2,240 research outputs found

    Smart lighting in multipurpose outdoor environments: energy efficient solution using network of cooperating objects

    Get PDF
    The first applications for smart environments targeted wellscoped spaces and appliances. These applications were strong drivers to advance Wireless Sensor Networks (WSN) and the Internet of Things (IoT). With the evolution of the technological base, more complex environments became the new targets. The concept of cooperating objects (CO) enables further advancement of IoT and helps to grasp the multiple aspects of these environments. This paper describes smart lighting application for the multipurpose outdoor environment at the university campus area implemented following the new paradigm. The application is aiming efficient use of energy and future integration with associated industrial systems

    Smart system signalization prototype for flow control of people in crosswalks

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáBad lighting conditions on crosswalks is a common problem on the urban environment. This scenery entail a large number of pedestrians fatalities and it shows a demand for solutions able to ensure their safety using lighting resources. The present work proposes a crosswalk’s crossing process oriented by a system which is compound for a pair of Smart Devices that fit themselves in the Smart City idea. Inside this propose, they are capable to signalize for pedestrians the safe moment to enter on the crosswalk. These devices are a prototype of a system programmed in Python language and based in the Raspberry Pi and LoRa technologies. The work is split, mainly, on the hardware and software components development. In hardware level, it shows a circuit schematic design based on the Raspberry Pi Compute Module operating with the RFM95W LoRa module. In software level, it shows the incremental development of a Embedded System which reads inputs, gives lighting outputs and implements the communication, with encrypted messages, between the devices. Finally, this thesis shows a circuit schematic implementation wiled in KiCAD software and a embedded system focused in ensure well lighting and signalization on crosswalks. To validate the system are made hypothetical tests toward pedestrians behavior to cross the street on crosswalks.As más condições de iluminação em passadeiras são um problema recorrente no ambiente urbano. Esse cenário implica em um grande número de fatalidades e deixa evidente a demanda por uma solução capaz de garantir a segurança do pedestre usando recursos de iluminação. O presente trabalho propõe um processo de travessia em faixas de pedestres orientado por um sistema composto por um par de dipositivos inteligentes que se encaixam na ideia de cidades inteligentes. Dentro dessa proposta, eles são capazes de sinalizar para os pedestres o momento seguro para entrar na passadeira. Esses dispositivos são um protótipo de sistema programado em linguagem Python e baseado nas tecnologias Raspberry Pi e LoRa. O trabalho é dividido, principalmente, no desenvolvimento das componentes de hardware e software. A nível de hardware, ele mostra um projeto esquemático do circuito baseado no Raspberry Pi Compute Module que opera com o módulo LoRa RFM95W. A nível de software, ele mostra o desenvolvimento incremental de um sistema incorporado que lê entradas, fornece saídas de iluminação e implementa a comunicação, com mensagens criptografadas, entre os dispositivos. Finalmente, esta tese mostra a implementação do esquemático de um circuito usando o software KiCAD e um sistema embarcado focado em garantir iluminação e a sinalização nas passadeiras. Para validar o sistema são feitos testes hipotéticos em relação ao comportamento dos pedestres para atravessar a rua em faixas de pedestres

    Ray

    Get PDF
    This capstone documents the design process of developing a lighting solution to the complex system that is public pedestrian spaces

    Adaptive Control of IoT/M2M Devices in Smart Buildings using Heterogeneous Wireless Networks

    Full text link
    With the rapid development of wireless communication technology, the Internet of Things (IoT) and Machine-to-Machine (M2M) are becoming essential for many applications. One of the most emblematic IoT/M2M applications is smart buildings. The current Building Automation Systems (BAS) are limited by many factors, including the lack of integration of IoT and M2M technologies, unfriendly user interfacing, and the lack of a convergent solution. Therefore, this paper proposes a better approach of using heterogeneous wireless networks consisting of Wireless Sensor Networks (WSNs) and Mobile Cellular Networks (MCNs) for IoT/M2M smart building systems. One of the most significant outcomes of this research is to provide accurate readings to the server, and very low latency, through which users can easily control and monitor remotely the proposed system that consists of several innovative services, namely smart parking, garden irrigation automation, intrusion alarm, smart door, fire and gas detection, smart lighting, smart medication reminder, and indoor air quality monitoring. All these services are designed and implemented to control and monitor from afar the building via our free mobile application named Raniso which is a local server that allows remote control of the building. This IoT/M2M smart building system is customizable to meet the needs of users, improving safety and quality of life while reducing energy consumption. Additionally, it helps prevent the loss of resources and human lives by detecting and managing risks.Comment: Accepted in IEEE Sensors Journa

    A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock

    Get PDF
    The construction industry has witnessed an increase in the use of digital tools and smart solutions, particularly in the realm of building energy automation. While realising the potential benefits of smart cities, a broader scope of smart initiatives is required to support the transition from smart buildings towards smart neighbourhoods, which are considered critical urban development units. To support the interplay of smart solutions between buildings and neighbourhoods, this study aimed to collect and review all the smart solutions presented in existing scientific articles, the technical literature, and realised European projects. These solutions were classified into two main sections, buildings and neighbourhoods, which were investigated through five domains: building-energy-related uses, renewable energy sources, water, waste, and open space management. The quantitative outcomes demonstrated the potential benefits of implementing smart solutions in areas ranging from buildings to neighbourhoods. Moreover, this research concluded that the true enhancement of energy conservation goes beyond the building’s energy components and can be genuinely achieved by integrating intelligent neighbourhood elements owing to their strong interdependencies. Future research should assess the effectiveness of these solutions in resource conservation

    Automatic Wireless Nurse Caller

    Get PDF
    The nurse caller device is used as a special communication device between the patient and the nurse within the hospital area as a means of speeding the nurse's time response in providing immediate care to the patient. The designed wireless-based nurse caller device made installation easier and neater. The remote used a Bluetooth module MH-10 connected to the ATMega8 microcontroller as the sender and receiver. The data process using a microcontroller ATMega8 produced characters on the LCD, turned on the LED, and activated the buzzer to call the nurse. The results of the test on the device showed that the farthest distance taken by the HM-10 Bluetooth module in the open area (outdoor) was about 45 meters, and the closed area (indoor) was about 20 meters

    An Investigation of the Policies and Crucial Sectors of Smart Cities Based on IoT Application

    Get PDF
    As smart cities (SCs) emerge, the Internet of Things (IoT) is able to simplify more sophisticated and ubiquitous applications employed within these cities. In this regard, we investigate seven predominant sectors including the environment, public transport, utilities, street lighting, waste management, public safety, and smart parking that have a great effect on SC development. Our findings show that for the environment sector, cleaner air and water systems connected to IoT-driven sensors are used to detect the amount of CO2, sulfur oxides, and nitrogen to monitor air quality and to detect water leakage and pH levels. For public transport, IoT systems help traffic management and prevent train delays, for the utilities sector IoT systems are used for reducing overall bills and related costs as well as electricity consumption management. For the street-lighting sector, IoT systems are used for better control of streetlamps and saving energy associated with urban street lighting. For waste management, IoT systems for waste collection and gathering of data regarding the level of waste in the container are effective. In addition, for public safety these systems are important in order to prevent vehicle theft and smartphone loss and to enhance public safety. Finally, IoT systems are effective in reducing congestion in cities and helping drivers to find vacant parking spots using intelligent smart parking

    Smart streetlights: a feasibility study

    Get PDF
    The world's cities are growing. The effects of population growth and urbanisation mean that more people are living in cities than ever before, a trend set to continue. This urbanisation poses problems for the future. With a growing population comes more strain on local resources, increased traffic and congestion, and environmental decline, including more pollution, loss of green spaces, and the formation of urban heat islands. Thankfully, many of these stressors can be alleviated with better management and procedures, particularly in the context of road infrastructure. For example, with better traffic data, signalling can be smoothed to reduce congestion, parking can be made easier, and streetlights can be dimmed in real time to match real-world road usage. However, obtaining this information on a citywide scale is prohibitively expensive due to the high costs of labour and materials associated with installing sensor hardware. This study investigated the viability of a streetlight-integrated sensor system to affordably obtain traffic and environmental information. This investigation was conducted in two stages: 1) the development of a hardware prototype, and 2) evaluation of an evolved prototype system. In Stage 1 of the study, the development of the prototype sensor system was conducted over three design iterations. These iterations involved, in iteration 1, the live deployment of the prototype system in an urban setting to select and evaluate sensors for environmental monitoring, and in iterations 2 and 3, deployments on roads with live and controlled traffic to develop and test sensors for remote traffic detection. In the final iteration, which involved controlled passes of over 600 vehicle, 600 pedestrian, and 400 cyclist passes, the developed system that comprised passive-infrared motion detectors, lidar, and thermal sensors, could detect and count traffic from a streetlight-integrated configuration with 99%, 84%, and 70% accuracy, respectively. With the finalised sensor system design, Stage 1 showed that traffic and environmental sensing from a streetlight-integrated configuration was feasible and effective using on-board processing with commercially available and inexpensive components. In Stage 2, financial and social assessments of the developed sensor system were conducted to evaluate its viability and value in a community. An evaluation tool for simulating streetlight installations was created to measure the effects of implementing the smart streetlight system. The evaluation showed that the on-demand traffic-adaptive dimming enabled by the smart streetlight system was able to reduce the electrical and maintenance costs of lighting installations. As a result, a 'smart' LED streetlight system was shown to outperform conventional always-on streetlight configurations in terms of financial value within a period of five to 12 years, depending on the installation's local traffic characteristics. A survey regarding the public acceptance of smart streetlight systems was also conducted and assessed the factors that influenced support of its applications. In particular, the Australia-wide survey investigated applications around road traffic improvement, streetlight dimming, and walkability, and quantified participants' support through willingness-to-pay assessments to enable each application. Community support of smart road applications was generally found to be positive and welcomed, especially in areas with a high dependence on personal road transport, and from participants adversely affected by spill light in their homes. Overall, the findings of this study indicate that our cities, and roads in particular, can and should be made smarter. The technology currently exists and is becoming more affordable to allow communities of all sizes to implement smart streetlight systems for the betterment of city services, resource management, and civilian health and wellbeing. The sooner that these technologies are embraced, the sooner they can be adapted to the specific needs of the community and environment for a more sustainable and innovative future

    ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR EMBEDDED SMART CAMERAS: DESIGN, IMPLEMENTATION AND PERFORMANCE ANALYSIS

    Get PDF
    An embedded smart camera is a stand-alone unit that not only captures images, but also includes a processor, memory and communication interface. Battery-powered, embedded smart cameras introduce many additional challenges since they have very limited resources, such as energy, processing power and memory. When camera sensors are added to an embedded system, the problem of limited resources becomes even more pronounced. Hence, computer vision algorithms running on these camera boards should be light-weight and efficient. This thesis is about designing and developing computer vision algorithms, which are aware and successfully overcome the limitations of embedded platforms (in terms of power consumption and memory usage). Particularly, we are interested in object detection and tracking methodologies and the impact of them on the performance and battery life of the CITRIC camera (embedded smart camera employed in this research). This thesis aims to prolong the life time of the Embedded Smart platform, without affecting the reliability of the system during surveillance tasks. Therefore, the reader is walked through the whole designing process, from the development and simulation, followed by the implementation and optimization, to the testing and performance analysis. The work presented in this thesis carries out not only software optimization, but also hardware-level operations during the stages of object detection and tracking. The performance of the algorithms introduced in this thesis are comparable to state-of-the-art object detection and tracking methods, such as Mixture of Gaussians, Eigen segmentation, color and coordinate tracking. Unlike the traditional methods, the newly-designed algorithms present notable reduction of the memory requirements, as well as the reduction of memory accesses per pixel. To accomplish the proposed goals, this work attempts to interconnect different levels of the embedded system architecture to make the platform more efficient in terms of energy and resource savings. Thus, the algorithms proposed are optimized at the API, middleware, and hardware levels to access the pixel information of the CMOS sensor directly. Only the required pixels are acquired in order to reduce the unnecessary communications overhead. Experimental results show that when exploiting the architecture capabilities of an embedded platform, 41.24% decrease in energy consumption, and 107.2% increase in battery-life can be accomplished. Compared to traditional object detection and tracking methods, the proposed work provides an additional 8 hours of continuous processing on 4 AA batteries, increasing the lifetime of the camera to 15.5 hours
    • …
    corecore