
Smart System Signalization
Prototype for Flow Control of

People in Crosswalks

Chrysologo Rocha de Oliveira Neto

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Industrial Engineering.

Work oriented by:

Professor PhD José Barbosa

Professor PhD Paulo Leitão

Professor PhD Luiz Fernando Caparroz Duarte

Bragança

2019-2020

ii

Smart System Signalization
Prototype for Flow Control of

People in Crosswalks

Chrysologo Rocha de Oliveira Neto

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Industrial Engineering.

Work oriented by:

Professor PhD José Barbosa

Professor PhD Paulo Leitão

Professor PhD Luiz Fernando Caparroz Duarte

Bragança

2019-2020

iv

Acknowledgements

Agradeço ao Instituto Politécnico de Bragança e a Universidade Tecnológica Federal do

Paraná pela oportunidade de crescer como pessoa gozando do privilégio que é o programa

de Dupla Diplomação. Agradeço ao Professor PhD José Barbosa por ter me dado calma

e direcionamento no desenvolvimento desse projeto.

Agradeço a minha família e amigos por não terem me deixado desistir nesse grande

desafio interno que foi estar aqui, por fim, finalizando esse documento. Em especial,

gostaria de agradecer todo amor, amparo e conselhos dados por Bárbara Giehl, Dionizio

Roman e Guilherme Gontijo. Vocês foram a base dessa minha vitória.

Gostaria, também, de agradecer aos meus queridos amigos Alessa, Goku, Hugo e Miko

que, nesse período, resignificaram meu sentido de família e amizade. E, por fim, agradeço

a todos artistas, poetas e músicos que interviram no meu ser e nutriram minha alma em

momentos de dificuldade.

Gratidão.

v

vi

Abstract

Bad lighting conditions on crosswalks is a common problem on the urban environment.

This scenery entail a large number of pedestrians fatalities and it shows a demand for

solutions able to ensure their safety using lighting resources. The present work proposes a

crosswalk’s crossing process oriented by a system which is compound for a pair of Smart

Devices that fit themselves in the Smart City idea. Inside this propose, they are capable

to signalize for pedestrians the safe moment to enter on the crosswalk. These devices are

a prototype of a system programmed in Python language and based in the Raspberry Pi

and LoRa technologies. The work is split, mainly, on the hardware and software compo-

nents development. In hardware level, it shows a circuit schematic design based on the

Raspberry Pi Compute Module operating with the RFM95W LoRa module. In software

level, it shows the incremental development of a Embedded System which reads inputs,

gives lighting outputs and implements the communication, with encrypted messages, be-

tween the devices. Finally, this thesis shows a circuit schematic implementation wiled in

KiCAD software and a embedded system focused in ensure well lighting and signalization

on crosswalks. To validate the system are made hypothetical tests toward pedestrians

behavior to cross the street on crosswalks.

Keywords: Smart Street Lighting; Crosswalk; Embedded System; Raspberry Pi; LoRa.

vii

viii

Resumo

As más condições de iluminação em passadeiras são um problema recorrente no ambi-

ente urbano. Esse cenário implica em um grande número de fatalidades e deixa evidente

a demanda por uma solução capaz de garantir a segurança do pedestre usando recur-

sos de iluminação. O presente trabalho propõe um processo de travessia em faixas de

pedestres orientado por um sistema composto por um par de dipositivos inteligentes que

se encaixam na ideia de cidades inteligentes. Dentro dessa proposta, eles são capazes de

sinalizar para os pedestres o momento seguro para entrar na passadeira. Esses dispositivos

são um protótipo de sistema programado em linguagem Python e baseado nas tecnolo-

gias Raspberry Pi e LoRa. O trabalho é dividido, principalmente, no desenvolvimento

das componentes de hardware e software. A nível de hardware, ele mostra um projeto

esquemático do circuito baseado no Raspberry Pi Compute Module que opera com o mó-

dulo LoRa RFM95W. A nível de software, ele mostra o desenvolvimento incremental de

um sistema incorporado que lê entradas, fornece saídas de iluminação e implementa a

comunicação, com mensagens criptografadas, entre os dispositivos. Finalmente, esta tese

mostra a implementação do esquemático de um circuito usando o software KiCAD e um

sistema embarcado focado em garantir iluminação e a sinalização nas passadeiras. Para

validar o sistema são feitos testes hipotéticos em relação ao comportamento dos pedestres

para atravessar a rua em faixas de pedestres.

Palavras-chave: Sistemas de Iluminação Inteligente, Passadeiras, Sistemas Embarca-

dos, Raspberry Pi, LoRa.

ix

x

Contents

1 Introduction 1

1.1 Framework and Motivation . 1

1.2 Objectives . 4

1.3 Document Structure . 5

2 Related Works 7

2.1 IoT Environment for Smart City . 7

2.1.1 Internet of Things . 7

2.1.2 Smart City . 10

2.1.3 Architectures . 12

2.2 Smart Lighting . 16

2.2.1 Working Structure . 16

2.2.2 Smart Street Lighting . 18

2.2.3 Remote Communication . 19

2.3 Developed Works . 20

2.3.1 Smart Street Lights . 20

2.3.2 Development of Cloud Based Light Intensity Monitoring System

Using Raspberry Pi . 21

2.3.3 A real-time sensing system of elderly’s crossing behavior at outdoor

environments . 23

xi

2.3.4 Automation Control and Monitoring of Public Street Lighting Sys-

tem based on Internet of Things 23

2.3.5 Pedestrian-Safe Smart Crossing System Based on IoT with Object

Tracking . 25

2.3.6 Smart System of a Real-Time Pedestrian Detection for Smart City 26

2.3.7 Long-Range Communications in Unlicensed Bands: The Rising Stars

in the IoT and Smart City Scenarios 27

3 Flow Control of Pedestrian Traffic 29

3.1 Proposal of Solution . 29

3.2 Hardware . 33

3.2.1 Overview . 33

3.2.2 Control Board . 35

3.2.3 Inputs . 36

3.2.4 Outputs . 38

3.2.5 Energy Supply . 39

3.3 Software . 41

3.3.1 Overview . 41

3.3.2 Methodology . 42

3.3.3 Inputs and Outputs . 43

3.3.4 Development Tools . 44

4 Development: Embedded System and Schematic 45

4.1 Hardware . 45

4.1.1 Raspberry Pi . 46

4.1.2 LoRa RFM95W . 48

4.1.3 Inputs Connectors . 49

4.1.4 Outputs Relays . 50

4.1.5 Energy Supply . 51

4.2 Software . 53

xii

4.2.1 Work Environment . 54

4.2.2 Pilot Implementation . 56

4.2.3 Structural . 63

4.2.4 Communication . 68

4.2.5 Integration . 70

4.2.6 Software Incorporation . 73

5 Results and Discussion 75

5.1 Hardware . 75

5.2 Embedded System . 77

5.2.1 Software . 77

5.2.2 Tests . 82

6 Conclusions and Future Works 85

6.1 Conclusion . 85

6.2 Future Works . 86

A Raspberry Pi Compute Module Base Project A1

B Smart Crosswalk Schematic B1

C Algorithm’s Versioning C1

C.1 Pilot . C1

C.1.1 Main Routine . C1

C.1.2 LoRa Module . C4

C.1.3 Functions . C15

C.1.4 Tools . C17

C.2 Structural . C18

C.2.1 Main Routine . C18

C.2.2 Raspiberry Pi Module . C20

C.2.3 Tools . C24

xiii

C.3 Communication . C25

C.3.1 Main Routine . C25

C.4 Integration . C27

C.4.1 Main Routine . C27

C.4.2 Raspberry Pi Module Updates . C29

C.4.3 LoRa Module Updates . C30

C.5 Final . C32

C.5.1 Main Routine . C32

C.5.2 Raspberry Pi Module Updates . C34

C.5.3 LoRa Module Updates . C38

C.6 Setup Files’ Generation Script . C39

D Practical Protoboard Assembly D1

D.1 Pilot . D1

D.2 Structural . D3

D.3 Final . D4

xiv

List of Tables

3.1 The input/ouput peripherals’ difference between Device A and B. 31

3.2 Detection’s task for all inputs. 37

3.3 Signalization’s task for all outputs. 39

3.4 2016 Monthly Radiation (KWh/m2). 39

3.5 Power consumption estimate for devices’ reference. 41

3.6 Computational useful tools. 44

4.1 SPI connection between LoRa and Raspberry CM3. 49

4.2 Outputs wiring. 51

4.3 Necessary components to simulate the algorithms. 53

4.4 Developed algorithms’ versioning. 53

4.5 Connection between Raspberry Pi 3B+ and RFM95W. 58

4.6 GPIO pins used as Inputs/Outputs for the Pilot version. 59

4.7 GPIO pins used such as Inputs/Outputs in the Structural version. 64

4.8 Devices’ unique characteristics used on the Integration. 71

xv

List of Figures

1.1 Number of pedestrian fatalities and all road fatalities, EU [1]. 1

1.2 Pedestrian fatality rates per million population by age group, EU [1]. . . . 2

1.3 Percentage of elderly pedestrian fatalities (age>64) of all pedestrian fatal-

ities by country [1]. 2

1.4 Percentage of pedestrian fatalities during darkness of all pedestrian fatali-

ties, EU [1]. 3

1.5 Distribution of specific critical events - pedestrians and driver/riders in

pedestrian accidents. 3

1.6 Elderly resident population (age>65) in Portugal from the years 1991 to

2019, with a projection until 2080 [2]. 4

2.1 Basic workflow used in Internet of Things (IoT) [4]. 8

2.2 Generic Architecture for IoT System [4]. 9

2.3 Smart City eight components [11]. 11

2.4 Diagram comparison between (2.4a) Autonomous and (2.4b) Ubiquitous

network architecture. 13

2.5 Overview of SL and their LU integration levels, adapted from [15] and [14]. 16

2.6 System architecture block diagram, adapted from [30]. 21

2.7 System architecture block diagram, adapted from [32]. 22

2.8 Pedestrians’ street-crossing behaviour process, adapted from [33]. 23

2.9 System architecture block diagram, adapted from [34]. 24

2.10 System architecture block diagram, adapted from [36]. 26

xvi

2.11 LoRa protocol architecture [23]. 28

3.1 Smart Devices’ pairs disposition on the crosswalk. 30

3.2 Pedestrians street cross scheme with relevant detection areas highlighted. 31

3.3 Pedestrian and System interaction process flowchart to cross the street. . 32

3.4 Hardware flowchart organizing schematic and its inputs and outputs. . . . 33

3.5 Raspberry Pi 3 Model B+ (3.5a) and Raspberry Pi Compute Module 3+

(3.5b). 35

3.6 HopeRF RFM95W Module. 36

3.7 System inputs’ disposition diagram. 37

3.8 System outputs’ disposition diagram for Device Type A. 38

3.9 Example crosswalk [54] near IPB (Lat/Lon:41.807/-6.759) (3.9a) and in-

puts of European Commission Tool (3.9b). 40

3.10 Main algorithm’s scheme. 42

3.11 RX/TX communication method. 43

3.12 Inputs and Outputs’ work timeline. 43

4.1 Block diagram of schematic’s main components. 46

4.2 Block diagram GPIO banks. 47

4.3 Re-enable SD/eMMC MOSFET circuit. 48

4.4 HopeRF RFM95W communication module. 48

4.5 Improvement of the flex flat connector from 22-way, in the left, to 15-way

connector, in the right. 50

4.6 3-Way Screw Terminal example. 50

4.7 Generic relay circuit used on all outputs. 51

4.8 DC/DC Voltage Step Down Switching Regulators (12V/5V). 52

4.9 DC/DC Voltage Step Down Switching Regulators (5V/3.3V or 5V/1.8V). 52

4.10 Interface to found the Raspberry Pi IP on Angry IP Scanner window. . . 55

4.11 Access Putty window to connect remotely with the Raspberry Pi. 55

4.12 Remote access terminal screen. 56

xvii

4.13 VNC enabling on Interfacing Options. 56

4.14 Python 3.7 environment on the Raspbian desktop. 57

4.15 RFM95W and Raspberry 3B+ wiring. 58

4.16 Pilot assembly. 59

4.17 Structural, Communication and Integration assembly. 65

A.1 Raspberry Pi Compute Module 3+ (CM3) of the original schematic. A2

A.2 Power regulators of the original schematic. A3

A.3 Connectors of the original schematic. A4

B.1 Raspberry Pi CM3 of the developed schematic. B2

B.2 Power regulators and outputs of the developed schematic. B3

B.3 LoRa RFM95W and connectors of the developed schematic. B4

D.1 General Pilot protoboard assembly. D1

D.2 Pilot inputs’ protoboard assembly. D2

D.3 Pilot outputs’ protoboard assembly. D2

D.4 General Structural protoboard assembly. D3

D.5 Structural inputs’ protoboard assembly. D3

D.6 Structural outputs’ protoboard assembly. D4

D.7 General Structural protoboard assembly. D4

D.8 Homemade RFM95W breakout. D5

xviii

Acronyms

CC Control Center. 17, 19, 25, 26

CCTV Closed-circuit Television. 25

CM3 Compute Module 3+. xviii, 35, 46, 48–51, A2, B2

EDA Electronic Design Automation. 34

ERSO European Road Safety Observatory. 1

H2H Human-to-Human. 7

IC Integrated Circuits. 33

ICT Information and Communication Technologies. 11, 12, 16

IDRA Information Driven Architecture. 15

IoT Internet of Things. xvi, 5, 7–10, 12, 14–16, 19, 23, 25, 27, 28, 75, 76, 84–86

LCU Local Control Unit. 17–19, 76

LED Light-emitting diode. 17, 18, 20, 21, 58, 59, 64, 65, 67

LPF Low Pass Filter. 22

LPWAN Low Power Wide Area Network. 19, 27, 28

LU Lamp Unit. 16, 17, 19, 76

xix

M2M Machine-to-Machine. 7

NFC Near-Field Communication. 19

OOP Object-Oriented Programming. 41

P2P Peer-to-Peer. 30, 36

PCB Printed Circuit Board. 29, 34, 86

QoS Quality of Service. 12–15

RFID Radio Frequency Identification. 15, 19

RTC Real Time Clock. 20

SiL Smart Indoor Lighting. 18, 19

SL Smart Lighting. 7, 19, 76

SoL Smart Outdoor Lighting. 18, 19

SPI Serial Peripheral Interface. 36, 48, 49, 58, 62

SSL Smart Street Lighting. 5, 7, 18–20, 23, 29, 76, 77, 85

UWB Ultra Wideband. 19

VN Virtual Network. 15

WBAN Wireless Body Area Network. 19

Wi-Fi Wireless Fidelity. 19, 22

WLAN Wireless Local Area Network. 19

WPAN Wireless Personal Area Network. 19

WSN Wireless Sensor Network. 15

xx

Chapter 1

Introduction

1.1 Framework and Motivation

The pedestrians are the most vulnerable in traffic accidents during the daily process of

locomotion. According to European Road Safety Observatory (ERSO), in general, 21%

of all road fatalities in Europe are pedestrians [1].

When a comparison is made between all accidents that happens and those that occur

with pedestrians, this vulnerability become visible. Around 5,5 of 25 thousand fatalities

happens with pedestrians as shown in the Figure 1.1.

Figure 1.1: Number of pedestrian fatalities and all road fatalities, EU [1].

1

2 CHAPTER 1. INTRODUCTION

Bearing in mind when and who suffers, there is an alarming situation for fatalities

with elder people and accidents happened in bad illuminated places. As shown in Figure

1.2, the majority of people in Europe dying in accidents have age between 80 and over 90

years old, with percentages of 43% and 45%, respectively.

Figure 1.2: Pedestrian fatality rates per million population by age group, EU [1].

In Portugal it’s even bigger, reaching almost 40% for who have over 64 years, as shown

in Figure 1.3.

Figure 1.3: Percentage of elderly pedestrian fatalities (age>64) of all pedestrian fatalities
by country [1].

1.1. FRAMEWORK AND MOTIVATION 3

In a Portuguese overview, as show in Figure 1.4, almost 40% of all pedestrian deaths

are in bad lighting conditions.

Figure 1.4: Percentage of pedestrian fatalities during darkness of all pedestrian fatalities,
EU [1].

Finally, in addition of all these numbers, Figure 1.5 shows that the larger accident

causation, resultant in death, happens because almost 40% of pedestrians, not the drivers,

have a premature action in the roads.

Figure 1.5: Distribution of specific critical events - pedestrians and driver/riders in pedes-
trian accidents.

4 CHAPTER 1. INTRODUCTION

All these estimates indicate that, in Portugal, a delicate situation is happening in

traffic accident scenery. The Figure 1.6, shows that the elderly population is growing and

currently represents 21,8% of total Portuguese population and, until 2080, will grow even

more [2].

Figure 1.6: Elderly resident population (age>65) in Portugal from the years 1991 to 2019,
with a projection until 2080 [2].

They represents a important portion of this and they need a special attention. Inde-

pendent of the age, in general, it’s necessary develop smart tools to prevent premature

actions and give accessibility in pedestrian traffic. It is important to structure a way to

make safe the people flow in bad lighting places, mainly in the most desprotected moment

of a pedestrian, the street crossing.

Thus, this work addresses the creation of a smart lighting system applied in crosswalk

signalization. It includes a prototype with the circuit schematic design and an embedded

system proposal.

1.2 Objectives

The main objective of this work is to develop a embedded system able do control the

people flow on crosswalks ensuring lighting and secure. In this way, the other objectives

also make up this work:

1.3. DOCUMENT STRUCTURE 5

• Propose a Smart Street Lighting (SSL) model applied in crosswalks able to ensure

lighting and security for pedestrians.

• Develop a smart device system that is Raspberry Pi and LoRa based.

• Develop a embedded system based on Python language.

• Implement a schematic circuit which the embedded system can be incorporated.

1.3 Document Structure

This document is divided into 6 chapter which they show where this thesis proposal are

inserted, how it has been developed and where the final results can be applied.

The work introduction is discussed in Chapter 1 and it shows the work’s framework and

from where comes the project motivation. This chapter shows statistics which sustain the

hypothesis that pedestrians suffer in traffic accidents with bad light conditions. Based

on that, it shows a rising demand for a system able to ensure secure and lighting on

crosswalks.

Chapter 2 presents basic theoretical ideas about IoT and Smart City and how a Smart

Device can be integer on them. In sequence, describes the Smart Lighting working struc-

ture and how it is framed on Crosswalks, explaining about Smart Street Lighting and its

components. In the end, it is explored 7 work papers which give architectural references

and relevant topics to choose an approach and make the Smart Device implementation.

Chapter 3 contains a system proposal’s methodology inside the crosswalk’s lighting

problematic context. It structures the idea behind the project and how this project

works a Hardware and Software level. In the Hardware level is described how the inputs

and outputs should work with the control board, besides what compound each hardware

peripheral. In the Software level is explained how the algorithm for the Embedded System

works and what tools are used to develop it.

Chapter 4 explain the hardware schematic and split it in all components which com-

pound this work. It also presents all the steps in the software development, the created

6 CHAPTER 1. INTRODUCTION

versions and how they are integrated to implement the Final Embedded System. In the

end, it explains how incorporate this software in a hardware Raspberry Pi based.

Chapter 5 explores the Final Embedded System, test its work with ordinary/extraor-

dinary crossing cases and discuss scenarios where the schematic can be helpful. Finally,

the Chapter 6 exploit the results, makes resolutions about each chapter and proposes

future works with this Smart Device implementation.

Chapter 2

Related Works

In this section will be analyzed related works in the area of Smart Lighting (SL), first,

describing relevant topics about Internet of Things and Smart City, constructing these

themes basic ideas. After this, will be specified SL branch called SSL, describing their

features and real implementations emphasizing relevant tools applicable on crosswalks.

Bearing in mind the application developed during this work and encompassing into the

current context where Smart Lighting is an important strand in Smart City’s environment,

this chapter tries to construct, based on a scientific research, the state of the art.

2.1 IoT Environment for Smart City

2.1.1 Internet of Things

Internet of Things has been gained ground in the technology projections for the second

decade of the 21st century. It started in 90s and, ever since, changed the concept of what

is an object and how it can behave. The IoT paradigm expand the internet usual capabil-

ities from Human-to-Human (H2H) for the Machine-to-Machine (M2M) communication

allowing the creation of smart and connected products and, in another words, it provides

a connection among everything in anyplace [3].

The IoT, by default, have a workflow with an object sensing of specific information,

7

8 CHAPTER 2. RELATED WORKS

a triggering of an action and a feedback to the administrator about the current status of

the requested attitude.

Figure 2.1 shows the process and it starts from the object sensed about, for example,

chemical changes in the air. This modification generate data that could be understand

like a specific object information.

The combination of different sensor types structure the design of smart services. In

second step, a smart device starts to operate performing an action gamma triggered by

the information received and, finally, this system provide a feedback with taken decisions

monitoring the details.

Figure 2.1: Basic workflow used in IoT [4].

The majority of IoT systems have a generic architecture that provides the aforemen-

tioned operation. Therefore, for describe grossly this architecture, it is necessary a layer

analogy, because in each one, a different type of operation happens. According to Tan

and Wang [4] this structure have layers relation as can be seen in Figure 2.2.

That five layers can be briefly described as follows:

1. Perception: It is compound by the detectable physical object and a sensor device

able to make specific information acquisition. All type of sensors can be used to

capture interest environment data.

2. Network: Basically, the function of this layer is transfer information from Perception

to Middleware layer safely. There are many different ways to make a communication

2.1. IOT ENVIRONMENT FOR SMART CITY 9

Figure 2.2: Generic Architecture for IoT System [4].

channel, wired or wireless, some of those can be 3G, Wifi, Bluetooth and LoRa,

depending on the purpose.

3. Middleware: This layer is responsible for service management and has link to the

database. Beside that, it get the information from the network and make them

storage. Each device has its own operating characteristics and can be, for example,

a microcontroller.

4. Application: Based in the objects information interpreted for the Middleware layer,

this layer provide a system complete overview.

5. Business: Seen as a layer that determines the smart solution success, it builds

business models, statistics and flow charts, refining information quality and even

giving behavior predictions of detected objects.

Thus, to create smart devices able to provide these services are necessary structural

requirements such as automation, intelligence, dynamicity and zero configurations [5] as

described below:

10 CHAPTER 2. RELATED WORKS

1. Automation: Objects should be able to handle themselves automatically. Collecting

contextual data, processing it, collaborating with other required objects and acting

according to the condition should be at some level of automation.

2. Intelligence: Devices should be able to perform intelligently. Intelligence in devices

give them power to act based on different situations.

3. Dynamicity: Should be available to achieve the IoT concept. When one devices

move from one place to another or one application domain to another, it should be

dynamically recognized in new scenarios.

4. Zero configurations: Many users are not expert who uses the physical devices. So,

users should be able to configure devices and develop services of devices without

having much technical details.

Thus, IoT smart devices need to perform a lot of tasks inside Perception and Network

layer to achieve these four goals. They are commonly developed with a lot of electronic

modules, e.g., wireless communication circuits, actuators, sensors, power supply control

and microcontroller/microprocessor.

All of them should work in group and need to be controlled by the only one "brain" com-

ponent, the microprocessor. It gives commands to another modules based in a firmware

which operates logically using programming languages such as C-language or Python [6].

All these features has been reinventing the current internet concept into an ubiqui-

tous network where interconnected objects, besides harvest information from the physic

environment and react on it, can use this traditional internet for information transfer,

analytic and applications [7].

2.1.2 Smart City

In 2014 almost three quarters (72,5%) inhabitants of Europe Union were living in urban

places like cities, towns or suburbs [8]. In global context, estimates demonstrate the ratio

of the world‘s urban population grown up 55% in 2018 (4.2 billion people) and can achieve

2.1. IOT ENVIRONMENT FOR SMART CITY 11

68% by 2050 [9], thus, that population will nearly double. For organize this huge people

concentration, the Smart City concept propose an improvement of two ideas: ’Smart’ and

’City’ [10].

Within networked Information and Communication Technologies (ICT) idea, there is

not a consensus about the Smart concept, however, it is possible to get an approximation

defining like almost anything considered to be modern and intelligent. But, applying in

a system, there is a concise vision of smartness where a servant is surrounded by another

servants, people or devices, which assemble an ecosystem, embedded within "servant sys-

tems" [11]. Another key concept is that cities are considered a range definition for people

agglomeration inside an urban area.

Connecting both concepts, Smart City is framed as an urban system that aim smart

solution around infrastructure, economy, governance, environment, services, mobility, liv-

ing and people, as shown in Figure 2.3. The development inside that eight components

helps to measure city smartness, therefore, all these services have been improved using

telecommunications technologies.

Figure 2.3: Smart City eight components [11].

12 CHAPTER 2. RELATED WORKS

"Infrastructure", like water and energy networks, can be monitored by sensor or smart

grids. "Transportation" can has real time localization feedback of public transport vehicles.

"Environment" can receive help inside natural resource protection and management using,

for example, drones and data sent by image processing smart system.

Applications inside health, education, tourism and safety provide Smart "Services"

enhancing Living life quality. People engagement expand with ICT good use, thereby,

help "Governance" to be more pragmatic and effective. All this structure strengthen the

"Economy" by business development and "People" can "Live" with wellness, upgrading

they creativity and opening space for innovation [11].

These innovation possibilities, based eight pillars, have been amplified with IoT paradigm

growth. Inside that context, this technology are expanding increasingly toward a fully

integrated future internet with huge functionalities variety to improve urban population

wellness.

2.1.3 Architectures

In this Subsection will be described network architecture concepts for the new internet,

exploring four most common architectures aimed to Smart City construction. They can be

autonomous, ubiquitous, application-layered and service-oriented, which will be explained

their individual characteristics, practical implementations examples and Quality of Service

(QoS) requirements [7].

All these IoT networks types have the same issue to be solved, a lot of different smart

objects networks applied at to many specific implementations. In most cases they are

structured using different protocols, thus, it demands a powerful gateway able to translate

all these heterogeneous data and put it, neatly, in internet connected data-base. So as

follows will be gives their brief description, practical implementations and QoS issues and

goals.

2.1. IOT ENVIRONMENT FOR SMART CITY 13

Autonomous

• Description: As the name define, it is not connected to public networks, and is very

common in reality, as shown in Figure 2.4a. In contrast, this connectivity is not

prohibited and, usually, a gateway can be used. In general, IP protocols are used,

but it is not mandatory, however, helps to its scalability and flexibility, furthermore,

huge address spaces are possible to be employed.

• Practical Implementation: Parking Grounds, several times, have an autonomous

network. For example, it is desired to give for final user how many parking spaces

are vacant or not on desktop computer. It is possible using a sensing structure for

each parking space and all of them send this status for network server, responsible

to application database updating and give information to final user.

• QoS: In quoted example, sensor precision and system responsiveness are head qual-

ity goals. However, this is completely function-dependent, because each application

has an unique infrastructure, therefore, each one have their own quality factor de-

terminant.

(a) Autonomous Network. (b) Ubiquitous Network.

Figure 2.4: Diagram comparison between (2.4a) Autonomous and (2.4b) Ubiquitous net-
work architecture.

14 CHAPTER 2. RELATED WORKS

Ubiquitous

• Description: Pretty similar to Autonomous Network, however, there is a punctual

differences between them, the server structure, as outlined in Figure 2.4b. Final user

is able to access network updates from an internet connected database, furthermore,

with real time updating.

• Practical Implementation: Bearing in mind smart lighting home projects, it is easy

to construct the idea. Using home network and smart devices able to detect voltage,

current and to map the light system. It is possible to create statistics for energy use

control, automated lighting programs and user remote use by smartphones. There

is a lot of possibilities, but the point is how easy different users can enjoy of it by

different places.

• QoS: While multi-access is a key advantage, it is also the biggest misfortune. Within

the described scenery, the standard end-to-end protocols can have a good behavior

with the huge diversity of QoS requirements. Besides all advantages, this complex

network dynamic puts this approach in the face of a great deployment challenge.

Application-Layer Overlay

• Description: It is very usually use data acquisition from thousand of independent

nodes in IoT systems. In other wise it is a several problem for QoS. According to

[12] "An overlay network is a logical network built on top of one or more physical

network".

To implement it trying to solve these QoS problems, this approach uses concepts

of Network Virtualization. When formed an application-layer overlay network, the

process starts to happens based in selected nodes performing in-network data pro-

cessing tasks.

• Practical Implementation: This structure is commonly used for Smart City Envi-

ronment monitoring as a tool to sense micro climate variations, air purity and their

2.1. IOT ENVIRONMENT FOR SMART CITY 15

chemical components.

• QoS: Scalability, Isolation and Programmability are just some features provided by

it. Coexistence of multiple networks, including isolation of each Virtual Network

(VN), it is based in their programmability, customizing protocols and deploying

diverse services. In contrast, their physical structure, lot of times, can destabilize

the virtualization process.

Service Oriented

• Description: Service Oriented Networks purpose the use of Information Driven Ar-

chitecture (IDRA) to seek IoT quality goals using an approach focused on network

service, which is able to perform different network demands, such as addressing,

routing and synchronization applied to Wireless Sensor Network (WSN). A more

detailed idea can be consulted in [13].

• Practical Implementation: It includes topics such as disaster intervention, health

monitoring and industrial process monitoring. Imagining an hospital environment,

there are some variable, such as blood pressure, heart-beating and biochemical lev-

els, that can be monitored by smart medical objects using an wireless connection

between them.

While all this data are detected, a Radio Frequency Identification (RFID) can con-

trols people flow of specific patients rooms. Even more, the lighting and temperature

can be controlled remotely by nurses or, automatically from a previous determined

routine. Lastly, only one gateway manage these features. This is the challenge

which IDRA proposes to overcome.

• QoS: The challenges have a direct ratio with QoS. If the goal is unify the services

on the same platform, it starts to happening a network congestion. Therefore, it

implies several packet drop which reduces the network performance.

16 CHAPTER 2. RELATED WORKS

2.2 Smart Lighting

After understand IoT idea through Smart City environment it is important to contex-

tualize where Smart Lighting are framed. According to [14] "Smart Lighting comprises

an heterogeneous and multidisciplinary area within illumination management, with the

possibility of integrating a wide set of sensor and control technologies, together with ICT".

2.2.1 Working Structure

An overview about this system type is structured by an intelligent sensor-equipped lighting

able to communicate itself with other and a management center. Seeking to reduce power

consumption, maintenance costs and natural environment preservation, these systems use

an architecture branched in three pillars. This lighting smart device integration can be

seen in Figure 2.5.

Figure 2.5: Overview of SL and their LU integration levels, adapted from [15] and [14].

Its overview [15] can be described concisely as follows below:

• Lamp Unit (LU): Beyond the illumination feature, this has a controller endowed

2.2. SMART LIGHTING 17

with a lot of sensors. They are responsible for data acquisition and are able to com-

municate (wired or wireless) with another LUs which, in general, send information

to a gateway. Recently have been happening lamps manufacturing process improve-

ments and it started to use Light-emitting diode (LED) in lighting, reducing CO2

emissions and energy consumption [16].

• Local Control Unit (LCU): This control unit collects data from LUs and redirect to a

server using, as much to collect as to redirect, long (LoRaWAN, Sigfox etc.) or short

range (ZigBee, 6LoWPAN or Bluetooth Low Energy etc.) communication protocols.

This choice depends on the environment which they are implanted, respectively,

whether it is remote or an easy access place. In many cases it can interface a mixed

network topology and must ensure a good communication between the LUs.

• Control Center (CC): Control Center receives data from LCU and store it in a

server, usually, using cloud services. In general, urban areas have a huge data

volume acquisition from various LUs. Furthermore, the CC can uses data analysis

tools to implement smarter decisions and improve administration process.

And these LU integration levels [14] as:

• Embedded: Lighting structure or properly the light source.

• System: Responsible for voltage/current adjustments and energy conversions.

• Grid: Monitoring of power sources and energy generation/distribution schemes.

• Communication and Sensing: This level contain the complete lighting solution en-

compassing sensors, signal acquisition, communication platforms, supplies and em-

bedded system.

The architecture, shown in Figure 2.5, can be adopted as centralized or distributed.

The difference between these approaches is when communication between LU and LCU

fail. In the first case, the data sent can be lost because all the system is controlled from

18 CHAPTER 2. RELATED WORKS

one location. In the other case, it is redirected to an available LCU because the system

structure is modular [15].

Another framework that can be seen in developed works are Indoor and Outdoor light-

ing. The Smart Indoor Lighting (SiL) is applied in public service buildings, big factories

and companies (few times using wired technologies). It tries to save energy controlling

lighting duration, and adjusting light intensity near windows for natural lighting usage

optimization.

The Smart Outdoor Lighting (SoL), which is this work’s focus, usually use wireless

deployment systems. It tries to be smart enough to work without human intervention,

and it seeks energy efficiency based in weather conditions, availability and sustainability.

It also uses presence sensing, images acquisition and climate variables [17].

2.2.2 Smart Street Lighting

Thus, deepening outdoor scenery and such as described in Chapter 1, it is known that

electricity has a huge demand on cities and smart infrastructures. However, they offer

smart paths to achieve street lighting improvements, such as energy efficiency, interactive

safety zones, context awareness, privacy and security and system expendability [18].

Power consumption in SSL consist in lighting resource used at the correct moment

with correct type of lamp, currently, LED based bulbs are usually employed for it. A

good example of energy safe are lighting systems helped by a sensing interface, which

are able to control luminosity and know the exact time that someone want to use the

crosswalk.

Still thinking in the before mentioned example, SSL tries to supply user demands

with regard to well illuminated zones. In this case, the crosswalks lighting zones can be

expanded or reduced according the implementation. Sometimes, this size variation can

works with interactive possibilities, over all, trying to ensure safety.

Context awareness is a feature that structure the idea of a continuous back-ground

2.2. SMART LIGHTING 19

operation. The system is available during all time for end-user demands and, if neces-

sary, continue to operate in a request independent mode. It works sending error reports,

generating estimates or responding to automatic functions, e.g. lighting intensity.

In the end, it is supported by a cloud based server which seek IoT criteria and try

to guarantee data anonymity and block unwanted system manipulation. The SSL pur-

sue systems deployment that has quick and easy integration in future approaches using

software components able to fit in constant updating of Smart City needs.

2.2.3 Remote Communication

In Smart City context are used short and long range technologies to implement smart

solutions and this include SL. Bearing in mind short range technologies, the work [19]

proposed promising technologies which have been explored from their year publication

to the present days works [20], such as Bluetooh, Wireless Fidelity (Wi-Fi), Zigbee [21],

HomeRF, Ultra Wideband (UWB), RFID and Near-Field Communication (NFC).

These technologies are applied in Wireless Local Area Network (WLAN), Wireless

Personal Area Network (WPAN) and Wireless Body Area Network (WBAN). They are

useful in personal communications and SiL projects, few times already was used to SoL.

However, throughout the years, have been losing space to long range technologies, because

considering outdoor spaces, greater distances are desirable. Therefore, this technologies

are most common to use for communication between LCUs and LUs in SiL, due distance

that reaches less than 100 meters [15] and, in general, less than 1000 meters [20].

In another side, IoT communication also requires long range tools which make feasible,

for example, a large urban area coverage that needs a lot of LCUs sharing information

between them and with a central CC from some kilometers of distance. This type of

necessity fits in Low Power Wide Area Network (LPWAN) that, according [20], [22] and

[23], has been mainly used technologies such as LoRa [24], Wi-SUN [25], SIGFOX [26],

RPMA [27], Weightless [28] and DASH-7 [29], and they are also applied to IoT-Enabled

SSL.

20 CHAPTER 2. RELATED WORKS

Lastly, all of them have their own space satisfying goals, such as security, coverage,

performance in non-line of sight conditions, network topology, business model, implemen-

tation/deployment/operation complexity, data rate for up and downlink costs and other

aspects [22].

After this overview in these essential themes around Smart City, Internet of Things

and Smart Lighting, the next section will present seven works published since 2013 until

the current year (2020).

2.3 Developed Works

These papers present references sources that have given direction to a good work con-

sidering energy efficiency, communication method and pedestrian behavior. The next

subsections, named according each works’ title, will describe adopted system architec-

tures for each one and their results focusing in the interest points used to develop the

Chapter 3.

2.3.1 Smart Street Lights

This paper implement a SSL to save energy and to lighting streets at night. To achieve it,

this work proposed a LED street lighting and a road movement detection. The lighting is

activated each time the ambient light intensity becomes under a light intensity threshold

and happens a laser detection (during night period) based in a Real Time Clock (RTC)

[30].

Architecture

This system architecture have been planed as block diagram shown in Figure 2.6 which

is mainly compound by a sensor block, control block and lighting block.

Sensor block is integrated by an Ambient Light intensity sensor and an array of Laser

2.3. DEVELOPED WORKS 21

Figure 2.6: System architecture block diagram, adapted from [30].

Gates do detect movement on the road. Control block use MSP-EXP430F5529 exper-

imenter board [31] to control sensor inputs and send signals to LED driver according

ambient variations or car detection on the road. Lastly, Lighting Block is compound by

an array of LED and an LED drive which use a Buck Chopper with 2 fixed PWM signals

generated using two timer modules in NE556 for light intensity control.

Relevant Topics

Light intensity control based in ambient luminosity using microcontroller and electronic

circuits are an approach to save energy. This work [30], directly propose an useful LED

driver and ambient light intensity circuits.

2.3.2 Development of Cloud Based Light Intensity Monitoring

System Using Raspberry Pi

This work introduces real time remote light intensity monitoring system of a indoor envi-

ronment using Raspberry Pi, which the information are stored in a cloud database [32].

Architecture

System architecture have been planed as block diagram, shown in Figure 2.7, and it is

mainly compound by a signal conditioning circuit and a raspberry pi responsible to data

22 CHAPTER 2. RELATED WORKS

storage in a cloud. This data is used by a system which, in this case, gives light intensity

(LUX) in a report based in some acquisitions during a specified day.

Figure 2.7: System architecture block diagram, adapted from [32].

Relevant Topics

This paper also proposes light intensity detection circuit using a different approach when

compared with [30]. This circuit use a 3rd order analog Low Pass Filter (LPF) which

is used to reduce unwanted high frequency signals from flickering lights, glare, pulsating

light sources. Furthermore, it proposes a SQL storage in Raspberry Pi that use Wi-Fi

communication to put in cloud all data acquired so, in this path, gives good references to

structure an Webserver idea.

2.3. DEVELOPED WORKS 23

2.3.3 A real-time sensing system of elderly’s crossing behavior

at outdoor environments

This study [33] gives a real-time sensing system that is mobile based destined to elderly

people. So, different of [30] and [32], its relevant topics is not the architecture, but rather

it specific study in elderly pedestrians’ behavior, which provides references to understood

and implement validation tests for one of motivations described in Chapter 1. Another

relevant point is a street-crossing behavior standardization, that can be seen in Figure

2.8, which also enriches better services chances in a smart system.

Figure 2.8: Pedestrians’ street-crossing behaviour process, adapted from [33].

2.3.4 Automation Control and Monitoring of Public Street Light-

ing System based on Internet of Things

This work [34] propose a system SSL focused in low maintenance and accuracy using

IoT concepts. It uses Ubidot [35] as a cloud IoT Application Enablement ecosystem and

Raspberry Pi, to make hardware control of four enabled lamps. Thus, reads energy used,

lamps condition and connection condition giving how much delay the microcontroller

needs to send real light status.

24 CHAPTER 2. RELATED WORKS

Architecture

System architecture have been planed as block diagram shown in Figure 2.9, which is

mainly compound by a device zone and it uses a microcontroller system based on Rasp-

berry Pi. This system has a power supply, sensor systems, energy meter, telecommunica-

tion system and lamps connected to an output module.

Still in hardware, there is a control zone which use a laptop that access a GUI system

based on Ubidots application. The software is based in Python language program that

runs continuously and makes a system able to share data results of energy used, lamps

condition and connection condition.

Figure 2.9: System architecture block diagram, adapted from [34].

Relevant Topics

Easy maintenance methods are a valuable tools for a system that can has a huge amount

of nodes scattered in a city. Thus, this project describe the use of an energy meter to

identify a lamp correct working using difference between energy values before the lamp is

activated and after it is turned off.

2.3. DEVELOPED WORKS 25

This tool can be employed to another devices for working status, thereby, make possible

a system endowed by modules with well working reports. Furthermore, it uses an IoT

server platform which can gives direction of how to make linkage between the obtained

data by a hardware and a cloud server.

2.3.5 Pedestrian-Safe Smart Crossing System Based on IoT with

Object Tracking

This paper [36] describe a system to prevent and detect accidents endowed with an rescue

tool for an injured pedestrian. In general, it uses a floodlight to make the pedestrian,

crosswalk area and obstacles more visible to driver and also use a a sensor group, in-

cluding cameras, to vehicles and pedestrians tracking. In accidents situations, it uses a

communication module to send a signal and a recorded video to a CC which can take

appropriate measures to help the injured person.

Architecture

System architecture have been planed as block diagram shown in left-top image in Figure

2.10. It is mainly compound by seven components which are sensor unit, Closed-circuit

Television (CCTV) unit, traffic control unit, network unit, control unit and control center.

Looking the right-top image in Figure 2.10 can be seen a scale down prototype imple-

mentation. And the other two bottom parts describe, in the left, a detection and tracking

method for pedestrians and objects, while, in the right, shows an algorithm to tracking

on the crosswalk.

Relevant Topics

This project makes several components good match in order to implement a safe crosswalk

system. Sensor unit, divided in vehicle and pedestrian detection, using a range finding,

laser-receiver and an ultrasonic sensor matched with CCTV, become possible a lot of

detectable situations. Furthermore, this unit use a heart-bit signal to CC in order to

26 CHAPTER 2. RELATED WORKS

Figure 2.10: System architecture block diagram, adapted from [36].

detect activation failures enforcing reliability.

Traffic control unit propose, beyond floodlight and light controller, an extra signal

to alert drivers in accident circumstances. Network unit is used to notify a CC about

general information in crosswalks, like tracking and detection, processed by control unit

algorithms. In the end, all system has key points which can be used as test reference.

2.3.6 Smart System of a Real-Time Pedestrian Detection for

Smart City

This research [37] makes a Raspberry Pi microcomputer deployment as end-device directed

to recognizing of pedestrians in real time and introduce additional functions to traffic

lights, such as pedestrian’s posture and movement detecting around a specified area.

2.3. DEVELOPED WORKS 27

Relevant Topics

In this work the interesting subjects are not focused in an architecture like another pa-

pers previously described, but in how computer vision tools can enrich solutions like, for

example, the system that has been seen in Subsection 2.3.5.

Using pattern recognition helped by deep learning, big data and cloud services there

is a lot of systems created to identify humans and this work cite and gives references of

interesting works and tools [38] [39] [40] to makes this identification real.

So, the focusing points are recognition of pedestrian’s intending to cross the road, the

certain zone where they can be and their postures for additional verification. To achieve

this goals, it tests a real implementation using Raspberry Pi 3 with Linux installed,

Python 3 and the OpenCV, NumPy libraries, and the open-source TensorFlow library.

Thus, looking this deepening in image processing to identify pedestrian’s behaviour it

can be seen like a motivation to use Raspberry Pi to develop end-devices and how it can be

a good platform to use complex algorithms, mainly when the goal is make improvements

in transport and pedestrian traffic with security and automation.

2.3.7 Long-Range Communications in Unlicensed Bands: The

Rising Stars in the IoT and Smart City Scenarios

This paper [23] makes an overview about LPWAN and how LoRa is a good representative

choice based in theoretical view and using experimental deployments which implement a

coverage range analysis.

Architecture

LoRa private network has been implemented using the architecture described in the block

diagram shown in Figure 2.11 and has been deployed in Northern Italy. This LoRa

coverage has used Kerlink LoRa IoT station model 0X80400AC [41] and nodes designed

by an Italian group start-up [42].

28 CHAPTER 2. RELATED WORKS

Figure 2.11: LoRa protocol architecture [23].

After several failed attempts using wireless and wired solutions, have been used LoRa

in order to monitor and control temperature and humidity of different rooms in a 19 floors

building installing 32 nodes (at least one per floor) and a gateway on roof top. It also has

been made stress tests to challenge radio connectivity putting nodes inside elevators, for

example, freaking out in a successful response.

Furthermore, has been carried out the coverage range test of LoRa network in Pandova,

Italy. Inside an urban environment, the experiment has been assessed the worst technology

coverage case, estimating the necessary gateways number to cover whole city.

Relevant Topics

In general view, this research gives theoretical bases comparing communication technolo-

gies in LPWAN paradigm that use unlicensed bands. Even more, this project made a

applied study where the results have been able to fortify why LoRa is a good option to

implement an IoT system full of long-range communication benefits.

Chapter 3

Flow Control of Pedestrian Traffic

This chapter will present the used tools and the idea behind the project, at the hardware

and software level, to develop a smart device able to perform the SSL system applicable

on Crosswalks and also be integrated in a Smart City Environment.

3.1 Proposal of Solution

Such as described in Chapter 1, there are a general, and local, demand to prevent pre-

mature actions and give accessibility in pedestrian traffic. Therefore, it is necessary to

develop a safe way to people cross the street on bad lighting places, also synchronizing

both people and vehicles flow, seeking to protect the pedestrian.

This issue can be seen across problems with lighting quality on the crosswalk, the bad

signalization for the driver and unpredictable pedestrian’s actions during the crossing

process. Bearing in mind these problems, this project propose a system compound by two

Smart Devices, where they have the same schematic design with two similar embedded

systems.

Each Smart Device is mainly compound, at the hardware level, for a Printed Circuit

Board (PCB) controlled by a Raspberry Pi which uses LoRa, a Relays Module, a Voltage

Regulator and, as energy source, it uses Photovoltaic Panels. At the software level, it is a

program responsible to make the system control and propose a smart and secure solution

29

30 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

toward people flow on crosswalks.

The solution’s physical scheme can be seen in Figure 3.1 and propose a system where

are used a pair of different smart devices which communicate themselves Peer-to-Peer

(P2P) using LoRa technology to makes a dynamic paired relation between them, syn-

chronizing the pedestrians and vehicles flow.

Figure 3.1: Smart Devices’ pairs disposition on the crosswalk.

The system is idealized to work just during the night in cases where the pedestrians’

traffic light are not connected with drivers’ traffic light. In most of cases, the streets which

have low or medium vehicles’ flow and its does not need specific signalization to both.

This work is projected to single way streets where the vehicles come, all the time, from

the same direction and the amount of detectable pedestrians are considered as a single

entity.

The differences between each device are shown in Table 3.1 and will be described in

Topics 3.2.3 and 3.2.4. Both devices - A and B - has the peripherals quoted in Table

3.1 marked with the check signal. Making a comparison, the [*] highlights that cameras’

capture areas are not the same, and blank spaces show that the Device B do not have the

Pedestrian Light Board neither the Flashlight. These outputs are unnecessary because

assuming that there is one sense’s vehicle flow, only one device needs to signalize the

crosswalk to the drivers.

The project explore the Lamp Unit idea that has been shown in Subsection 2.2.1.

Thereby, the system use this structure to becomes able to detect pedestrian presence, en-

sure a well illuminated crosswalk and, focused in security and accessibility for pedestrians,

3.1. PROPOSAL OF SOLUTION 31

Peripherals Device A Device B

IN Cameras* X X
Pedestrian Detection X X

OUT

Focal Spotlight X X
Crosswalk Light Board X X

Flash Light X
Pedestrian Control Light Board X X

Table 3.1: The input/ouput peripherals’ difference between Device A and B.

signalize to them and to the drivers the exact moment to stop, wait and go ahead.

Figure 3.2 shows a scheme of the proposal idea to pedestrians’ cross street process,

which use as reference the paper [30], and the relevant detection areas inspired in the

paper [36] as well as the some services that can be offered. Highlighted areas assigned

with letter A or B correspond the type of device that is responsible to monitor them.

Figure 3.2: Pedestrians street cross scheme with relevant detection areas highlighted.

Furthermore, the street cross starts on side A’ toward side B’ using the crosswalk path

(the same process can be make from the side B’ toward side A’). Using the first case, it

is considered that pedestrian stops before side A’ border and stay on a place where the

crosswalk’s illumination activates when the pedestrian must to go ahead. So, the system

analyses if there are vehicles getting close on the Area A” to ensure security during the

32 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

cross.

Thereafter, the system wait the exact moment where there is not cars or they are

stopped on street, and it signalizes to pedestrian that he can cross safe toward side B’.

At this moment, this pedestrian go ahead and pass through the side A’ border detec-

tion activation lighting resources and is deactivated when the side B’ border detection is

triggered.

It is important to highlights that it is verified before finish the process if another

pedestrian has crossed the side A’ border or still there are any pedestrians on the area

B”. All this interaction between pedestrians and the system is shows in Figure 3.3, where

the green block starts the process, the red one finishes, the purples are the actions make

by pedestrians and, on the other hand, the blues and the oranges are, respectively, the

actions and decision of the system.

Figure 3.3: Pedestrian and System interaction process flowchart to cross the street.

Finally, the Section 3.2 and 3.3, respectively, will describe the specific considerations

to design the schematic and the embedded system for each device, A and B, bearing in

mind all the ideas discussed until now.

3.2. HARDWARE 33

3.2 Hardware

3.2.1 Overview

The system’s hardware for each device have the same schematic structure, being differ-

entiated according have been seen in Section 3.1. The schematic electrical properties are

based, in general, according the outputs, inputs and Integrated Circuits (IC) demands.

About the energy supply, is considered that the Smart Device and its peripheral are

supplied by hypothetical photo voltaic panels with its efficiency based on solar cycle of

Bragança, Portugal.

Thereby, the schematic project must be able to represent the minimal features which

the devices must perform. Since the circuit is not developed in practical environment, it

is only explained their main modules relation and how its would work.

Bearing in mind these points, the development’s methods are focused in theoretical

schematic implementation. Finally, this Section describe all characteristics about the

schematic and its Inputs/Outputs, explaining the method applied to develop them and

all specific considerations for each peripheral. Figure 3.4 shows this project architecture

organizing their inputs and outputs, while also shows the schematic diagram block.

Figure 3.4: Hardware flowchart organizing schematic and its inputs and outputs.

34 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

As system’s inputs are used a Obstacle Avoidance Sensor, an Twilight Sensor and a

pair of Cameras for each device. As system’s outputs system are used a group of light

signals which are a Focal Spotlight, a Flash Light to the Drive, a Crosswalk Light Board

and a Pedestrian Control Light Board.

Methodology

This work does not encompass the structural project details, such as the pole’s dimensions

or accurate details about peripherals disposition. Furthermore, the detection, lighting

and signalization devices are considered such as logical inputs and outputs with electrical

power demands which uses a data channel to communicate with the control board.

All these assumptions are due the high complexity that encompass the development of

a commercial circuit schematic‘s project and its embedded system, thus, the development’s

methods are focused in theoretical schematic implementation available on [43].

KiCAD and Instructables

The schematic project is developed using an open-source software to prevent license prob-

lems and encourage project sharing in hobbyists and technology designers communities.

The electronics’ design community have been growing increasingly and, to give directions

to this work it is used projects from Instructables, a web place to share projects.

Several projects available on this platform are KiCad based, an open-source software

for Electronic Design Automation (EDA) which gives tools to handle a schematic capture

that generate appropriate standard output files adopted by PCB industries. Thus to have

more details about this software and the projects community the link references area

available, respectively, on [44] and [45].

3.2. HARDWARE 35

3.2.2 Control Board

Raspberry Pi

This topic describe relevant details about this schematic project’s brain. Thus in compo-

nents’ choice is considered the resources’ variety to develop a system easily programmable,

applicable in outdoor systems and, in general, able to perform a local powerful process-

ing directed to image processing. The previous described demands are justified due the

proposed system’s architecture demands explained in Topic 3.2.1.

In this way, is developed a system Raspberry Pi based and, due the quoted demands,

are used a Raspberry Pi CM3 (Figure 3.5b) to develop the schematic project and, to

validate the embedded system work, is used a Raspberry Pi 3 Model B+ (Figure 3.5a).

(a) (b)

Figure 3.5: Raspberry Pi 3 Model B+ (3.5a) and Raspberry Pi Compute Module 3+
(3.5b).

The schematic design use as base an Instructables’s project that is available in [46], and

its only restriction it is not uses the Compute Module Lite version because this reference

are idealized for the common version. Furthermore, this adaptation is not designed to has

an structure to flash the CM3 module, thus, it is adopted that the system is previously

flashed by an Compute Module IO board [47], following [48] as step-by-step installation.

According [49] this board contains the guts of a Raspberry Pi 3 Model B+ (the

BCM2837 processor and 1GB RAM) as well as an eMMC Flash device with storage

capacity defined, in this case, as 8GB which is equivalent to a SD Card slot on the Pi.

36 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

Both development devices’ main features are available in [49], for the Compute Module,

and [50], for the Single-Board Computer.

HopeRF RFM95W - LoRa Module

It is used the HopeRF RFM95W, that can be seen in Figure 3.6, which feature the LoRaT M

long range modem that provides ultra-long range spread spectrum communication and

high interference immunity with low energy consumption. All this device’s features can be

deep explored in [51], including the reference to chose the antenna type and the project’s

design parameters.

Figure 3.6: HopeRF RFM95W Module.

This module choice is motivated by the unlicensed communication band proposed

through the LoRa technology which has been emphasized in the paper [23]. Thus, this

module communicate with the Raspberry Pi using Serial Peripheral Interface (SPI) [52]

and is applied to implement the wireless communication P2P between the devices A and

B on the 868 MHz unlicensed European band.

3.2.3 Inputs

The inputs are shown in Figure 3.7 that schematizes their disposition and the coverage

area according the letter, A or B, for each device’s type.

3.2. HARDWARE 37

Figure 3.7: System inputs’ disposition diagram.

The signal conditioning, signal’s noise and sensors’ accuracy are disregarded, it is only

considered the power consumption. Thus, the input devices are assumed as a black box

systems which acquire the environmental variations and gives to the system logic inputs

as true or false. This Boolean values are read by a microprocessor responsible to decide

the system work based on the embedded software described in Section 3.3

The matched devices make a system endowed for 8 inputs that create a structure able

to detect if the system should start or finish its work as well to monitor the pedestrian

and cars flow near the crosswalk. It is capable to identify pedestrians on the moment

before entering the crosswalk in A’ and B’, on the crosswalk in B”, and the cars that must

wait during the pedestrian’s crossing in A” according the Table 3.2.

Sensor Task
Twilight Sensor System ON/OFF (Night/Day)

Camera A’ and B’ Pedestrian before entering the crosswalk
Obstacle Avoidance Pedestrian’s entrance in crosswalk zone

Camera A” Cars movement near crosswalk
Camera B” Pedestrian crossing the street

Table 3.2: Detection’s task for all inputs.

38 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

First of all, the Twilight Sensor work as a switch which detects the night and it turns on

the detection of people and cars near the crosswalk based on the crossing process proposed

in Figure 3.3. The Cameras, in general, detect cars or people while the avoidance obstacle

detects the exact moment that pedestrians enter on crosswalk.

3.2.4 Outputs

The outputs are shown in Figure 3.8 which exemplifies their disposition and it illustrates

the idea for type A of devices. This diagram also shows the Spotlight focus coverage

that, when associated with the device’s type B on the other sidewalk, provides a complete

crosswalk’s lighting.

Figure 3.8: System outputs’ disposition diagram for Device Type A.

The Crosswalk Board and the Flash Light are orientated face to the vehicles’ flow

sense while the Pedestrians’ Control Board aim the sidewalk to alert them when they

must enter on the crosswalk. Devices’ type B do not need to has a flash light because is

assumed that cars come from an only sense. The outputs have they tasks according the

Table 3.3.

The Crosswalk Light Board is activated at night while the another outputs just are ac-

tivated during the crossing process. As soon as the pedestrian is getting close of crosswalk

through the sidewalk, the Flash Light is activated.

3.2. HARDWARE 39

Lighting Feature Task
Focal Spotlight Light the crosswalk

Crosswalk Light Board Signalize the crosswalk
Flash Light Alert the driver of a crossing

Pedestrians Control Light Board Alert the pedestrian to go ahead

Table 3.3: Signalization’s task for all outputs.

The Pedestrians Control Light Board is activated when the software allows the crossing

as well the flash just stop to blink when there are not more pedestrians to cross the street.

Finally, when the pedestrian definitely enter on the crosswalk, the Focal Spotlight lighten

the crosswalk.

3.2.5 Energy Supply

The systems’ energy demands are projected considering a energetically autonomous, that

is, all the electric consumption must be supplied by this photovoltaic panel. Grossly, this

panel is considered based in solar radiance variation in Bragança, Portugal.

Idealizing a real place to use as reference, it is used a crosswalk near to Praça do Prof.

Cavaleiro de Ferreira (Lat/Lon:41.807/-6.759), shown in Figure 3.9a, and its monthly

solar radiation data during 2016, in Table 3.4. The data is provided by an European

Commission tool [53] which has as input to get the data this crosswalk’s latitude/longitude

and the inputs shown in Figure 3.9b.

Therefore, using this real place as example, it is also necessary to use a real panel

(brand, efficiency and dimension) to estimate the system energy restrictions. In that way,

it is used a REC group panel’s model [55] (the largest solar panel European brand [56]),

which has as dimension D = 1.67 m2 and Efficiency ε = 18% .

Jan* Feb Mar Apr May Jun Jul Aug Sept Octo Nov Dec
53.1 58 120.3 137.6 156.7 203.6 243.8 226.7 185 138.7 80.2 101

Table 3.4: 2016 Monthly Radiation (KWh/m2).

Thus, in Table 3.4 is possible to see that January is the month with the worst solar

40 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

(a) (b)

Figure 3.9: Example crosswalk [54] near IPB (Lat/Lon:41.807/-6.759) (3.9a) and inputs
of European Commission Tool (3.9b).

energy (Pjan) production in Bragança, in this ways, it is estimate the system power

restrictions using this value and the previously quoted REC panel’s characteristics applied

in Equation 3.1.

P = DεPjan (3.1)

Where, P in [W] is the system power restriction for the REC panel in January. To

estimate the system consumption is used as reference that the system work during all the

night and each output is activated until 20 seconds 100 times/night. Each work cycle’s

power consumption will be considered as the power demands’ sum of the control board

and of inputs/outputs listed in the Table 3.5.

All the consumption estimates are based on Equation 3.2. where the electrical vari-

ables, current and voltage, are analysed on cases assuming the highest power demands.

This values can be seen in each devices’ datasheet available in the Table 3.5.

Pcon = VssImaxt (3.2)

Where Pcon is the Power Consumption in [Wh], Vss is the supply source voltage [V],

Imax the major current demand [A] and t is the work time [h] per month during the night.

The all system consumption can be evaluated in the Equation 3.3.

3.3. SOFTWARE 41

Device
Work
Time

(h/month)

Power
Demand
(W)

Power
Consumption

(Wh)
Control
Board

Microprocessor [49] 744 3.5 2604
Communication [51] 0.4 298

IN
Cameras [57] 372 2.5 930

Obstacle Avoidance [58] 0.125 46.5
Twilight Sensor [59] - - -

OUT

Crosswalk Board [60] 372 1 372
Flash Light [61]

13
9 117

Spotlight [62] 26 338
Pedestrian Board [60] 1 13

Table 3.5: Power consumption estimate for devices’ reference.

Pcon =
∑

Pcb +
∑

Pin +
∑

Pout (3.3)

Where Pcon is the sum of all system peripherals including the controal board (Pcb),

inputs (Pin) and outputs (Pout) all measured in [Wh].

3.3 Software

3.3.1 Overview

This embedded system is Python based and use Object-Oriented Programming (OOP)

concepts to implement the algorithms. The main used concepts dive in the idea of classes,

attributes and methods [63].

The algorithm creates 2 classes where one of it represent the Raspberry Pi and another

the LoRa communication module. It also uses some functions’ module and .csv files to

operate the system logic anf the Figure 3.10 represents the relation between them.

The Raspberry Pi class has some of attributes get from the files "device.csv" and

"authtorizedDevices.csv" which are responsible to define the device’s characteristics, for

example, its type, A or B, and an unique ID.

42 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

Figure 3.10: Main algorithm’s scheme.

The LoRa class also define attributes using the "device.csv", in this case, the commu-

nication channel. Each one have their methods defined based on the tasks that must be

performed. More details about these attributes and methods will be shown in Chapter 4.

3.3.2 Methodology

The main algorithm is able to implement the communication between the devices A and

B, read the inputs variations, activates the outputs and, finally, update the device pair in

real-time. This update send a specific message package compound by th IPv6 unique ID

and the command logic’s array.

The system works in infinity looping reading/writing the the inputs and outputs as

boolean values. It releases an inputs status’ array , makes output decisions and communi-

cates their pair about new inputs variations. Figure 3.11 shows that the communication

works in constant RX mode and just uses the TX mode to send a status update when an

input variation is detected.

The inputs are read constantly and they are updated on the status’ logic array. This

is sent to device pair providing a pared decision making, that is, both devices work

synchronized. All sent messages are encrypted and only are accepted if the unique ID

attached on it exist inside the receiver "authorizedDevices.csv" file.

3.3. SOFTWARE 43

Figure 3.11: RX/TX communication method.

3.3.3 Inputs and Outputs

The Inputs and outputs for devices are treated as Rasbperry Pi class’ methods and are

activated in sequence according the inputs detection. This relation between detection and

activation is described in Figure 3.12

Figure 3.12: Inputs and Outputs’ work timeline.

This Work Timeline starts when the Twilight Sensor, working as a switch, connect

the system with the battery bank as soon as the dusk is detected. The Crosswalk Board

starts to work right after this while the Raspberry Pi initialize their operating system.

The Twilight Sensor and the Crosswalk Board still on during all night.

The algorithm wait Cameras detection on areas A’ and B’ to turn on the Flash light

which alert the drivers that the crossing process will start. Another Camera verify if

there is movement on area A”, just in case that there is not movement, is activated the

44 CHAPTER 3. FLOW CONTROL OF PEDESTRIAN TRAFFIC

Pedestrian Control Board.

The Spotlight only is activated when the pedestrian, in fact, enter on the crosswalk

and he activates the Obstacle Avoidance Sensor. In the end, the system waits until there

is not more pedestrian on area B” to turn off all outputs and restart the detection process.

3.3.4 Development Tools

The computational tools employed to develop tests and code the embedded system are in

the Table 3.6 with their respective tasks.

Tool Task
Putty SSH Remote Access

Angry IP Scanner Identify Microprocessor IP
Raspbian Operating System
Python 3.7 Programming Language
VNC Viewer Remote Access’ Visual Interface

Table 3.6: Computational useful tools.

This tools are used to construct the programming environment. As well the system

are a Python code that must be embedded on a Raspberry Pi, it is convenient make test

with direct access of microcontroller functionalities.

In this ways are used an Operating System called Raspbian [64] and coded the system

in Python 3.7 [65]. The Angry IP Scanner [66] is used to detect the Raspberry Pi IP which

should be used on Putty [67] and on VNC Viewer [68] to make the remote connection

from a personal computer to microcontroller.

Chapter 4

Development: Embedded System

and Schematic

The Schematic Development is explained in five main blocks: LoRa RFM95W, inputs

connectors, Raspberry Pi Compute Module, Output relays and Energy Supply. In all of

them will be explained the considerations to develop this hardware structure and, in the

end, was made a power consumption’s analyse that will be shown results in the Chapter

5.

The Embedded System Development is explained in six main parts: Work Environ-

ment, Pilot, Structural, Communication, Integration and System Incorporation. These

Subsection encompass what is used to develop the software including useful programs,

components to assembly the tests and the versioning progress to make Final Embedded

System.

4.1 Hardware

The circuit proposal, in Figure 4.1, has been developed using the Eeschema, an schematic

editor, yielded by the KiCAD platform. It has been based on design criteria from

datasheets and from the base project available on [46].

The next Subsections will explain technical details for each of these blocks and, when

45

46 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Figure 4.1: Block diagram of schematic’s main components.

necessary, it will traces a parallel with the base project explaining the necessary modifi-

cations. The schematics used as reference are all attached in Appendix A.

4.1.1 Raspberry Pi

The Raspberry Pi schematic is the project core and provide the connection between all

other features available on the circuit. Therefore, as well described by the [46] author, the

base project goal have been a board project able to provides a kick off design to Raspberry

Pi based products, and it has the schematic sheets in the Appendix A.

This kick off design is the perfect fit to start the Smart Crosswalk circuit, however,

some details have been adapted due the specific project demands. The original project has

generic features that have been removed. Some connectors type such as HDMI, GPIO

header, USB, Micro-USB and Female Audio Jack are unnecessary once that this work

project is a circuit applicable on outdoor environment wired in particular peripherals.

In this way, after the system incorporation, using the Compute Module IO board,

the project must work autonomously, and it is only removed of the smart device for

maintenance. All the made adaptations are in the Appendix B.

After theses considerations, the first step to develop this circuit have been consult [69]

to understand the restrictions that should be adopted to modify the base project. The

Raspberry Pi CM3 is a wired in a 200 pin DDR2 SODIMM connector, thus, it has been

necessary consult function of each pin.

These pins encompass all the Raspberry Pi functions such as the power supply and

4.1. HARDWARE 47

peripherals. The energy supply pins are still the same while was manipulated just the

GPIO pins. The GPIOS pins are divided in two banks which are represented for one

block on the schematic, shown in Figure 4.2, that indicates the pins and their respective

GPIOs.

Figure 4.2: Block diagram GPIO banks.

Highlighted in blue blocks are shown the pins which connect the Raspiberry Pi CM3

with the communication module, the inputs/outputs and the cameras. Inside these blocks

are the pins self explanatory labels, which indicate their functions and define where they

are wired. The GPIO44 and 45 are wired in 100KΩ pull-down resistors, according advised

by the design manual, to avoid floating values.

In the Appendix B, Figure B.1, is shown all pin’s connection blocks besides a capacitors

net and a MOSFET circuit, shown as a cut in Figure 4.3. Both of them are proposed by

the base project and do not suffer changes.

The capacitors are used to avoid noises and prevent damages on sensible components

of the circuit. The Compute Module has a pin called EMMC_DISABLE_N which when

48 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Figure 4.3: Re-enable SD/eMMC MOSFET circuit.

shorted to GND will disable the SD/eMMC interface to force the BCM2837 to boot from

USB, which is necessary to flash the memory with an Operating System.

After the flash process, any board CM3 based need to use the Figure 4.3 circuit to

re-enable the eMMC device to allow access to it as mass storage and, finally, make the

system works properly.

4.1.2 LoRa RFM95W

The communication module is based on HopeRF RFM95W as described in Subsection

3.2.2. This module uses SPI to work together the CM3 and use the pins connection as

shown in Figure 4.4 which are wired according the Table 4.1.

Figure 4.4: HopeRF RFM95W communication module.

4.1. HARDWARE 49

The labels show the connections make with the CM3 and each one have an specific

function. The pin 9 is the pin where the antenna of the module must be connected.

Because this, it has been put a coaxial connector where can be plugged an antenna out

of the board.

Compute Module GPIO RFM95W Pins
SPI0_CE0_N 8 NSS 5
SPI0_MISO 9 MISO 2
SPI0_MOSI 10 MOSI 3
SPI0_SCLK 11 SCK 4

Table 4.1: SPI connection between LoRa and Raspberry CM3.

The pins 2, 3, 4 and 5 are responsible to ensure the SPI interface and they are connected

according the datasheet available on [51]. The pin 14 uses the GPIO7 which is set such

as interruption when some message is received.

4.1.3 Inputs Connectors

Basically, these connectors have been destined for two inputs types: Cameras with flex

flat and sensors attached on a 3-way screw terminal. These peripherals model have been

described in Subsection 3.2.5, Table 3.5 and each one use specific connectors.

The cameras connector was modified when compared with the base project. Figure

4.5 show the old model, in the left, and the adapted model, in the right. The old model

uses a 22-way flex flat connector which needs to use a adaptor to connect in a 15-way

flex flat, which is the camera’s cable type. To eliminate this adaptor demands was used a

15-way connector instead of the 22-way model. The specific pins and GPIOs can be seen

in Appendix B in Figure B.1 and where they are wired in Figure B.3.

The Obstacle Avoidance Sensor and the Twilight Sensor are attached on a 3-way screw

terminal as can be seen in Figure 4.6. In both cases these connectors have 2 pins wired

on power supply (5V/3.3V and GND) while the last one is the input values’ channel.

The Obstacle Avoidance (GPIO20) is supplied for 5V while the Twilight Sensor (GPIO19)

50 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Figure 4.5: Improvement of the flex flat connector from 22-way, in the left, to 15-way
connector, in the right.

for 3.3V. The first sensor work with a independent logic circuit while the second just work

as a photocell switch, providing a logic value (HIGH as 3.3V) in a GPIO when activated.

Figure 4.6: 3-Way Screw Terminal example.

4.1.4 Outputs Relays

All the idealized outputs are activated using, by default, the relay’s drive circuit seen

in Figure 4.7. This circuit is responsible to turn on the outputs with 12V and provide

current direct from the batteries. The relays are 12V/3A and they drive the output for a

HIGH value when the respective GPIO provides a LOW value.

The Table 4.2 shows which output are activated for each GPIO. The label wired in

the Optocoupler’s pin 2 connect the circuit with the CM3 and defines when the output

will be activated. When it is a LOW value, the NPN transistor is triggered, receiving a

4.1. HARDWARE 51

Figure 4.7: Generic relay circuit used on all outputs.

base current, which makes the relay conduct and, finally, it actives the output.

Output GPIO
Spotlight 23

Flash Light 24
Crosswalk Board 25

Pedestrian Control Board 26

Table 4.2: Outputs wiring.

Without this circuit would be impossible to activate the outputs only with the electrical

power provided by the control board. It is broadly used on several electronic projects

where exist an output with electrical demands larger than the command board circuit

can provide, which it is the case.

4.1.5 Energy Supply

The circuit has 3 different voltage values and all of them are provided by voltage regulators.

The main regulator, shown in Figure 4.8, is responsible to take 12V from the battery

supplied by the Photovoltaic Panels and Step-Down this value in 5V, voltage which the

CM3 works.

The conversion process starts with an screw terminal where is attached the batteries

which is is charged with energy from the photovoltaic panel. In the sequence, all the

52 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Figure 4.8: DC/DC Voltage Step Down Switching Regulators (12V/5V).

control circuit is protected by a fuse and a MOSFET that minimizes the on-state resistance

improving the switching performance.

The regulator step-down 12V in 5V and endure 1A, and when is activated turn on a

LED which indicates that the circuit is ON. The Compute Module also uses 3.3V and

1.8V which are provided by the same regulators family, shows in Figure 4.9, and they

endure, respectively, 0.8A and 1A.

Figure 4.9: DC/DC Voltage Step Down Switching Regulators (5V/3.3V or 5V/1.8V).

4.2. SOFTWARE 53

4.2 Software

The proposal solution, in Section 3.1, implement a pattern to crossing the street on

crosswalks and ensure the pedestrian safety within lighting features. Thus, understand

the idea seen in Subsection 3.3.2, the software needs to simulate a system which read

4 inputs and, through them, be able to control the flow on crosswalk using 4 lighting

outputs.

This crossing scenery have been simulated using the physical components’ list shows

in Table 4.3 and the tools quoted in Subsection 3.3.4. These components show if the

algorithm process the inputs correctly then it reacts with the outputs on the correct

circumstances.

Amount Components
2 Raspberry Pi 3B+ (with Power Supply)
2 LoRa Module RFM95W 868 MHz
2 Breadboard (400 Holes)
2 Push-button
8 330Ω, 10KΩ and 100KΩ Resistors
8 Led (with Different Colors)
20 Male-Male Jumper
40 Female-Male Jumper

Table 4.3: Necessary components to simulate the algorithms.

The algorithms have been incrementally updated until this final version. This ver-

sioning progress follows the Table 4.4. Each version had principal changes focused on the

main program structure, the communication process and how the programming language’s

tools were used.

Version Focus
Pilot Technologies familiarization

Structural Implement two different types of Smart Crosswalk
Communication Method of RX continuous/TX to send based in a Flag

Integration Join the Structutral and the Communication implementations

Table 4.4: Developed algorithms’ versioning.

54 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Bearing in mind the problem interpretation and how to simulate it, first will be ex-

plained the Work Environment and after this the Implementations Versioning around five

subjects: Goals, Approach, Program Work and the Challenges and Solutions.

4.2.1 Work Environment

The practical process include some steps, which are shown below, to elaborate the work

environment with the quoted tools that have seen in Chapter 3, Subsection 3.3.4. The

process can be briefly described as to prepare a Raspberry Pi 3B+ with an operating

system to make tests with Python scripts.

1. Install the Raspbian on the Raspberry Pi’s SD card.

2. Access this microprocessor using SSH as remote access.

3. Use the Python’s development environment.

4. Make tests in circuits assembled on a protoboard.

The operating system installing are based on the Raspberry Pi community guide [70],

and can be accessed using remote communication or attaching the board in a keyboard

and a screen. After the installation, the first boot have been made using remote commu-

nication as follows:

• Attach the microprocessor board in a domestic network using a Ethernet cable

plugged in a internet modem.

• Use the Angry IP Scanner [66] to discovery the device IP that will be accessed

remotely. Figure 4.10 shows the software window and how look like the Raspberry

Pi label.

• With the found IP open the Putty [67] window (Figure 4.11) and access remotely

the microprocessor.

4.2. SOFTWARE 55

Figure 4.10: Interface to found the Raspberry Pi IP on Angry IP Scanner window.

Figure 4.11: Access Putty window to connect remotely with the Raspberry Pi.

• Now, the remote access looks like a Linux terminal (Figure 4.12), and request user

and password. The Raspbian has a default user name pi with the password rasp-

berry and, after these inputs, it is accessed the Raspberry configurations with the

command raspi-config.

• It is enabled the VNC in the option Interfacing Options (Figure 4.13 to provides

access using a graphical interface.

• Finally, using the VNC Viewer [68], it is possible to use the Python 3.7 environment

(Figure 4.14) on the Raspbian desktop.

The IP seen in Figure 4.10 variate every new network and if it is used Ethernet Cable

56 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Figure 4.12: Remote access terminal screen.

Figure 4.13: VNC enabling on Interfacing Options.

or Wi-Fi connection, because this, this IP it is not default and can be different. Inside

this environment have been implemented codes tested using the the circuits that will be

described on the follow Subsections.

4.2.2 Pilot Implementation

The pilot implementation has been the first contact with the development tools Further-

more, the idea behind this pilot algorithm has gave this work’s directions and shown some

challenges that would appears in the future.

4.2. SOFTWARE 57

Figure 4.14: Python 3.7 environment on the Raspbian desktop.

Goals

Therefore, it is shown its full code on Appendix C.1 and this will be analysed each part

of their codes trying to show the solutions that have been found to achieve the following

goals:

• Familiarization with Raspbian environment with Python 3.8 scripting

• Wiring the communication module RFM95W on Raspberry Pi 3B+

• Define a communication protocol between the devices

• Develop a code structure to emulate a simplify version of the Crossing Proposal seen

in the Section 3.1, Figure 3.3.

The adopted simplification is for only the two main inputs and all the outputs for both

devices, although that the device A is different of the B, such as defined on the Subsection

3.1, Chapter 3.

Following these three goals, the first step has been prepare the Raspbian environment

such as explained in the Section 4.2.1. After this preset, the development process has

started and was determined an Approach.

58 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Approach

The first step was understand how the communication module work together the Rasp-

berry Pi. In this way, following the RFM95W datasheet, has been figured out that they

must be wired using SPI such as shown in Figure 4.15.

Figure 4.15: RFM95W and Raspberry 3B+ wiring.

This scheme shows all the connections between the Raspberry and the RFM95W

according the Table 4.5, Wired in purple, the pins responsible for the SPI communication,

in green, the responsible to activate the interruption routine on the Raspberry Pi, in red

and black, the power supply (3.3V) and the ground (GND) and, in yellow, the antenna

is attached on the module. The Appendix D.1, shows this real protoboard’s assembly.

Function GND MISO MOSI SCK NSS DIO0 3.3V GND ANT
RFM95W 1 2 3 4 5 14 13 10 9
Raspberry GND GPIO9 GPIO10 GPIO11 GPIO8 GPIO7 3.3V GND -

Table 4.5: Connection between Raspberry Pi 3B+ and RFM95W.

The inputs and outputs are represented for, respectively 2 push-buttons and 4 LEDs,

wired according the Figure 4.16 and the Table 4.6. The push-buttons are wired in a

voltage divider compound by R1 = 100 KΩ and R2 = 10 KΩ. The GPIO is connected

4.2. SOFTWARE 59

between these two resistor while they ensure LOW value when the push-buttons are not

hold, and HIGH value when this happens.

Figure 4.16: Pilot assembly.

Inputs Outputs
Twilight Sensor GPIO14 Spotlight (White) GPIO2
Camera 0 - Pedestrian Board (Green) GPIO3
Camera 1 - Flash Light (Red) GPIO4
Obstacle Sensor GPIO0 Crosswalk Board (Yellow) GPIO1

Table 4.6: GPIO pins used as Inputs/Outputs for the Pilot version.

The LEDs are wired in a brunch with R = 330 Ω on its anode and GND on catode.

The GPIO is connected in the other resistor side and gives HIGH value to activate the

LED.

60 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

Program Work

The program uses a non-default python’s library called raspi-lora [71] and default li-

braries such as GPIOZero [72], time and csv. In general, they are used to develop all

the algorithms’ versions and can be briefly described as follows:

• raspi-lora: Provide tools to uses the LoRa RFM95W attached on the Raspberry

Pi. It gives methods able to send messages, change the operating status (RX, TX

and IDLE) and cryptography messages.

• GPIOZero: It is used to control the GPIO pins Raspberry Pi.

• time: Useful to manipulate time and generate delays.

• csv: Used to manipulate .csv files.

Using these libraries as tools, the program emulates a simplified scenery where the

pedestrian wants cross the street and the system is enabled when he enters on the cross-

walk.

The system is activated at night , enabling the Crosswalk Board, and activate the

Spotlight, the Flash Light and the Pedestrian Board along a specified crossing time t

when the pedestrian is detected for by Obstacle Avoidance Sensor.

The system works is based on a status array which contains flags (True/False) to

monitor the inputsoutput. In this program this status array is defined such as a list

with 5 positions, [System, Flash Light, Pedestrian Board, Spotlight, Senor], with index

between [0,4].

The device need to detect pedestrian in both sides of the street, because this, it has

been developed an algorithm which would be embedded. In this case, it is installed in two

equal devices and each one has their own unique attributes which enable them to work

in pair, activating the outputs synchronously.

This attributes are an unique ID, the communication channel (a integer number be-

tween [0,255], the address that will be installed the devices and, in the end, the crossing

time. An example of these attributes is shown on the line 26, in the Appendix C.1.1.

4.2. SOFTWARE 61

Each device has a .csv file called devicesID.cdv which lists another devices authorized

to give output’s enabling commands. The algorithm reads this file and creates a variable

compound by an unique ID and the communication channel which must be accessed to

send commands to the another device, starting the communication between the pair of

devices.

This communication happens when, after the system detects the night, one of the

devices detect a pedestrian crossing. When occurs, it is sent a package with a unique ID

,a command and a package ID to enable the outputs. This package ID count the amount

of packages sent and is used to identify if the received package is new or not.

The device on another side of the street receive the package and only executes the

command if the attached unique ID exist in the file devicesID.csv. This protocol ensure

safety against message interceptions in a Smart City environment for example.

The way to represents it in code’s lines, in first touching, has been creating a main

script with the logical choices about the system’s work and the decisions based on the

interaction system/pedestrian. The main script uses three modules:

• functions: Responsible to provides functions to enable/disable the outputs, defines

the GPIO such as inputs or outputs and code and decode packages that will be sent

to the other device.

• raspi-lora: This module, in this case without changes, is provided by the library

raspi-lora and has the functions already explained.

• registers: It includes functions which are used to read the devicesID.csv and adjust

the authorized devices’ information inside this file. It removes unwanted characters

and ensure that they will read in a correct variable’s type.

The main script were written seeking be self explanatory to enable another people to

use it as program base and will be explained in lines’ interval as follow:

1. Starts calling the modules and libraries (1-11).

62 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

2. Setup GPIOs which will be used as input/output lines (12-22).

3. Creates a tuple with the device’ attributes read in the devicesID.csv and creates an

lora object able to perform the remote communication (23-31).

4. Ensure that all outputs start deactivated, none status is True and none package

habe been received (32-38).

5. Starts the main program which evaluate the inputs and activates the outputs ac-

cording the pedestrian detection every time updating the status array (39-95).

• Starts a constant looping and waits the night be detected for the Twilight

Sensor, activating the Crosswalk Board when it happens (39-49).

• Verify if a new package has been received and if the device which sent it

is authorized. After this, it decodes the package and updates the messages

received based on this integer number (50-64).

• If the pedestrian is detected for the Obstacle Senor or a new package is received

the outputs are activated during the crossing time. This time t can be find in

the tuple SMARTCROSSWALK, index 4 (65-85).

• Verify in all main routine cycles if the Day already starts and the system must

be deactivated (86-95).

Challenges and Solutions

The challenges to develop this version occurs bearing in mind the first contact with the

technologies and how they working together can implement a smart crosswalk. Inside it,

the main problem was how to wire the SPI to connect the Raspberry Pi and the RFM95W

and identify if the received package is new or not.

The solution implemented to identify new packages, after some tests, generated prob-

lem. The integer number is incremented separated for each device, due this, they lose the

synchrony when, supposedly, more than one pedestrian comes from the same size.

4.2. SOFTWARE 63

This problem has been solved understanding better the raspi-lora library and is rein-

terpreted in the next Subsections. This new versions will use new programming structures

which were developed separately in three implementations: Structural (Subsection 4.2.3),

Communication (Subsection 4.2.4 and, finally, Integration (Subsection 4.2.5).

4.2.3 Structural

Following the same idea proposed in the Subsection 4.2.2, the program gain some struc-

tural improvements. This version is developed for each device type, A or B, encompassing

their inputs/outputs working for each type. All the implementations, including this one,

use the same libraries and work inside the same crossing proposal.

Goals

Therefore, the full algorithm is shown on Appendix 4.2.3 and this will be analysed using

the same Topics of Subsection 4.2.2. Each part of their codes try to show the solutions

that have been found to achieve the following goals:

• Implement a algorithm based on Object classes and Methods.

• Develop a specific main algorithm for each device type, A and B.

The next topic describes some differences between the Pilot and the new version,

mainly, focused in the new programming concepts used.

Approach

Now, the algorithm work with two different objects, the LoRa and RaspberryPi despite

modules. In this way this Subection is focused in how has been created the Object class

RaspberryPi.

This class has methods to command the inputs/outputs and attributes to store the

device’s unique characteristics shows in the Appendix C.2.2. The system algorithms for

64 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

each device type have little differences between them and is shows in the Appendix C.2.1

that is, as example, the algorithm for a device type A.

This new version work with two files authorizedDevices.csv and devices.csv despite the

single file and the tuple with the characteristics, such as seen in the Pilot version. But,

this version only implement the work the devices A and B, thus, they will not be used.

Another difference between the versions is the development focus. While the Pilot

version has proposed a general experience with the technologies, this version is focused

in explore the different devices working separately. This is better at development level

because open spaces for the project be constructed in an incremental way, isolating the

tasks.

Because this insight, the project has started to be developed around the three compo-

nents already quoted, and this is the first part. Thus, this version implement the complete

system with 4 inputs and 4 outputs working as described in the Section 3.1, Chapter 3.The

GPIOs that has been used as input/output also change trying to simulate better the ideal

system.

This improvement is seeking a program able to be embedded on the hardware described

in the Section 4.1. Thus, has been made another protoboard assembly to simulate a total,

shows in Figure 4.17 and with the pins changes shows in Table 4.7.

Inputs Outputs
Twilight Sensor GPIO19 Spotlight (White) GPIO23
Camera 0 GPIO27 Pedestrian Board (Green) GPIO26
Camera 1 GPIO18 Flash Light (Red) GPIO24
Obstacle Sensor GPIO20 Crosswalk Board (Yellow) GPIO25

Table 4.7: GPIO pins used such as Inputs/Outputs in the Structural version.

This assembly is used on the another two components of this incremental development

approach and it has real photos shown in the Appendix D.2.

The inputs has changed to three wires connected on GND bus (for LOW value) which

can alternate to 3.3V (for HIGH values) according the desirable inputs. The LEDs wiring

has changed because, according the Hardware proposed in Section 4.1, the output relays

4.2. SOFTWARE 65

Figure 4.17: Structural, Communication and Integration assembly.

are activated with LOW values.

Because this, the LEDs polarity was inverted and, now, the anode is connected in

the resistor wired on thd 3.3V bus and GPIO provides LOW values when a output must

be enabled. Furthermore, the next topic will explain how the RaspberryPi class works

besides explain their work inside the Main Routine.

Program Work

Analyzing the RaspberryPi module line-to-line is possible to understand how it is created,

which are their attributes and methods. The script responsible to create the class work

as follow:

1. The algorithm call the necessary libraries (1-11).

2. Setup the class attributes such as the device’s unique characteristics, the authorized

66 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

devices to establish connection, the GPIO pins which will be used as inputs/outputs

(12-26).

3. Setup two status array, one to monitor the inputs’ status of the own device and

another to the inputs of the Pair Device (27-31).

4. All the Methods responsible to defines pins as input/outputs, inputs detection and

activation/deactivation of outputs (28-110).

Also it is created helpful methods suach _bounceTime and _allOutOff, respectively,

to implement delays and turn OFF all the outputs at the same time. Another details

is, specifically, the Obstacle Avoidance Sensor because this is a input treated such as an

interruption pin while the others are simple inputs.

This interruption pin detect the exactly moment when the pedestrian enter on the

crosswalk and activate the Spotlight. In this way, save energy avoiding unnecessary

activation, due their high consumption, such as seen in the Subsection 3.2.5. It helps

in cases that the people just comes toward the crosswalk but does not enter on it.

For each device’s type, the interruptions callback’s conditions, on the line 84, verify

if, at least one (Device A or B) Obstacle Sensor were activated. The code blocks stay in

looping until that there are not more pedestrian crossing the street.

It also verifies if the Camera that covers the Area B” has detected any pedestrian on

the crosswalk. But, if device is A type, the last condition depends of the Pair device

status arrays. If it is B type, depends of their own status array.

Thus, after this brief explanation, an Object is created with this class framework and

operate, divided in code blocks, such as follow:

1. Calls the necessary libraries (1-27).

2. Creates the raspi object, reading the .csv files and setup the inputs/outputs a defines

the preset values (28-51).

3. It is the Main Routine which verify when and what output must be activated based

on both status arrays already explained (29-76).

4.2. SOFTWARE 67

The Cameras are considered such as logical pins, but, in real circuits, their have specific

libraries to work with. But this consideration is valid because, such as described in the

paper seen on the Subsection 2.3.6, there are a lot of tools capable to detect pedestrians

on crosswalks with local end-device’s image processing.

In this way, this study sustain some hypothesis to employ image processing algorithms

inside this project Raspberry Pi based. But, due the complexity increase, they are not

used, but guarantee that this system can be applied in a real environment. Another detail

are the main routine changes according to the device type.

For Device’s type A, on the line 64, it verifies if there are cars on the Area A”, according

the Figure 3.7. It is responsible to pedestrian coming toward the crosswalk (Area A’) and

and cars waiting in front the crosswalk (Area A”). The program enter in this conditional

code block based on their own status array, bearing in mind that just it has the camera

which verifies the cars.

In contrast, for Devices’ type B, the condition verify on the pair device’s status array

because. This device’s type also detects pedestrian coming (Area B’) but, despite the

another type, it verifies if there are pedestrians on the Crosswalk (Area B”). This make

it dependent of the Pair device status array to activate the Pedestrian Board.

Challenges and Solutions

This version has created a Object class able to implement the smart device’s work. The

bigger challenge has been understand how this new programming approach should works.

The library raspi-lora has been used as creation example for this Structural implemen-

tation.

In the first implementation of this version, the program did not work. The LEDs have

been activated but they were blinking when the inputs were detect, not working well.

In this way, has been created the Method _bounceTime which helps on the detection

process. This prevents the floating values giving a soft delay when an input is verified.

So, after these considerations, the project has two different devices working separately

but they need to connect themselves to implement all the system work environment. The

68 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

next implementation will develop isolated the RX continuous/TX to send explained on

the Section 3.3.

4.2.4 Communication

The communication algorithm has been developed using the assembly seen in the Figure

4.15 to attach the RFM95W on the Raspberry Pi. It simulates the information changes

between two devices in a RX continuous/TX to send method. The input/output is tested

using the assembly seen in Figure 4.17.

Goals

Have been only considered the Twilight Sensor as input and the Spotlight as outputs

seeking to simplify tests, following goals:

• Implement a RX continuous/TX to send method.

• Ensure a communication without faults.

This version is quicker when compared with the others it shown in the Appendix C.3.1.

It is focused on the development of algorithm able to make the RFM95W receiving new

packages all the time and only send messages when new input values on the status array

are detected,

Approach

The approach is based in a inputs’ detection flag. This Flag is True when a inputs is

detected and False if it is not. Such as central logic pillar, it commands the chat between

two devices dictating when a new update must be sent to the another device.

Program Work

The program use the library raspi-lora and work line-to-line, as follow:

4.2. SOFTWARE 69

• Calls the necessary libraries (1-8).

• Defines the GPIO that will be used, if they work as input or output and create lora

(9-20).

• Setup all the variables that will be used (21-29).

• Start the Main Routine in constant looping (30-61).

– Set mode RX constant and verify if a new package has been received and

convert it for a Boolean value (34-44).

– Verify if it has happens a status change based in the Twilight Sensor detection

(45-51).

– Still in RX mode if the Flag did not change, turn on/off the Spotlight according

the status and, finally, send an command to the Pair device if the Twilight

Sensor was detected (52-61).

Challenges and Solutions

The main challenge was the devices’ synchrony. They lose it after communication tries.

Another problem happens when the communication side changes, that is, who starts as

sender and, after send, becomes receiver. With this changing, the outputs not answer in

the right time.

This issue was solved adding the line 47, a delay on the Flag variation. This de-

lay has solved the synchrony problem ensuring that will not be sent unnecessary status

notifications which flood the communication channel.

Finally, his algorithm version is the second component of the incremental developing.

The Integration Implementation will join the the Structural and the Communication

versions seeking to make a base for the final algorithm version.

Despite the incremental developing has been validated version-to-version, when the

Structural and the Communication version are combined new logic faults can happen.

70 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

The next Topic will discus the last considerations, the developed adaptations and it will

gives a preview of the final version.

4.2.5 Integration

This is the final component of the incremental developing proposes. In contrast with

the another Subsections explaining each goal, approach and challenges, this one will only

shows how the other two components implement this final. In this way, it will focus how

the integration works and why each change has been developed.

Program Work

The Integration version emulates the complete scenery which two Smart Crosswalks

change information and both working only with the Twilight Sensor and the Crosswalk

Board. The Twilight Sensor activates all the system and enable the Crosswalk Board

when is night.

As well the Pilot implementation, this version works with a main script called sys-

tem.py that interact with the modules that have been made in the Structural and the

Communication implementations. They are organized as follow:

• raspi: Raspberry object class’ creation module. It is compound by the raspi.py

which is the script responsible for defines the object’s attributes and methods and

the __init__.py used for the module’s work.

• communication: LoRa object class’ creation module. It is compound by the

constant.py script which is the module’s constant, the lora.py which is the script re-

sponsible for defines the object’s attributes and methods and, finally, the__init__.py

used for the module’s work.

• tools: Module with the tools to read and convert the data inside the files device.csv

and authorizedDevices.csv.

4.2. SOFTWARE 71

The communication process uses the files device.csv and authorizedDevices.csv to setup

their properties. This setup includes, respectively, the unique characteristics for each

device, in the Table 4.8, and who is authorized to establish communication.

Attributes Unique IPv6 ID Channel Address Type
Type A c9ed:d191:4c2e:d978:644a:8c55:2fb4:27e 0 Sidarta-84 A
Type B 4649:6858:89ae:b771:e21e:f0b4:8a2e:e42a 1 Sidarta-84 B

Table 4.8: Devices’ unique characteristics used on the Integration.

In this implementation the Unique IPv6 ID and the Channel Communication are used

to make the communication protocol. This protocol, as already explained, first verifies if

the attached ID in the package received exist in the authorized devices list. Besides this

verification, all the messages also be encrypted, increasing the secure.

The attributes used in the class lora are setup such as the documentation of the library

operating with cryptography and in the 868 MHz band, the unlicensed European Band.

Bearing in mind this environment scenery the next topic will shows how the adaptations

work and why they were made.

Upgrade and Adaptations

The codes shown in Appendix C.4 are the system’s Main Routine and the changes that

were made in the raspi.py, proposed in the Appendix C.2, and in the raspi-lora library.

First, the changes implemented on the raspi.py, looking all the lines in Appendix C.4.2,

are such as follows:

• Attribute’s creation called _statusPair and it is an array which contains all the

inputs’ status of the Pair device (Line 11).

• Attribute’s creation _flag and it is responsible to detect when a new input is de-

tected and the system must send a status update to the Pair device (Line 12).

• Method’s creation called _message and it is responsible to code the message that

72 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

will be sent. This codification convert an status array from logic values (True or

False) to an sequence with ’1’ or ’0’ (14-21).

• Method’s creation called _pairDetection an it must makes the authorized devices’

validation and update the _statusPair array (23-29).

• Method’s creation called _flagTest an it should makes the _flag update based on

a new input detection (31-39).

These attributes and methods compound the sending and receiving process in the raspi

object’s side. The adaptations made on the raspi-lora library (Appendix C.4.3) were to

treat the received packages and preset attributes in the lora object’s side as follow:

• All the values that must be given when the object is created are defined inside the

class setup.

• Attribute’s creation called _thisID which stores the Unique IPv6 ID (Line 6).

• Attribute’s creation called _this_address which stores the communication channel

(Line 16).

• Attribute’s creation called _message and store the received message (Line 20).

• Cryptography activation using the key the_suffering_is_the_way. Both devices

have the same key and it is used to encrypt and decrypt the packages (Line 21).

• Adaptation in the on_recv to make it decodes the received packages and update

the the _message.

Therefore, lora object gives the received package to the raspi through the _message

attribute. The raspi has a method to code the package and use a lora method, called

send, to send it to the Pair device.

On the another hand, the lora has a method to decode the package and gives this

information for a raspi method, called _pairDetection, to allow or not the package and

store it in the raspi attribute called _statusPair.

4.2. SOFTWARE 73

The Main Routine (Appendix C.4.1) uses this communication process to test a Final

version preview. It implements the communication flag based while activate the Crosswalk

Board according the night detection. This test has resulted in a system working without

faults for only one input activating one output. This routine are not explained because

only integer the another two, Structural and Communication.

Thus, this last version finish the incremental developing and has check the easier case

scenery. Nevertheless, it provides a base algorithm to implement the Final Embedded

System that will be discussed in the Chapter 5. The next Subsection explain how to

embed a system inside a Raspberry Pi in a way that it works autonomous in the outdoor

environment.

4.2.6 Software Incorporation

The system needs to be embedded on the board to work in autonomous way. To achieve

it, has been used the cron, a Linux’s default software utility that is a time-based job

scheduler [73].

But, despite this is the main tool, to install all the necessary features it is desirable to

has basic knowledge in Linux Terminal commands to install packages and setup the cron.

Thus, all the installation occurs using two devices, A and B, where includes the follow

steps:

1. Connect the Raspberry Pi on the internet

2. Download the Smart Crosswalk’s Setup Script C.6 and the both Systems Modules

(A and B) C.5.

3. Run the Smart Crosswalk’s Setup Script and generates the ’authorizedDevices_X.csv’

and the ’device_X.csv’ for both devices, where X = A or B

4. Cut the System Module, ’authorizedDevices_X.csv’ and ’device_X.csv’ for

each devices type and paste these files on the directory ’/home/pi/smartCross-

walk/’ for both of them

74 CHAPTER 4. DEVELOPMENT: EMBEDDED SYSTEM AND SCHEMATIC

5. Use the Raspbian terminal with the following commands:

(a) sudo su and enter with it Raspberry credentials defined on Operating System

installation

(b) curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py to ensure that

the pip package is installed

(c) apt-get install python3.6 to install the Python interpreter if it is not in-

stalled

(d) pip install cryptodome to install the message encrypter package

(e) crontab -e to call the scheduler software

6. In the cron work space write the command @reboot cd /home/pi/smartCross-

walk/ && python3 /home/pi/smartCrosswalk/system.py, save and return

to terminal

7. Execute raspi-config to change the boot configurations

8. Follow the path "Boot Options → Desktop / CLI → Console Autologin" and when

to close the raspi-config select <Yes> to reboot the microcontroller. This step setup

the Raspberry Pi to execute the ’system.py’ script always when this device reboot

automatically

This step-by-step install the necessary python packages for the Embedded System

works well. The Raspberry Pi connected on the internet is used to ensure, first, that the

Python script is able to be embedded on the board.

Now, when the system restart, the Raspberry Pi will automatically executes the Smart

Crosswalk System and will be able to operate on the outdoor environment. Despite this,

it is necessary to has all the peripherals (inputs and outputs) attached on the Control

Board, and, lastly after the power supply be wired to prevent algorithms errors.

Chapter 5

Results and Discussion

The next sections will be dedicated to the presentation of results regarding the Circuit

Schematic and the Embedded System. The Circuit Schematic analyses will discuss how

this circuit proposal can be useful, at which scenery it could be applied and about their

energy autonomy cited in the Chapter 3.

The Embedded System analyses will describe the final algorithm implementation and

the improvements made starting from the Integration version (Subsection C.4). Finally,

will be simulated possible faults using the inputs which represent pedestrians’ behavior

to cross the street on crosswalks.

5.1 Hardware

The Circuit Schematic proposal in Appendix B, in fact, is a the physical part of a Smart

Device to integer a lighting’s Smart City environment. This device, within the IoT infras-

tructure concepts (Subsection 2.1.1), encompass the perception and the network layer,

being capable to detect the environment around the model of crosswalk seen in Figure

3.2.

The final system is not able to communicate with the Middleware layer because it

has been not implemented a communication with, for example, a gateway. Although the

Embedded System not perform this communication, in the hardware level, this device has

75

76 CHAPTER 5. RESULTS AND DISCUSSION

the RFM95W integrated which provides structure enough for the next steps to develop a

IoT service.

Furthermore, this possible implementation could be an IoT system within a SSL envi-

ronment destined to crosswalks. The present result, within SL working structure (Subsec-

tion 2.2.1), only propose a LU which can be enabled (with embedded system’s changes)

to communicate with a LCU and, with the current peripherals, generate different reports.

Deepening on the idea of the cameras’ use such as inputs, it is possible to develop a

system which can use image processing tools to identify people and generates this reports,

such as seen in Subsection 2.3.5 and 2.3.6.

Traffic accidents, pedestrians’ flow intensity and traffic rules’ violation are only some

examples of data that could be acquitted and sold, in a report shape, to traffic mapping

softwares, besides to get improvements in the Smart City’s infrastructure, transportation

and services pillars.

Another interesting spots are the system’s energy autonomy and their input/outputs

peripherals use. The ideal system consider the photovoltaic panels and the power con-

sumption described in the Subsection 3.2.5 to evaluate, grossly, if is possible to implement

an energetically autonomous system.

In order to do so, using the Equation 3.2 a the proposed panel values:

= DεPjan

= (1.67)
[
m2

]
× (0.18)× (53.1)

[
KWh

m2

]

∴ P = 15.93 [KWh]

Therefore, P is the amount of energy generated for the solar panels which restrict the

system consumption. Applying the consumption values seen in Table 3.5 in the Equation

3.3 is possible to calculate the energy demands as below:

5.2. EMBEDDED SYSTEM 77

=
∑

Pcb +
∑

Pin +
∑

Pout

= 2902 + 976.5 + 840

∴ Pcon ≈ 4.8 [KWh]

Thus comparing the generated energy in the worst scenery and the system’s power

demand, the present work can be energetically autonomous. Furthermore, due the P >

Pcon (almost 4× lower), grossly, the project can use clean energy such as power supply

source besides to work independent of the energy power from line grid. This evaluation

only confirms if this crosswalk system can be deployed on the real environment, however,

that is a superficial analyse due it is not one of this thesis goals.

5.2 Embedded System

This Final Version of the Embedded System, as explained in the Subsection 4.2.5, is an

Integration version’s improvement and has a pretty similar working when compared with

this one.

5.2.1 Software

It follows the same goals, approach and program working, only suffering changes to over-

come the problems found during the test that will be described in this Section.

Goals

• Implement an Embedded System applied in SSL directed to crosswalks.

• Develops a system should detect 4 inputs (Subsection 3.2.3) and reacts with 4 light-

ing outputs (Subsection 3.2.4) seeking ensure the pedestrian secure during the cross-

ing process.

78 CHAPTER 5. RESULTS AND DISCUSSION

• A software prepared to be incorporated in the circuit schematic seen in Subsection

4.1, following the process seen in the Section 4.2.5.

• Develops a Embedded System with easy interpretation for future improvements.

Approach

• Two similar programs which must be integrated in two Smart Devices, one in each

side of the crosswalk.

• Each device has unique characteristics such as a Unique IPv6 ID, a communication

channel (integer number), an address and their type.

• The devices establish communication between themselves via LoRa sending en-

crypted packages with an inputs’ status array and an authorized IPv6 ID.

• All the communication process is only allowed if the IPv6 ID attached on the message

exist is registered in a list of authorized devices.

• The inputs evaluation to enable the outputs are lead by the device inputs’ status

array and their pair status array sent by message.

• The system only works during the night period.

• The inputs are:

– Camera A’ or B’: Both of them are able to identify the area in front their

respective sides of the crosswalk (Figure 3.2).

– Camera A” or B”: The first camera covers the are which verify if exist cars

in movement and the second on ensure if there are pedestrians crossing the

crosswalk (Figure 3.2).

– Obstacle Avoidance Sensor: Detects the exact pedestrians’ entrance moment

on the crosswalk.

– Twilight Sensor: Detects the night period.

5.2. EMBEDDED SYSTEM 79

• The outputs are:

– Spotlight: Illuminates the crosswalk.

– Flash Light: Alerts the driver when a pedestrian is near of the crosswalk (Area

A’ and B’).

– Pedestrian Board: Alerts the driver that exist a crosswalk near.

– Crosswalk Board: Signalizes for the pedestrian when there is not cars coming

and the right moment to enter on the crosswalk.

Program Work

This final implementation works with the 4 inputs/outputs bearing in mind the final

approach and goals to develop the scripts in Appendix C.5. The assembly made to

simulate and test this version is shown in Figure D.3. The pins used as inputs/outputs

are the same which those applied on the Integration version (Appendix D.2).

The difference between the actual version and this base version is the homemade

RFM95W breakout helpful to reduce interference’s noises. Beside this, during the final

developing it has been realized that the Obstacle Avoidance Sensor is a redundancy of the

Camera responsible to detect the crosswalk (Area B”).

Both perform the detection of the pedestrian entering on the crosswalk, thus, due this

redundancy, this obstacle sensor was removed. This sensor can be helpful to deploy a

less expensive version, because this, all the Embedded System and Circuit Schematic still

supporting this input’s peripheral.

The Main Algorithm has their implementation developed with variables, methods and

attributes named to seek the easier interpretation for another developers. Finally, the

programs is shows in the Appendix C.5.1, line-to-line, as bellow:

• Delay time to ensure the correct cron start when the system is enabled (Line 5).

• Imports the raspi, communication and tools modules (1-10).

80 CHAPTER 5. RESULTS AND DISCUSSION

• Creation of the objects raspi and lora (11-17).

• Set GPIO pins as inputs and outputs (18-27).

• Deactivates and ensure that the device will wait their pair to start the detection

process (24-34).

• Main Routine which stay receiving messages continuously and send an update to

the pair device always that a new input is detected. In sequence, it works as follows:

– Detects new inputs and verify if the pair device has sent any inputs’ status

array (39-43).

– Verify the flag which defines if any inputs has been detected, If none inputs

have been detected the system enter in the RX continuous mode and stay

verifying the inputs (39-83).

– Send a message to the pair device with the current inputs’ status array (84-86).

This algorithm follows the detection process explained in the Section 3.3.3, Figure

3.12 and it has been removed the Obstacle Sensor Avoidance before explained. In the

end, each device type has an system.py script pretty similar and equal modules. Looking

the lines block 62-64 there is the condition that make them different.

The program A, used as example, consider the status array from the pair of the device

to activate the Spotlight. The program B consider their own inputs’ status array. These

singularities are due the System A be responsible to detect cars in the Area A” while the

System B detects if there are pedestrians on the Area B”, that is, on the crosswalk.

The Spotlight only is disabled when there are not more pedestrians crossing the street

and, in this way, only the type B devices can order to the type A device turns off all

the crosswalk lighting. Therefore, due this small difference it is only attached the type A

device’s code. To transform the Type A script in Type B, it just necessary to change, on

the Line 62, the command raspi._statusPair for raspi._status.

5.2. EMBEDDED SYSTEM 81

Improvements

The Appendix C.5 also shows the improvement made in the raspi.py as well within the

lora.py module. In this way, are made the change in the Raspberry Pi modules (Appendix

C.5.2) as follow:

• Has been created a file called constants.py with the inputs GPIO pin numbers, the

indexes for the status array and the message. This improvement seek become the

program more editable for another developers in future improvements.

• The constants were replace in their due methods and conditions codes in the main

code.

• Method’s creation called _inputsDetection to perform a generic function able to

read the inputs. It also is capable to activate the flag which decides if the Smart

Device must send or not a new inputs’ status array (76-89).

• Method’s creation called _outputCommand to perform a generic function able do

activate/deactivate the outputs (91-94).

The constants.py script has transformed all the program in a easy editable script. The

generic functions have reduced the number of code lines and they work with two variables.

These values are an output pins’ list instead of one different method for each peripherals

(input/output), as has been made in the integration version.

The Appendix C.5.3 shows a method created in the lora.py to prevents out of syn-

chrony communication. This function obligates the system to wait their pair device

activation when connected on the power supply during the installation moment.

The default method lora.send_to_wait() (from the raspi-lora library) returns False

when the pair of the device does not receive a message and True in the opposite case.

This returned values implement the while logic. In this way, always that a device receive

a message it sends a acks message.

This ’acknowledgment’ message says if the sent package has been successful received.

Using this functionality, the device constantly send and wait an empty message to start

82 CHAPTER 5. RESULTS AND DISCUSSION

to work. Dues the ’wait and send’ process, the device opens a one second gap (in RX

mode) for the it receives their empty message from their pair.

Finally, to finish this Final Algorithm description, will be shown in the next Topic the

final challenges and solutions found during the developing process.

Challenges and Solutions

Some challenges that have been found after the Integration version’s development are

solved in this Final Version. They were, basically, delay problems between the pair of

devices, bad connection and the unnecessary use of the Obstacle Avoidance Sensor.

The key ideas used to solve these issues already have been described in the Program

Work’s Topic. In the end, this Embedded System has shown satisfactory results and they

will be detailed and discussed in the Subsection 5.2.2.

5.2.2 Tests

The tests have been made within hypothetical work scenarios which verifies thing such as

the outputs’ activation, communication protocol, synchrony and the proposal of crossing

process (Figure 3.2).

All of these tests have been made using the Final Assembly (Appendix D.7) and wiring

the GPIO inputs’ pins on the 3.3V bus when the inputs are HIGH and on the GND bus

when they are LOW.

In general, the tests were made with sequential activation of outputs according their

respective activation conditions shown, in sequence, in the Main Routine (Appendix C.5.1)

such as described in the System’s Work Timeline (Figure 3.12).

The detection areas and peripherals are disposal according explained in the Section 3.2

and must happens synchronously between the pair of devices. In sequence, the detection

successful process occurs when:

1. Detects the Twilight and start the system’s work for both devices.

2. Activates the Crosswalk Board.

5.2. EMBEDDED SYSTEM 83

3. Wait for pedestrians show interest in cross the street going toward the crosswalk on

the Areas A’ or B’.

4. Activates the Flash in the Device A to alert the drivers when is detected people on

the Areas A’ or B’.

5. Allows the pedestrians’ crossing if there are not movements on the Area A”. That

is, the image must be almost static, because, if not happens movements the cars are

stopped or there are not cars.

6. Activates the Pedestrian Board.

7. Detects pedestrians on the Are B” and ensure the Spotlight enabled while there are

pedestrians on the crosswalk.

8. Turns off the outputs according if detection not happens anymore.

Thus, following this step-by-step, has been verified that the Embedded System work

well in the following cases:

• Despite the device already has been turned on, its only starts to detect when their

pair also plugged on the power supply.

• Outputs’ sequential activation according the previous explained sequence.

• Always when any inputs are activated the raspi._flag is updated.

• If the received message has an ID not registered in the authorizedDevices.csv, the

program ignore the raspi._statusPair update.

• Send encrypted messages.

• Crossing process from the Side A to B and the reciprocal process (B to A).

• Hypothetical pedestrians which do not wait the cars stop on the Area A”.

84 CHAPTER 5. RESULTS AND DISCUSSION

The wait for the pair device ensure that will not happens updates in the inputs’ status

array without their pair be notified. The input detection flag ensure that each device

always knows when any of the six inputs has been activated. The program only accept

messages from registered devices, beside this, it sends encrypted messages. These both

security cares keep the system safe from malicious activities. In the last instance, the

system ensure lighting for all cases, even in pedestrians’ premature actions.

This thesis project offers a Embedded System compatible with the Circuit Schematic

seen in Section 4.1. The system is strongly based in the fact that the cameras can detect

pedestrians and cars presence. To implement a real system validation, would be necessary

integrate this program with image processing algorithms and ensure the inputs detection

process.

Despite have been researched studies which show that is possible to make it with local

processing (Subsection 2.3.6, if happens faults in this detection approach, the pedestrians

safety is compromised. Despite this, the program can work with alternatives, such as the

Obstacle Sensor Avoidance, besides being easily editable.

The program has not been tested in practical environment, but, it proposes a au-

tonomous system’s work which can be deployed, moreover, within an IoT service. This

final proposal works with six inputs and seven outputs, summing both devices’ peripher-

als. For both devices, it has been removed the Obstacle Avoidance Sensor and the Type

B device does not has the Flash Light.

Within these logical inputs’ tests the system has a robust answering and it proposes

the core logical function of an IoT service on a Smart City environment. It could generates

data for a Middleware Layer which could integrate a helpful system capable to monitor

the pedestrians and confirm their safety on the traffic.

Chapter 6

Conclusions and Future Works

6.1 Conclusion

Bad lighting conditions are one of the main causes which implies on traffic fatalities

involving pedestrians. The present work has proposed a core logical function of a SSL

infrastructure applied in crosswalks besides provide bases for a Smart Device’s hardware

development. The function script is programmed in Python and it is developed intending

to ease future improvements. The tested cases achieve a synchronized response between

the pair of devices and encompass even when the pedestrian do not follow the proposed

crossing process. Furthermore, this performance has their hardware restrictions matching

with the developed circuit schematic, which makes the system deployment feasible in

practical environment. Also, the project is designed to fit in an IoT service and it can

implement an useful solution, in different subjects, within Smart City environments. For

example, this system can integrate a service which send data to a Control Unit which

monitors accidents, people flow and traffic infractions. This data can be stored in a

database indexed for each pair of devices localization and it generates statistics for flow,

accidents and infractions intensity in different geographical places. With the correct

Business Layer implementation, it could help in governmental programs to prevent these

critical traffic issues. Finally, all this technological and smart proposal can help in the

85

86 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

local Portuguese scenery of traffic accidents providing a good crosswalk signalization as

well a safe and illuminated path for elderly pedestrians.

6.2 Future Works

This work sustain ideas which suggest the follows future works:

• Case studies for pedestrians detection on crosswalks using cameras.

• Improvements in the algorithm work regarding automation to install it, sensible

cases of inputs’ detection and accessibility using new output approaches.

• Development and budget of a PCB project applied to smart lighting and signaliza-

tion of crosswalks as well their viability to be deployed in large scale.

• Case studies for hardware restrictions such as communication noises and input/out-

puts peripherals limitations.

• Implement an IoT Service with autonomous architecture and able to generate re-

ports regard traffic accidents, people flow and traffic infractions.

• Deploy this project idea on real world, bearing in mind all outputs, inputs and

environmental issues.

Bibliography

[1] European Commission, “Traffic Safety Basic Facts on Pedestrians”, Tech. Rep.,

2018, pp. 1–24. [Online]. Available: http://bit.ly/2NVBIa6 (visited on 01/27/2020).

[2] INE, “Estimativas de População Residente em Portugal”, Tech. Rep., 2019, pp. 1–

14. [Online]. Available: http://bit.ly/30SxEN9 (visited on 01/27/2020).

[3] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet : The Internet

of Things Architecture , Possible Applications and Key Challenges”, 2012. doi:

10.1109/FIT.2012.53.

[4] L. Tan and N. Wang, “Future Internet: The Internet of Things”, ICACTE 2010 -

2010 3rd International Conference on Advanced Computer Theory and Engineering,

Proceedings, vol. 5, pp. 376–380, 2010. doi: 10.1109/ICACTE.2010.5579543.

[5] G. M. Lee, “The Internet of Things – A Problem Statement”, pp. 517–518, 2010.

[6] S. Nuratch, “A universal microcontroller circuit and firmware design and imple-

mentation for iot-based real-Time measurement and control applications”, 2017

International Electrical Engineering Congress, iEECON 2017, 2017. doi: 10.1109/

IEECON.2017.8075906.

[7] “An information framework for creating a smart city through internet of things”,

IEEE Internet of Things Journal, vol. 1, no. 2, pp. 112–121, 2014, issn: 23274662.

[8] J. Robert, Urban Europe. 2018, pp. 3–69, isbn: 9789279601392. doi: 10.4324/

9781315777962-2.

87

http://bit.ly/2NVBIa6
http://bit.ly/30SxEN9
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1109/ICACTE.2010.5579543
https://doi.org/10.1109/IEECON.2017.8075906
https://doi.org/10.1109/IEECON.2017.8075906
https://doi.org/10.4324/9781315777962-2
https://doi.org/10.4324/9781315777962-2

88 BIBLIOGRAPHY

[9] European Commission, Worldwide Urban Population Growth. [Online]. Available:

http://bit.ly/2OB1lgG (visited on 02/07/2020).

[10] S. Koutra and V. Becue, “A Multiscalar Approach for ‘ Smart City ’ Planning”,

2018 IEEE International Smart Cities Conference (ISC2), no. 1, pp. 1–7, 2018.

[11] L. G. Anthopoulos, The Rise of the Smart City, April 2017. 2018, isbn: 9783319570150.

doi: 10.1007/978-3-319-57015-0.

[12] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,

“Network function virtualization: State-of-the-art and research challenges”, IEEE

Communications Surveys and Tutorials, vol. 18, no. 1, pp. 236–262, 2016. doi:

10.1109/COMST.2015.2477041. eprint: 1509.07675.

[13] E. De Poorter, I. Moerman, and P. Demeester, “Enabling direct connectivity be-

tween heterogeneous objects in the internet of things through a network-service-

oriented architecture”, Eurasip Journal on Wireless Communications and Network-

ing, vol. 2011, no. 1, pp. 1–14, 2011, issn: 16871499. doi: 10.1186/1687-1499-

2011-61.

[14] M. Castro, A. J. Jara, and A. F. Skarmeta, “Smart lighting solutions for smart

cities”, Proceedings - 27th International Conference on Advanced Information Net-

working and Applications Workshops, WAINA 2013, pp. 1374–1379, 2013. doi: 10.

1109/WAINA.2013.254.

[15] “IoT-enabled smart lighting systems for smart cities”, 2018 IEEE 8th Annual Com-

puting and Communication Workshop and Conference, CCWC 2018, vol. 2018-

January, pp. 639–645, 2018.

[16] R. B. García, G. V. Angulo, J. R. González, E. F. Tavizón, and J. I. H. Cardozo,

“LED street lighting as a strategy for climate change mitigation at local government

level”, Proceedings of the 4th IEEE Global Humanitarian Technology Conference,

GHTC 2014, pp. 345–349, 2014. doi: 10.1109/GHTC.2014.6970303.

http://bit.ly/2OB1lgG
https://doi.org/10.1007/978-3-319-57015-0
https://doi.org/10.1109/COMST.2015.2477041
1509.07675
https://doi.org/10.1186/1687-1499-2011-61
https://doi.org/10.1186/1687-1499-2011-61
https://doi.org/10.1109/WAINA.2013.254
https://doi.org/10.1109/WAINA.2013.254
https://doi.org/10.1109/GHTC.2014.6970303

BIBLIOGRAPHY 89

[17] G. T. Aditya and N. K. Prakash, “Smart and Efficient Outdoor Lighting System”,

Proceedings of the 2nd International Conference on Intelligent Computing and Con-

trol Systems, ICICCS 2018, no. Iciccs, pp. 1598–1602, 2019. doi: 10.1109/ICCONS.

2018.8663140.

[18] “An energy efficient pedestrian aware Smart Street Lighting system”, International

Journal of Pervasive Computing and Communications, vol. 7, no. 2, pp. 147–161,

2011, issn: 17427371. doi: 10.1108/17427371111146437.

[19] W. F. Wang, “Study on several promising short-range wireless communication tech-

nologies”, 2008 IEEE International Symposium on Knowledge Acquisition and Mod-

eling Workshop Proceedings, KAM 2008, pp. 727–730, 2008. doi: 10.1109/KAMW.

2008.4810593.

[20] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of Lora: Long range

& low power networks for the internet of things”, Sensors (Switzerland), vol. 16,

no. 9, pp. 1–18, 2016, issn: 14248220. doi: 10.3390/s16091466.

[21] Z. Alliance, Zigbee. [Online]. Available: http : / / bit . ly / 2IN2G0X (visited on

03/15/2020).

[22] L. R. Prando, E. R. De Lima, L. S. De Moraes, M. Biehl Hamerschmidt, and G.

Fraindenraich, “Experimental performance comparison of emerging low power wide

area networking (lpwan) technologies for iot”, IEEE 5th World Forum on Internet

of Things, WF-IoT 2019 - Conference Proceedings, pp. 905–908, 2019. doi: 10.

1109/WF-IoT.2019.8767343.

[23] A. Zanella and M. Zorzi, “Long-Range Communications in Unlicensed Bands: The

Rising Stars in the IoT and Smart City Scenarios”, no. October, pp. 60–67, 2016.

[24] Semtech, LoRa. [Online]. Available: http://bit.ly/3d1LAdu (visited on 03/15/2020).

[25] W.-S. Alliance, Wi SUN. [Online]. Available: http://bit.ly/38SFN6T (visited on

03/15/2020).

[26] Sigfox, SIGFOX. [Online]. Available: http://bit.ly/2TPMNNw (visited on 03/15/2020).

https://doi.org/10.1109/ICCONS.2018.8663140
https://doi.org/10.1109/ICCONS.2018.8663140
https://doi.org/10.1108/17427371111146437
https://doi.org/10.1109/KAMW.2008.4810593
https://doi.org/10.1109/KAMW.2008.4810593
https://doi.org/10.3390/s16091466
http://bit.ly/2IN2G0X
https://doi.org/10.1109/WF-IoT.2019.8767343
https://doi.org/10.1109/WF-IoT.2019.8767343
http://bit.ly/3d1LAdu
http://bit.ly/38SFN6T
http://bit.ly/2TPMNNw

90 BIBLIOGRAPHY

[27] Ingenu, RPMA. [Online]. Available: http://bit.ly/2QhyoHv (visited on 03/15/2020).

[28] Weightless, Weightless. [Online]. Available: http://bit.ly/2IMV9z3 (visited on

03/15/2020).

[29] I. ONE,Dash 7. [Online]. Available: http://bit.ly/2x1iwSF (visited on 03/15/2020).

[30] D. K. Srivatsa, B. Preethi, R. Parinitha, G. Sumana, and A. Kumar, “Smart street

lights”, Proceedings - 2013 Texas Instruments India Educators’ Conference, TIIEC

2013, pp. 103–106, 2013. doi: 10.1109/TIIEC.2013.25.

[31] T. Instruments, MSP430x5xx and MSP430x6xx Family - User’s Guide. [Online].

Available: http://bit.ly/3b9r3lm (visited on 03/19/2020).

[32] N. P. Kumar and R. K. Jatoth, “Development of cloud based light intensity mon-

itoring system using raspberry Pi”, 2015 International Conference on Industrial

Instrumentation and Control, ICIC 2015, no. Icic, pp. 1356–1361, 2015. doi: 10.

1109/IIC.2015.7150959.

[33] J. A. Jang, H. S. Lee, and B. S. Yoo, “A real-Time sensing system of elderly’s crossing

behavior at outdoor environments”, 2016 International Conference on Information

and Communication Technology Convergence, ICTC 2016, pp. 1143–1145, 2016.

doi: 10.1109/ICTC.2016.7763390.

[34] A. Adriansyah, A. W. Dani, and G. I. Nugraha, “Automation control and moni-

toring of public street lighting system based on internet of things”, ICECOS 2017

- Proceeding of 2017 International Conference on Electrical Engineering and Com-

puter Science: Sustaining the Cultural Heritage Toward the Smart Environment for

Better Future, pp. 231–236, 2017. doi: 10.1109/ICECOS.2017.8167140.

[35] Ubidots, Ubidots: IoT platform. [Online]. Available: http : / / bit . ly / 2Wql5IJ

(visited on 03/19/2020).

[36] K. E. An, S. W. Lee, Y. J. Jeong, and D. Seo, “Pedestrian-safe smart crossing system

based on IoT with object tracking”, Lecture Notes in Electrical Engineering, vol. 474,

pp. 926–931, 2018, issn: 18761119. doi: 10.1007/978-981-10-7605-3_147.

http://bit.ly/2QhyoHv
http://bit.ly/2IMV9z3
http://bit.ly/2x1iwSF
https://doi.org/10.1109/TIIEC.2013.25
http://bit.ly/3b9r3lm
https://doi.org/10.1109/IIC.2015.7150959
https://doi.org/10.1109/IIC.2015.7150959
https://doi.org/10.1109/ICTC.2016.7763390
https://doi.org/10.1109/ICECOS.2017.8167140
http://bit.ly/2Wql5IJ
https://doi.org/10.1007/978-981-10-7605-3_147

BIBLIOGRAPHY 91

[37] M. Saleh, A. Muthanna, and Y. T. Lyachek, “Smart System of a Real-Time Pedes-

trian Detection for Smart City”, 2020 IEEE Conference of Russian Young Re-

searchers in Electrical and Electronic Engineering (EIConRus), pp. 45–50, 2020.

[38] “Walking pedestrian recognition”, IEEE Conference on Intelligent Transportation

Systems, Proceedings, ITSC, vol. 1, no. 3, pp. 292–297, 1999. doi: 10.1109/itsc.

1999.821069.

[39] A. Rosebrock, Deep learning on the Raspberry Pi with OpenCV. [Online]. Available:

https://bit.ly/391qdG0 (visited on 03/21/2020).

[40] Accuware, Sentinel Introduction. [Online]. Available: https://bit.ly/2QyVlWY

(visited on 03/21/2020).

[41] Kerlink - Communication is Everything. [Online]. Available: https://bit.ly/

2J1bWhW (visited on 03/20/2020).

[42] A2A Smart City. [Online]. Available: https://bit.ly/3dhUt2K (visited on 03/20/2020).

[43] KiCAD like a Pro 2. [Online]. Available: https://bit.ly/2Wbx7Fo (visited on

05/06/2020).

[44] About KiCAD. [Online]. Available: https://bit.ly/2X5Gdo1 (visited on 04/03/2020).

[45] About Instructables. [Online]. Available: https : / / bit . ly / 3dM816V (visited on

04/03/2020).

[46] Design Your Own Raspberry Pi Compute Module PCB. [Online]. Available: https:

//bit.ly/34go2NP (visited on 01/21/2020).

[47] Compute Module IO Board. [Online]. Available: https://bit.ly/3aY4WOr (visited

on 05/03/2020).

[48] Flashing the Compute Module eMMC. [Online]. Available: https : / / bit . ly /

2YvBQ6m (visited on 05/03/2020).

[49] Raspberry Pi Compute Module 3+. [Online]. Available: https://bit.ly/3dSBoEF

(visited on 04/06/2020).

https://doi.org/10.1109/itsc.1999.821069
https://doi.org/10.1109/itsc.1999.821069
https://bit.ly/391qdG0
https://bit.ly/2QyVlWY
https://bit.ly/2J1bWhW
https://bit.ly/2J1bWhW
https://bit.ly/3dhUt2K
https://bit.ly/2Wbx7Fo
https://bit.ly/2X5Gdo1
https://bit.ly/3dM816V
https://bit.ly/34go2NP
https://bit.ly/34go2NP
https://bit.ly/3aY4WOr
https://bit.ly/2YvBQ6m
https://bit.ly/2YvBQ6m
https://bit.ly/3dSBoEF

92 BIBLIOGRAPHY

[50] Raspberry Pi 3 Model B+. [Online]. Available: https://bit.ly/2XonAvV (visited

on 04/06/2020).

[51] RFM95W Transceivers. [Online]. Available: https://bit.ly/2yyv9FG (visited on

04/06/2020).

[52] Serial Peripheral Interface. [Online]. Available: https://bit.ly/35BUOd4 (visited

on 05/06/2020).

[53] Photovoltaic Geographical Information System. [Online]. Available: https://bit.

ly/3e0Jr21 (visited on 04/06/2020).

[54] Crosswalk Example. [Online]. Available: https : / / bit . ly / 2RyeKYL (visited on

04/06/2020).

[55] REC TwinPeak 2 Mono. [Online]. Available: https://bit.ly/2JNeSiE (visited on

04/06/2020).

[56] Top 18 Solar Panel Manufacturers in Europe. [Online]. Available: https://bit.

ly/2x9olxZ (visited on 04/06/2020).

[57] Camera Module. [Online]. Available: https://bit.ly/2xDk85T (visited on 05/05/2020).

[58] Obstacle Avoidance Sensor. [Online]. Available: https://bit.ly/2z9MhCa (visited

on 05/05/2020).

[59] Twilight Sensor Model. [Online]. Available: https://bit.ly/3fmLUET (visited on

05/05/2020).

[60] Light Boards Model. [Online]. Available: https://bit.ly/2SV0h9Z (visited on

05/05/2020).

[61] Flash Light Model. [Online]. Available: https : / / bit . ly / 2WsrQbq (visited on

05/05/2020).

[62] Spotlight Model. [Online]. Available: https://bit.ly/2zdqCJj (visited on 05/05/2020).

[63] Object-Oriented Programming in Python. [Online]. Available: https://bit.ly/

2W8Nliw (visited on 05/06/2020).

https://bit.ly/2XonAvV
https://bit.ly/2yyv9FG
https://bit.ly/35BUOd4
https://bit.ly/3e0Jr21
https://bit.ly/3e0Jr21
https://bit.ly/2RyeKYL
https://bit.ly/2JNeSiE
https://bit.ly/2x9olxZ
https://bit.ly/2x9olxZ
https://bit.ly/2xDk85T
https://bit.ly/2z9MhCa
https://bit.ly/3fmLUET
https://bit.ly/2SV0h9Z
https://bit.ly/2WsrQbq
https://bit.ly/2zdqCJj
https://bit.ly/2W8Nliw
https://bit.ly/2W8Nliw

BIBLIOGRAPHY 93

[64] Raspbian. [Online]. Available: https://bit.ly/35BY5sM (visited on 05/06/2020).

[65] Python. [Online]. Available: https://bit.ly/2L8T5T2 (visited on 05/06/2020).

[66] Angry IP Scanner. [Online]. Available: https : / / bit . ly / 3ccJTsS (visited on

05/06/2020).

[67] Putty. [Online]. Available: https://bit.ly/2A7lM0D (visited on 05/06/2020).

[68] VNC Viewer. [Online]. Available: https://bit.ly/2L6Ns83 (visited on 05/06/2020).

[69] Compute Module Hardware Design Guide. [Online]. Available: https://bit.ly/

3fupa5Q (visited on 05/09/2020).

[70] Installing operating system images. [Online]. Available: https://bit.ly/2SSFwLV

(visited on 05/10/2020).

[71] raspi-lora. [Online]. Available: https://bit.ly/3bF86Hl (visited on 05/17/2020).

[72] GPIOZero. [Online]. Available: https://bit.ly/3fYgxRa (visited on 05/17/2020).

[73] cron: Time-based Job Scheduler. [Online]. Available: https://bit.ly/3fKjDs3

(visited on 05/13/2020).

https://bit.ly/35BY5sM
https://bit.ly/2L8T5T2
https://bit.ly/3ccJTsS
https://bit.ly/2A7lM0D
https://bit.ly/2L6Ns83
https://bit.ly/3fupa5Q
https://bit.ly/3fupa5Q
https://bit.ly/2SSFwLV
https://bit.ly/3bF86Hl
https://bit.ly/3fYgxRa
https://bit.ly/3fKjDs3

Appendix A

Raspberry Pi Compute Module Base

Project

A1

A2 APPENDIX A. RASPBERRY PI COMPUTE MODULE BASE PROJECT

Figure A.1: Raspberry Pi CM3 of the original schematic.

A3

Figure A.2: Power regulators of the original schematic.

A4 APPENDIX A. RASPBERRY PI COMPUTE MODULE BASE PROJECT

Figure A.3: Connectors of the original schematic.

Appendix B

Smart Crosswalk Schematic

B1

B2 APPENDIX B. SMART CROSSWALK SCHEMATIC

Figure B.1: Raspberry Pi CM3 of the developed schematic.

B3

Figure B.2: Power regulators and outputs of the developed schematic.

B4 APPENDIX B. SMART CROSSWALK SCHEMATIC

Figure B.3: LoRa RFM95W and connectors of the developed schematic.

Appendix C

Algorithm’s Versioning

C.1 Pilot

C.1.1 Main Routine

1 # ---#

2 ## >>>>>>>>>>>>> LIBRARIES <<<<<<<<<<<<<< ##

3 # ---#

4

5 import RPi.GPIO as gpio

6 from lib. raspi_lora import LoRa , ModemConfig

7 from lib. functions import *

8 from lib. registers import *

9 import csv

10 import time

11

12 # ---#

13 ## >>>>>>>>>>>>> PINS SETUP <<<<<<<<<<<<<< ##

14 # ---#

15

16 [PIN_system , PIN_sensor , PIN_crosswalkBoard , PIN_spotlight ,

PIN_pedestrianBoard , PIN_flashLight] = [14, 0, 1, 2, 3, 4]

17

C1

C2 APPENDIX C. ALGORITHM’S VERSIONING

18 ## >>>>>>>>>>>>> DEFINE INPUTS / OUTPUTS <<<<<<<<<<<<<< ##

19

20 pinMode (PIN_sensor , PIN_system , modo = gpio.IN)

21 pinMode (PIN_crosswalkBoard , PIN_spotlight , PIN_pedestrianBoard ,

PIN_flashLight , modo = gpio.OUT)

22

23 ## >>>>>>>>>>>> DEVICES CHARACTERISTICS <<<<<<<<<<<<< ##

24

25 devicesID = read () # Authorized devices list

26 SMARTCROSSWALK = (’c9ed:d191 :4 c2e:d978 :644a:8 c55 :2 fb4 :27e’, 0,’SIDARTA

AVENUE ’, 3)

27 # = (ID , channel , address , tempoCross)

28 lora = LoRa (0, 17, SMARTCROSSWALK [1], modem_config = ModemConfig .

Bw125Cr45Sf128 , tx_power =14, acks=True)

29 # = LoRa(CE0 or CE1 , interrupt , this_address , tx_power =14,

30 # modem_config = ModemConfig . Bw125Cr45Sf128 , acks=False , crypto =

None)

31

32 ## >>>>>>>>>>>>> PRESET VALUES <<<<<<<<<<<<<< ##

33

34 digitalWrite (PIN_crosswalkBoard , PIN_spotlight , PIN_pedestrianBoard ,

PIN_flashLight , nivel = gpio.LOW)

35 status = [None , None , None , None , None]

36 package = [None , [None ,None]]

37 id_package = 0

38

39 # ---#

40 ## >>>>>>>>>>>>> MAIN ALGORITHM <<<<<<<<<<<<<< ##

41 # ---#

42

43 while True:

44

45 gpio. wait_for_edge (PIN_system , gpio. RISING)

46 status [0] = True

47 crosswalkBoard (PIN_crosswalkBoard , status)

C.1. PILOT C3

48 time.sleep (0.5)

49

50 while status [0]:

51

52 lora. set_mode_rx ()

53

54 if lora. _last_payload is not None:

55

56 receivedPackage = decPackage (lora. _last_payload . message)

57

58 for idRegistered in devicesID :

59 if receivedPackage [0] == idRegistered [0] and

receivedPackage [2] != package [1][0]:

60 package [0] = receivedPackage [1]

61 package [1][1] = package [1][0]

62 package [1][0] = receivedPackage [2]

63 break

64

65 if gpio.input(PIN_sensor) or package [0]:

66

67 status [1:] = [True , True , True , True]

68

69 if status [4] and (not package [0]):

70 id_package += 1

71 sensorPair = status [4]

72 msg = codPackage (VALPASS [0], sensorPair , id_package)

73 for channel in devicesID :

74 lora.send(msg , channel [1])

75

76 flashLight (PIN_flashLight , status)

77 spotlight (PIN_spotlight , status)

78 pedestrianBoard (PIN_pedestrianBoard , status ,

SMARTCROSSWALK [3])

79

80 status [1:4] = [False , False , False , False]

C4 APPENDIX C. ALGORITHM’S VERSIONING

81 package [0] = False

82

83 flashLight (PIN_flashLight , status)

84 spotlight (PIN_spotlight , status)

85

86 # ---#

87 ## >>>>>>>>>>>>> DEVICE ’S DEACTIVATION <<<<<<<<<<<<<< ##

88 # ---#

89

90 if gpio.input(PIN_system):

91 status [0] = False

92 crosswalkBoard (PIN_crosswalkBoard , status)

93 receivedPackage = [False , 0]

94 time.sleep (0.5)

95 break

C.1.2 LoRa Module

__init__.py

1 from .lora import LoRa , ModemConfig

lora.py

1 import time

2 from enum import Enum

3 import math

4 from collections import namedtuple

5 from random import random

6

7 import RPi.GPIO as GPIO

8 import spidev

9

10 from . constants import *

11

12

C.1. PILOT C5

13 class ModemConfig (Enum):

14 Bw125Cr45Sf128 = (0x72 , 0x74 , 0x04)

15 Bw500Cr45Sf128 = (0x92 , 0x74 , 0x04)

16 Bw31_25Cr48Sf512 = (0x48 , 0x94 , 0x04)

17 Bw125Cr48Sf4096 = (0x78 , 0xc4 , 0x0c)

18

19

20 class LoRa(object):

21 def __init__ (self , channel , interrupt , this_address , freq =868 ,

tx_power =14,

22 modem_config = ModemConfig . Bw125Cr45Sf128 , receive_all =

False ,

23 acks=True , crypto =None):

24

25 self. _channel = channel

26 self. _interrupt = interrupt

27

28 self._mode = None

29 self._cad = None

30 self._freq = freq

31 self. _tx_power = tx_power

32 self. _modem_config = modem_config

33 self. _receive_all = receive_all

34 self._acks = acks

35

36 self. _this_address = this_address

37 self. _last_header_id = 0

38

39 self. _last_payload = None

40 self. crypto = crypto

41

42 self. cad_timeout = 0

43 self. send_retries = 2

44 self. wait_packet_sent_timeout = 0.2

45 self. retry_timeout = 0.2

C6 APPENDIX C. ALGORITHM’S VERSIONING

46

47 # Setup the module

48 GPIO. setmode (GPIO.BCM)

49 GPIO.setup(self._interrupt , GPIO.IN , pull_up_down =GPIO. PUD_DOWN)

50 GPIO. add_event_detect (self._interrupt , GPIO.RISING , callback =

self. _handle_interrupt)

51

52 self.spi = spidev . SpiDev ()

53 self.spi.open (0, self. _channel)

54 self.spi. max_speed_hz = 5000000

55

56 self. _spi_write (REG_01_OP_MODE , MODE_SLEEP | LONG_RANGE_MODE)

57 time.sleep (0.1)

58

59 assert self. _spi_read (REG_01_OP_MODE) == (MODE_SLEEP |

LONG_RANGE_MODE), \

60 "LoRa initialization failed "

61

62 self. _spi_write (REG_0E_FIFO_TX_BASE_ADDR , 0)

63 self. _spi_write (REG_0F_FIFO_RX_BASE_ADDR , 0)

64

65 self. set_mode_idle ()

66

67 # set modem config (Bw125Cr45Sf128)

68 self. _spi_write (REG_1D_MODEM_CONFIG1 , self. _modem_config .value

[0])

69 self. _spi_write (REG_1E_MODEM_CONFIG2 , self. _modem_config .value

[1])

70 self. _spi_write (REG_26_MODEM_CONFIG3 , self. _modem_config .value

[2])

71

72 # set preamble length (8)

73 self. _spi_write (REG_20_PREAMBLE_MSB , 0)

74 self. _spi_write (REG_21_PREAMBLE_LSB , 8)

75

C.1. PILOT C7

76 # set frequency

77 frf = int ((self._freq * 1000000.0) / FSTEP)

78 self. _spi_write (REG_06_FRF_MSB , (frf >> 16) & 0xff)

79 self. _spi_write (REG_07_FRF_MID , (frf >> 8) & 0xff)

80 self. _spi_write (REG_08_FRF_LSB , frf & 0xff)

81

82 # Set tx power

83 if self. _tx_power < 5:

84 self. _tx_power = 5

85 if self. _tx_power > 23:

86 self. _tx_power = 23

87

88 if self. _tx_power < 20:

89 self. _spi_write (REG_4D_PA_DAC , PA_DAC_ENABLE)

90 self. _tx_power -= 3

91 else:

92 self. _spi_write (REG_4D_PA_DAC , PA_DAC_DISABLE)

93

94 self. _spi_write (REG_09_PA_CONFIG , PA_SELECT | (self. _tx_power -

5))

95

96 def on_recv (self , payload):

97 print(" Emissor : Canal ", payload . header_from)

98 print(" Mensagem :", payload . message)

99 print("RSSI: {}; SNR: {}". format (payload .rssi , payload .snr))

100

101

102 def sleep(self):

103 if self._mode != MODE_SLEEP :

104 self. _spi_write (REG_01_OP_MODE , MODE_SLEEP)

105 self._mode = MODE_SLEEP

106

107 def set_mode_tx (self):

108 if self._mode != MODE_TX :

109 self. _spi_write (REG_01_OP_MODE , MODE_TX)

C8 APPENDIX C. ALGORITHM’S VERSIONING

110 self. _spi_write (REG_40_DIO_MAPPING1 , 0x40) # Interrupt on

TxDone

111 self._mode = MODE_TX

112

113 def set_mode_rx (self):

114 if self._mode != MODE_RXCONTINUOUS :

115 self. _spi_write (REG_01_OP_MODE , MODE_RXCONTINUOUS)

116 self. _spi_write (REG_40_DIO_MAPPING1 , 0x00) # Interrupt on

RxDone

117 self._mode = MODE_RXCONTINUOUS

118

119 def set_mode_cad (self):

120 if self._mode != MODE_CAD :

121 self. _spi_write (REG_01_OP_MODE , MODE_CAD)

122 self. _spi_write (REG_40_DIO_MAPPING1 , 0x80) # Interrupt on

CadDone

123 self._mode = MODE_CAD

124

125 def _is_channel_active (self):

126 self. set_mode_cad ()

127

128 while self._mode == MODE_CAD :

129 yield

130

131 return self._cad

132

133 def wait_cad (self):

134 if not self. cad_timeout :

135 return True

136

137 start = time.time ()

138 for status in self. _is_channel_active ():

139 if time.time () - start < self. cad_timeout :

140 return False

141

C.1. PILOT C9

142 if status is None:

143 time.sleep (0.1)

144 continue

145 else:

146 return status

147

148 def wait_packet_sent (self):

149 # wait for ‘_handle_interrupt ‘ to switch the mode back

150 start = time.time ()

151 while time.time () - start < self. wait_packet_sent_timeout :

152 if self._mode != MODE_TX :

153 return True

154

155 return False

156

157 def set_mode_idle (self):

158 if self._mode != MODE_STDBY :

159 self. _spi_write (REG_01_OP_MODE , MODE_STDBY)

160 self._mode = MODE_STDBY

161

162 def send(self , data , header_to , header_id =0, header_flags =0):

163 self. wait_packet_sent ()

164 self. set_mode_idle ()

165 self. wait_cad ()

166

167 header = [header_to , self. _this_address , header_id , header_flags

]

168 if type(data) == int:

169 data = [data]

170 elif type(data) == bytes:

171 data = [p for p in data]

172 elif type(data) == str:

173 data = [ord(s) for s in data]

174

175 if self. crypto :

C10 APPENDIX C. ALGORITHM’S VERSIONING

176 data = [b for b in self. _encrypt (bytes(data))]

177

178 payload = header + data

179

180 self. _spi_write (REG_0D_FIFO_ADDR_PTR , 0)

181 self. _spi_write (REG_00_FIFO , payload)

182 self. _spi_write (REG_22_PAYLOAD_LENGTH , len(payload))

183

184 self. set_mode_tx ()

185 return True

186

187 def send_to_wait (self , data , header_to , header_flags =0, retries =3):

188 self. _last_header_id += 1

189

190 for _ in range(retries + 1):

191 self.send(data , header_to , header_id =self. _last_header_id ,

header_flags = header_flags)

192 self. set_mode_rx ()

193

194 if header_to == BROADCAST_ADDRESS : # Don ’t wait for acks

from a broadcast message

195 return True

196

197 start = time.time ()

198 while time.time () - start < self. retry_timeout + (self.

retry_timeout * random ()):

199 if self. _last_payload :

200 if self. _last_payload . header_to == self.

_this_address and \

201 self. _last_payload . header_flags & FLAGS_ACK

and \

202 self. _last_payload . header_id == self.

_last_header_id :

203

204 # We got an ACK

C.1. PILOT C11

205 return True

206 return False

207

208 def send_ack (self , header_to , header_id):

209 self.send(b’!’, header_to , header_id , FLAGS_ACK)

210 self. wait_packet_sent ()

211

212 def _spi_write (self , register , payload):

213 if type(payload) == int:

214 payload = [payload]

215 elif type(payload) == bytes:

216 payload = [p for p in payload]

217 elif type(payload) == str:

218 payload = [ord(s) for s in payload]

219

220 self.spi.xfer ([register | 0x80] + payload)

221

222 def _spi_read (self , register , length =1):

223 if length == 1:

224 return self.spi.xfer ([register] + [0] * length)[1]

225 else:

226 return self.spi.xfer ([register] + [0] * length)[1:]

227

228 def _decrypt (self , message):

229 decrypted_msg = self. crypto . decrypt (message)

230 msg_length = decrypted_msg [0]

231 return decrypted_msg [1: msg_length + 1]

232

233 def _encrypt (self , message):

234 msg_length = len(message)

235 padding = bytes (((math.ceil ((msg_length + 1) / 16) * 16) - (

msg_length + 1)) * [0])

236 msg_bytes = bytes ([msg_length]) + message + padding

237 encrypted_msg = self. crypto . encrypt (msg_bytes)

238 return encrypted_msg

C12 APPENDIX C. ALGORITHM’S VERSIONING

239

240 def _handle_interrupt (self , channel):

241 irq_flags = self. _spi_read (REG_12_IRQ_FLAGS)

242

243 if self._mode == MODE_RXCONTINUOUS and (irq_flags & RX_DONE):

244 packet_len = self. _spi_read (REG_13_RX_NB_BYTES)

245 self. _spi_write (REG_0D_FIFO_ADDR_PTR , self. _spi_read (

REG_10_FIFO_RX_CURRENT_ADDR))

246

247 packet = self. _spi_read (REG_00_FIFO , packet_len)

248 self. _spi_write (REG_12_IRQ_FLAGS , 0xff) # Clear all IRQ

flags

249

250 snr = self. _spi_read (REG_19_PKT_SNR_VALUE) / 4

251 rssi = self. _spi_read (REG_1A_PKT_RSSI_VALUE)

252

253 if snr < 0:

254 rssi = snr + rssi

255 else:

256 rssi = rssi * 16 / 15

257

258 if self._freq >= 779:

259 rssi = round(rssi - 157, 2)

260 else:

261 rssi = round(rssi - 164, 2)

262

263 if packet_len >= 4:

264 header_to = packet [0]

265 header_from = packet [1]

266 header_id = packet [2]

267 header_flags = packet [3]

268 message = bytes(packet [4:]) if packet_len > 4 else b’’

269

270 if self. _this_address != header_to or self. _receive_all

is True:

C.1. PILOT C13

271 return

272

273 if self. crypto and len(message) % 16 == 0:

274 message = self. _decrypt (message)

275

276 if self._acks and header_to == self. _this_address and

not header_flags & FLAGS_ACK :

277 self. send_ack (header_from , header_id)

278

279 self. set_mode_rx ()

280

281 self. _last_payload = namedtuple (

282 " Payload ",

283 [’message ’, ’header_to ’, ’header_from ’, ’header_id ’,

’header_flags ’, ’rssi ’, ’snr ’]

284)(message , header_to , header_from , header_id ,

header_flags , rssi , snr)

285

286 if not header_flags & FLAGS_ACK :

287 self. on_recv (self. _last_payload)

288

289 elif self._mode == MODE_TX and (irq_flags & TX_DONE):

290 self. set_mode_idle ()

291

292 elif self._mode == MODE_CAD and (irq_flags & CAD_DONE):

293 self._cad = irq_flags & CAD_DETECTED

294 self. set_mode_idle ()

295

296 self. _spi_write (REG_12_IRQ_FLAGS , 0xff)

297

298 def close(self):

299 GPIO. cleanup ()

300 self.spi.close ()

constants.py

C14 APPENDIX C. ALGORITHM’S VERSIONING

1 from enum import Enum

2

3

4 class ModemConfig (Enum):

5 Bw125Cr45Sf128 = (0x72 , 0x74 , 0x04)

6 Bw500Cr45Sf128 = (0x92 , 0x74 , 0x04)

7 Bw31_25Cr48Sf512 = (0x48 , 0x94 , 0x04)

8 Bw125Cr48Sf4096 = (0x78 , 0xc4 , 0x0c)

9

10

11 FLAGS_ACK = 0x80

12 BROADCAST_ADDRESS = 255

13

14 REG_00_FIFO = 0x00

15 REG_01_OP_MODE = 0x01

16 REG_06_FRF_MSB = 0x06

17 REG_07_FRF_MID = 0x07

18 REG_08_FRF_LSB = 0x08

19 REG_0E_FIFO_TX_BASE_ADDR = 0x0e

20 REG_0F_FIFO_RX_BASE_ADDR = 0x0f

21 REG_10_FIFO_RX_CURRENT_ADDR = 0x10

22 REG_12_IRQ_FLAGS = 0x12

23 REG_13_RX_NB_BYTES = 0x13

24 REG_1D_MODEM_CONFIG1 = 0x1d

25 REG_1E_MODEM_CONFIG2 = 0x1e

26 REG_19_PKT_SNR_VALUE = 0x19

27 REG_1A_PKT_RSSI_VALUE = 0x1a

28 REG_20_PREAMBLE_MSB = 0x20

29 REG_21_PREAMBLE_LSB = 0x21

30 REG_22_PAYLOAD_LENGTH = 0x22

31 REG_26_MODEM_CONFIG3 = 0x26

32

33 REG_4D_PA_DAC = 0x4d

34 REG_40_DIO_MAPPING1 = 0x40

35 REG_0D_FIFO_ADDR_PTR = 0x0d

C.1. PILOT C15

36

37 PA_DAC_ENABLE = 0x07

38 PA_DAC_DISABLE = 0x04

39 PA_SELECT = 0x80

40

41 CAD_DETECTED_MASK = 0x01

42 RX_DONE = 0x40

43 TX_DONE = 0x08

44 CAD_DONE = 0x04

45 CAD_DETECTED = 0x01

46

47 LONG_RANGE_MODE = 0x80

48 MODE_SLEEP = 0x00

49 MODE_STDBY = 0x01

50 MODE_TX = 0x03

51 MODE_RXCONTINUOUS = 0x05

52 MODE_CAD = 0x07

53

54 REG_09_PA_CONFIG = 0x09

55 FXOSC = 32000000.0

56 FSTEP = (FXOSC / 524288)

C.1.3 Functions

__init__.py

1 import RPi.GPIO as gpio

2 from . confPins import *

3 from . codDecodPackages import *

4 import time

5

6 def crosswalkBoard (PIN_crosswalkBoard , status):

7 digitalWrite (PIN_crosswalkBoard , nivel = gpio.HIGH if status [0]

else gpio.LOW)

8

9 def spotlight (PIN_spotlight , status):

C16 APPENDIX C. ALGORITHM’S VERSIONING

10 digitalWrite (PIN_spotlight , nivel = gpio.HIGH if status [3] else

gpio.LOW)

11

12 def pedestrianBoard (PIN_pedestrianBoard , status , timeCross):

13 digitalWrite (PIN_pedestrianBoard , nivel = gpio.HIGH)

14 time.sleep(tempoPass)

15 digitalWrite (PIN_pedestrianBoard , nivel = gpio.LOW)

16

17 def flashLight (PIN_flash , status):

18 digitalWrite (PIN_flashLight , nivel = gpio.HIGH if status [1] else

gpio.LOW)

codDecodPackage.py

1 from lib. registers import *

2

3 def decPackage (msg):

4 msg = str(msg)

5 finalPackage = str ()

6 finalPackage = modMsg (msg).split(",")

7 finalPackage = [finalPackage [0], True if finalPackage [1] == ’1’

else False , int(finalPackage [2])]

8 return finalPackage

9

10 def codPackage (idSmartcrosswalk , sensorPair , id_package):

11 sensorPair = int(sensorPair)

12 codedPacote = idSmartcrosswalk + "," + str(sensorPairr) + "," +

str(id_package)

13 return codedPackage

confPins.py

1 import RPi.GPIO as gpio

2

3 gpio. setmode (gpio.BCM)

4

C.1. PILOT C17

5 def pinMode (*pins , mode):

6 for value in pins:

7 gpio.setup(value , mode)

8

9 def digitalWrite (*pins , value):

10 for value in pins:

11 gpio. output (value , level)

C.1.4 Tools

__init__.py

1 import csv

2

3 def read ():

4 file = open(’devicesID .csv ’, ’r’)

5 devicesID = list ()

6 try:

7 reader = csv. reader (file)

8 for line in reader :

9 devicesID . append ([line [0], int(line [1])])

10 # devicesID [type ’str ’, type ’int ’]

11 return devicesID

12 except :

13 print("File ’s read Error!")

14 finally :

15 file.close ()

16

17 def modMsg (ID):

18 newID = str ()

19 ID = str(ID)

20 ID = ID. replace ("’"," ", 2)

21 ID = ID. replace ("b"," " ,1)

22 for element in ID:

23 if element != " ":

24 newID = newID + element

C18 APPENDIX C. ALGORITHM’S VERSIONING

25 return newID

26

27 def idTester (ID):

28 ID = modID(ID)

C.2 Structural

C.2.1 Main Routine

1 # ---#

2 ## >>>>>>>>>>>>> LIBRARIES <<<<<<<<<<<<<< ##

3 # ---#

4

5 # Delay to ensure the crotab initialization

6

7 import time

8 time.sleep (2) # Default value is t = 20s

9

10 from raspi import * # Raspberry Pi module sets and operations ’ scripts

11 from communication import * # LoRa module sets and operations ’ scripts

12 from tools import * # Tools module ’s scripts

13

14 # ---#

15 ## >>>>>>>>>>>>> GENERAL CONSIDERATIONS <<<<<<<<<<<<<< ##

16 # ---#

17

18 # 1) All OUTPUTS work as follow :

19 # - HIGH VALUES [True /~3.3V] -> It is DESACTIVATED

20 # - LOW VALUES [False /~0V] -> It is ACTIVATED

21 # This logic is due the designed circuit configuration

22 # active the relays using LOW values to drive them.

23

24 # 2) The device type can be A or B, during all the algorithm

25 # the system make decisions based on it.

26

C.2. STRUCTURAL C19

27

28 # ---#

29 ## >>>>>>>>>>>>> OBJECTS AND FILES <<<<<<<<<<<<<< ##

30 # ---#

31

32 raspi = RaspberryPi (readDev (),readAuthorizedDev ())

33

34 # ---#

35 ## >>>>>>>>>>>>> SET DEFAULTS <<<<<<<<<<<<<< ##

36 # ---#

37

38 raspi. _setIO () # It sets pins as IN or OUT

39

40 # ---#

41 ## >>>>>>>>>>>>> PRESET VALUES <<<<<<<<<<<<<< ##

42 # ---#

43

44 # It sets all pin ’s OUT with default work values

45

46 raspi. _allOutOff ()

47

48 # ---#

49 ## >>>>>>>>>>>>> WORKPLACE <<<<<<<<<<<<<< ##

50 # ---#

51

52 while True:

53

54 raspi. _inputsDetection ()

55

56 if raspi. _status [2] or raspi. _statusPair [2]: # Night detection [

Night == True]

57

58 raspi. _crosswalkBoard (True) # Crosswalk Board ’ON’

59

C20 APPENDIX C. ALGORITHM’S VERSIONING

60 if raspi. _status [0] or raspi. _statusPair [0]: # Pedestrians on

the region A’ or B’

61

62 raspi. _flashLight (True) # Flash Light ’ON’

63

64 if raspi. _status [1]: # Detection of cars on the street [No

movement == True]

65

66 raspi. _pedestrianBoard (True) # Allow the pedestrian

crossing

67 else:

68

69 raspi. _flashLight (False) # Flash Light ’OFF ’

70 raspi. _pedestrianBoard (False) # Pedestrian Board ’OFF ’

71

72 else:

73

74 raspi. _crosswalkBoard (False) # Crosswalk Board ’OFF ’

75 raspi. _flashLight (False) # Flash Light ’OFF ’

76 raspi. _pedestrianBoard (False) # Pedestrian Board

C.2.2 Raspiberry Pi Module

__init__.py

1 from .raspi import *

raspi.py

1 # ---#

2 ## >>>>>>>>>>>>>>> LIBRARIES <<<<<<<<<<<<<<< ##

3 # ---#

4

5 import RPi.GPIO as gpio # Library to control the GPIOS

6 import time

7

C.2. STRUCTURAL C21

8 ## >>>>>>>>>>>>>>> SET LIBRARIES <<<<<<<<<<<<<<< ##

9

10 gpio. setmode (gpio.BCM) # It sets default numeration to pins

11

12 # ---#

13 ## >>>>>>>>>>>>>>> CLASSES <<<<<<<<<<<<<<< ##

14 # ---#

15

16 class RaspberryPi (object):

17

18 def __init__ (self , device =None , authorizedDevices =None): # It

sets default information

19 self. _device = device

20 self. _authorizedDevices = authorizedDevices

21 self. _pinsIN = [27, 18, 19, 20] # It sets default values to

Raspiberry 3B+ INPUT pins

22 # = [SPI , SPI , 19, 20] - It sets default values

to Raspiberry CM3 INPUT pins

23 # = [camera0 ,camera1 , twilightSensor ,

obstacleSensor]

24 self. _pinsOUT = [23, 24, 25, 26] # It sets default values to

Raspiberry CM3 /3B+ OUPUT pins

25 # = [spotlight ,flashLight , crosswalkBoard ,

pedestrianBoard]

26

27 self. _status = [False ,False ,False ,False]

28 self. _statusPair = [False ,False ,False ,False]

29

30 # For status arrays = [camera ’,camera ’’,twilightSensor ,

obstacleSensor]

31

32 def _pinModeIn (self): # It sets pin mode in

33 for pin in self. _pinsIN :

34 gpio.setup(pin ,gpio.IN)

35

C22 APPENDIX C. ALGORITHM’S VERSIONING

36 def _pinModeOut (self): # It sets pin mode out

37 for pin in self. _pinsOUT :

38 gpio.setup(pin ,gpio.OUT)

39

40 def _setIO (self): # It sets predefined pins as IN or OUT

41 self. _pinModeIn ()

42 self. _pinModeOut ()

43 gpio. add_event_detect (self. _pinsIN [3], gpio.RISING , callback

=self. _obstacleSensor , bouncetime =300)

44

45

46 def _inputsDetection (self):

47 self. _camera0 ()

48 self. _camera1 ()

49 self. _twilightSensor ()

50

51 def _allOutOff (self):

52 self. _spotlight (False)

53 self. _pedestrianBoard (False)

54 self. _crosswalkBoard (False)

55 self. _flashLight (False)

56

57 def _bounceTime (self ,t=.1):

58 time.sleep(t)

59

60 def _camera0 (self):

61 self. _bounceTime ()

62 if gpio.input(self. _pinsIN [0]):

63 self. _status [0] = True

64 else:

65 self. _status [0] = False

66

67 def _camera1 (self):

68 self. _bounceTime ()

69 if gpio.input(self. _pinsIN [1]):

C.2. STRUCTURAL C23

70 self. _status [1] = True

71 else:

72 self. _status [1] = False

73

74 def _twilightSensor (self):

75 self. _bounceTime ()

76 if gpio.input(self. _pinsIN [2]):

77 self. _status [2] = True

78 else:

79 self. _status [2] = False

80

81 def _obstacleSensor (self , channel):

82 self. _status [3] = True

83 while self. _status [3] or self. _statusPair [3] or self.

_statusPair [1]:

84 self. _spotlight (True)

85 self. _status [3] = False

86 self. _spotlight (False)

87

88 def _spotlight (self , command):

89 if command :

90 gpio. output (self. _pinsOUT [0], gpio.LOW)

91 else:

92 gpio. output (self. _pinsOUT [0], gpio.HIGH)

93

94 def _flashLight (self , command):

95 if command :

96 gpio. output (self. _pinsOUT [1], gpio.LOW)

97 else:

98 gpio. output (self. _pinsOUT [1], gpio.HIGH)

99

100 def _crosswalkBoard (self , command):

101 if command :

102 gpio. output (self. _pinsOUT [2], gpio.LOW)

103 else:

C24 APPENDIX C. ALGORITHM’S VERSIONING

104 gpio. output (self. _pinsOUT [2], gpio.HIGH)

105

106 def _pedestrianBoard (self , command):

107 if command :

108 gpio. output (self. _pinsOUT [3], gpio.LOW)

109 else:

110 gpio. output (self. _pinsOUT [3], gpio.HIGH)

C.2.3 Tools

1 import csv

2

3 def readDev ():

4 file = open(’device .csv ’, ’r’)

5 device = list ()

6 try:

7 pointer = csv. reader (file)

8 for line in pointer :

9 device = [line [0], int(line [1]) , line [2], line [3]]

10 # device = [type ’str ’, type ’int ’,type ’str ’, type

’str ’]

11 # [id , channel , adress , deviceType]

12 return device

13 except :

14 print(’ERROR to read the file!’)

15 finally :

16 file.close ()

17

18 def readAuthorizedDev ():

19 file = open(’authorizedDevices .csv ’, ’r’)

20 devicesID = list ()

21 try:

22 pointer = csv. reader (file)

23 for line in pointer :

24 devicesID = [line [0], int(line [1])]

C.3. COMMUNICATION C25

25 # devicesID = [type ’str ’,type ’int ’]

26 # = [ID , channel]

27 return devicesID

28 except :

29 print(’ERROR to read the file!’)

30 finally :

31 file.close ()

32

33 def writeDev (ID):

34 file = open(’registeredDevices .csv ’, ’a’)

35 try:

36 writer = csv. writer (file)

37 writer . writerow (ID)

38 except :

39 print(’ERROR to read the file!’)

40 finally :

41 file.close ()

C.3 Communication

C.3.1 Main Routine

1 # ---#

2 ## >>>>>>>>>>>>> LIBRARIES <<<<<<<<<<<<<< ##

3 # ---#

4

5 import RPi.GPIO as gpio

6 from raspi_lora import LoRa , ModemConfig

7 import time

8

9 # ---#

10 ## >>>>>>>>>>>>> DEFAULT VALUES <<<<<<<<<<<<<< ##

11 # ---#

12

13 PIN_twilightSensor = 19

C26 APPENDIX C. ALGORITHM’S VERSIONING

14 PIN_spotlight = 23

15

16 pinMode (PIN_twilightSensor , mode = gpio.IN)

17 pinMode (PIN_spotlight , mode = gpio.OUT)

18

19 lora = LoRa (0, 17, 0, modem_config = ModemConfig . Bw125Cr45Sf128 , tx_power

=14, acks=True)

20

21 # ---#

22 ## >>>>>>>>>>>>> PRESETS <<<<<<<<<<<<<< ##

23 # ---#

24

25 digitalWrite (PIN_twilighSensor , level = gpio.HIGH) # Ensure the output

starting as LOW value

26 message = lora. _last_payload # None value

27 status = False

28 flag = False

29

30 # ---#

31 ## >>>>>>>>>>>>> MAIN PROGRAM <<<<<<<<<<<<<< ##

32 # ---#

33

34 while True:

35

36 lora. set_mode_rx ()

37

38 try:

39 if bool(int(bytes. decode (lora. _last_payload [0]))) is not message

:

40 message = bool(int(bytes. decode (lora. _last_payload [0])))

41 print(f"New message received !")

42 except :

43 pass

44

45 if bool(gpio.input(PIN_twilightSensor)) is not status :

C.4. INTEGRATION C27

46 flag = True

47 time.sleep (0.6)

48 print(f" Status has changed ")

49

50 status = True if bool(gpio.input(PIN_twilightSensor)) else False

51

52 if not(flag):

53

54 if status or message :

55 gpio. output (PIN_spotlight ,gpio.LOW)

56 else:

57 gpio. output (PIN_spotlight ,gpio.HIGH)

58

59 else:

60 lora.send(’1’ if status else ’0’ ,1)

61 flag = False

C.4 Integration

C.4.1 Main Routine

1 # ---#

2 ## >>>>>>>>>>>>> LIBRARIES <<<<<<<<<<<<<< ##

3 # ---#

4

5 # Delay to ensure the crotab initialization

6

7 import time

8 time.sleep (20) # Default value is t = 20s

9

10 from raspi import * # Raspberry Pi module sets and operations ’ scripts

11 from communication import * # LoRa module sets and operations ’ scripts

12 from tools import * # Tools module ’s scripts

13

14 # ---#

C28 APPENDIX C. ALGORITHM’S VERSIONING

15 ## >>>>>>>>>>>>> OBJECTS AND FILES <<<<<<<<<<<<<< ##

16 # ---#

17

18 raspi = RaspberryPi (readDev (),readAuthorizedDev ())

19 lora = LoRa(readDev ())

20

21 # ---#

22 ## >>>>>>>>>>>>> SET DEFAULTS <<<<<<<<<<<<<< ##

23 # ---#

24

25 raspi. _setIO () # It sets pins as IN or OUT

26

27 # ---#

28 ## >>>>>>>>>>>>> PRESET VALUES <<<<<<<<<<<<<< ##

29 # ---#

30

31 raspi. _allOutOff () # It sets all pin ’s OUT with default work values

32 lora. set_mode_rx () # It set the RFM95W as receptor

33

34 # ---#

35 ## >>>>>>>>>>>>> WORKPLACE <<<<<<<<<<<<<< ##

36 # ---#

37

38 while True:

39

40 raspi. _inputsDetection ()

41 raspi. _pairDetection (lora. _message)

42

43 if not(raspi._flag):

44

45 if raspi. _status [2] or raspi. _statusPair [2]: # Night detection [

Night == True]

46

47 raspi. _crosswalkBoard (True) # Crosswalk Board ’ON’

48

C.4. INTEGRATION C29

49 else:

50 raspi. _crosswalkBoard (False) # Crosswalk Board ’OFF ’

51

52 else:

53 lora. send_to_wait (raspi. _message (),raspi. _authorizedDevices [1])

54 lora. set_mode_rx ()

C.4.2 Raspberry Pi Module Updates

1 def __init__ (self , device =None , authorizedDevices =None): # It sets

default information

2 self. _device = device

3 self. _authorizedDevices = authorizedDevices

4 self. _pinsIN = [27, 18, 19, 20] # It sets default values to

Raspiberry 3B+ INPUT pins

5 # = [SPI , SPI , 19, 20] - It sets default values

to Raspiberry CM3 INPUT pins

6 # = [camera0 ,camera1 , twilightSensor ,

obstacleSensor]

7 self. _pinsOUT = [23, 24, 25, 26] # It sets default values to

Raspiberry CM3 /3B+ OUPUT pins

8 # = [spotlight ,flashLight , crosswalkBoard ,

pedestrianBoard]

9

10 self. _status = [False ,False ,False ,False]

11 self. _statusPair = [False ,False ,False ,False]

12 self._flag = False

13

14 def _message (self):

15 strMsg = self. _device [0]+ ’,’

16 for track in range (0, len(self. _status)):

17 if self. _status [track] == True:

18 strMsg = strMsg + ’1’

19 elif self. _status [track] == False:

20 strMsg = strMsg + ’0’

C30 APPENDIX C. ALGORITHM’S VERSIONING

21 return strMsg

22

23 def _pairDetection (self , message):

24 if message is not None:

25 if self. _authorizedDevices [0] == message [0]:

26 if message [1] != self. _statusPair :

27 self. _statusPair = message [1]

28 else:

29 pass

30

31 def _flagTest (self ,pos):

32 if self._flag:

33 pass

34 else:

35 if bool(gpio.input(self. _pinsIN [pos])) is not self. _status [pos]:

36 self._flag = True

37 self. _bounceTime (.2)

38 else:

39 self._flag = False

C.4.3 LoRa Module Updates

1 class LoRa(object):

2 def __init__ (self , this_address):

3

4 self. _channel = 0

5 self. _interrupt = 17

6 self. _thisID = this_address [0]

7

8 self._mode = None

9 self._cad = None

10 self._freq = 868

11 self. _tx_power = 14

12 self. _modem_config = ModemConfig . Bw125Cr45Sf128

13 self. _receive_all = False

C.4. INTEGRATION C31

14 self._acks = True

15

16 self. _this_address = this_address [1]

17 self. _last_header_id = 0

18

19 self. _last_payload = None

20 self. _message = None

21 self. crypto = AES.new(b’the_suffering_is_the_way ’)

22

23 self. cad_timeout = 0

24 self. send_retries = 3

25 self. wait_packet_sent_timeout = 0.2

26 self. retry_timeout = 0.2

27

28 # [...]

29 # The another setups of this class adaptation

30 # are defined equal to the original version .

31

32 def on_recv (self , payload):

33

34 msgDecod = list ()

35 status = list ()

36

37 try:

38 msgDecod . append (bytes. decode (payload . message).split(’,’)[0])

39 for value in bytes. decode (payload . message).split(’,’)[1]:

40 if value == ’1’:

41 status . append (True)

42 else:

43 status . append (False)

44 msgDecod . append (status)

45 except :

46 pass

C32 APPENDIX C. ALGORITHM’S VERSIONING

C.5 Final

C.5.1 Main Routine

1 # ---#

2 ## >>>>>>>>>>>>> LIBRARIES <<<<<<<<<<<<<< ##

3 # ---#

4

5 time.sleep (20)

6

7 from raspi import *

8 from communication import *

9 from tools import *

10

11 # ---#

12 ## >>>>>>>>>>>>> OBJECTS AND FILES <<<<<<<<<<<<<< ##

13 # ---#

14

15 raspi = RaspberryPi (readDev (),readAuthorizedDev ())

16 lora = LoRa(readDev ())

17

18 # ---#

19 ## >>>>>>>>>>>>> SET DEFAULTS <<<<<<<<<<<<<< ##

20 # ---#

21

22 raspi. _setIO ()

23

24 # ---#

25 ## >>>>>>>>>>>>> PRESET VALUES <<<<<<<<<<<<<< ##

26 # ---#

27

28 raspi. _outputCommand (SPOTLIGHT ,\

29 FLASH_LIGHT ,\

30 CROSSWALK_BOARD ,\

31 PEDESTRIAN_BOARD ,\

C.5. FINAL C33

32 command =False)

33 lora. _wait_devicePair (raspi. _authorizedDevices [CHANNEL])

34

35 # ---#

36 ## >>>>>>>>>>>>> WORKPLACE <<<<<<<<<<<<<< ##

37 # ---#

38

39 while True:

40

41 raspi. _inputsDetection (CAMERA_0 ,CAMERA_1 , TWILIGHT_SENSOR)

42 raspi. _pairDetection (lora. _message)

43

44 if not(raspi._flag):

45

46 if raspi. _status [TWILIGHT_SENSOR]\

47 or raspi. _statusPair [TWILIGHT_SENSOR]:

48

49 raspi. _outputCommand (CROSSWALK_BOARD , command =True)

50

51 if raspi. _status [CAMERA_0]\

52 or raspi. _statusPair [CAMERA_0]\

53 or raspi. _statusPair [CAMERA_1]:

54

55 raspi. _outputCommand (FLASH_LIGHT , command =True)

56

57 if raspi. _status [CAMERA_1]\

58 or raspi. _statusPair [CAMERA_1]:

59

60 raspi. _outputCommand (PEDESTRIAN_BOARD , command =True)

61

62 if raspi. _statusPair [CAMERA_1]:

63 raspi. _outputCommand (SPOTLIGHT , command =True)

64 else:

65 raspi. _outputCommand (SPOTLIGHT , command =False)

66

C34 APPENDIX C. ALGORITHM’S VERSIONING

67 else:

68 raspi. _outputCommand (SPOTLIGHT ,\

69 PEDESTRIAN_BOARD ,\

70 command =False)

71

72 else:

73 raspi. _outputCommand (SPOTLIGHT ,\

74 FLASH_LIGHT ,\

75 PEDESTRIAN_BOARD ,\

76 command =False)

77

78 else:

79 raspi. _outputCommand (SPOTLIGHT ,\

80 FLASH_LIGHT ,\

81 CROSSWALK_BOARD ,\

82 PEDESTRIAN_BOARD ,\

83 command =False)

84 else:

85 lora. send_to_wait (raspi. _message (),raspi. _authorizedDevices [

CHANNEL])

86 lora. set_mode_rx ()

C.5.2 Raspberry Pi Module Updates

constants.py

1 # ---#

2 ## >>>>>>>>>>>>>>> CONSTANTS <<<<<<<<<<<<<<< ##

3 # ---#

4

5 ## >>>>>>>>>>>>>>> INPUTS <<<<<<<<<<<<<<< ##

6

7 # GPIO pins

8

9 PIN_CAMERA0 = 27

10 PIN_CAMERA1 = 18

C.5. FINAL C35

11 PIN_TWILIGHT_SENSOR = 19

12 PIN_OBSTACLE_SENSOR = 20

13

14 # Status array ’s index

15

16 CAMERA_0 = 0

17 CAMERA_1 = 1

18 TWILIGHT_SENSOR = 2

19 OBSTACLE_SENSOR = 3

20

21 ## >>>>>>>>>>>>>>> OUTPUTS <<<<<<<<<<<<<<< ##

22

23 # GPIO pins

24

25 PIN_SPOTLIGHT = 23

26 PIN_FLASH_LIGHT = 24

27 PIN_CROSSWALK_BOARD = 25

28 PIN_PEDESTRIAN_BOARD = 26

29

30 # Pins array ’s index

31

32 SPOTLIGHT = 0

33 FLASH_LIGHT = 1

34 CROSSWALK_BOARD = 2

35 PEDESTRIAN_BOARD = 3

36

37 ## >>>>>>>>>>>>>>> COMMUNICATION <<<<<<<<<<<<<<< ##

38

39 # ’authorizedDevices .csv ’ index

40

41 ID = 0

42 CHANNEL = 1

43

44 # Received Package

45

C36 APPENDIX C. ALGORITHM’S VERSIONING

46 STATUS_ARRAY = 1

raspi.py

1 # ---#

2 ## >>>>>>>>>>>>>>> LIBRARIES <<<<<<<<<<<<<<< ##

3 # ---#

4

5 import RPi.GPIO as gpio # Library to control the GPIOS

6 from . constants import *

7 import time

8

9 ## >>>>>>>>>>>>>>> SET LIBRARIES <<<<<<<<<<<<<<< ##

10

11 gpio. setmode (gpio.BCM) # It sets default numeration to pins

12

13 # ---#

14 ## >>>>>>>>>>>>>>> CLASSES <<<<<<<<<<<<<<< ##

15 # ---#

16

17 class RaspberryPi (object):

18

19 def __init__ (self , device =None , authorizedDevices =None): # It

sets default

20 #

information

21 self. _device = device

22 self. _authorizedDevices = authorizedDevices

23 self. _pinsIN = [PIN_CAMERA0 ,\

24 PIN_CAMERA1 ,\

25 PIN_TWILIGHT_SENSOR ,\

26 PIN_OBSTACLE_SENSOR]

27

28 self. _pinsOUT = [PIN_SPOTLIGHT , \

29 PIN_FLASH_LIGHT , \

C.5. FINAL C37

30 PIN_CROSSWALK_BOARD , \

31 PIN_PEDESTRIAN_BOARD]

32

33 self._flag = False # Flag to detect any inputs ’ variation

34 self. _status = [False ,False ,False ,False]

35 self. _statusPair = [False ,False ,False ,False]

36

37 # For status arrays = [CAMERA_0 , CAMERA_1 , TWILIGHT_SENSOR ,

OBSTACLE_SENSOR]

38

39 def _message (self):

40 strMsg = self. _device [ID]+’,’

41 for track in range (0, len(self. _status)):

42 if self. _status [track] == True:

43 strMsg = strMsg + ’1’

44 elif self. _status [track] == False:

45 strMsg = strMsg + ’0’

46 return strMsg

47

48 def _pairDetection (self , message):

49 try:

50 if message is not None:

51 if self. _authorizedDevices [ID] == message [ID]:

52 if message [STATUS_ARRAY] != self. _statusPair :

53 self. _statusPair = message [STATUS_ARRAY]

54 except :

55 pass

56

57 def _flagTest (self ,pos , valueIn):

58 time.sleep (.1)

59 if valueIn is not self. _status [pos]:

60 return True

61 else:

62 return False

63

C38 APPENDIX C. ALGORITHM’S VERSIONING

64 def _pinModeIn (self): # It sets pin mode in

65 for pin in self. _pinsIN :

66 gpio.setup(pin ,gpio.IN)

67

68 def _pinModeOut (self): # It sets pin mode out

69 for pin in self. _pinsOUT :

70 gpio.setup(pin ,gpio.OUT)

71

72 def _setIO (self): # It sets predefined pins as IN or OUT

73 self. _pinModeIn ()

74 self. _pinModeOut ()

75

76 def _inputsDetection (self ,* inputPins):

77 flag = list ()

78

79 for inputPin in inputPins :

80 valueIn = bool(gpio.input(self. _pinsIN [inputPin]))

81 flag. append (self. _flagTest (inputPin , valueIn))

82 self. _status [inputPin] = True if valueIn else False

83

84 for change in flag:

85 if change :

86 self._flag = True

87 break

88 else:

89 self._flag = False

90

91 def _outputCommand (self ,* outputPins , command):

92 for outputPin in outputPins :

93 gpio. output (self. _pinsOUT [outputPin],gpio.LOW \

94 if command else gpio.HIGH)

C.5.3 LoRa Module Updates

1 def _wait_devicePair (self , devicePairChannel):

C.6. SETUP FILES’ GENERATION SCRIPT C39

2 flag = False

3 while not(flag):

4 flag = self. send_to_wait (’’,devicePairChannel)

5 self. set_mode_rx ()

6 time.sleep (1)

C.6 Setup Files’ Generation Script

1 import random

2 import csv

3 import ipaddress

4

5 print(’\n’)

6 print(’### ’)

7 print(’# SMART CROSSWALK - SETUP #’)

8 print(’###\ n’)

9

10 print(’ This setup generate an ID and a Communication Channel , both ’)

11 print(’randomics , for devices A and B. These values are saved in two ’)

12 print(" different .csv pairs of output files authorizedDevices_X .csv ’")

13 print("and ’devices_X .csv , where X = A or B.\n")

14

15 print("Each pair of files must be copy and paste into their respective ")

16 print(" Devices on their Defaut Directory .\n")

17

18 print(’Default directory : /home/pi/ smartCrosswalk \n’)

19

20 ID_A = str(ipaddress . IPv6Address (random . randrange (0 ,2**128 ,1)))\

21 . replace ("’","" ,2)

22 ID_B = str(ipaddress . IPv6Address (random . randrange (0 ,2**128 ,1)))\

23 . replace ("’","" ,2)

24

25 while ID_A == ID_B:

26 ID_B = str(ipaddress . IPv6Address (random . randrange (0 ,2**128 ,1)))\

27 . replace ("’","" ,2)

C40 APPENDIX C. ALGORITHM’S VERSIONING

28

29 channel_A = random . randrange (0 ,254 ,1)

30 channel_B = random . randrange (0 ,254 ,1)

31

32 while channel_A == channel_B :

33 channel_B = random . randrange (0 ,254 ,1)

34

35 address = str(input(" Address : \n")).upper ()

36

37 smartDeviceA = (ID_A , channel_A , address ,’A’)

38 smartDeviceB = (ID_B , channel_B , address ,’B’)

39

40 with open(’device_A .csv ’,’w’) as file_A :

41 writer = csv. writer (file_A)

42 writer . writerow (smartDeviceA)

43

44 with open(’device_B .csv ’,’w’) as file_B :

45 writer = csv. writer (file_B)

46 writer . writerow (smartDeviceB)

47

48 with open(’authorizedDevices_A .csv ’,’w’) as file_A :

49 writer = csv. writer (file_A)

50 writer . writerow ([smartDeviceB [0], smartDeviceB [1]])

51

52 with open(’authorizedDevices_B .csv ’,’w’) as file_B :

53 writer = csv. writer (file_B)

54 writer . writerow ([smartDeviceA [0], smartDeviceA [1]])

55

56 print(’Files generated with success !’)

Appendix D

Practical Protoboard Assembly

D.1 Pilot

Figure D.1: General Pilot protoboard assembly.

D1

D2 APPENDIX D. PRACTICAL PROTOBOARD ASSEMBLY

Figure D.2: Pilot inputs’ protoboard assembly.

Figure D.3: Pilot outputs’ protoboard assembly.

D.2. STRUCTURAL D3

D.2 Structural

Figure D.4: General Structural protoboard assembly.

Figure D.5: Structural inputs’ protoboard assembly.

D4 APPENDIX D. PRACTICAL PROTOBOARD ASSEMBLY

Figure D.6: Structural outputs’ protoboard assembly.

D.3 Final

Figure D.7: General Structural protoboard assembly.

D.3. FINAL D5

Figure D.8: Homemade RFM95W breakout.

	Introduction
	Framework and Motivation
	Objectives
	Document Structure

	Related Works
	IoT Environment for Smart City
	Internet of Things
	Smart City
	Architectures

	Smart Lighting
	Working Structure
	Smart Street Lighting
	Remote Communication

	Developed Works
	Smart Street Lights
	Development of Cloud Based Light Intensity Monitoring System Using Raspberry Pi
	A real-time sensing system of elderly’s crossing behavior at outdoor environments
	Automation Control and Monitoring of Public Street Lighting System based on Internet of Things
	Pedestrian-Safe Smart Crossing System Based on IoT with Object Tracking
	Smart System of a Real-Time Pedestrian Detection for Smart City
	Long-Range Communications in Unlicensed Bands: The Rising Stars in the IoT and Smart City Scenarios

	Flow Control of Pedestrian Traffic
	Proposal of Solution
	Hardware
	Overview
	Control Board
	Inputs
	Outputs
	Energy Supply

	Software
	Overview
	Methodology
	Inputs and Outputs
	Development Tools

	Development: Embedded System and Schematic
	Hardware
	Raspberry Pi
	LoRa RFM95W
	Inputs Connectors
	Outputs Relays
	Energy Supply

	Software
	Work Environment
	Pilot Implementation
	Structural
	Communication
	Integration
	Software Incorporation

	Results and Discussion
	Hardware
	Embedded System
	Software
	Tests

	Conclusions and Future Works
	Conclusion
	Future Works

	Raspberry Pi Compute Module Base Project
	Smart Crosswalk Schematic
	Algorithm's Versioning
	Pilot
	Main Routine
	LoRa Module
	Functions
	Tools

	Structural
	Main Routine
	Raspiberry Pi Module
	Tools

	Communication
	Main Routine

	Integration
	Main Routine
	Raspberry Pi Module Updates
	LoRa Module Updates

	Final
	Main Routine
	Raspberry Pi Module Updates
	LoRa Module Updates

	Setup Files' Generation Script

	Practical Protoboard Assembly
	Pilot
	Structural
	Final

