2,236 research outputs found

    Feasibility Evaluation of a Vibration-Based Leak Detection Technique for Sustainable Water Distribution Pipeline System Monitoring

    Get PDF
    Conventional water pipeline leak-detection surveys employ labor-intensive acoustic techniques, which are usually expensive and less useful for continuous monitoring of distribution pipelines. Based on a comprehensive review of literature and available commercial products, it has been recognized that despite previous studies and products attempting to address the limitations of the conventional surveys by proposing and evaluating a myriad of leak-detection techniques (LDTs), they lacked extensive validation on complex looped systems. Additionally, they offer limited compatibility with some pipe materials such as those made of plastic and may even fail to distinguish leaks from other system disturbances. A novel LDT that addresses some of these limitations is developed and evaluated in the current study using an experimental set-up that is representative of a real-world pipeline system and made of Polyvinyl Chloride (PVC) pipe. The studied LDT requires continuous monitoring of the change in the cross spectral density of surface vibration measured at discrete locations along the pipeline. This vibration-based LDT was hypothesized to be capable of not only detecting the onset of leakage, but also determining its relative severity in complex pipeline systems. Findings based on a two-phase, controlled experimental testing revealed that the proposed LDT is capable of detecting leakages and estimating their relative severities in a real-size, multi-looped pipeline system that is comprised of multiple joints, bends and pipes of multiple sizes. Furthermore, the sustainability merits of the proposed LDT for a representative application scenario are estimated. Specifically, life cycle costs and energy consumption for monitoring the large diameter pipelines in the water distribution system of the Charleston peninsula region in South Carolina are estimated by developing conceptual prototypes of the sensing, communication and computation schemes for practically employing the proposed LDT. The prototype designs are informed by the knowledge derived from the two-phase experimental testing campaign. Overall, the proposed study contributes to the body of knowledge on water pipeline leak detection, specifically to non-intrusive vibration-based monitoring, applications on plastic pipelines, and smart and sustainable network-wide continuous monitoring schemes

    Framework for integrated oil pipeline monitoring and incident mitigation systems

    Get PDF
    Wireless Sensor Nodes (motes) have witnessed rapid development in the last two decades. Though the design considerations for Wireless Sensor Networks (WSNs) have been widely discussed in the literature, limited investigation has been done for their application in pipeline surveillance. Given the increasing number of pipeline incidents across the globe, there is an urgent need for innovative and effective solutions for deterring the incessant pipeline incidents and attacks. WSN pose as a suitable candidate for such solutions, since they can be used to measure, detect and provide actionable information on pipeline physical characteristics such as temperature, pressure, video, oil and gas motion and environmental parameters. This paper presents specifications of motes for pipeline surveillance based on integrated systems architecture. The proposed architecture utilizes a Multi-Agent System (MAS) for the realization of an Integrated Oil Pipeline Monitoring and Incident Mitigation System (IOPMIMS) that can effectively monitor and provide actionable information for pipelines. The requirements and components of motes, different threats to pipelines and ways of detecting such threats presented in this paper will enable better deployment of pipeline surveillance systems for incident mitigation. It was identified that the shortcomings of the existing wireless sensor nodes as regards their application to pipeline surveillance are not effective for surveillance systems. The resulting specifications provide a framework for designing a cost-effective system, cognizant of the design considerations for wireless sensor motes used in pipeline surveillance

    Sensor Network Architectures for Monitoring Underwater Pipelines

    Get PDF
    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring

    Design and implementation of an oil leakage monitoring system based on wireless network

    Get PDF
    Monitoring pipeline leaks is one of the recent hot studies. Leakage may occur because of time corrosion in the tube raw materials. To reduce the negative consequences of this leak, an effective leak detection system is used to prevent serious leakage accidents and damage in oil pipelines. Buildings, ecosystems, air pollution, and human life are all at risk in case of leakage occurs which could lead to fires. This paper introduces one of the research methods for the detection of pipeline leaks with a particular focus on software-based methods. The computer board interface (CBI) and wireless sensor networks have been used beside Arduino as a micro-monitor for the entire system. ZigBee is also utilized to send read data from sensors to the monitoring system displayed on the LabVIEW graphical user interface (GUI). The operator can take direct action when a leak occurs. The effectiveness of the leakage monitoring process and its practical use are demonstrated by the introduction of computerized techniques based on pressure gauge analysis on a specific pipeline in the laboratory. The result showed that the system is widely covered, accurate data transmission and robust real-time performance which reduces economic losses and environmental pollution

    Review on Strain Monitoring of Aircraft Using Optical Fibre Sensor

    Get PDF
    Structural health monitoring of aircraft assures safety, integrity and reduces cost-related concerns by reducing the number of times maintenance is required. Under aerodynamic loading, aircraft is subjected to strain, in turn causing damage and breakdown. This paper presents a review of experimental works, which focuses on monitoring strain of various parts of aircraft using optical fibre sensors. In addition, this paper presents a discussion and review on different types of optical fibre sensors used for structural health monitoring (SHM) of aircraft. However, the focus of this paper is on fibre bragg gratings (FBGs) for strain monitoring.  Here, FBGs are discussed in detail because they have proved to be most viable and assuring technology in this field. In most cases of strain monitoring, load conditioning and management employs finite element method (FEM). However, more effort is still required in finding the accurate positions in real time where the sensors can be placed in the structure and responds under complex deformation

    Review on Strain Monitoring of Aircraft Using Optical Fibre Sensor

    Get PDF
    Structural health monitoring of aircraft assures safety, integrity and reduces cost-related concerns by reducing the number of times maintenance is required. Under aerodynamic loading, aircraft is subjected to strain, in turn causing damage and breakdown. This paper presents a review of experimental works, which focuses on monitoring strain of various parts of aircraft using optical fibre sensors. In addition, this paper presents a discussion and review on different types of optical fibre sensors used for structural health monitoring (SHM) of aircraft. However, the focus of this paper is on fibre bragg gratings (FBGs) for strain monitoring.  Here, FBGs are discussed in detail because they have proved to be most viable and assuring technology in this field. In most cases of strain monitoring, load conditioning and management employs finite element method (FEM). However, more effort is still required in finding the accurate positions in real time where the sensors can be placed in the structure and responds under complex deformation

    Applications of Wireless Sensor Networks in the Oil, Gas and Resources Industries

    Get PDF
    The paper provides a study on the use of Wireless Sensor Networks (WSNs) in refineries, petrochemicals, underwater development facilities, and oil and gas platforms. The work focuses on networks that monitor the production process, to either prevent or detect health and safety issues or to enhance production. WSN applications offer great opportunities for production optimization where the use of wired counterparts may prove to be prohibitive. They can be used to remotely monitor pipelines, natural gas leaks, corrosion, H2S, equipment condition, and real-time reservoir status. Data gathered by such devices enables new insights into plant operation and innovative solutions that aids the oil, gas and resources industries in improving platform safety, optimizing operations, preventing problems, tolerating errors, and reducing operating costs. In this paper, we survey a number of WSN applications in oil, gas and resources industry operations

    Investigation and Implementation of IoT Based Oil & Gas Pipeline Monitoring System

    Get PDF
    Wireless Sensor Networks (WSNs) involve top potential technologies that will dramatically change the way of human living and working. Many scientific, industrial and environmental applications require real time information related to physical events like pressure, temperature or humidity. In the past the only way to transfer the sensed data to control center was through cumbersome and costly wires. But recent advancement in wireless networking enables WSNs to communicate the sensed real time event data wirelessly. WSNs have capabilities of sensing, processing and communicating which make them most suitable for monitoring different on and gas industries upstream, midstream and downstream operations which help to increase production, decrease the accidents, maintenance cost and malfunctioning
    • 

    corecore