct procedure is presented for locally bicubic interpolation on a structured, curvilinear, two-dimensional grid. The physical (Cartesian) space is transformed to a computational space in which the grid is uniform and rectangular by a generalized curvilinear coordinate transformation. Required partial derivative information is obtained by finite differences in the computational space. The partial derivatives in physical space are determined by repeated application of the chain rule for partial differentiation. A bilinear transformation is used to analytically transform the individual quadrilateral cells in physical space into unit squares. The interpolation is performed within each unit square using a piecewise bicubic spline
    • …
    corecore